

Tentative Specification

Preliminary Specification

Approval Specification

MODEL NO.: V216B1 SUFFIX: P13

Customer:	
APPROVED BY	SIGNATURE
<u>Name / Title</u> Note	
Please return 1 copy for your signature and comments.	confirmation with your

Approved By	Checked By	Prepared By		
Chao-Chun Chung	Roger Huang	Carlos Lee		

Version 2.0

1

Date : 15 Jun 2010

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

 \Diamond

PRODUCT SPECIFICATION

CONTENTS

1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 CHARACTERISTICS	5
1.3 MECHANICAL SPECIFICATIONS	5
2. ABSOLUTE MAXIMUM RATINGS	6
2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED ON CMI MODULE V216B1-L04)	
2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)	7
2.3 ELECTRICAL ABSOLUTE RATINGS	
2.3.1 TFT LCD MODULE	7
3. ELECTRICAL CHARACTERISTICS	8
3.1 TFT LCD MODULE	
4. BLOCK DIAGRAM OF INTERFACE	11
4.1 TFT LCD MODULE	11
5. INPUT TERMINAL PIN ASSIGNMENT	
5.1 TFT LCD Module Input	
5.2 LVDS INTERFACE	13
5.3 COLOR DATA INPUT ASSIGNMENT	14
6. INTERFACE TIMING	15
6.1 INPUT SIGNAL TIMING SPECIFICATIONS	15
6.2 POWER ON/OFF SEQUENCE	18
7. OPTICAL CHARACTERISTICS	19
7.1 TEST CONDITIONS	19
7.2 OPTICAL SPECIFICATIONS	20
8. DEFINITION OF LABELS	23
8.1 OPEN CELL LABEL	23
8.2 CARTON LABEL	23
9. PACKAGING	24
9.1 PACKAGING SPECIFICATIONS	
Version 2.0 2 Date : 15 Ju	n 2010
The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited	2010

 \Diamond

PRODUCT SPECIFICATION

9.2 PACKAGING METHOD	24
10. PRECAUTIONS	
10.1 ASSEMBLY AND HANDLING PRECAUTIONS	
10.2 SAFETY PRECAUTIONS	26

11. MECHANICAL CHARACTERISTIC

Version 2.0

3

Date : 15 Jun 2010

REVISION HISTORY

 Version 2.0
 4
 Date : 15 Jun 2010

 The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V216B1- P13 is a 21.6-inch TFT LCD cell with driver ICs and a 30pin 1ch-LVDS interface. This module supports 1366 x 768 (16:9 wide screen) formats and can display 16.7M colors (6-bit + Hi-FRC colors). The backlight unit is not built in.

1.2 CHARACTERISTICS

CHARACTERISTICS ITEMS	SPECIFICATIONS
Screen Diagonal [in]	21.6
Pixels [lines]	1366 × 768
Active Area [mm]	477.417 × 268.416
Sub -Pixel Pitch [mm]	0.1165 (H) × 0.3495 (V)
Pixel Arrangement	RGB vertical stripe
Weight [g]	TYP. 593
Physical Size [mm]	488.917(W) x 279.916(H) x 1.83(D) Typ.
Display Mode	TN, Normally White
Contrast Ratio	800:1 Typ.
	(Typical value measured at CMI's module)
Glass thickness (Array/CF) [mm]	0.7 / 0.7
Viewing Angle (CR>10)	+85/-85(H), +80/-80(V) Typ.
	(Typical value measured at CMI's module)
Color Chromaticity	R=0.6883, 0.3115
	G=0.3347, 0.5615
	B=0.1974, 0.1237
	W=0.3203, 0.3595
	*Please refer to "color chromaticity" on chapter 7.2
Cell Transparency [%]	7.1% Тур.
	(Typical value measured at CMI's module)
Polarizer (CF side)	Anti-Glare coating (Haze 11%)
	484.4(H) x 275.8(w), Hardness: 3H
Polarizer (TFT side)	484.4(H) x 275.8 (w)

1.3 MECHANICAL SPECIFICATIONS

Item	Min.	Тур.	Max.	Unit	Note	
Weight	564	593	622	g		
I/F connector mounting	The mounting ir	The mounting inclination of the connector makes				
position	the screen center	he screen center within ±0.5mm as the horizontal.				

