$\langle p \rangle$

APPROVAL SPECIFICATION

Tentative Specification

Preliminary Specification

Approval Specification

MODEL NO.: V260B3 SUFFIX: PE1

Customer:		
APPROVED BY	Y SIGN	ATURE
<u>Name / Title</u> Note		
Please return 1 copy for and comments.	r your confirmation v	with your signature
Approved By	Checked By	Prepared By
Chao-Chun Chung	Vincent Chou	Delia Lin

Version 2.0

Date: 11 October 2010

 \oslash

APPROVAL SPECIFICATION

- CONTER	NTS -	3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 CHARACTERISTICS 1.3 MECHANICAL SPECIFICATIONS		4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED O 2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CE 2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)		5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD OPEN CELL		7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE		9
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 LVDS INTERFACE 5.3 COLOR DATA INPUT ASSIGNMENT		10
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE		14
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS		18
8. DEFINITION OF LABELS 8.1 OPEN CELL LABEL 8.2 CARTON LABEL		22
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD		23
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS		25
11. MECHANICAL CHARACTERISTICS		26

Version 2.0

Date: 11 October 2010

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver 2.0	Oct.11,'10	All	All	Approval Specification was first issued.
		2	Q	

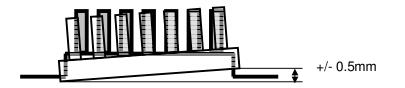
Version 2.0

Date: 11 October 2010

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V260B3- PE1 is a 26-inch TFT LCD cell with driver ICs and 1ch-LVDS interface. This module supports 1366 x 768 WXGA format and can display 16.7M colors (8-bit/color). The backlight unit is not built in


1.2 CHARACTERISTICS

CHARACTERISTICS ITEMS	SPECIFICATIONS
Screen Diagonal [in]	26.0
Pixels [lines]	1366×768
Active Area [mm]	575.769×323.712
Sub -Pixel Pitch [mm]	0.1405(H)×0.4215(V)
Pixel Arrangement	RGB vertical stripe
Weight [g]	TYP. 820
Physical Size [mm]	Refer to 2D Drawing
Display Mode	MVA, Normally Black
Contrast Ratio	(3000:1) Typ.
	(Typical value measured at CMO's module)
Glass thickness (Array/CF) [mm]	0.7 / 0.7
Viewing Angle (CR>20)	+88/-88(H), +88/-88(V) Typ.
	(Typical value measured at CMO's module)
Color Chromaticity	R=0.655, 0.328
	G=0.269,0.598
	B=0.131,0.120
	W=0.299,0.355
	*Please refer to "color chromaticity" on p.18
Cell Transparency [%]	5.0%Тур.
	(Typical value measured at CMO's module)
Polarizer (CF side)	Anti-Glare coating
	587.4(H) x 335.2(w). Hardness: 3H
Polarizer (TFT side)	587.4(H) x 335.2(w).

1.3 MECHANICAL SPECIFICATIONS

Item	Min.	Тур.	Max.	Unit	Note		
Weight		820		g			
I/F connector mounting	The mounting in		(1)				
position	the screen center within ±0.5mm as the horizontal.						

Note (1) Connector mounting position

Version 2.0

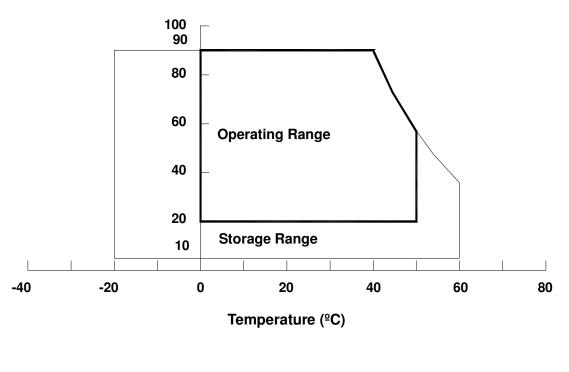
Date: 11 October 2010

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited.

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED ON CMO MODULE V260B3-LE1)


Item	Symbol	Va	lue	Unit	Note
liem	Symbol	Min.	Max.	Unit	Note
Storage Temperature	T _{ST}	-20	+60	°C	(1)
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 $^{\circ}$ C).
- (b) Wet-bulb temperature should be 39 $^{\circ}$ C Max. (Ta > 40 $^{\circ}$ C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.

