

Tentative Specification

Preliminary Specification

Approval Specification

MODEL NO.: V260B3 SUFFIX:P09

Customer:	
APPROVED BY	SIGNATURE
<u>Name / Title</u> Note	
Please return 1 copy for your of signature and comments. Refer to "V260B3-P09" Incoming Ins	

Approved By	Checked By	Prepared By
Chao-Chun Chung	Vincent Chou	Bing Chan

Version2.0

- CONTENTS -

REVISION HISTORY		3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 CHARACTERISTICS 1.3 MECHANICAL SPECIFICATIONS		4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASEI 2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN 2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)	CELL)	5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD OPEN CELL		7
4. BLOCK DIAGRAM 4.1 TFT LCD OPEN CELL		10
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD OPEN CELL 5.2 BLOCK DIAGRAM OF INTERFACE 5.3 LVDS INTERFACE 5.4 COLOR DATA INPUT ASSIGNMENT 5.5 PATTERN FOR Vcom ADJUSTMENT		11
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE		17
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS		21
8. PRECAUTIONS 8.1 ASSEMBLY AND HANDLING PRECAUTIONS 8.2 SAFETY PRECAUTIONS		25
9. DEFINITION OF LABELS 9.1 OPEN CELL LABEL 9.2 CARTON LABEL		27
10. PACKAGING 10.1 PACKING SPECIFICATIONS 10.2 PACKING METHOD		28
11. MECHANICAL DRAWING		30

REVISION HISTORY

Version	Date	Page(New)	Section	Description
Version Ver.2.0	Date Oct 12, 2011	Page(New) All	All	Description Approval specification was first issued.
	1	1		1

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V260B3-P09 is a 26" TFT LCD cell with driver ICs and 1ch-LVDS interface. This module supports 1366 x 768 WXGA format and can display true 16.7M colors (8-bit).

1.2 CHARACTERISTICS

CHARACTERISTICS ITEMS	SPECIFICATIONS
Screen Diagonal [in]	26.0
Pixels [lines]	1366×768
Active Area [mm]	575.769×323.712
Sub -Pixel Pitch [mm]	0.1405(H)×0.4215(V)
Pixel Arrangement	RGB vertical stripe
Weight [g]	TYP. 645
Physical Size [mm]	Reference 2D Drawing
Display Mode	MVA, Normally Black
Contrast Ratio	(3000:1) Тур
	(Typical value measured at CMI's module)
Glass thickness (Array/CF) [mm]	0.5 / 0.5
Viewing Angle (CR>20)	+88/-88(H), +88/-88(V) Typ.
	(Typical value measured at CMI's module)
Color Chromaticity	*Please refer to "color chromaticity" on P.22
Cell Transparency [%]	5.3%Тур.
	(Typical value measured at CMI's module)
Polarizer	Normal HTY Pol
	Haze3.5%

1.3 MECHANICAL SPECIFICATIONS

Item	Min.	Тур.	Max.	Unit	Note
Weight		645		g	-
		clination of the or within ±0.5mm a	connector makes is the horizontal.		(2)

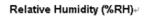
Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

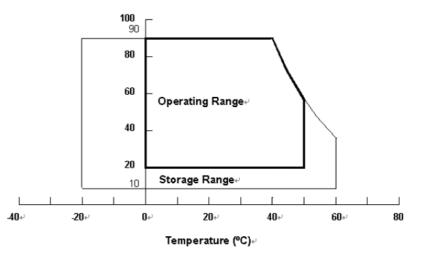
(2) Connector mounting position

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Onit	NOLE	
Storage Temperature	TST	-20	+60	°C	(1)	
Operating Ambient Temperature	TOP	0	50	°C	(1), (2)	


Note (1) Temperature and relative humidity range is shown in the figure below.


(a) 90 %RH Max. (Ta \leq 40 $^{\circ}$ C).

(b) Wet-bulb temperature should be 39 $^{\circ}$ C Max. (Ta > 40 $^{\circ}$ C).

(c) No condensation.

Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.

