

Approval

TFT LCD Approval Specification

MODEL NO.: V236H2-L01

Customer:
Approved by:
Note:

核准時間	部門	審核	角色	投票
2010-05-20 16:34:35	MTR 產品管理處	吳 2010.05.20 柏 勳	Director	Accept

Approval

CONTENTS	
	3
1. GENERAL DESCRIPTION	4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 TFT LCD MODULE 2.3 BACKLIGHT UNIT	5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.1.1 Vcc POWER DIP CONDITION 3.2 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS	7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE 4.2 BACKLIGHT UNIT	11
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 LVDS DATA MAPPING TABLE 5.3 BACKLIGHT UNIT 5.4 COLOR DATA INPUT ASSIGNMENT	12
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	15
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	19
8. DEFINITION OF LABELS	23
9. PACKAGING	24
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS 10.3 SAFETY STANDARDS	26
11. MECHANICAL CHARACTERISTICS	27

Approval

REVISION HISTORY

Version	Date	Page (New)	Section	Description
		(New)		
	May. 11,'10		All	Approval Specification was first issued.

Approval

1.GENERAL DESCRIPTION

1.1 OVERVIEW

The V236H2-L01 model is a 23.6 inch wide TFT-LCD module with a 2 U-type CCFL Backlight Unit and a 30-pin 2ch-LVDS interface. This module supports 1920 x 1080 (16:9 wide screen) mode and displays up to 16.7 (6-bit+Hi-FRC colors) millions colors. The inverter module for the Backlight Unit is not built in.

1.2 FEATURES

- Excellent Brightness: 300nits

- Contrast Ratio: 800:1

- Fast Response Time: 5ms- Color Saturation: NTSC 72%

- Full HD (1920 x 1080 pixels) Resolution

- DE (Data Enable) Only Mode

- mini-LVDS (Low Voltage Differential Signaling) Interface

- Viewing Angle: 170(H)/160(V) (CR>10) TN Technology

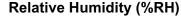
- Gate On Panel Technology

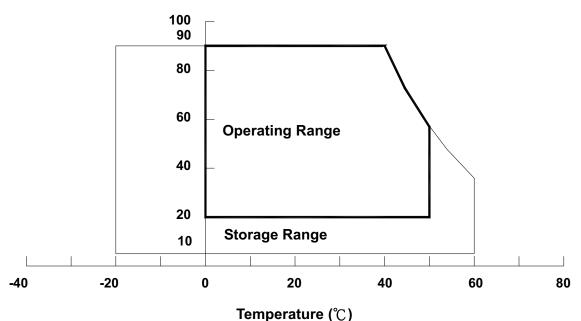
1.3 GENERAL

Item	Specification	Unit	Note
Active Area	521.28(H) x 293.22(V) (23.547" real diagonal)	mm	
Bezel Opening Area	525.22 (H) x 297.22 (V)	mm	
Driver Element	a-Si TFT active matrix	-	
Pixel Number	1920 x R.G.B. x 1080	pixel	
Pixel Pitch	0.2715 (H) x 0.2715 (V)	mm	
Pixel Arrangement	RGB vertical stripe	-	
Display Colors	16.7M	color	
Transmissive Mode	Normally White	-	
Surface Treatment	AG type, 3H hard coating, Haze 25	-	

1.4 MECHANICAL

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	543.8	544.8	545.8	mm	(1)
Module Size	Vertical(V)	319.5	320.5	321.5	mm	(1)
Module Size	Depth(D)	45.7	46.7	47.7	mm	To Rear
	Depth(D)	50.7	51.7	52.7	mm	To Boss
We	ight	-	2400	-	g	-


Issued Date: May. 11, 2010 Model No.: V236H2 - L01


2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Value		Unit	Note	
item	Symbol	Min.	Max.	Offic	Note	
Storage Temperature	Тѕт	-20	+60	$^{\circ}\!\mathbb{C}$	(1)	
Operating Ambient Temperature	Тор	0	+50	$^{\circ}\!\mathbb{C}$	(1), (2)	
Shock (Non-Operating)	Snop	-	50	G	(3), (5)	
Vibration (Non-Operating)	Vnop	-	1.0	G	(4), (5)	

- Note (1) Temperature and relative humidity range is shown in the figure below.
 - (a) 90% RH Max. (Ta \leq 40 $^{\circ}$ C).
 - (b) Wet-bulb temperature should be 39 $^{\circ}$ C Max. (Ta > 40 $^{\circ}$ C).
 - (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half-sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Approva

2.2 TFT LCD MODULE

Global LCD Panel Exchange Center

Item	Svmbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Offic	Note
Power Supply Voltage	Vcc	-0.3	6.0	V	
Input Signal Voltage	VIN	-0.3	3.6	V	