Relative Humidity (%RH)

Version 2.0

Date: 11 October 2010

2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)

Storage Condition : With shipping package.

Storage temperature range : 25±5 $^\circ\!\mathrm{C}$

Storage humidity range : 50±10%RH

Shelf life : a month

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)

Itom	Symbol	Va	lue	Unit	Note
Item	Symbol	Min.	Max.	Unit	Note
Power Supply Voltage	Vcc	-0.3	13.5	V	(1)
Input Signal Voltage	VIN	-0.3	3.6	V	(1)

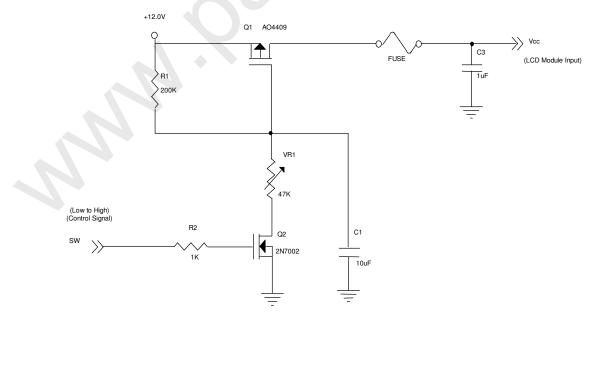
Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation

should be restricted to the conditions described under Normal Operating Conditions.

Version 2.0

 $\langle p \rangle$

APPROVAL SPECIFICATION


3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

							Ta =	25 ± 2 ⁰C
	Param	otor	Symbol		Value	Unit	Note	
	i aiaiii	elei	Symbol	Min.	Тур.	Max.	Unit	NOLE
Power Su	oply Voltage		V_{CC}	10.8	12	13.2	V	(1)
Rush Curr	ent		I _{RUSH}	_	_	2.8	А	(2)
		White Pattern	_	_	0.45		А	
Power Su	oply Current	Horizontal Stripe	_	_	0.52	0.6	А	(3)
	Black Pattern		_	_	0.35		A	
	Differential Ir Threshold Vo		V_{LVTH}	+100	_		mV	
	Differential Ir Threshold Vo	nput Low	V _{LVTL}			-100	mV	
LVDS interface	Common Inp	out Voltage	V_{CM}	1.0	1.2	1.4	V	(4)
	Differential ir (Single-End)		$ V_{ID} $	200		600	mV	
	Terminating	Resistor	R _T		100	_	ohm	
CMOS Input High Threshold Voltage			VIH	2.7	—	3.3	V	
interface	Input Low Th	reshold Voltage	VIL	0	—	0.7	V	

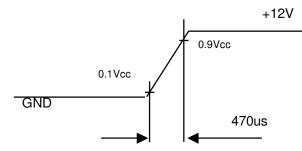
Note (1) The module should be always operated within above ranges.

Note (2) Measurement Condition as below:

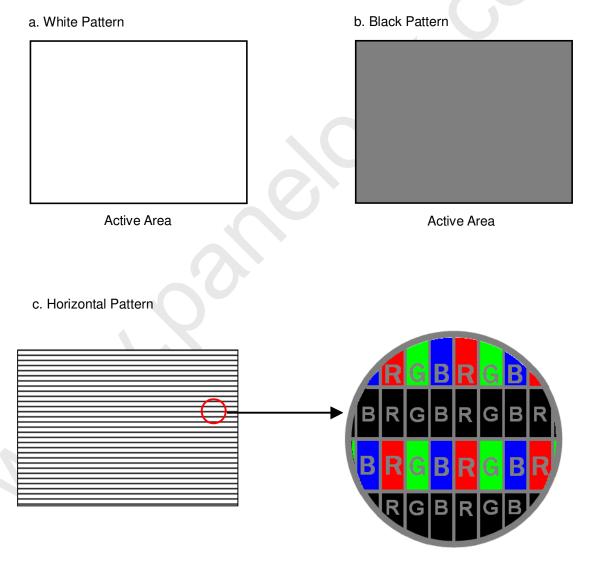
Version 2.0

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited.