5

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time, It is highly recommended to store the module with temperature from 0 to 35 $^{\circ}$ C at normal humidity without condensation.
- (b) The module shall be stroed in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

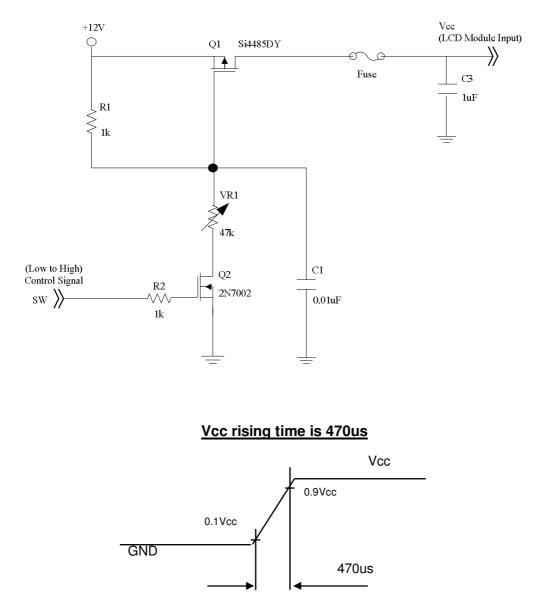
2.3.1 TFT LCD MODULE

Item	Symbol	Va	Unit	Note		
	Symbol	Min.	Max.	Unit	Note	
Power Supply Voltage	VCC	-0.3	13.5	V		
Logic Input Voltage	VIN	-0.3	3.6	V		

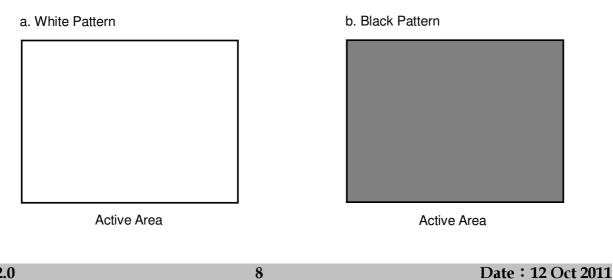
3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

(Ta = 25 ± 2 °C)


Parameter			Symbol		Unit	Note		
	1 arann	elei	Symbol	Min.	Тур.	Max.	Onit	NOLE
Power Supply Voltage			V _{cc}	10.8	12	13.2	V	(1)
Rush Curre	Rush Current			-	-	2.2	А	
		White Pattern	Ρ _T		4.2	-	W	
Power con	sumption	Black Pattern	Ρ _T		3.48	-	W	(2)
		Horizontal Stripe	Ρ _T	-	4.8	5.64	W	
		White Pattern	-	-	0.35	-	A	
Power Sup Current	ply	Black Pattern	-	-	0.29	-	А	(3)
		Horizontal Stripe	-	-	0.40	0.47	А	
	Diffe Thr	rential Input High eshold Voltage	V_{LVTH}	+100	-	-	mV	
	Diffe	rential Input Low eshold Voltage	V_{LVTL}	-	-	-100	mV	
LVDS interface	Commo	n Input Voltage	V _{CM}	1.0	1.2	1.4	V	(4)
		fferential input age (single-end)	V _{ID}	200	-	600	mV	
		ating Resistor	R⊤	-	100	-	ohm	
CMOS		ligh Threshold Voltage	V _{IH}	2.7	-	3.3	V	
interface	Input L	ow Threshold Voltage	V _{IL}	0	_	0.7	V	

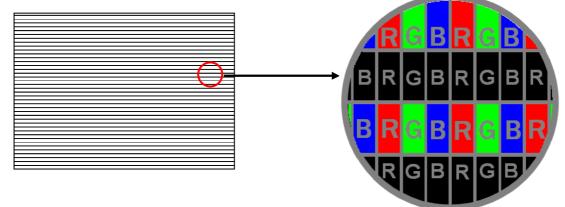
Note (1) The module should be always operated within the above ranges.


Note (2) Measurement condition:

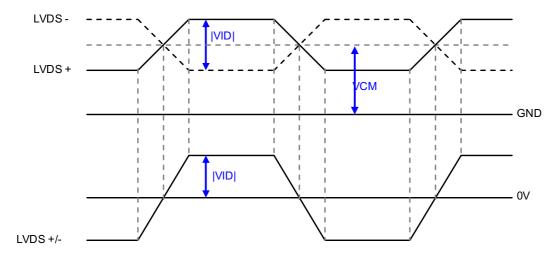
PRODUCT SPECIFICATION

Note (3) The specified power supply current and power consumption is under the conditions at Vcc = 12 V, Ta = $25 \pm 2 \ ^{\circ}C$, f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