Note (1) Connector mounting position

Version 2.0

Date : 15 Jun 2010

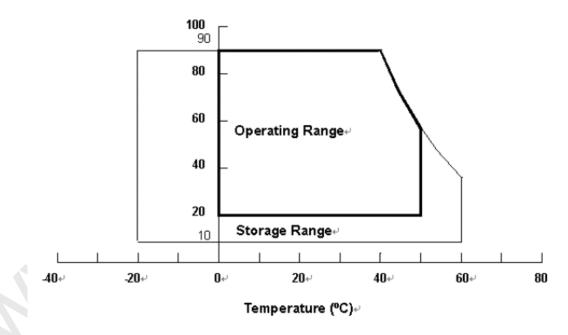
The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

5

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED ON CMI MODULE V216B1-L04)

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Unit		
Storage Temperature	$T_{\rm ST}$	-20	+60	°C	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1) (2)	


Note (1) Temperature and relative humidity range is shown in the figure below.

(a) 90 % RH Max. (Ta ≤ 40 °C).

(b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).

- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.

Relative Humidity (%RH)↔

Version 2.0	6	Date : 15 Jun 2010
		y

屏库:全球液晶屏交易中心

PRODUCT SPECIFICATION

2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)

Storage Condition: With shipping package. Storage temperature range: 25±5 $^\circ\!C$

Storage humidity range: $50\pm10\%$ RH

Shelf life: a month

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Itom	Symbol	Va	lue	Unit	Note	
Item	Symbol	Min.	Max.	Unit	note	
Power Supply Voltage	V_{CC}	-0.3	6.0	V		
Logic Input Voltage	V_{IN}	-0.3	3.6	V	(1)	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Version 2.0

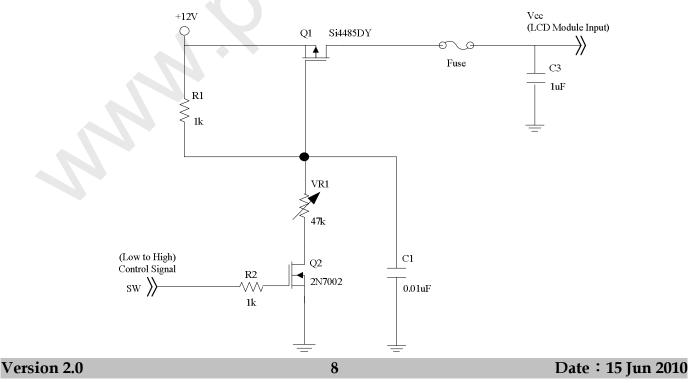
7

Date : 15 Jun 2010

 $\langle p \rangle$

PRODUCT SPECIFICATION

3. ELECTRICAL CHARACTERISTICS

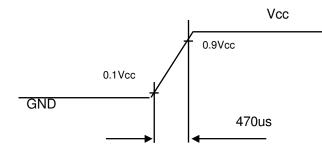

3.1 TFT LCD MODULE

(Ta = 25 ± 2 °C)