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com


Date: 11 October 2010

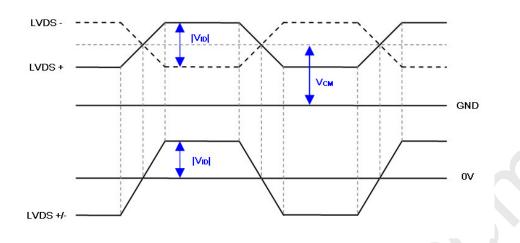
 $\langle p \rangle$



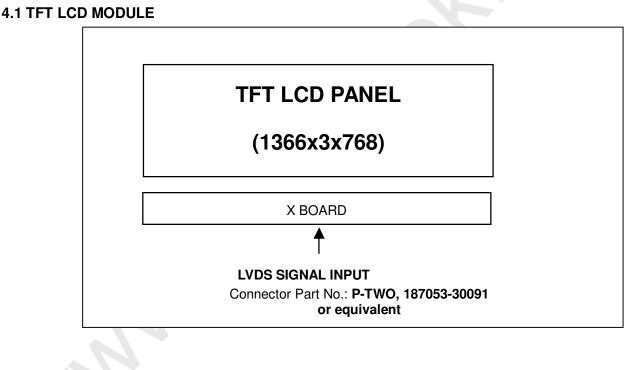
APPROVAL SPECIFICATION

Vcc rising time is 470us

Note (3)The specified power supply current is under the conditions at Vcc = 12 V, Ta = $25 \pm 2 \degree$ C, f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.


Version 2.0

奇美雷子



APPROVAL SPECIFICATION

Note (4) The LVDS input characteristics are as follows:

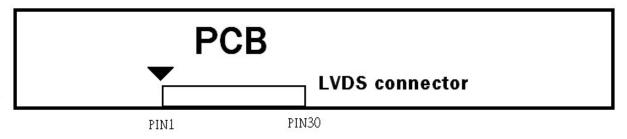
4. BLOCK DIAGRAM

Version 2.0

9

Date: 11 October 2010

5. INPUT TERMINAL PIN ASSIGNMENT


5.1 TFT LCD MODULE

CNF1 Connector Pin Assignment

Pin No.	Symbol	Description	Note
1	VCC	Power supply: +12V	
2	VCC	Power supply: +12V	
3	VCC	Power supply: +12V	
4	VCC	Power supply: +12V	
5	GND	Ground	
6	GND	Ground	
7	GND	Ground	
8	NC	No connection	(4)
9	SELLVDS	Select LVDS data format	(2),(5)
10	ODSEL	Overdrive Lookup Table Selection	(3),(5)
11	GND	Ground	
12	RX0-	Negative transmission data of pixel 0	
13	RX0+	Positive transmission data of pixel 0	
14	GND	Ground	
15	RX1-	Negative transmission data of pixel 1	
16	RX1+	Positive transmission data of pixel 1	
17	GND	Ground	
18	RX2-	Negative transmission data of pixel 2	
19	RX2+	Positive transmission data of pixel 2	
20	GND	Ground	
21	RXCLK-	Negative of clock	
22	RXCLK+	Positive of clock	
23	GND	Ground	
24	RX3-	Negative transmission data of pixel 3	
25	RX3+	Positive transmission data of pixel 3	
26	GND	Ground	
27	NC	No connection	(4)
28	NC	No connection	(4)
29	NC	No connection	(4)
30	GND	Ground	

Note (1) Connector Part No.: P-TWO, 187053-30091 or compatible

The pin order of LVDS connector is defined as follows

Note (2) Low = Open or connect to GND: VESA Format, High = Connect to +3.3V: JEIDA Format.

Please refer to 5.5 LVDS INTERFACE

Note (3) Overdrive lookup table selection. The Overdrive lookup table should be selected in accordance to the frame rate to optimize image quality.