Version2.0

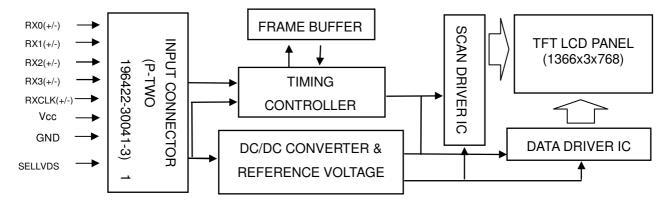

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

8



PRODUCT SPECIFICATION

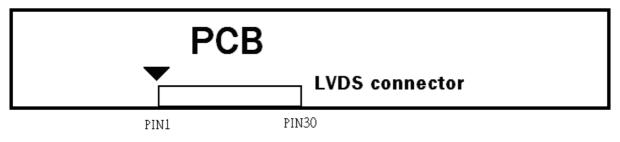
c. Horizontal Pattern


Note (4) The LVDS input characteristics are as follows:

4. BLOCK DIAGRAM

4.1 TFT LCD OPEN CELL

5. INTERFACE PIN CONNECTION

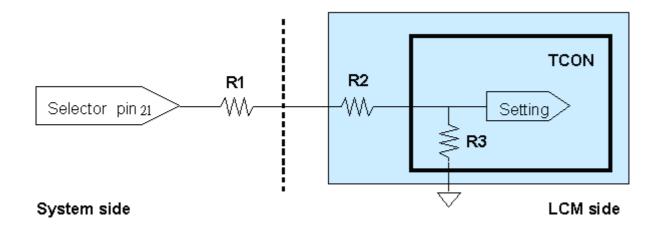

5.1 TFT LCD OPEN CELL

CNF1 Connector Pin Assignment

Pin No.	Symbol	Description	Note
1	NC	No connection	(3)
2	SCL	EEPROM Serial Clock	
3	SDA	EEPROM Serial Data	
4	GND	Ground	
5	RX0-	Negative transmission data of pixel 0	
6	RX0+	Positive transmission data of pixel 0	
7	GND	Ground	
8	RX1-	Negative transmission data of pixel 1	
9	RX1+	Positive transmission data of pixel 1	
10	GND	Ground	
11	RX2-	Negative transmission data of pixel 2	
12	RX2+	Positive transmission data of pixel 2	
13	GND	Ground	
14	RXCLK-	Negative of clock	
15	RXCLK+	Positive of clock	
16	GND	Ground	
17	RX3-	Negative transmission data of pixel 3	
18	RX3+	Positive transmission data of pixel 3	
19	GND	Ground	
20	NC	No connection	(3)
21	SELLVDS	Select LVDS data format	(2)(4)
22	WP	EEPROM Write Protection	
23	GND	Ground	
24	GND	Ground	
25	GND	Ground	
26	VCC	Power supply: +12V	
27	VCC	Power supply: +12V	
28	VCC	Power supply: +12V	
29	VCC	Power supply: +12V	
30	VCC	Power supply: +12V	

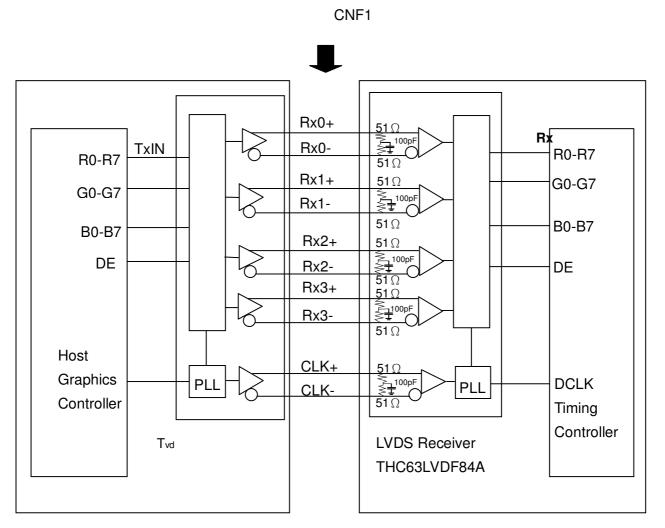
Note (1) Connector type: 196422-30041-3 (P-TWO)

LVDS connector pin orderdefined as follows



Note (2) Low = Open or connect to GND: JEIDA Format, High = Connect to +3.3V: VESA Format.

Note (3) Reserved for internal use. Please leave it open.