2.3 BACKLIGHT UNIT

Item	Symbol	Value		Unit	Note	
Item	Cyrribor	Min.	Тур.	Max.	Offic	Note
Lamp Voltage	V _L	972	1080	1188	V_{RMS}	(1), (2)
Lamp Current	Ι _L	12.0	12.5	13.0	mA _{RMS}	
Lamp Frequency	FL	30	-1	80		(1), (2)

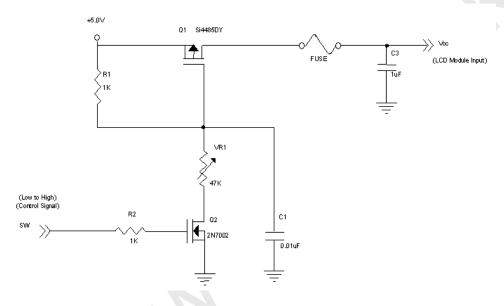
Note (1) Permanent damage to the device may occur if maximum values are exceeded. Functional operation should be restricted to the conditions described under normal operating conditions.

Note (2) No moisture condensation or freezing.

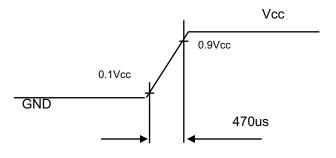
Issued Date: May. 11, 2010 Model No.: V236H2 - L01

pprova

3. ELECTRICAL CHARACTERISTICS


3.1 TFT LCD MODULE

Ta = 25 ± 2 °C

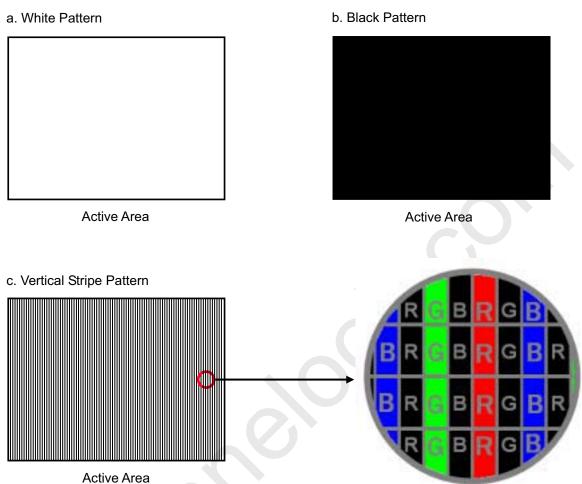

Parame	Symbol		Value		Unit	Note	
Faranie	ilei	Syllibol	Min.	Typ.	Max.	Offic	Note
Power Supply	/ Voltage	Vcc	4.5	5.0	5.5	V	-
Ripple Vo	Itage	V_{RP}	I		300	mV	-
Power on Rus	h Current	I _{RUSH}	-		3.5	Α	(2)
	White		1	0.69	0.97	Α	(3)a
Power Supply Current	Black		I	1.09	1.53	Α	(3)b
	Vertical Stripe		ı	0.98	1.37	Α	(3)c
Power Cons	umption	PLCD	ı	5.45	7.63	Watt	(4)
LVDS differential	Vid	200		600	mV	(5)	
LVDS common in	Vic	1.0	1.2	1.4	V		
Logic High Inp	VIH	2.64			V		
Logic Low Inpu	ut Voltage	VIL	0		0.66	V	

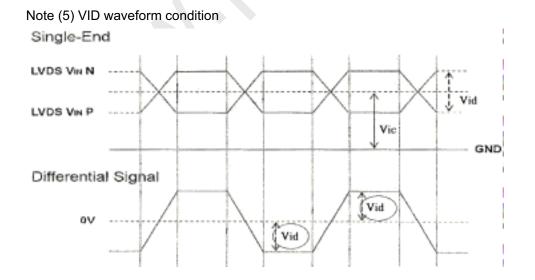
Note (1) The module should be always operated within above ranges.

Note (2) Power on rush current measurement conditions:

Vcc rising time is 470us

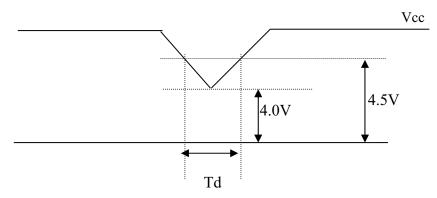
Note (3) The specified power supply current is under the conditions at Vcc = 5 V, Ta = 25 \pm 2 $^{\circ}$ C, f_v = 60 Hz,




Issued Date: May. 11, 2010 Model No.: V236H2 - L01

Approval

whereas a power dissipation check pattern below is displayed.