Version 2.0

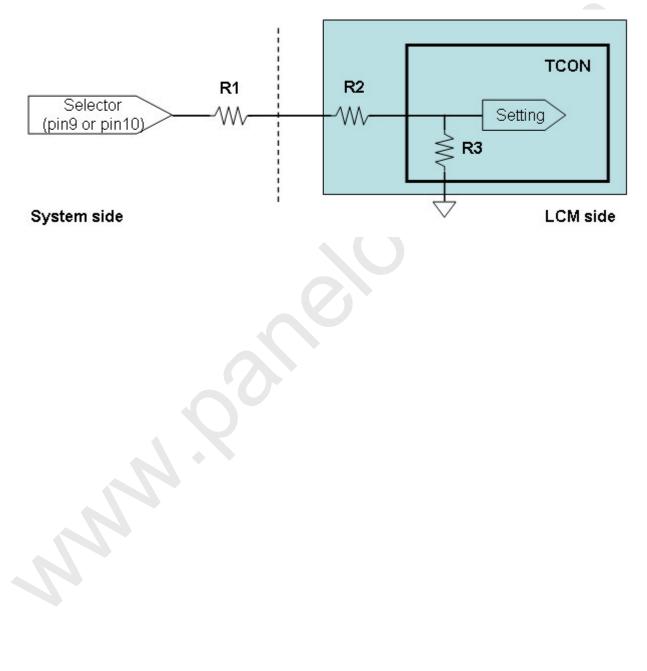
10

Date: 11 October 2010

受手間も

CH

APPROVAL SPECIFICATION


Low = Open or connect to GND, High = Connect to +3.3V

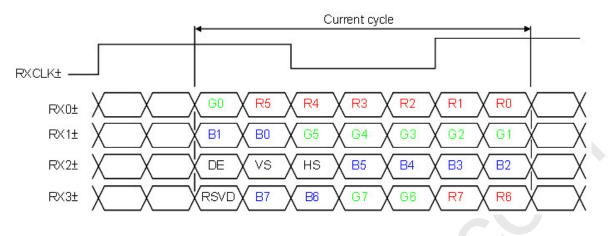
ODSEL Note								
L	or Open	Lookup table was optimized for 60 Hz frame rate.						
	Н	Lookup table was optimized for 50 Hz frame rate.						

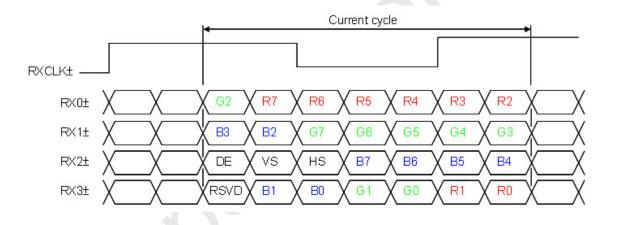
Note (4) Reserved for internal use. Left it open.

Note (5) LVDS signal pin connected to the LCM side has the following diagram.

R1 in the system side should be less than 1K Ohm. (R1 < 1K Ohm)

Version 2.0


 $\langle p \rangle$


APPROVAL SPECIFICATION

5.2 LVDS INTERFACE

VESA LVDS format : (SELLVDS pin=L or open)

JEDIA LVDS format : (SELLVDS pin=H)

R0~R7: Pixel R Data (7; MSB, 0; LSB)

G0~G7: Pixel G Data (7; MSB, 0; LSB)

B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE: Data enable signal

Notes(1) RSVD(reserved)pins on the transmitter shall be "H" or("L" or OPEN)

Version 2.0

12

Date: 11 October 2010

 $\langle \! \! \rangle$

APPROVAL SPECIFICATION

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

												Da	ata	Sigr	nal			T							
	Color		-		Re	ed							G	reer	1						Blu	Je			
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	Β7	B6	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	÷		··	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
neu	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	•	:	;	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	÷	:	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Version 2.0

13

Date: 11 October 2010

 $\langle P \rangle$

APPROVAL SPECIFICATION

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

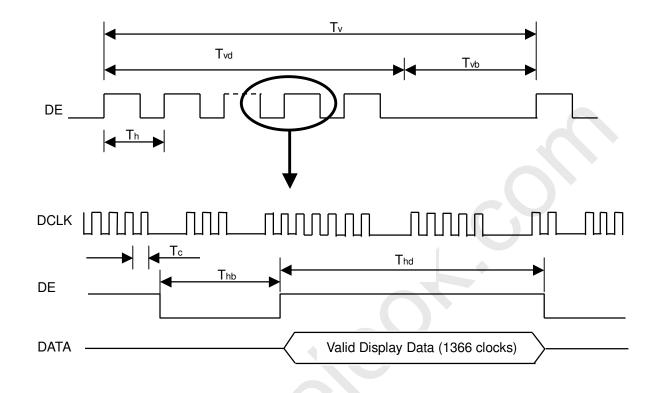
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note	
	Frequency	F _{clkin} (=1/TC)	60	76	82	MHz		
LVDS	Input cycle to cycle jitter	T _{rcl}	_		200	ps	(3)	
Receiver Clock	Spread spectrum modulation range	Fclkin_mod	F _{clkin} -2%	_	F _{clkin} +2%	MHz	(4)	
	Spread spectrum modulation frequency	F_{SSM}			200	KHz	(4)	
LVDS Receiver	Setup Time	Tlvsu	600	_	_	ps	(5)	
Data	Hold Time	Tlvhd	600	_	_	ps	(5)	
	Frame Rate	F _{r5}	47	50	53	Hz	(6)	
Vertical		F _{r6}	57	60	63	Hz	(0)	
Active Display	Total	Τv	778	806	888	Th	Tv=Tvd+Tvb	
Term	Display	Tvd	768	768	768	Th	_	
	Blank	Tvb	10	38	120	Th		
Horizontal	Total	Th	1442	1560	1936	Тс	Th=Thd+Thb	
Active Display	Display	Thd	1366	1366	1366	Тс	_	
Term	Blank	Thb	76	194	570	Тс	_	