Note (4) LVDS signal pin connected to the LCM side has the following diagram. R1 in the system side should be less than 1K Ohm. (R1 < 1K Ohm)

5.2 BLOCK DIAGRAM OF INTERFACE

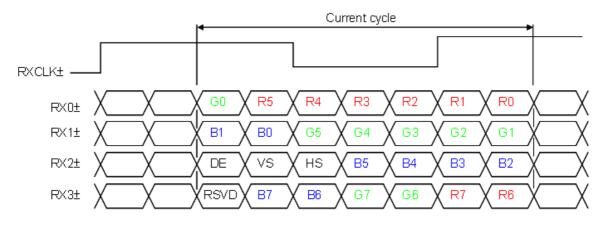
R0~R7 : Pixel R Data

G0~G7 : Pixel G Data

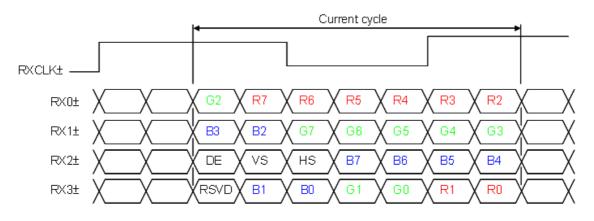
B0~B7 : Pixel B Data

- DE : Data Enable Signal
- DCLK : Data clock signal

Note (1) The system must have the transmitter to drive the module.


Note (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially

.



5.3 LVDS INTERFACE

VESA LVDS format : (SELLVDS pin=H)

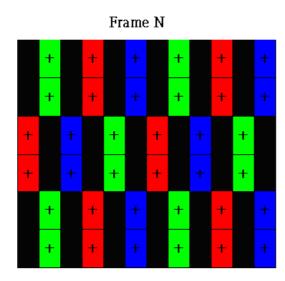
JEIDA LVDS format : (SELLVDS pin= L or open)

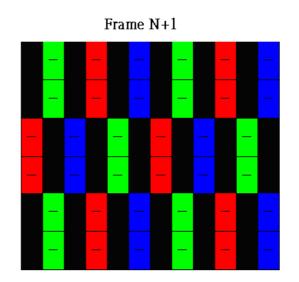
R0~R7: Pixel R Data (7; MSB, 0; LSB) G0~G7: Pixel G Data (7; MSB, 0; LSB) B0~B7: Pixel B Data (7; MSB, 0; LSB) DE: Data enable signal Notes(1) RSVD(reserved)pins on the transmitter shall be "H" or("L" or OPEN)

5.4 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

-										-		Da	ta S	igna	l			-							
	Color				Red	b							Gre	een							В	lue			
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	Β4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
neu	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Giroon	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1


Note (1) 0: Low Level Voltage, 1: High Level Voltage


Version2.0

5.5 PATTERN FOR Vcom ADJUSTMENT

2line-inversion pattern (2n+0)

Gray level = 128

Adjustment method: (Digital V-com)

Programmable memory IC is used for Digital V-com adjustment in this model. CMI provide Auto Vcom tools to adjust Digital V-com. The detail connection and setting instruction, please directly contact with Account FAE or refer CMI Auto V-com adjustment OI. Below items is suggested to be ready before Digital V-com adjustment in customer LCM line.

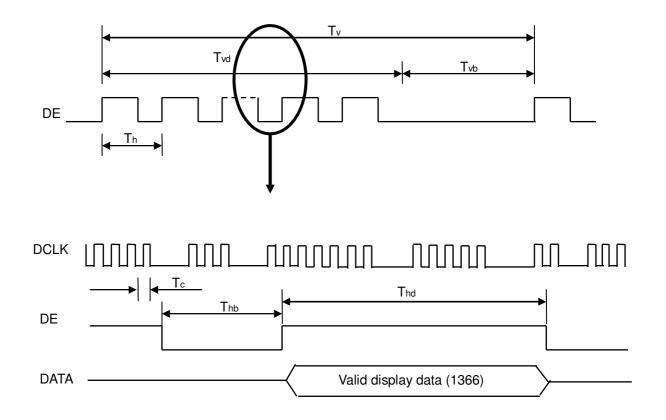
- a. USB Sensor Board
- b. Programmable software

6. INTERFACE TIMING

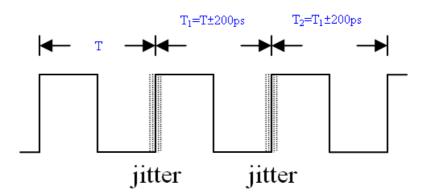
6.1 INPUT SIGNAL TIMING SPECIFICATIONS (Ta = 25 ± 2 °C)

The input signal timing specifications are shown as the following table and timing diagram.

