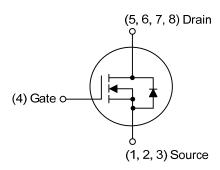


UNISONIC TECHNOLOGIES CO., LTD

UT4422 **Power MOSFET**

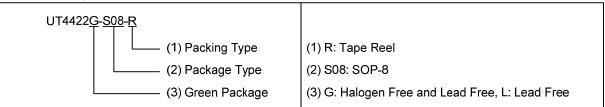
N-CHANNEL ENHANCEMENT MODE FIELD EFFECT TRANSISTOR

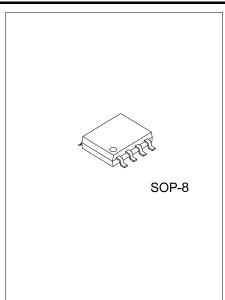
DESCRIPTION


The UTC UT4422 is a N-channel MOSFET, it uses UTC's advanced technology to provide the customers with a minimum on state resistance and high switching speed.

The UTC UT4422 is suitable for load switch and battery protection applications.

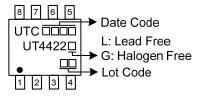
- * $R_{DS(ON)} \le 15 \text{ m}\Omega$ @ $V_{GS} = 10V$, $I_D = 8.0A$ $R_{DS(ON)} \le 24 \text{ m}\Omega$ @ $V_{GS} = 4.5 \text{V}$, $I_{D} = 8.0 \text{A}$
- * Low Capacitance
- * Low Gate Charge
- * Fast Switching Capability
- * Avalanche Energy Specified


SYMBOL



ORDERING INFORMATION

Ordering Number		Dookogo		Pin Assignment							Dooking	
Lead Free	Halogen Free	Package	1	2	3	4	5	6	7	8	Packing	
UT4422L-S08-R	UT4422G-S08-R	SOP-8	S	S	S	G	D	D	D	D	Tape Reel	


Note: Pin Assignment: G: Gate D: Drain S: Source

www.unisonic.com.tw 1 of 6 UT4422

MARKING

UT4422 Power MOSFET

■ ABSOLUTE MAXIMUM RATINGS (T_A = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	30	V
Gate-Source Voltage		V_{GSS}	±20	V
Continuous Drain Current (Note 1)		I _D	11	Α
Pulsed Drain Current		I _{DM}	50	Α
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	7	mJ
Power Dissipation		P _D	1.5	W
Junction Temperature		TJ	+150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

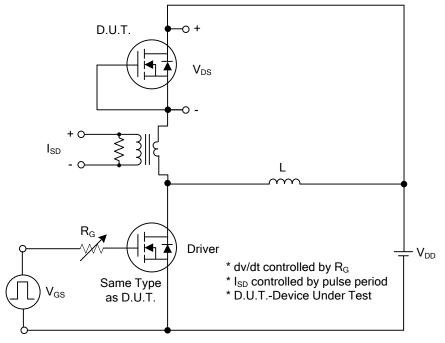
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. L = 0.1mH, I_{AS} = 11.6A, V_{DD} = 20V, R_G = 25 Ω , Starting T_J = 25 $^{\circ}$ C

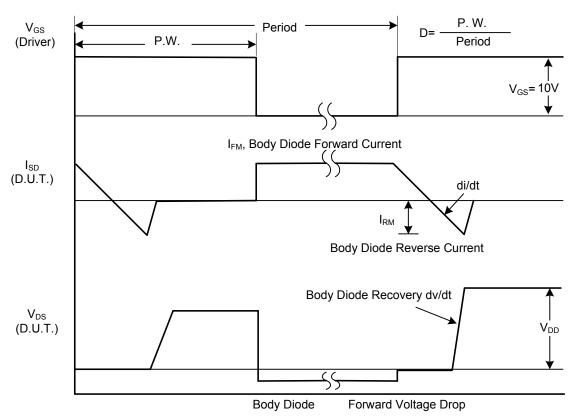
■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	90	°C/W
Junction to Case	θ_{JC}	83.3 (Note)	°C/W

Note: Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square copper plate.

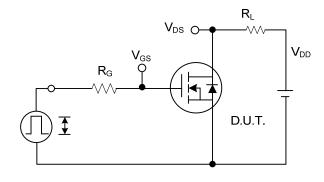

■ ELECTRICAL CHARACTERISTICS (T_J =25°C, unless otherwise specified)

DADAMETED	0)/1/40/01	TEGT COMPITIONS	N ALL L	TVD.	1441/					
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT				
OFF CHARACTERISTICS										
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250μA	30			V				
Drain-Source Leakage Current	I _{DSS}	V _{DS} =30V, V _{GS} =0V			1	μΑ				
Gate-Body Leakage Current	I _{GSS}	V_{DS} =0V, V_{GS} =±20V			100	nA				
ON CHARACTERISTICS										
Gate Threshold Voltage	V _{GS(TH)}	$V_{DS}=V_{GS}$, $I_D=250\mu A$	1.0		3.0	V				
Static Prair Source On Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =8.0A			15	mΩ				
Static Drain-Source On-Resistance		V _{GS} =4.5V, I _D =8.0A			24	mΩ				
DYNAMIC PARAMETERS										
Input Capacitance	C _{ISS}			850		рF				
Output Capacitance	Coss	V_{DS} =15V, V_{GS} =0V, f=1MHz		201		рF				
Reverse Transfer Capacitance	C _{RSS}			168		рF				
SWITCHING PARAMETERS										
Total Gate Charge	Q_{G}			29		nC				
Gate Source Charge	Q_{GS}	V _{DS} =24V, V _{GS} =10V, I _D =11A		4		nC				
Gate Drain Charge	Q_{GD}			8		nC				
Turn-ON Delay Time	t _{D(ON)}			6		ns				
Turn-ON Rise Time	t _R	V _{DS} =15V, V _{GS} =10V, I _D =11A,		18		ns				
Turn-OFF Delay Time	t _{D(OFF)}	R _G =3.0Ω (Note 1, 2)		22		ns				
Turn-OFF Fall-Time	t _F			21		ns				
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS										
Diode Forward Voltage	V _{SD}	I _S =11A, V _{GS} =0V			1.4	V				


Notes: 1. Pulse Test : Pulse width \leq 300 μ s, Duty cycle \leq 2%.