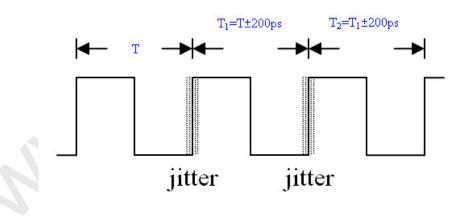
Note (1) Please make sure the range of pixel clock has follow the below equation :

 $Fr5 \times Tv \times Th \ge Fclkin(min)$

Note (2) This module is operated in DE only mode and please follow the input signal timing diagram below :

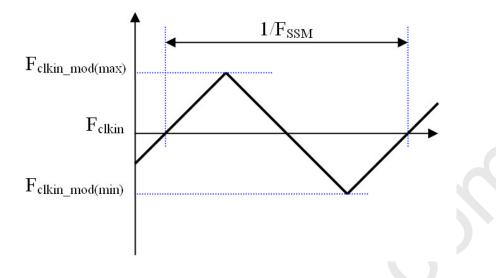
Version 2.0


www.panelook.com

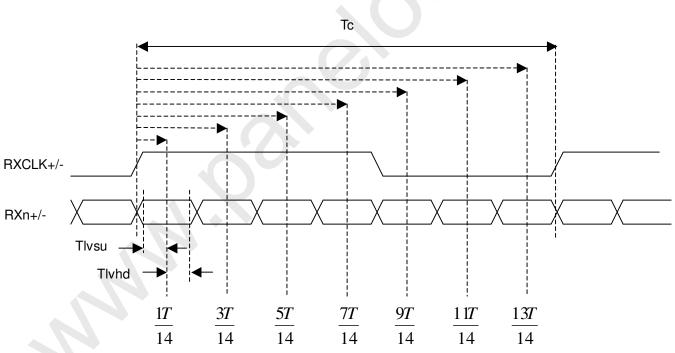

APPROVAL SPECIFICATION

INPUT SIGNAL TIMING DIAGRAM

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $I T_1 - TI$


Version 2.0

15


Date:11 October 2010

Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

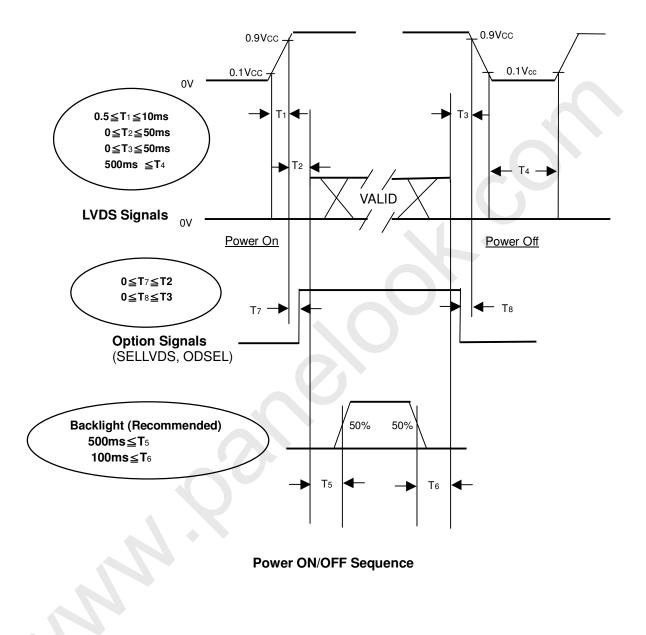
LVDS RECEIVER INTERFACE TIMING DIAGRAM

Note (6) : (ODSEL) = H/L or open for 50/60Hz frame rate. Please refer to 5.1 for detail information