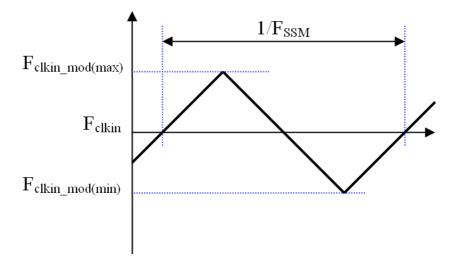
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	F _{clkin} (=1/TC)	60	76	80	MHz	
LVDS	Input cycle to cycle jitter	T _{rcl}	_		200	ps	(3)
Receiver Clock	Spread spectrum modulation range	Fclkin_mod	F _{clkin} -2%	_	F _{clkin} +2%	MHz	
	Spread spectrum modulation frequency	F_{SSM}			200	KHz	(4)
LVDS Receiver Data	Receiver Skew Margin	T _{RSKM}	-400	_	400	ps	(5)
	Frame Rate	F _{r5}		50		Hz	
Vertical		F _{r6}		60		Hz	
Active Display	Total	Τv	796	806	816	Th	Tv=Tvd+Tvb
Term	Display	Tvd	768	768	768	Th	—
	Blank	Tvb	28	38	48	Th	—
Horizontal	Total	Th	1540	1560	1610	Тс	Th=Thd+Thb
Active Display	Display	Thd	1366	1366	1366	Тс	—
Term	Blank	Thb	174	194	244	Тс	_


Note (1) Since the module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this module would operate abnormally.

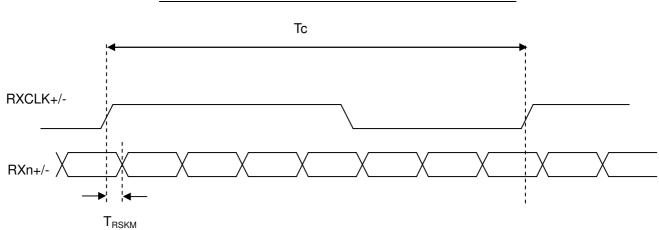
Note (2) Please make sure the range of pixel clock has follow the below equation :


$$\begin{split} F_{clkin}(max) & \geq Fr6 \leftthreetimes Tv \leftthreetimes Th \\ Fr5 \leftthreetimes Tv \leftthreetimes Th & \geq F_{clkin}(min) \end{split}$$

INPUT SIGNAL TIMING DIAGRAM

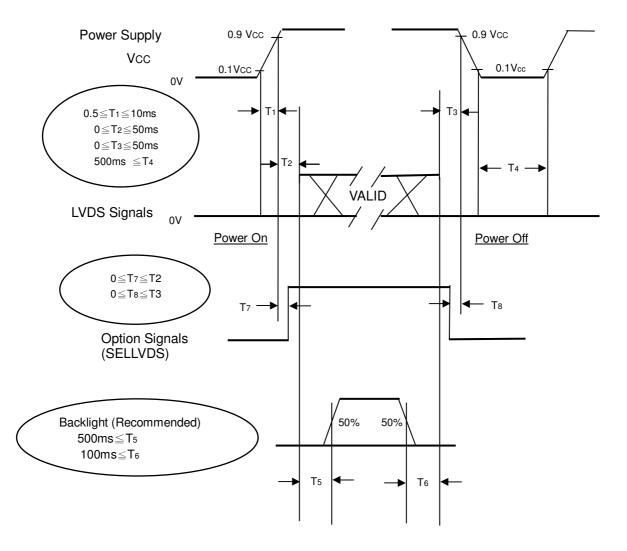


Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $I T_1 - TI$



Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) LVDS receiver skew margin is defined and shown as below.


LVDS RECEIVER INTERFACE TIMING DIAGRAM

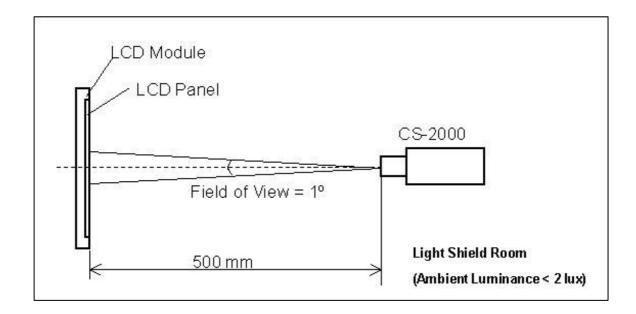
6.2 POWER ON/OFF SEQUENCE

 $(Ta = 25 \pm 2 \ ^{\circ}C)$

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0, that maybe cause electrical overstress failures.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.