Note (4)The power consumption is specified at the pattern with the maximum current

Issued Date: May. 11, 2010 Model No.: V236H2 - L01 prova

3.1.1 Vcc Power Dip Condition:

Dip condition: 4.0V: Vcc: 4.5V, Td: 20ms

3.2 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 ℃)

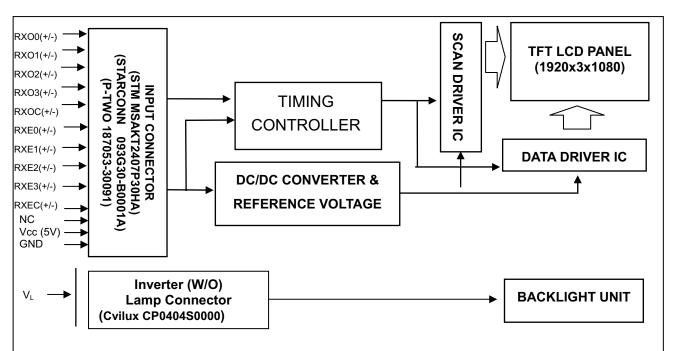
Parameter	Symbol		Value	Unit	Note		
Farameter	Syllibol	Min. Typ.		Max.	Offic	Note	
Lamp Voltage	V _W	972	1080	1188	V_{RMS}	$I_{L} = 12.5 \text{mA}$	
Lamp Current	IL	12.0	12.5	13.0	mA_RMS		
Lawar Taran On Malkana	N/:			1680 (25℃)	V_{RMS}	(2), Ta = 25 ℃	
Lamp Turn On Voltage	Vs	1		2080 (0℃)	V_{RMS}	(2), Ta = 0 °C	
Operating Frequency	F_L	30		80	KHz	(3)	
Lamp Life Time	L _{BL}	50000	-		Hrs	(4)	

Note (1) The waveform of the voltage output of inverter must be area-symmetric and the design of the inverter must have specifications for the modularized lamp. The performance of the Backlight, such as lifetime or brightness, is greatly influenced by the characteristics of the DC-AC inverter for the lamp. All the parameters of an inverter should be carefully designed to avoid producing too much current leakage from high voltage output of the inverter. When designing or ordering the inverter please make sure that a poor lighting caused by the mismatch of the Backlight and the inverter (miss-lighting, flicker, etc.) never occurs. If the above situation is confirmed, the module should be operated in the same manners when it is installed in your instrument.

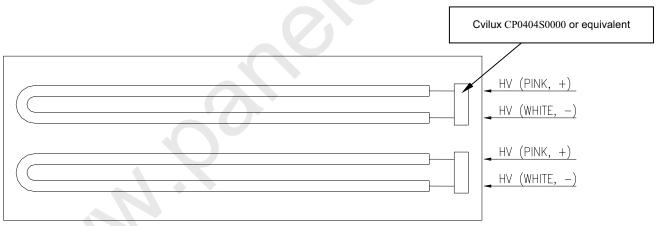
Note (2) The lamp starting voltage $V_{\rm S}$ should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.

prova

- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency of the display input signals, and it may result in line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point of lamp.) as the time in which it continues to operate under the condition at Ta = 25 $\pm 2^{\circ}$ C and I_L = 12.0~13.0 mArms.


Issued Date: May. 11, 2010 Model No.: V236H2 - L01

Approval


CHIMEI INNOLUX

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

4.2 BACKLIGHT UNIT

Note: On the same side, the same polarity lamp voltage design for lamps is recommended.

Approval

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin No.	Symbol	Description
1	RXO0-	Negative LVDS differential data input. Channel O0 (odd)
2	RXO0+	Positive LVDS differential data input. Channel O0 (odd)
3	RXO1-	Negative LVDS differential data input. Channel O1 (odd)
4	RXO1+	Positive LVDS differential data input. Channel O1 (odd)
5	RXO2-	Negative LVDS differential data input. Channel O2 (odd)
6	RXO2+	Positive LVDS differential data input. Channel O2 (odd)
7	GND	Ground
8	RXOC-	Negative LVDS differential clock input. (odd)
9	RXOC+	Positive LVDS differential clock input. (odd)
10	RXO3-	Negative LVDS differential data input. Channel O3(odd)
11	RXO3+	Positive LVDS differential data input. Channel O3 (odd)
12	RXE0-	Negative LVDS differential data input. Channel E0 (even)
13	RXE0+	Positive LVDS differential data input. Channel E0 (even)
14	GND	Ground
15	RXE1-	Negative LVDS differential data input. Channel E1 (even)
16	RXE1+	Positive LVDS differential data input. Channel E1 (even)
17	GND	Ground
18	RXE2-	Negative LVDS differential data input. Channel E2 (even)
19	RXE2+	Positive LVDS differential data input. Channel E2 (even)
20	RXEC-	Negative LVDS differential clock input. (even)
21	RXEC+	Positive LVDS differential clock input. (even)
22	RXE3-	Negative LVDS differential data input. Channel E3 (even)
23	RXE3+	Positive LVDS differential data input. Channel E3 (even)
24	GND	Ground
25	NC	For LCD internal use only. Do not connection
26	NC	For LCD internal use only. Do not connection
27	NC	For LCD internal use only. Do not connection
28	VCC	Power supply: +5V
29	VCC	Power supply: +5V
30	VCC	Power supply: +5V