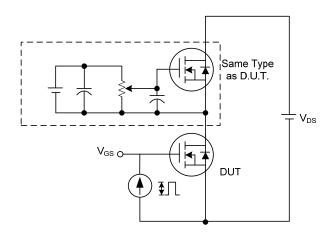
2. Essentially independent of operating temperature.

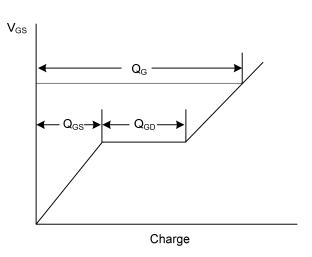
■ TEST CIRCUITS AND WAVEFORMS


Peak Diode Recovery dv/dt Test Circuit

Peak Diode Recovery dv/dt Waveforms

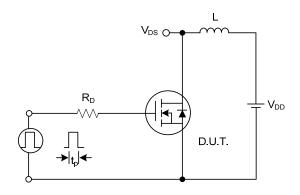
UT4422 Power MOSFET

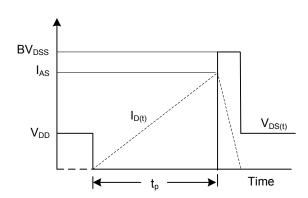

■ TEST CIRCUITS AND WAVEFORMS



 V_{DS} 0% V_{GS} 10% $\downarrow t_{D(ON)}$ $\downarrow t_{D(OFF)}$ $\downarrow t_{F}$

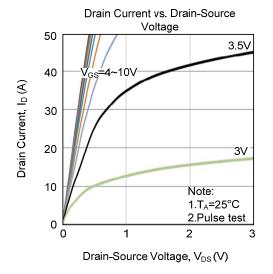
Switching Test Circuit

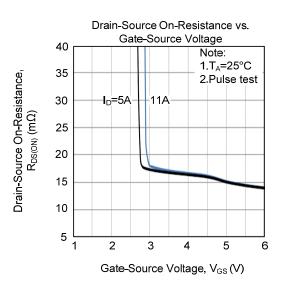

Switching Waveforms

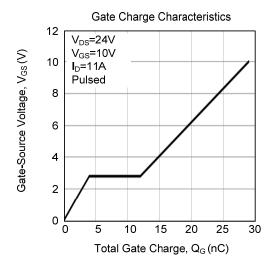


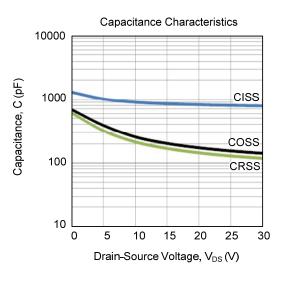
Gate Charge Test Circuit

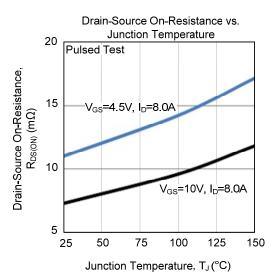
Gate Charge Waveform

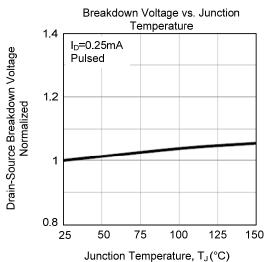


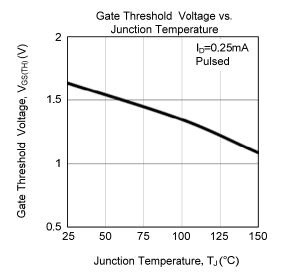


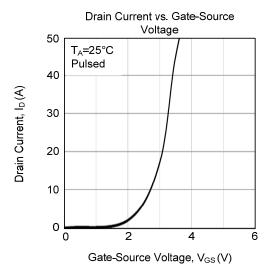

Unclamped Inductive Switching Test Circuit

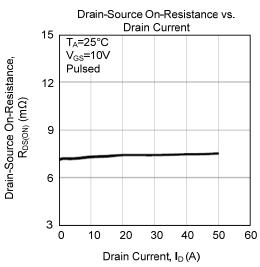

Unclamped Inductive Switching Waveforms

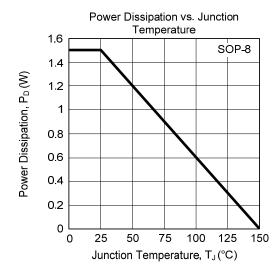

■ TYPICAL CHARACTERISTICS

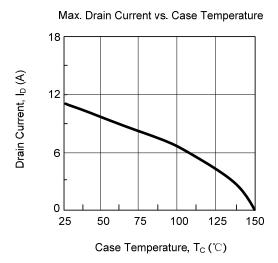


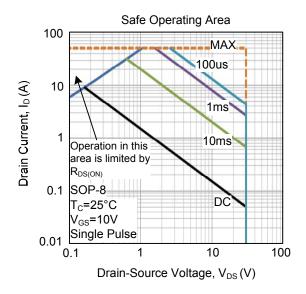







■ TYPICAL CHARACTERISTICS (Cont.)





■ TYPICAL CHARACTERISTICS (Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.