7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit		
Ambient Temperature	Та	25±2	O°		
Ambient Humidity	Ha	50±10	%RH		
Supply Voltage	V _{CC}	5.0	V		
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"				
Inverter Current	ΙL	10.5±0.5	mA		
Inverter Driving Frequency	FL	63±3	KHz		

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during

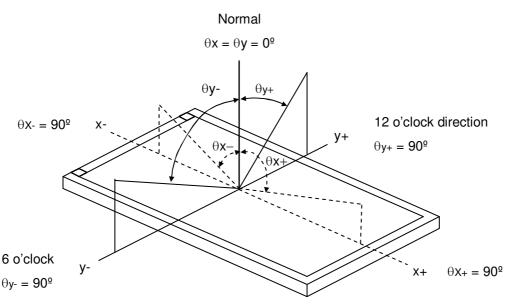
measuring in a windless room.

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown as below. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (5).

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Color Chromaticity Blue White	Red	Rx		Тур0.03	0.654	Тур+0.03	-	(0),(5)
	neu	Ry			0.327		-	
	Green	Gx	$\theta_x=0^\circ, \theta_Y=0^\circ$ Viewing angle at normal direction		0.271		1	
	Cleen	Gy			0.595		-	
	Rlup	Bx			0.132		-	
	Dide	Ву	With C source		0.119		I	
	Whito	Wx	_		0.300		I	
	vvriite	Wy			0.348		-	
Center Trans	mittance	T%	θ _x =0°, θ _Y =0°	-	5.3		%	(1), (7)
Contrast I	Ratio	CR	With CMI Module	2000	3000		-	(1), (3)
Response	Time	Gray to gray average	θ _x =0°, θ _Y =0° With CMI Module@60Hz	-	8.5		ms	(1), (4)
White Var	iation	δ W	$\theta_x=0^\circ, \theta_Y=0^\circ$ With CMI Module			1.3	-	(1), (6)
Viewing Angle	Harizoptal	θ_{x^+}		80	88	-	Deg.	(1), (2)
	Horizontal	θ_{x} -	CR≥20	80	88	-		
	Vertical	θ_{Y} +	With CMI Module	80	88	-		
		θ γ-		80	88	-		

Note (0) Light source is the standard light source "C" which is defined by CIE and driving voltages are based on suitable gamma voltages. The calculating method is as following:

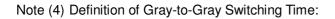

- 1. Measure Module's and BLU's spectrums. W, R, G, B are with signal input. BLU (for V260B3-L08) is supplied by
- 2. Calculate cell's spectrum.
- 3. Calculate cell's chromaticity by using the spectrum of standard light source "C"

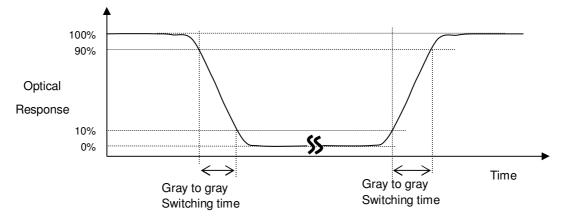
Note (1) Light source is the BLU which supplied by CMI and driving voltage are based on suitable gamma voltages.

Note (2) Definition of Viewing Angle ($\theta x, \theta y$):

Viewing angles are measured by Autronic Conoscope Cono-80.

Note (3) Definition of Contrast Ratio (CR):

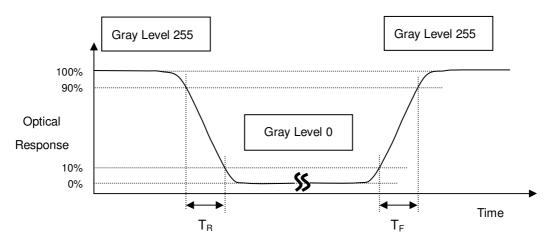

The contrast ratio can be calculated by the following expression.


Contrast Ratio (CR) = Surface Luminance of L255 Surface Luminance of L0

L255: Luminance of gray level 255

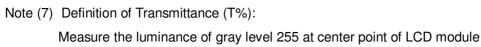
L 0: Luminance of gray level 0

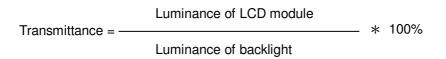
CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6).



The driving signal means the signal of gray level 0, 32, 64, 96, 128, 160, 192, 224 and 256 Gray to gray average time means the average switching time of gray level 0, 32, 64, 96, 128, 160, 192, 224 and 256 to each other.

Note (5) Definition of Response Time (TR, TF):




Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$ where L (X) is corresponding to the luminance of the point X at the figure below.

