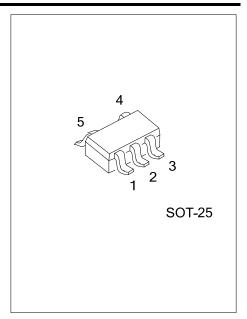


UNISONIC TECHNOLOGIES CO., LTD

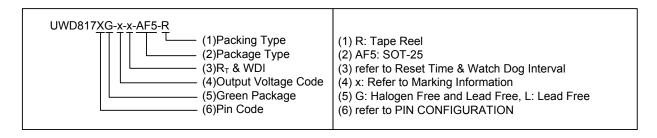

UWD817 CMOS IC

MICROPOWER µP WATCH DOG **TIMER**

DESCRIPTION

The UTC UWD817 families are groups of high-precision, low current consumption voltage detectors with manual reset input and watchdog functions based on CMOS process. The series consist of a reference voltage source, delay circuit, comparator, and output driver. With the built-in delay circuit, the UTC UWD817 series do not require any external components to output signals with release delay time. The user can choose detect voltage thresholds.

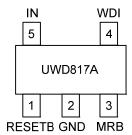
The WDI pin in the UTC UWD817 can be left open if the watchdog function is not used. Whenever the watchdog pin is opened, the internal counter clears before the watchdog timeout occurs. Since the manual reset pin is internally pulled up to the V_{IN} pin voltage level, the ICs can be used by leaving the manual reset pin unconnected if the pin is unused.



FEATURES

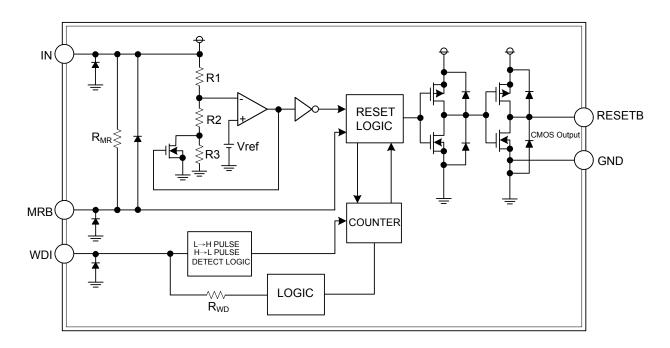
- * Precision Supply-Voltage Monitor
- * Operating Voltage Range: 1.0V~5.5V
- * Output Configuration: CMOS
- * Watchdog Function: Watchdog input WD * Wide Temperature Range: -40°C to +85°C

ORDERING INFORMATION


Ordering Number		Reset	Watch	LINUT	Cada	Dealters	Deaking
Lead Free	Halogen Free	Time	Dog Interval	UNIT	Code	Package	Packing
UWD817XL-x-x-AF5-R	UWD817XG-x-x-AF5-R	210	1760	ms	F	SOT-25	Tape Reel

■ MARKING INFORMATION

PACKAGE	VOLTAGE CODE	MARKING
SOT-25	A: 2.63V B: 2.93V C: 3.08V D: 4.00V H: 4.40V G: 4.65V	Pin Code W7AXF R _T & WDI


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	RESETB	RESETB is active low. This pin can be push/pull.
2	GND	Ground
3	MRB	Manual Reset. Active low. Pulling this pin low forces a reset. After a low to high transition reset remains asserted for exactly one reset timeout period. This pin is internally pulled high. If this function is unused then float this pin or tie it to V _{IN} .
4	WDI	Watch Dog Input. Any transition on this pin will reset the watch dog timer. If this pin remains high or low for longer than the watch dog interval then a reset is asserted. Float or tristate this pin to disable the watch dog feature.
5	IN	Positive power supply. A reset is asserted after this voltage drops below a predetermined level. After V_{IN} rises above that level reset remains asserted until the end of the reset timeout period.

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

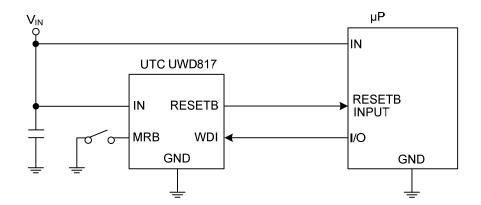
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{IN}	5.5	V
Power Dissipation	P_{D}	400	mW
Junction Temperature	ΤJ	+150	°C
Ambient Temperature	T _A	-40 ~ +85	°C
Storage Temperature	T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	310	°C/W
Junction to Case	$\theta_{ m JC}$	90	°C/W