Version 2.0

16

 \oslash



APPROVAL SPECIFICATION

6.2 POWER ON/OFF SEQUENCE

(Ta = 25 ± 2 °C)

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Version 2.0

17

Date:11 October 2010

 $\langle P \rangle$

APPROVAL SPECIFICATION

7. OPTICAL CHARACTERISTICS

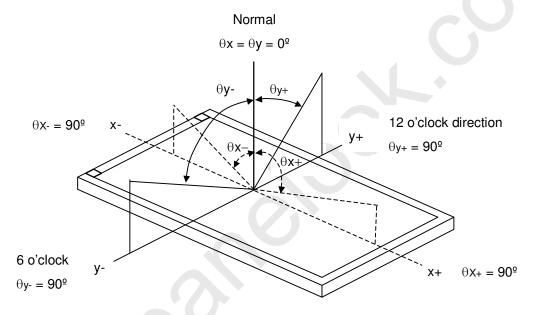
7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Та	25±2	O°
Ambient Humidity	На	50±10	%RH
Supply Voltage	V _{CC}	12.0	V
Input Signal	According to typical v	alue in "3. ELECTRICAL	CHARACTERISTICS"
LED Current	١L	80.0 ± 4.8	mA
Vertical Frame Rate	Fr	60	Hz

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown as below. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (5).

Iter	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rcx	θ _x =0°, θ _Y =0° Viewing Angle at Normal Direction Standard light source "C"	5	0.655		-	(0),(5)
	rica	Rcy			0.328		-	
	Crear	Gcx			0.268		-	
Color	Green	Gcy			0.598		-	
Chromaticity	y Blue	Bcx			0.131		-	(0),(0)
	Dide	Всу			0.120		-	
	White	Wcx			0.299		-	
	vvnite	Wcy			0.355		-	
Center Tran	Center Transmittance		θ _x =0°, θ _Y =0°	-	5.0	-	%	(1),(7)
Contrast Ratio		CR	with CMO module		3000	-		(1),(3)
Respons	o Timo	Gray to	θ _x =0°, θ _Y =0°	-	8.5		ms (4)	
Пезропа	e nine	gray	with CMO Module@60Hz	-	0.5		1115	(4)
White Va	ariation	δW	$\theta_x=0^\circ, \theta_Y=0^\circ$ with CMO module	-	-	1.3	-	(1),(6)
Ho	Horizontal	θ_{x} +	CR≥20 With CMO module		88 88 88		Deg.	(1),(2)
		θ _x-						
Angle	Vertical	θ_{Y} +						
	vertical	θγ-			88			


Version 2.0

Note (0) Light source is the standard light source "C" which is defined by CIE and driving voltage are based on suitable gamma voltages. The calculating method is as following :

- Measure Module's and BLU's spectrum. White is without signal input and R,G,B are with signal input. BLU (for V260B3-LE1) is supplied by CMO.
- 2. Calculate cell's spectrum.
- 3. Calculate cell's chromaticity by using the spectrum of standard light source "C".
- Note (1) Light source is the BLU which is supplied by CMO and driving voltage are based on suitable gamma voltages.
- Note (2) Definition of Viewing Angle $(\theta x, \theta y)$:

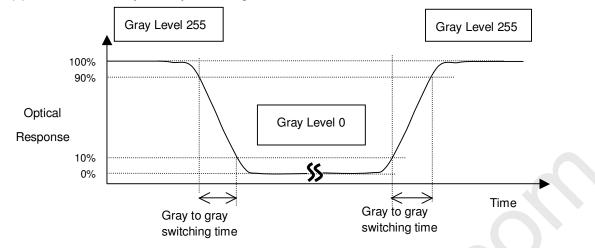
Viewing angles are measured by Conoscope Cono-80

Note (3) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

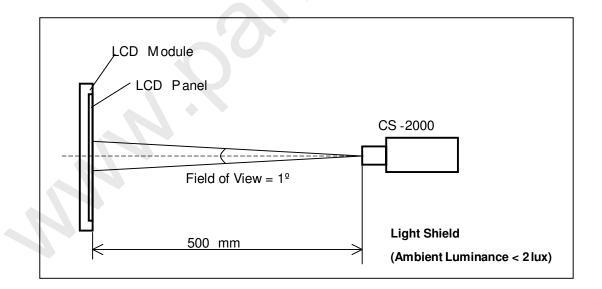
Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255


L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6).