Note (1) Connector Part No.: STM MSAKT2407P30HA or Starconn 093G30-B0001A or

P-TWO 187053-30091 or equivalent

Note (2) The first pixel is odd.

Note (3) Input signal of even and odd clock should be the same timing.

Approval

5.2 LVDS DATA MAPPING TABLE

LVDS Channel O0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVD3 Channel O0	Data order	OG0	OR5	OR4	OR3	OR2	OR1	OR0
LVDS Channel O1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVD3 Channel O1	Data order	OB1	OB0	OG5	OG4	OG3	OG2	OG1
LVDS Channel O2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVDS Channel 02	Data order	DE	NA	NA	OB5	OB4	OB3	OB2
LVDS Channel O3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVDS Channel Os	Data order	NA	OB7	OB6	OG7	OG6	OR7	OR6
L)/D0 0b	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVDS Channel E0	Data order	EG0	ER5	ER4	ER3	ER2	ER1	ER0
LVDS Channel E1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVDS Channel E1	Data order	EB1	EB0	EG5	EG4	EG3	EG2	EG1
LVDS Channel E2	LVDS output	D26	D25	D24	D22	D21	D20	D19
	Data order	DE	NA	NA	EB5	EB4	EB3	EB2
LVDS Channel E3	LVDS output	D23	D17	D16	D11	D10	D5	D27
	Data order	NA	EB7	EB6	EG7	EG6	ER7	ER6

5.3 BACKLIGHT UNIT

Pin	Symbol	Description	Remark
1-1	HV	High Voltage	Pink
1-2	HV	High Voltage	White
2-3	HV	High Voltage	Pink
2-4	HV	High Voltage	White

Note (1) Connector Part No.: Cvilux CP0404S0000or equivalent

Issued Date: May. 11, 2010 Model No.: V236H2 - L01

Approva

5.4 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input

versus	data input.											D:	ata	Sigr	nal										
	Color				Re	ed						٥٥		reer							Bli	ue			
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5		G3	G2	G1	G0	B7	В6	B5	B4	В3	B2	B1	В
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Crov	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Gray Scale	:	:	:	:	:	:	:	:		:		:):)	:	:	:	:	:	:	:	:	:	:	:	
ocale Of	:	:	:	:	:	:	:	:		÷		•	:	:	:	:	:	:	:	:	:	:	:	:	
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
\eu	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ļ
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	
Scale	:	:	:	\ <u>`</u>		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
Of	:	:	: ,	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	
0.00	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	_
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Gray Scale	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	l

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Issued Date: May. 11, 2010 Model No.: V236H2 - L01

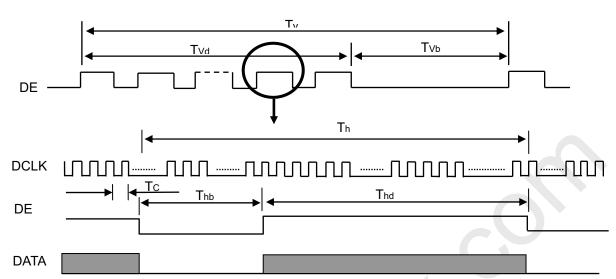
6. INTERFACE TIMING

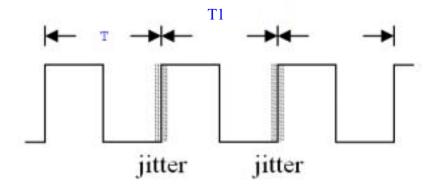
6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