■ **ELECTRICAL CHARACTERISTICS** (T_A=25°C, unless otherwise noted)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IN} Range	V_{IN}		1.0		5.5	V
Supply Current	I _{IN}				50	μA
Reset Threshold	V_{TH}		V _{TH} -2%		V _{TH} +2%	V
Reset B Output Voltage High	V_{OH}	V_{IN} > V_{DF} Max. I_{SOURCE} =0.5mA, T_A =-40~+85°C	0.8V _{IN}			>
Reset B Output Voltage Low	V_{OL}	V_{IN} < V_{DF} Min. I_{SNK} =1.2mA, T_A =-40~+85°C			0.5	٧
V _{IN} to Reset Delay	T_{D1}	V _{IN} =V _{DF} -100mV		40		μS
Release Delay Time (Note 1)	t_{DR}		140	210	280	mS
Watch Dog Timeout Period (Note 2)	T_{WD}		1120	1760	2400	mS
WDI Pulse Width	T_{WDI}			300		nS
WDI Input Throshold	$W_{DI\;IL}$	V _{IN} =V _{TH} x 1.2			0.7	V
WDI Input Threshold	$W_{DI\;IH}$	VIN-VTH X 1.2	0.8V _{IN}			V
M/DL Invest Comment	I _{IL}	WDI=0V	-15	-8		μΑ
WDI Input Current	I _{IH}	WDI=V _{IN} =6.0V		8	15	μΑ
MDD Input Throshold	M _{RB IL}	\ -\\ \ \\ 12			0.7	V
MRB Input Threshold	M _{RB IH}	$V_{IN}=V_{DF} \times 1.2$	0.8V _{IN}			V
MRB Pulse Width	T_{WMRB}		1			μS
MRB to Reset Delay	T_{DMRB}			500		nS
MRB Pull Up Resistance			80		160	ΚΩ

Notes: 1. Release delay time (TWD) watchdog timeout period settings are available in 1.7s.

2. Watchdog timeout period settings are available in 1.7s.

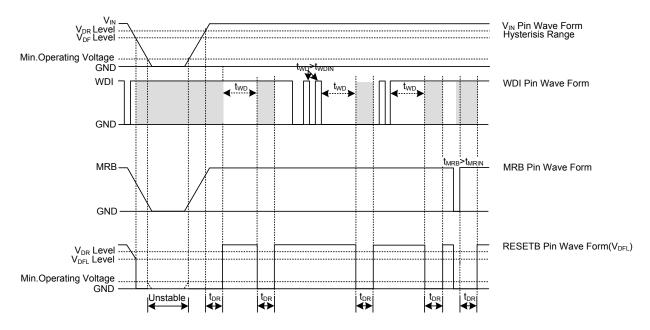
CMOS IC

TYPICAL APPLICATION CIRCUIT

OPERATIONAL EXPLANATION

The UTC **UWD817** series compare the voltage of the internal reference source with the voltage divided by R1, R2 and R3 connected to the V_{IN} pin. The resulting signal activates the watchdog logic, manual reset logic, delay circuit and the output driver. When the V_{IN} voltage gradually falls and finally reaches the detect voltage, the RESETB goes from high to low in the case of the V_{DFL} type ICs.

Reset Output


Each output pin in the series can be configured to be either CMOS. In addition each output may be either active high or active low. Active low reset outputs are denoted as RESETB.

When 3 things below are happen, the output will be reseted:

- 1. V_{IN} drops below the threshold (V_{TH})
- 2. The MRB pin is pulled low.
- 3. The WDI pin does not detect a transition signal within the watch dog interval (TWD).

The reset will remain asserted for the prescribed reset interval after:

- 1. V_{IN} rises above the threshold (V_{TH})
- 2. MRB goes high
- 3. The watch dog timer has timed out causing the reset to assert.

Manual Reset Input

Using the MRB pin input, the RESETB pin signal can be forced to the detection state. When the MRB pin is driven from high to low, the RESETB pin output goes from high to low level in the case of the V_{DFL} type ICs. Even after the MRB pin is driven back high, the RESETB pin output maintains the detection state for the release delay time (t_{DR}). Because of internally pulled up for the MRB pin, so leave the MRB pin open if unused. A diode, which is an input protection element, is connected between the MRB pin and V_{IN} pin. Therefore, when the MRB pin voltage exceeds V_{IN} , the current will flow to V_{IN} through the diode. Please use this IC within the stated maximum ratings (V_{SS} -0.3 \sim V_{IN} +0.3 \leq 6.0V) on the MRB pin.

■ OPERATIONAL EXPLANATION (Cont.)

Watchdog Input

The UTC **UWD817** series use a watchdog timer to detect malfunction or "runaway" of the microprocessor. If neither rising nor falling signals are applied from the microprocessor within the watchdog timeout period, the RESETB pin output maintains the detection state for the release delay time (t_{DR}), and thereafter the RESETB pin output returns to the release state. The timer in the watchdog is then restarted. Watchdog timeout period settings are available in 1.7s

Release Delay Time

Release delay time (t_{DR}) is the time that elapses from when the V_{IN} pin reaches the release voltage, or when the watchdog timeout period expires with no rising signal applied to the WDI pin, until the RESETB pin output is released from the detection state.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.