Version 2.0


Note (4) Definition of Gray to Gray Switching Time :

The driving signal means the signal of luminance 0%, 20%, 40%, 60%, 80%, 100%. Gray to gray average time means the average switching time of luminance 0%, 20%, 40%, 60%, 80%, 100% to each other.

Note (5) Measurement Setup:

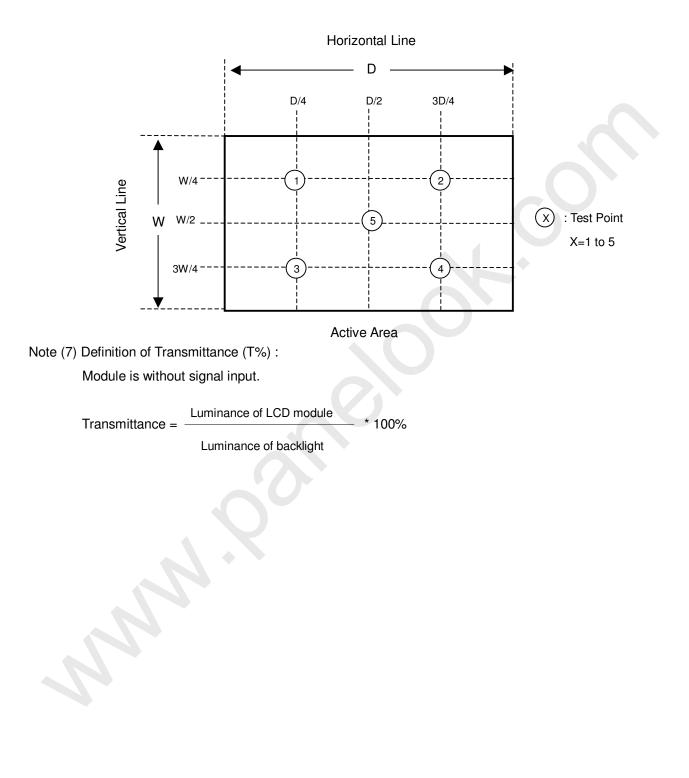
The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 1 hour in a windless room.

Version 2.0

20

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

С

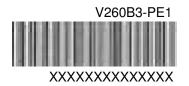


APPROVAL SPECIFICATION

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

δW = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]


Version 2.0

8. DEFINITION OF LABELS

8.1 OPEN CELL LABEL

The barcode nameplate is pasted on each open cell as illustration for CMO internal control.

8.2 CARTON LABEL

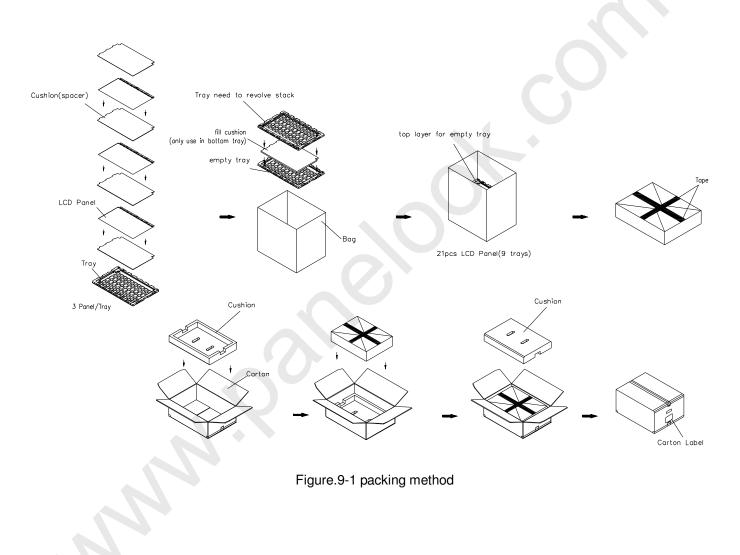
The barcode nameplate is pasted on each box as illustration, and its definitions are as following explanation

- (b) Carton ID: CMO internal control
- (c) Quantities: 21

Version 2.0

(a)

Date: 11 October 2010


9. PACKAGING

9.1 PACKING SPECIFICATIONS

- (1) 21PCS LCD TV Panels / 1 Box
- (2) Box dimensions : 812 (L) X 572 (W) X 277 (H)
- (3) Weight : approximately 27.5 Kg