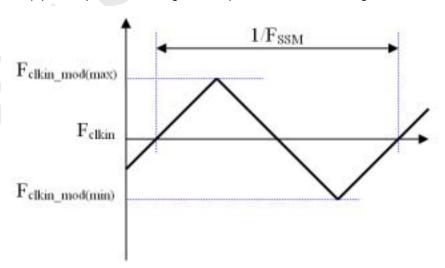
The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note	
	Frequency	Fc	58.54	74.25	98	MHz		
	Period	Тс	-	13.47	-	ns		
	Input cycle to	_			000		(1)	
	cycle jitter	T_{rcl}	-	-	200	ps	(1)	
	Spread							
	spectrum	-	0.00*5	-	1 02*50	MILIT		
LVDS Clock	modulation	Fclkin_mod	0.98*Fc		1.02*Fc	MHz		
LVD3 Clock	range			_ 1			(2)	
	Spread						(2)	
	spectrum	_			200	KHz		
	modulation	F _{SSM}						
	frequency							
	High Time	Tch		4/7	-	Tc	-	
	Low Time	Tcl	-	3/7	-	Tc	-	
LVDS Data	Setup Time	Tlvs	600	ı	ı	ps	(3)	
LVD3 Data	Hold Time	Tlvh	600	-	-	ps	(3)	
	Frame Rate	Fr	50	60	75	Hz	Tv=Tvd+Tvb	
Vertical Active Diapley Torm	Total	Tv	1115	1125	1136	Th	-	
Vertical Active Display Term	Display	Tvd	1080	1080	1080	Th	-	
	Blank	Tvb	Tv-Tvd	45	Tv-Tvd	Th	-	
	Total	Th	1050	1100	1150	Тс	Th=Thd+Thb	
Horizontal Active Display Term	Display	Thd	960	960	960	Тс	-	
	Blank	Thb	Th-Thd	140	Th-Thd	Тс	-	


Note:Because this module is operated by DE only mode, Hsync and Vsync input signals are ignored.

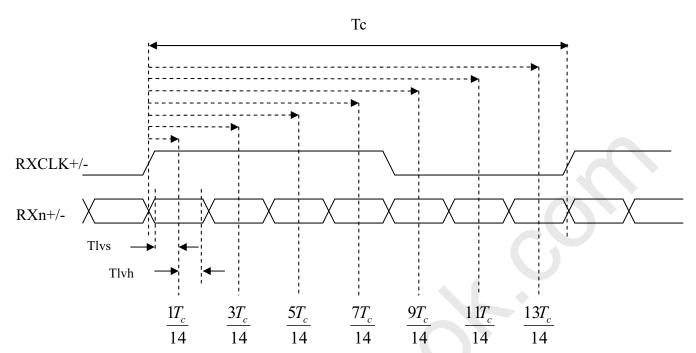

Issued Date: May. 11, 2010 Model No.: V236H2 - L01

pprova

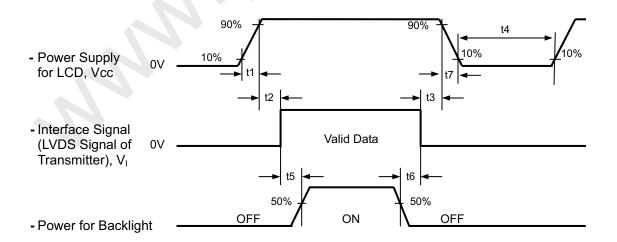

INPUT SIGNAL TIMING DIAGRAM

Note (1) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$

Note (2) The SSCG (Spread spectrum clock generator) is defined as below figures.


Note (3) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

Issued Date: May. 11, 2010 Model No.: V236H2 - L01


Approval

LVDS RECEIVER INTERFACE TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Issued Date: May. 11, 2010 Model No.: V236H2 - L01

Timing Specifications:

0.5< t1 \leq 10 msec

 $0 < t2 \le 50 \text{ msec}$

 $0 < t3 \le 50 \text{ msec}$

 $t4 \ge 500 \, msec$

 $t5 \ge 450 \, \text{msec}$

 $t6 \ge 90 \text{ msec}$

 $5 < t7 \le 100 \text{ msec}$

Note.

- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.
- (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.
- (6) CMO won't take any responsibility for the products which are damaged by the customers not following the Power Sequence.
- (7) It is suggested that Vcc falling time follows t7 specification, else slight noise is likely to occur when LCD is turned off (even backlight is already off).

Issued Date: May. 11, 2010 Model No.: V236H2 - L01

Approva

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

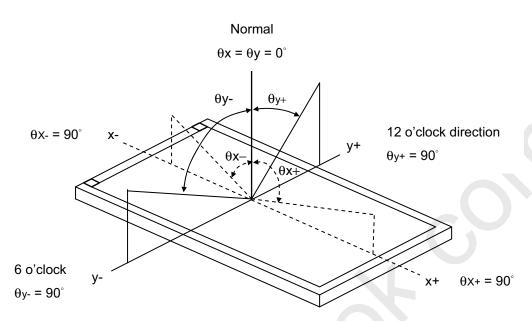
Item	Symbol	Value	Unit			
Ambient Temperature	Та	25±2	°C			
Ambient Humidity	На	50±10	%RH			
Supply Voltage	V_{CC}	5	V			
Input Signal	According to typical va	alue in "3. ELECTRICAL (CHARACTERISTICS"			
Lamp Current	L	12.5±0.5	mA			
Inverter Operating Frequency	F	58±3	KHz			
Inverter	Logah F236H1-2UA-L001					