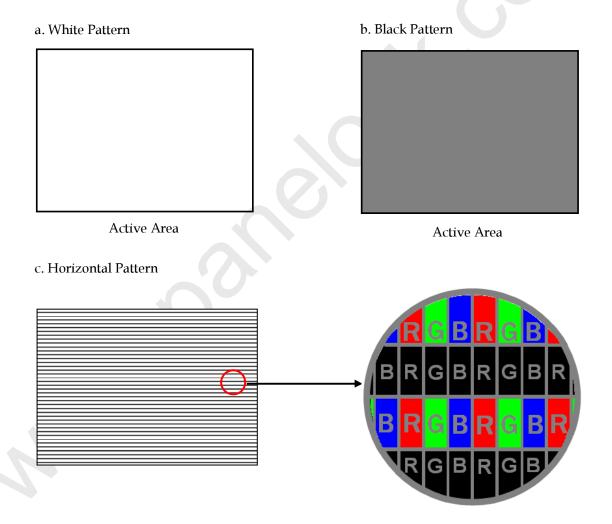
Parameter		Symbol	Value			Unit	Note	
		Symbol	Min.	Тур.	Max.	Unit	note	
Power Sup	oply Voltage		V _{CC}	4.5	5.0	5.5	V	(1)
Rush Curr	rent		I _{RUSH}	_	_	3.0	А	(2)
		White		_	0.40	_	А	
Power Sup	oply Current	Black	I _{CC}	_	0.53	0.61	A	(3)
		Vertical Stripe		_	0.50	F	A	
	Differential I Threshold Ve		$V_{\rm LVTH}$	+100	-		mV	
	Differential I Threshold Ve		V_{LVTL}			-100	mV	
LVDS interface	Common Inp	out Voltage	$V_{\rm CM}$	1.0	1.2	1.4	V	(4)
	Differential input voltage		$ V_{\rm ID} $	200	-	600	mV	
	Terminating Resistor		R _T		100	_	ohm	
CMOS Input High Threshold Voltage		V _{IH}	2.7	_	3.3	V		
interface			VIL	0	_	0.7	V	

Note (1) The module should be always operated within the above ranges.

Note (2) Measurement condition:



 $\langle \mathcal{P} \rangle$



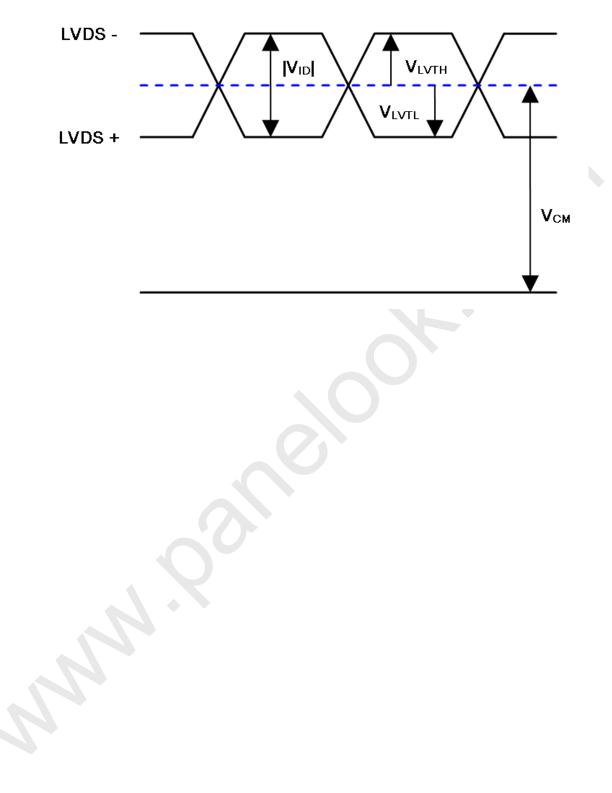
PRODUCT SPECIFICATION

Vcc rising time is 470us

Note (3) The specified power supply current is under the conditions at Vcc = 5 V, Ta = 25 ± 2 °C, $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

Version 2.0

9


奇美電子

CHIMEI /NNOLUX

PRODUCT SPECIFICATION

Note (4) The LVDS input characteristics are as follows:

Version 2.0

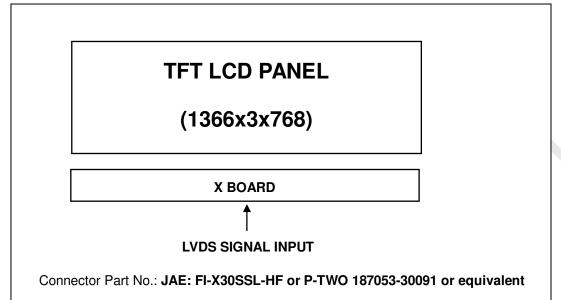
10

Date : 15 Jun 2010

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

CHIMEI INNOLUX


 $\langle p \rangle$

PRODUCT SPECIFICATION

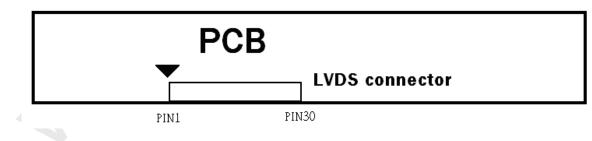
4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