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method

 $\langle p \rangle$

APPROVAL SPECIFICATION

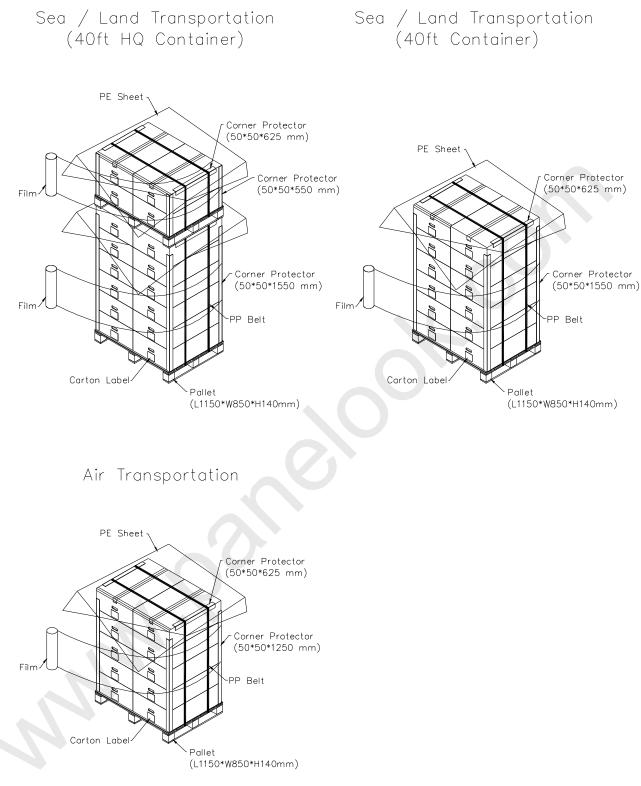


Figure.9-2 packing method

	'S		

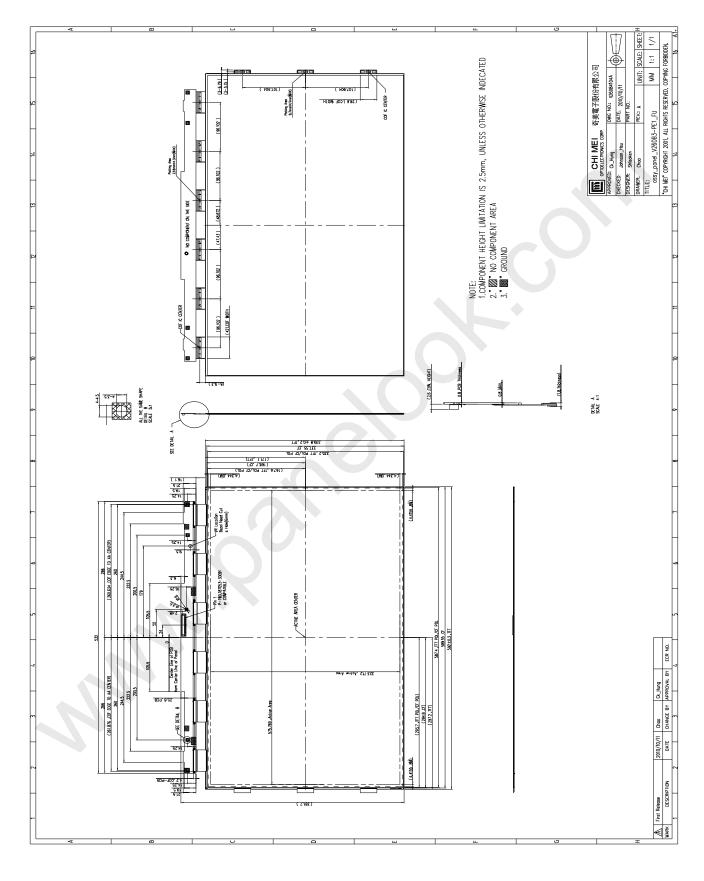
24

Date: 11 October 2010

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the product during assembly.
- (2) To assemble backlight or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel will be damaged.
- (4) Always follow the correct power sequence when the product is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (7) It is dangerous that moisture come into or contacted the product, because moisture may damage the product when it is operating.
- (8) High temperature or humidity may reduce the performance of module. Please store this product within the specified storage conditions.
- (9) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.


10.2 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the product's end of life, it is not harmful in case of normal operation and storage.

Version 2.0

11. MECHANICAL CHARACTERISTICS

Version 2.0

Date: 11 October 2010