7.2 OPTICAL SPECIFICATIONS

Ite	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note		
Contrast Ratio)	CR		600	800		-	(2)		
Response Time		T_R		-	1.5	2.5		(2)		
		T_{F}		-	3.5	5.5	ms	(3)		
Center Lumina	ance of White	L _C		240	300	-	-	(4)		
White Variation	n	δW		-	-	1.33	-	(7)		
Cross Talk		СТ		-	-	4	%	(5)		
	Red	Rx	θ_{x} =0°, θ_{Y} =0°		0.642		-			
	Reu	Ry	Viewing Angle at	·	0.331		-	(6)		
	Green	Gx	Normal Direction		0.265		-			
		Gy		Typ. -0.03	0.602	Typ. +0.03	-			
Color	Blue	Вх			0.150		-			
Chromaticity		Ву			0.063		-			
	\A/I=:4=	Wx			0.280		-			
	White	Wy			0.288		-			
	Color Gamut	CG		68	72	-	%	NTSC Ratio		
Viewing	Horizontal	$\theta_x + \theta_x$ -	CP>10	140	160	-	Dog	(1)		
Angle	Vertical	$\theta_Y + \theta_{Y}$ -	CR≥10	130	150	-	Deg.	(1)		

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Autronic Conoscope Cono-80



Model No.: V236H2 - L01

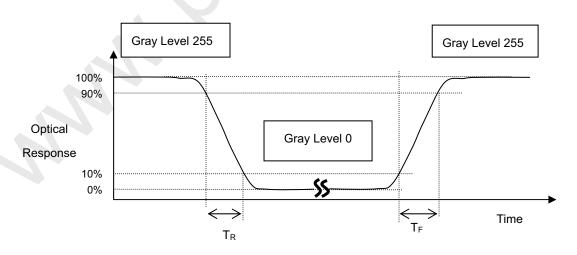
Issued Date: May. 11, 2010

pprova

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0


L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5),

CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

Note (3) Definition of Response Time (T_R, T_F):

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point and 5 points

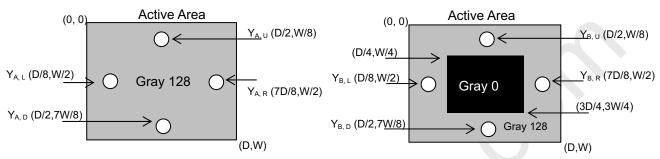
$$L_{C} = L (5)$$

20

Issued Date: May. 11, 2010 Model No.: V236H2 - L01

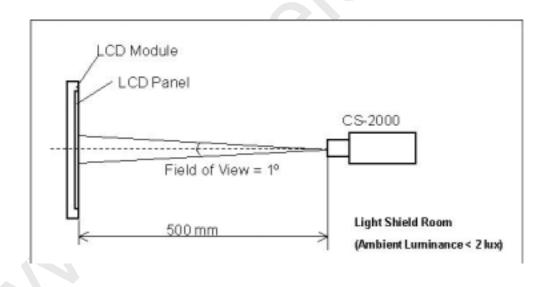
oprova

L (X) is corresponding to the luminance of the point X at the figure in Note (7).


Note (5) Definition of Cross Talk (CT):

$$CT = |Y_B - Y_A| / Y_A \times 100 (\%)$$

Where:

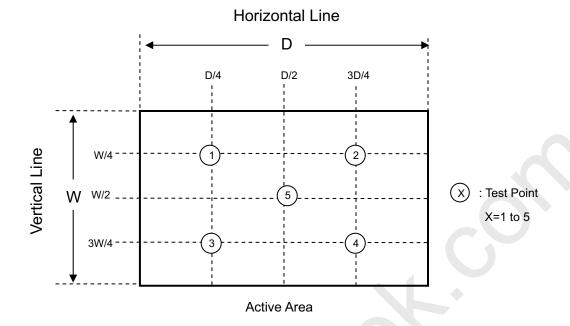

Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 1 hour in a windless room.

