

V23990-P849-A4X/C4x-PM

preliminary datasheet

Output Inverter Application flow PIM 0 3rd Gen 1200V/8A General conditions 3phase SPWM V_{GEon} = 15 V V_{GEoff} = -15 V 32 Ω = $\mathbf{R}_{\mathsf{gon}}$ R_{goff} = 32 Ω IGBT Figure 1 Figure 2 Typical average static loss as a function of output current Typical average static loss as a function of output current $P_{loss} = f(I_{out})$

At

Tj=125°C

Mi*cosfi from -1 to 1 in steps of 0,2

Figure 3

Typical average switching loss as a function of output current

fsw from 2 kHz to 16 kHz in 2 steps

At

Tj=125°C

Mi*cosfi from -1 to 1 in steps of -0,2

DC link = 600 V fsw from 2 kHz to 16 kHz in 2 steps

V23990-P849-A4X/C4x-PM preliminary datasheet

Output Inverter Application

Figure 7

Typical available 50Hz output current as a function of I_{out} = f(f_{sw}, Mi*cosfi) Mi*cosfi and switching frequency 1.00 0,80 Iout (A) 0.60 -0.40 **1**4,0-16,0 **1**2,0-14,0 0,20 10,0-12,0 Mi*cosfi 8,0-10,0 6,0-8,0 4,0-6,0 20 2,0-4,0 ,60 **4**1,00 32 2 4 8 16 fsw At T_j = 125 °C DC link = 600,00 V °C T_h = 80

T_j = 125 °C DC link = 600 V Mi*cosfi = 0,8

Th from 60 $^{\circ}\text{C}$ to 100 $^{\circ}\text{C}$ in steps of 5 $^{\circ}\text{C}$

 $T_j =$ 125 °C DC link = 600,00 V Th from 60 °C to 100 °C in steps of 5 °C

V23990-P849-A4X/C4x-PM

preliminary datasheet

Output Inverter Application

125 °C T_j = DC link = 600 V

Mi = 1

cosfi = 0,80

fsw from 2 kHz to 16 kHz in 2 steps

Figure 11

Typical available overload factor as a function of

motor power and switching frequency P_{peak} / P_{nom}=f(P_{nom},f_{sw})

At

- T_j = 125
- DC link = 600
- Mi = 1

cosfi = 0,8

fsw from 1 kHz to 16 kHz in 2 steps Th = 80 °C

°C

V

Motor eff = 0,85