Version 2.0

11

Date : 15 Jun 2010


5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD Module Input

Pin No.	Symbol	Description	Note
1	NC	No connection	(2)
2	NC	No connection	(2)
3	NC	No connection	(2)
4	GND	Ground	
5	RX0-	Negative transmission data of pixel 0	
6	RX0+	Positive transmission data of pixel 0	
7	GND	Ground	
8	RX1-	Negative transmission data of pixel 1	
9	RX1+	Positive transmission data of pixel 1	
10	GND	Ground	
11	RX2-	Negative transmission data of pixel 2	
12	RX2+	Positive transmission data of pixel 2	
13	GND	Ground	
14	RXCLK-	Negative of clock	
15	RXCLK+	Positive of clock	
16	GND	Ground	
17	RX3-	Negative transmission data of pixel 3	
18	RX3+	Positive transmission data of pixel 3	
19	GND	Ground	
20	NC	No connection	(2)
21	SELLVDS	Select LVDS data format	(3)
22	NC	No connection	(2)
23	GND	Ground	
24	GND	Ground	
25	GND	Ground	
26	VCC	Power supply: +5V	
27	VCC	Power supply: +5V	
28	VCC	Power supply: +5V	
29	VCC	Power supply: +5V	
30	VCC	Power supply: +5V	

Note (1) Connector part no.: JAE FI-X30SSL-HF or P-TWO 187053-30091 or equivalent

LVDS connector pin order defined as follows

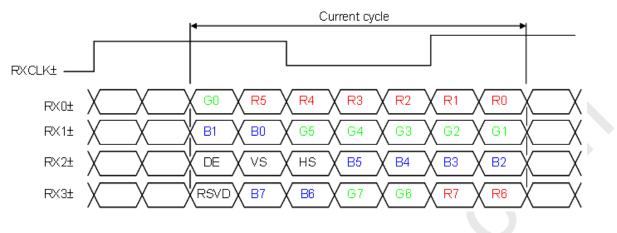
Note (2) Reserved for internal use. Please leave it open.

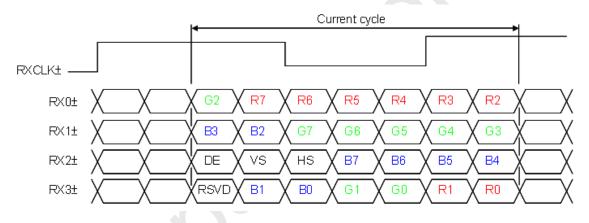
Note (3) High or OPEN: Normal, Ground: JEIDA LVDS format

Please refer to chapter 5.2 LVDS INTERFACE.

Version 2.0

12


Date : 15 Jun 2010



5.2 LVDS INTERFACE

SELLVDS = H or Open (VESA)

SELLVDS = L (JEIDA)

R0~R7: Pixel R Data (7; MSB, 0; LSB)

- G0~G7: Pixel G Data (7; MSB, 0; LSB)
- B0~B7: Pixel B Data (7; MSB, 0; LSB)
- DE: Data enable signal

Notes (1) RSVD (reserved) pins on the transmitter shall be "H" or "L".

Version 2.0

13

 $\langle \mathcal{P} \rangle$

PRODUCT SPECIFICATION

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

												Da	ata	Sigr	nal										
	Color				Re	ed							G	reer	ı						Blı	ue			
	1	R7	R6	R5	R4	R3	R2	R1	R0	G7			G4	G3	G2	G1	G0	B7	B6	B5	B4	B3		-	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red (2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:-	:	•	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red (253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reu	Red (254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:		:	\cdot	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green (253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green (254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green (255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Or Blue	Blue (253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Diue	Blue (254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Version 2.0