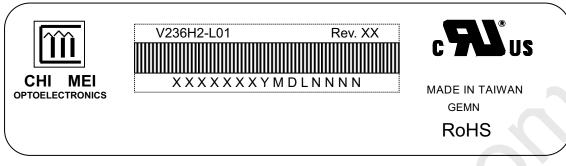
Note (7) Definition of White Variation (δW):

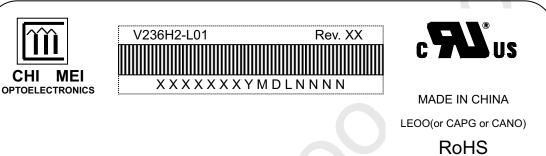

Measure the luminance of gray level 255 at 5 points

8W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]

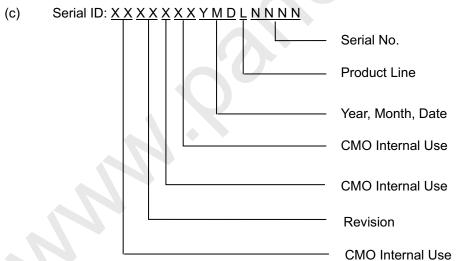
Issued Date: May. 11, 2010 Model No.: V236H2 - L01

Approval


Issued Date: May. 11, 2010 Model No.: V236H2 - L01


oproval

8. DEFINITION OF LABELS


8.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: V236H2-L01
- Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc. (b)

Serial ID includes the information as below:

Manufactured Date: Year: 2001=1,2002=2,2003=3,2004=4...2010=0,2011=1,2012=2...

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

(a) Revision Code: Cover all the change

(b) Serial No.: Manufacturing sequence of product (c) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

23

Issued Date: May. 11, 2010 Model No.: V236H2 - L01

Approval

9. PACKAGING

9.1 PACKING SPECIFICATIONS

- (1) 5 LCD TV modules / 1 Box
- (2) Box dimensions: 642(L)x376(W)x390(H)mm
- (3) Weight: Approx. 14.5Kg(5 modules per carton)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method

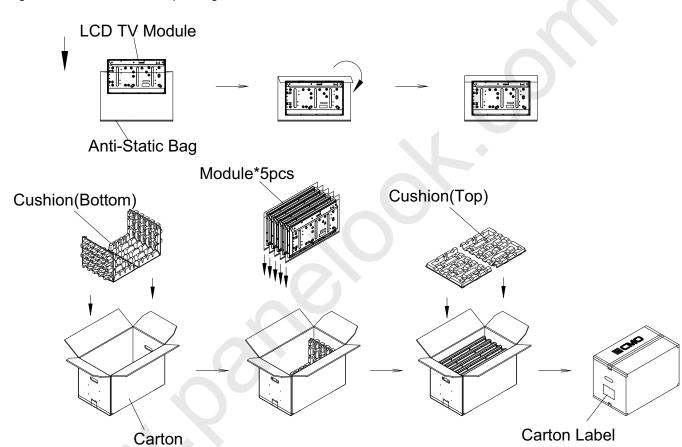


Figure.9-1 Packing Method

Issued Date: May. 11, 2010 Model No.: V236H2 - L01

Approval

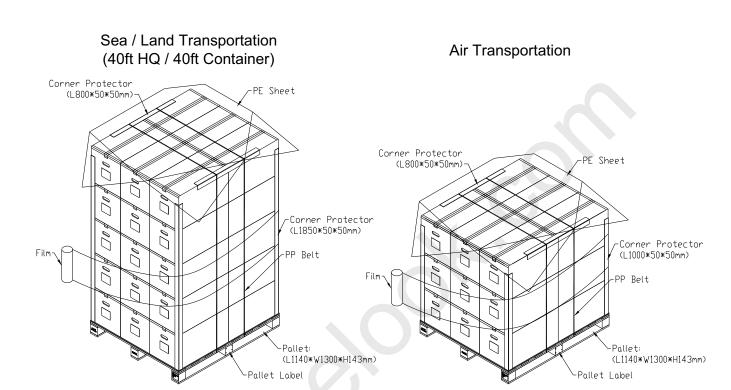


Figure.9-2 packing method

10. PRECAUTIONS

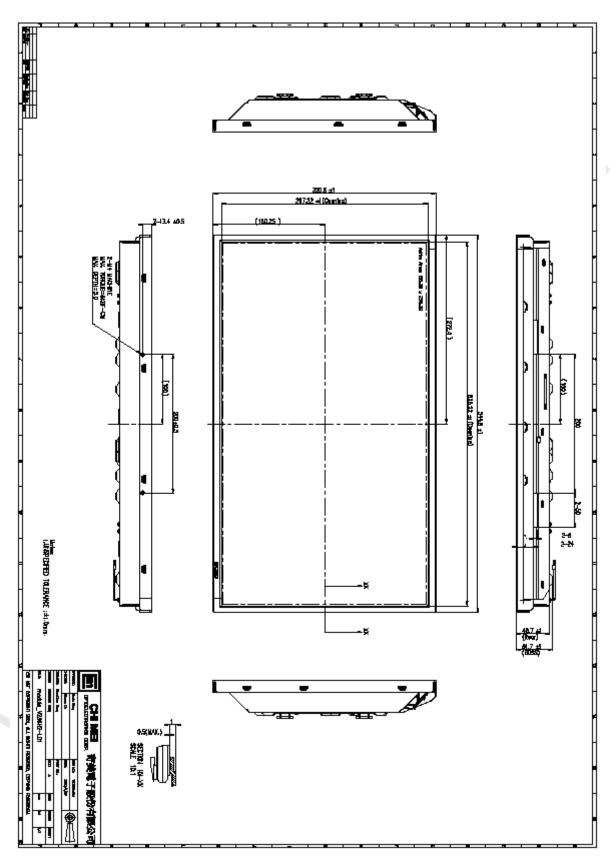
10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10℃, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