24

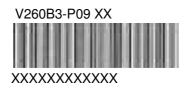
Date: 12 Oct 2011

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) The distance between COF edge and rib of BLU must bigger than 5mm. This can prevent the damage of COF when assemble the module.
- (6) Do not design sharp-pointed structure / parting line / tooling gate on the COF position of plastic parts, because the burr will scrape the COF.
- (7) If COF would bended to assemble in the module. Do not put the IC location on the bending corner of COF.
- (8) The gap between COF IC and any structure of BLU must bigger than 2mm. This can prevent the damage of COF IC
- (9) Bezel opening must have no burr. Burr will scrape the panel surface.
- (10)Bezel of module and bezel of set can not press or touch the panel surface. It will make light leakage or scrape.
- (11)When module used FFC / FPC, but no FFC / FPC to be attached in the open cell. Customer can refer the FFC / FPC drawing and buy it by self.
- (12) The gap between Panel and any structure of Bezel must bigger than 2mm. This can prevent the damage of Panel.
- (13)Do not plug in or pull out the I/F connector while the module is in operation.
- (14)Do not disassemble the module.
- (15)Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (16)Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (17)When storing modules as spares for a long time, the following precaution is necessary.
 - A \sim Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
 - B < The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or f luorescent light.
- (18)When ambient temperature is lower than 10° C, the display quality might be reduced

8.2 SAFETY PRECAUTIONS


- (1) The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
 After the module's end of life, it is not harmful in case of normal operation and sto

9. DEFINITION OF LABELS

9.1 OPEN CELL LABEL

The barcode nameplate is pasted on each open cell as illustration for CMI internal control.

9.2 CARTON LABEL

The barcode nameplate is pasted on each box as illustration, and its definitions are as following explanation.

PO,NO,			
Part ID		Quantities _	10
Model Name .	V260B3-P09		
Carton ID			

- (a) Model Name: V260B3-P09
- (b) Carton ID: CMI internal control
- (c) Quantities: 10

PRODUCT SPECIFICATION

10. PACKAGING

10.1 PACKING SPECIFICATIONS

- (1) 10 LCD TV Panels / 1 Box
- (2) Box dimensions : 740 (L) X 520 (W) X92 (H)mm
- (3) Weight : approximately 12Kg (10 panels per box)
- (4) 320 LCD TV Panels / 1 Group

10.2 PACKING METHOD

Figures 10-1 and 10-2 are the packing method

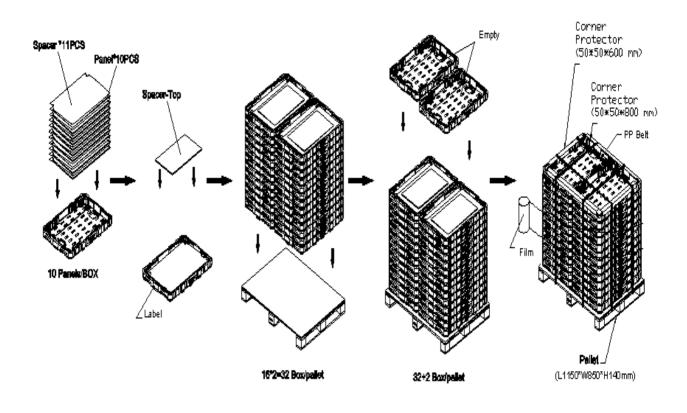
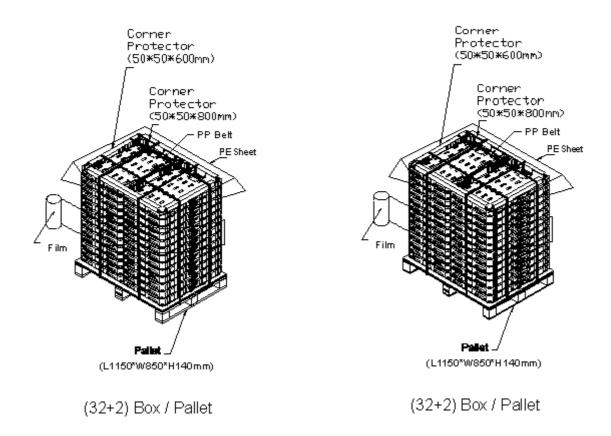
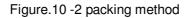