14

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

 $(Ta = 25 \pm 2 \,^{\circ}C)$

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	F_{clkin} (=1/TC)	60	76	82	MHz	
LVDS	Input cycle to cycle jitter	T_{rcl}	_	_	200	ps	(3)
Receiver Clock	Spread spectrum modulation range	Fclkin_mod	F_{clkin} -2%	_	F _{clkin} +2%	MHz	
	Spread spectrum modulation frequency	F _{SSM}	_	_	200	KHz	(4)
LVDS Receiver	Setup Time	Tlvsu	600	—	- (ps	(5)
Data	Hold Time	Tlvhd	600	-	-	ps	(5)
	Frame Rate	F _{r5}	47	50	53	Hz	
Vertical	Truine Twite	F_{r6}	57	60	63	Hz	
Active Display	Total	Tv	778	806	1050	Th	Tv=Tvd+Tvb
Term	Display	Tvd	768	768	768	Th	
	Blank	Tvb	10	38	282	Th	
Horizontal	Total	Th	1442	1560	1936	Тс	Th=Thd+Thb
Active Display	Display	Thd	1366	1366	1366	Тс	
Term	Blank	Thb	76	194	570	Тс	

"Enlarging Vtotal from Max 888Th to 1050Th is OK, provided that both pixel clock & Htotal are within the specified range in the spec."

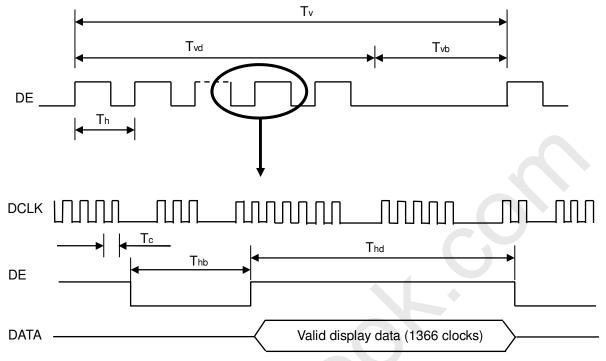
Note (1) Please make sure the range of pixel clock has follow the below equation :

 $Fclkin(max) \ge Fr6 \times Tv \times Th$

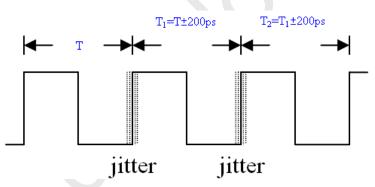
 $Fr5 \times Tv \times Th \ge Fclkin(min)$

Note (2) This module is operated in DE only mode and please follow the input signal timing diagram below :

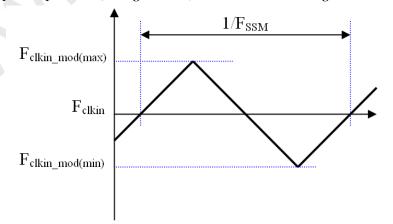
Version 2.0


15

 $\langle \mathcal{P} \rangle$

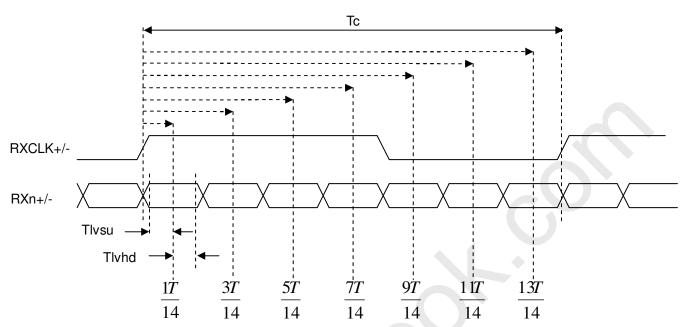


PRODUCT SPECIFICATION


INPUT SIGNAL TIMING DIAGRAM

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $|T_1 - T|$

Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.


Version 2.0	16	Date : 15 Jun 2010

 \bigotimes

PRODUCT SPECIFICATION

Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

Version 2.0


17

Date : 15 Jun 2010

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.

- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0, that maybe cause electrical overstress failure.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

Version 2.0	18	Date : 15 Jun 2010

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Та	25 ± 2	°C
Ambient Humidity	На	50 ± 10	%RH
Supply Voltage	V _{CC}	5.0	V
Input Signal	According to typical v	alue in "3. ELECTRICAL	CHARACTERISTICS"
Lamp Current	IL	7	mA
Oscillating Frequency (Inverter)	F_{W}	66 ± 3	KHz
Vertical Frame Rate	Fr	60	Hz

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

Version 2.0

19

Date : 15 Jun 2010

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in 7.1.

Ite	m	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
	Red	Rcx			0.6883				
	Reu	Rcy			0.3115				
	Green	Gcx	θ _x =0°, θ _Y =0°		0.3347				
Color	Green	Gcy	Viewing Angle at Normal Direction		0.5615			(0) (5)	
Chromatici	ty Blue	Bcx	Standard light source		0.1974			(0) (0)	
	Diue	Всу	"C"		0.1237				
	White	Wcx			0.3203				
	vvince	Wcy			0.3595				
Center Tran	nsmittance	Т%	θ _x =0°, θ _Y =0°		7.1		%	(1) (7)	
Contras	st Ratio	CR	with CMI module		800			(1) (3)	
Respons	se Time	T_R	θ _x =0°, θ _Y =0°		1.3		ms	(4)	
licopone		T _F	with CMI Module@60Hz		3.7		ms	(1)	
White Va	White Variation		$\theta_x=0^\circ, \theta_Y=0^\circ$ with CMI module			1.3		(1) (6)	
	Horizontal	θ_x +			80				
Viewing	110112011(01	θ_{x} -	CR≥10		80		Dec	(1) (2)	
Angle	Vertical	θ_Y +	With CMI module		80		Deg.	(1) (2)	
	vertical	θγ-			70				

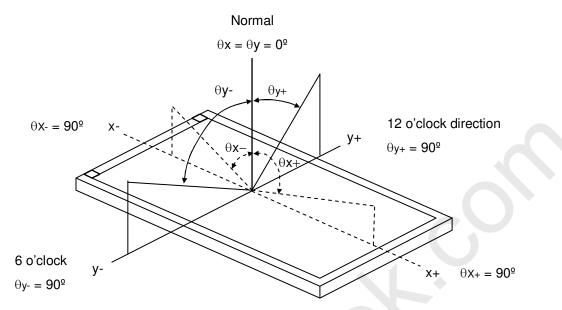
Note (0) Light source is the standard light source "C" which is defined by CIE and driving voltage are based on

suitable gamma voltages. The calculating method is as following:

- Measure Module's and BLU's spectrum. White is without signal input and R, G, B are with signal input. BLU (for V216B1-L04) is supplied by CMI.
- 2. Calculate cell's spectrum.
- 3. Calculate cell's chromaticity by using the spectrum of standard light source "C".

Note (1) Light source is the BLU which is supplied by CMI and driving voltage are based on suitable gamma voltages.

20


 $\langle \mathcal{P} \rangle$

PRODUCT SPECIFICATION

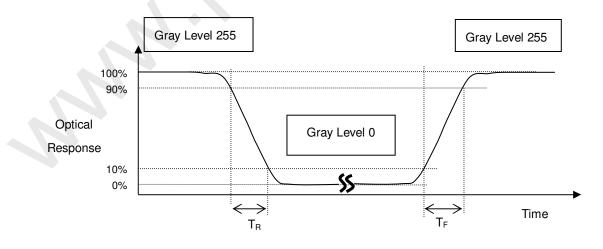
Note (2) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Autronic Conoscope Cono-80.