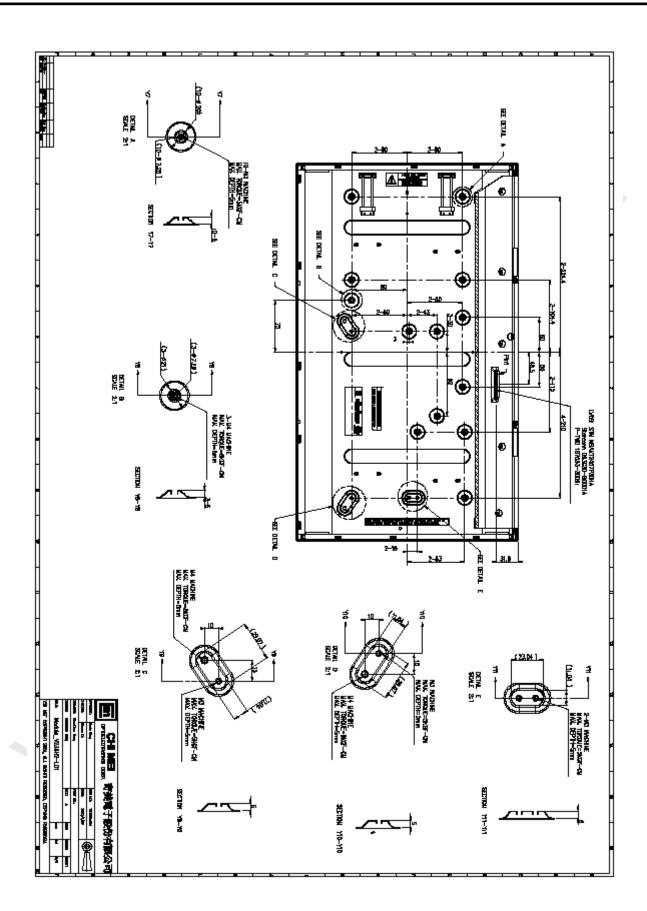
10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

10.3 SAFETY STANDARDS


The LCD module should be certified with safety regulations as follows:

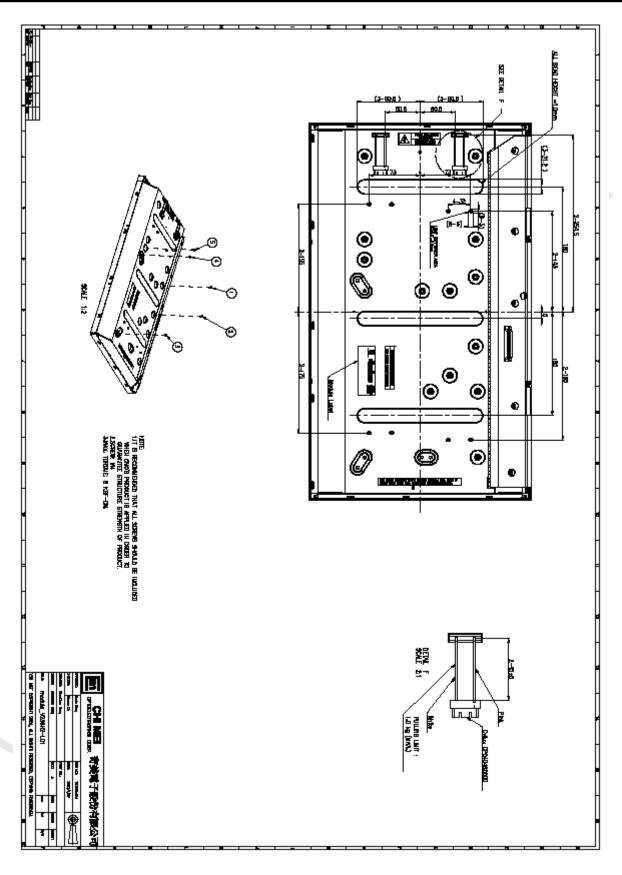
- (1) UL60950-1 or updated standard.
- (2) IEC60950-1 or updated standard.
- (3) UL60065 or updated standard.
- (4) IEC60065 or updated standard.


Approval

11. MECHANICAL CHARACTERISTIC



Approval



Model No.: V236H2 - L01

Approval