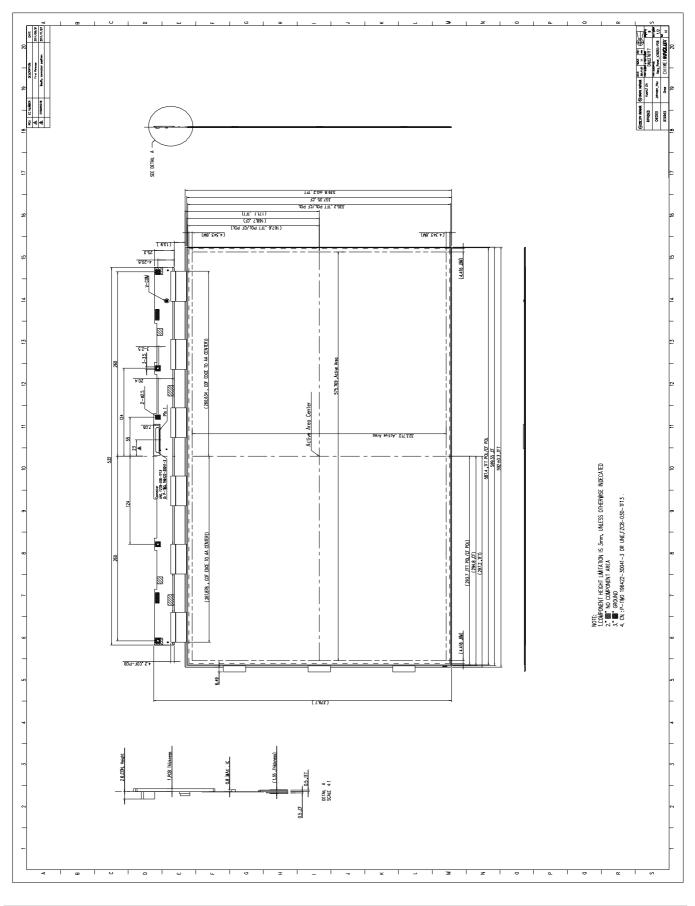
Figure.10-1 packing method


28


Date: 12 Oct 2011

Sea / Land Transportation

Air Transportation



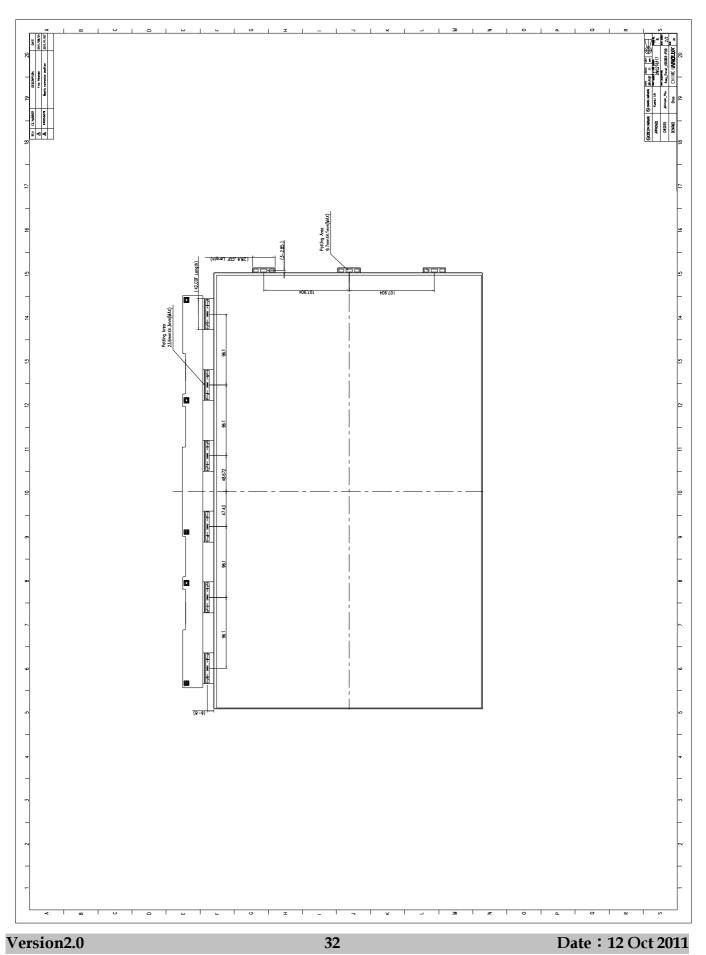
PRODUCT SPECIFICATION

11. Mechanical Drawing

Version2.0

30

Date: 12 Oct 2011


The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

Version2.0

PRODUCT SPECIFICATION

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

Version2.0