

UNISONIC TECHNOLOGIES CO., LTD

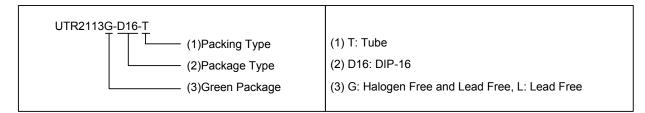
UTR2113

Advance

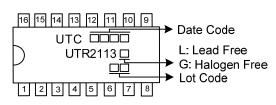
LINEAR INTEGRATED CIRCUIT

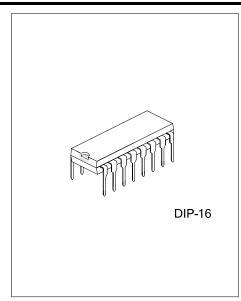
HIGH AND LOW SIDE DRIVER

DESCRIPTION


The **UTR2113** are high voltage, high speed power MOSFET and IGBT drivers with independent high-side and low-side referenced output channels. Pro-prietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. Logic in-puts are compatible with standard CMOS or LSTTL out-put, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 500V or 600V.

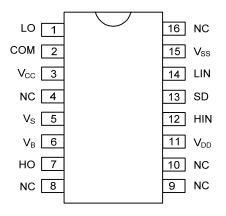
FEATURES


- * Floating channel designed for bootstrap operation
- * Fully operational to 500V or 600V
- * Tolerant to negative transient voltage, dV/dt immune
- * Gate drive supply range from 10V to 20V
- * Undervoltage lockout for both channels
- * 3.3V logic compatible
- * Separate logic supply range from 3.3V to 20V
- * Logic and power ground ± 5V offset
- * CMOS Schmitt-triggered inputs with pull-down
- * Cycle by cycle edge-triggered shutdown logic
- * Matched propagation delay for both channels
- * Outputs in phase with inputs


ORDERING INFORMATION

Ordering Number		Daakaaa	Deaking	
Lead Free	Halogen Free Package		Packing	
UTR2113L-D16-T	UTR2113G-D16-T	DIP-16	Tube	

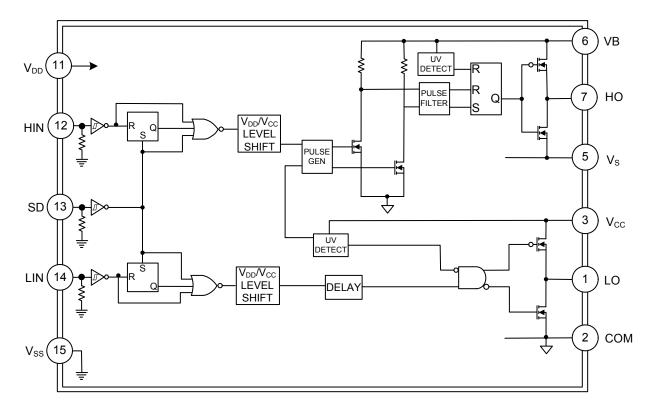
MARKING



UTR2113

Advance

PIN CONFIGURATION


PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	LO	Low-side gate drive output
2	COM	Low-side return
3	V _{CC}	Low-side supply
4, 8~10, 16	NC	
5	Vs	High-side floating supply return
6	VB	High-side floating supply
7	HO	High-side gate drive output
11	V_{DD}	Logic supply
12	HIN	Logic input for high-side gate driver output (HO), in phase
13	SD	Logic input for shutdown
14	LIN	Logic input for low-side gate driver output (LO), in phase
15	V _{SS}	Logic ground

Advance

BLOCK DIAGRAM

■ **ABSOLUTE MAXIMUM RATING** (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
High-Side Floating Absolute Voltage	VB	620 (Note 3)	V
High-Side Floating Supply Offset Voltage	Vs	V _B +0.3	V
High-Side Floating Output Voltage	V _{HO}	V _B +0.3	V
Low-Side and logic Fixed Supply Voltage	V _{CC}	20 (Note 3)	V
Low-Side Output Voltage	V _{LO}	V _{CC} +0.3	V
Logic Supply Voltage	V _{DD}	V _{SS} +20 (Note 3)	V
Logic Supply Offset Voltage	V _{SS}	V _{CC}	V
Logic Input Voltage (HIN &LIN)	V _{IN}	V _{DD}	V
Allowable Offset Supply Voltage Transient	dVs/dt	50	V
Power Dissipation	PD	1.25	W
Maximum Junction Temperature	TJ	+150	°C
Maximum Storage Temperature Range	T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.
- 3. All supplies are fully tested at 25V, and an internal 20V clamp exists for each supply.

RECOMMENDED OPERATING RATINGS

(For proper operation, the device should be used within the recommended conditions. The V_S and V_{SS} offset ratings are tested with all supplies biased at a 15V differential.)