Note (3) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

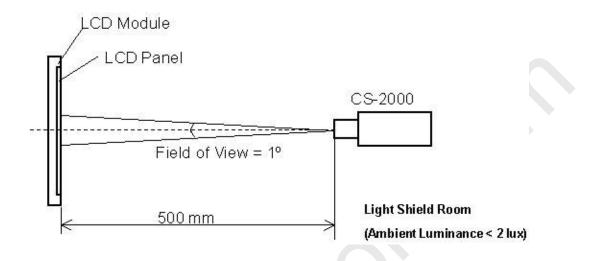

L255: Luminance of gray level 255

L0: Luminance of gray level 0

CR = CR(5),

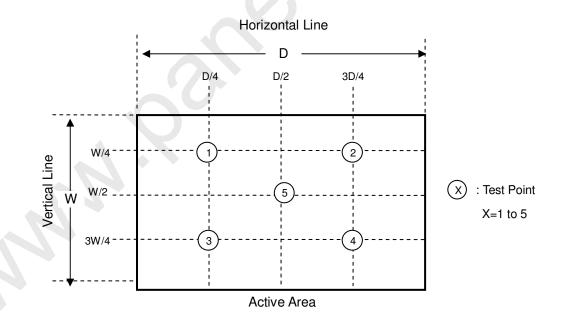
where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6).

Note (4) Definition of Response Time (T_{R} , T_{F}):

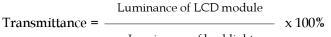


Version 2.0 21 Date : 15 Jun 2010

Note (5) Measurement Setup:


The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 1 hour in a windless room.

Note (6) Definition of White Variation (δW):


Measure the luminance of gray level 255 at 5 points

δW = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]

Note (7) Definition of Transmittance (T%):

Module is without signal input.

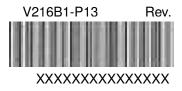
Luminance of backlight

Version 2.0

22

Date : 15 Jun 2010

屏库:全球液晶屏交易中心



PRODUCT SPECIFICATION

8. DEFINITION OF LABELS

8.1 OPEN CELL LABEL

The barcode nameplate is pasted on each open cell as illustration for CMI internal control.

8.2 CARTON LABEL

The barcode nameplate is pasted on each box as illustration, and its definitions are as following explanation.

P.O. NO
Parts ID
Carton ID Quantities XXXXXXXXXXXXXX
Made in Taiwan
P.O. NO
Parts ID
Carton ID Quantities XXXXXXXXXXXXXX
Made in China

- (a) Model Name: V216B1– P13
- (b) Carton ID: CMI internal control
- (c) Quantities: 27