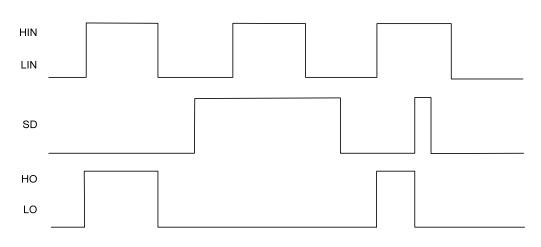
PARAMETER	SYMBOL	RATINGS	UNIT
High-Side Floating Supply Absolute Voltage	VB	V _S +10 ~ V _S +20	
High-Side Floating Supply Offset Voltage	Vs	600 (Note 1)	V
High-Side Floating Output Voltage	V _{HO}	$V_{\rm S} \sim V_{\rm B}$	V
Low-Side Fixed Supply Voltage	Vcc	10 ~ 20	V
Low-Side Output Voltage	V _{LO}	0 ~ V _{CC}	V
Logic Supply Voltage	V _{DD}	V_{SS} +3 ~ V_{SS} +20	V
Logic Supply Offset Voltage	Vss	-5 ~ 5 (Note 2)	V
Logic Input Voltage (HIN, LIN & SD)	V _{IN}	$V_{SS} \sim V_{DD}$	V
Ambient Temperature	TA	-40 ~ +125	°C

Notes: 1. Logic operational for V_S of -4V to +500V. Logic state held for V_S of -4 V to -V_{BS}.

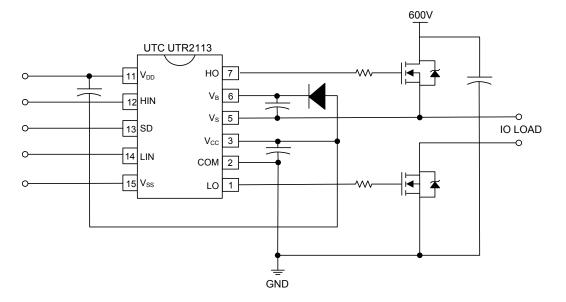
2. When V_{DD} < 5 V, the minimum V_{SS} offset is limited to - V_{DD} .

THERMAL DATA

PARAMETER	SYMBOL RATINGS		UNIT	
Junction to Ambient	θ _{JA}	100	°C/W	


ELECTRICAL CHARACTERISTICS

 $[V_{BIAS} (V_{CC}, V_{BS}, V_{DD})=15V, C_L=1000pF, V_{SS}=COM and T_A=25^{\circ}C$ unless otherwise specified. The V_{IN}, V_{TH}, and I_{IN} parameters are referenced to V_{SS} and are applicable to all three logic input leads: HIN, LIN, and SD. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.]


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Turn-ON Propagation Delay	t _{on}	V _S =0V		180	250	ns
Turn-OFF Propagation Delay	t _{OFF}	V -000V		120	150	ns
Shutdown Propagation Delay	t _{SD}	-V _S =600V		130	160	ns
Turn-ON Rise Time	tr			25	35	ns
Turn-OFF Fall Time	t _f			17	25	ns
Turn-ON/OFF	MT				20	ns
Logic "1" Input Voltage	V _{IH}		10			V
Logic "0" Input Voltage	VIL				5.5	V
High level Output Voltage, V _{BIAS} - V _O	V _{OH}	I _O =0A			1.5	V
Low Level Output Voltage, Vo	V _{OL}	I _O =20mA			0.15	V
Offset Supply Leakage Current	I _{LK}	V _B =V _S =600V			50	μA
Quiescent V _{BS} Supply Current	I _{QBS}	$V_{IN}=0V \sim V_{DD}$		125	230	μA
Quiescent V _{CC} Supply Current	lacc			180	340	μA
Quiescent V _{DD} Supply Current	I _{QDD}			15	30	μA
Logic "1" Input Bias Current	II _{N+}	V _{IN} =V _{DD}		20	40	μA
Logic "0" Input Bias Current	II _{N-}	V _{IN} =0V			5.0	μA
V _{BS} supply undervoltage positive going threshold	V _{BSUV+}		7.5	8.6	9.7	V
V _{BS} Supply Undervoltage Negative Going Threshold	V _{BSUV-}		7.0	8.2	9.4	V
V _{CC} Supply Undervoltage Positive Going Threshold	V _{CCUV+}		7.4	8.5	9.6	V
V _{CC} Supply Undervoltage Negative Going Threshold	V _{CCUV-}		7.0	8.2	9.4	V
Output High Short Circuit Pulsed Current	I _{O+}	V _{IN} =V _{DD} , V _O =0V, P _W ≤10µs	2.0	2.5		А
Output Low Short Circuit Pulsed Current	I _{O-}	V _{IN} =0V, V _O =15V, P _W ≤15µs	2.0	2.5		А

TIMING DIAGRAM

TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