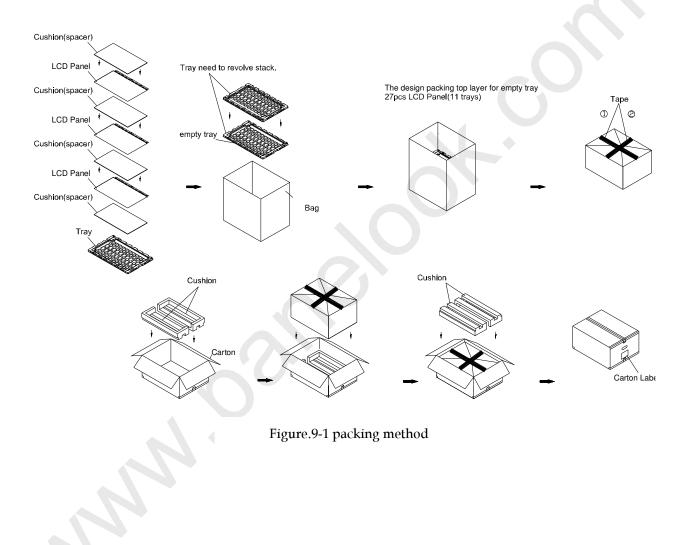
Version 2.0

23

Date : 15 Jun 2010

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

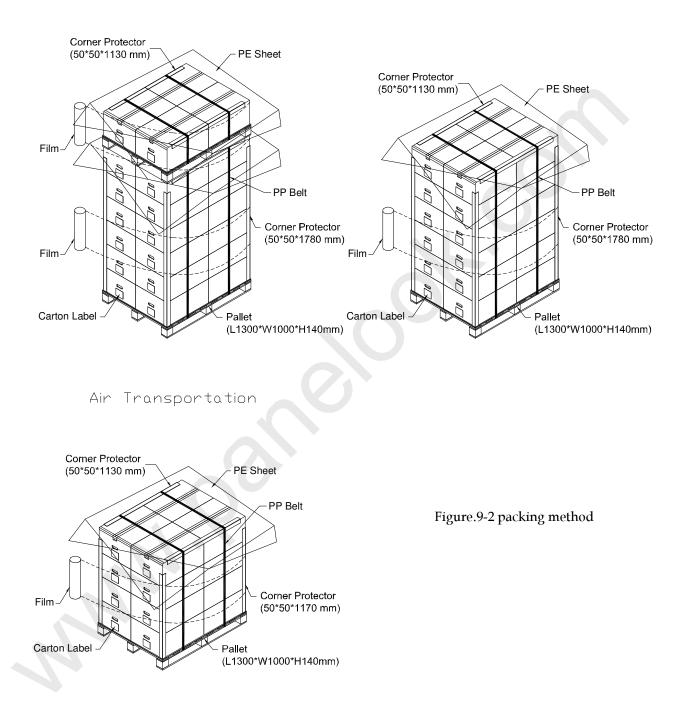

9. PACKAGING

9.1 PACKAGING SPECIFICATIONS

- (1) 27 PCS LCD TV Panels / 1 Box
- (2) Box dimensions : 640 (L) X 490 (W) X 320 (H)
- (3) Weight : approximately 24 Kg

9.2 PACKAGING METHOD

Figures 9-1 and 9-2 are the packing method.



Version	2.0	24	Date :15 Jun 2010

Sea / Land Transportation (40ft HQ Container) Sea / Land Transportation

Version 2	2.0
-----------	-----

25

Date : 15 Jun 2010

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

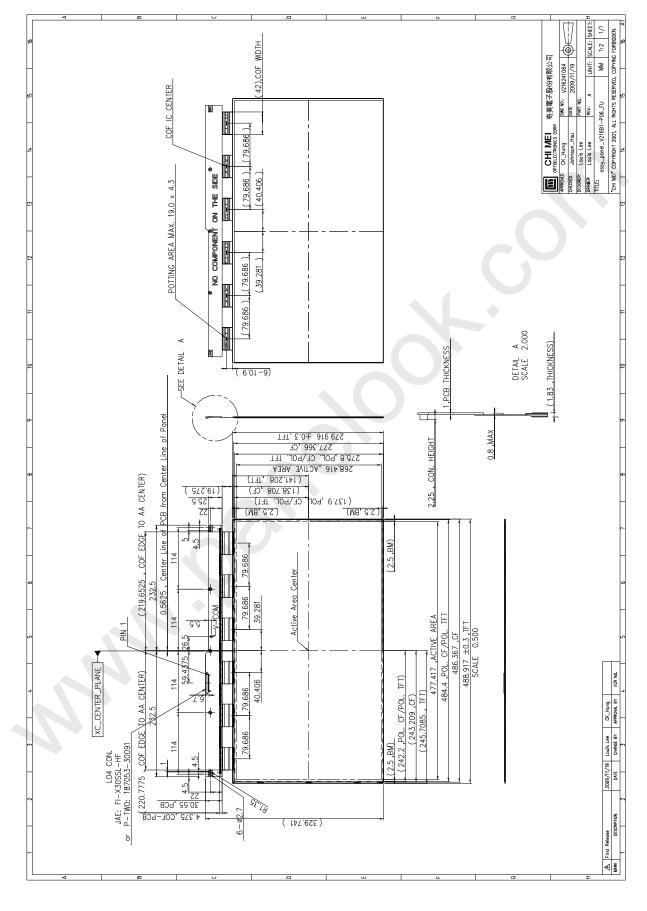
10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the product during assembly.
- (2) To assemble backlight or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It is not permitted to have pressure or impulse on the module because the LCD panel will be damaged.
- (4) Always follow the correct power sequence when the product is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (7) It is dangerous that moisture come into or contacted the product, because moisture may damage the product when it is operating.
- (8) High temperature or humidity may reduce the performance of module. Please store this product within the specified storage conditions.
- (9) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.

10.2 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the product's end of life, it is not harmful in case of normal operation and storage.


Version 2.0

26

$\langle \! \! \rangle$

PRODUCT SPECIFICATION

11. MECHANICAL CHARACTERISTIC

Date : 15 Jun 2010

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

27