

Approval

TFT LCD Approval Specification

MODEL NO.: V270W1 - L06

Customer:			
Approved by:			
Note:			
	LCD TV Hea	d Division	
AVP		郭振隆	
		T) (110 / 000	
QRA Dept.		TVHD / PDD	
Qi ii i Bopii	DDIII	DDII	DDI
Approval	Approval	Approval	Approval
陳永一	李汪洋	藍文錦	林文聰
10D T//14			D: : :
LCD IV Ma	rketing and Prod	uct Management	Division
Product Manager	-	黃小萍 陳立宜	Ī

Approval

- CONTENTS -

REVISION HISTORY	 3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT	5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT 3.2.1 CCFL CHARACTERISTICS 3.2.2 INVERTER CHARACTERISTICS 3.2.3 INVERTER INTERTFACE CHARACTERISTICS	7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE	 12
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 INVERTER UNIT 5.4 BLOCK DIAGRAM OF INTERFACE 5.5 LVDS INTERFACE 5.6 COLOR DATA INPUT ASSIGNMENT	 13
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	 19
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	 21
8. PACKAGING 8.1 PACKING SPECIFICATIONS 8.1 PACKING METHOD	 25
9. DEFINITION OF LABELS 9.1 CMO MODULE LABEL	 27
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS	 28
11. MECHANICAL CHARACTERISTICS	 29

2

The information described in this technical specification is tentative and it is possible to be changed without prior notice. Please contact CMO 's representative while your product design is based on this specification. **Version 2.0**

Approval

REVISION HISTORY

Description	Section	Page (New)	Date	Version
Approval Specification is	All	All	April 26, '05	Ver 2.0

Approval

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V270W1- L06 is a 27" TFT Liquid Crystal Display module with 14-CCFL Backlight unit and 1ch-LVDS interface. This module supports 1280 x 720 WXGA format and can display true 16.7M colors (8-bit/color). The inverter module for backlight is build-in.

1.2 FEATURES

- -Ultra wide viewing angle Super MVA technology
- -High brightness (550 nits)
- High contrast ratio (900:1)
- Fast response time
- High color saturation NTSC 75%
- WXGA (1280 x 720 pixels) resolution, true HDTV format.
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface

1.3 APPLICATION

- TFT LCD TVs

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	597.12(H) x 335.88 (V) (26.97" diagonal)	mm	(1)
Bezel Opening Area	603.22 (H) x 341.98 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1280 x R.G.B. x 720	pixel	-
Pixel Pitch (Sub Pixel)	0.1555 (H) x 0.4665 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7M	color	-
Display Operation Mode	Transmissive mode / Normally black	-	-
	Anti-glare with anti-reflective coating		
Surface Treatment	Hard coating (3H), Haze: 40%	-	-
	Reflection Rate: < 2%		

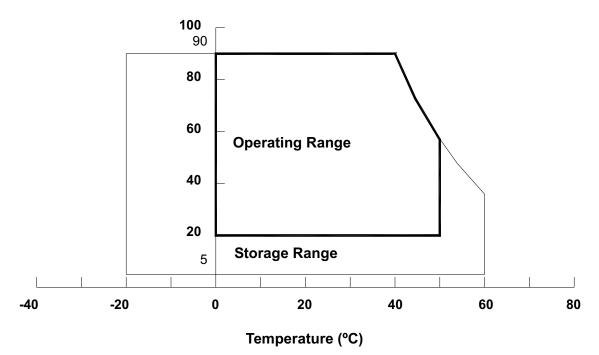
1.5 MECHANICAL SPECIFICATIONS

	Item		Min.	Тур.	Max.	Unit	Note
	Horizonta	l(H)		637.55		mm	Module Size
Module Size	Vertical(V)		400		mm	Depth(D)
Wiodule Size	Depth(D)	W/O INV	-		36	mm	Deptii(D)
	Deptil(D)	W/I INV	42.7	43.2	43.7	mm	
,	Weight		-	4300		g	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Module Depth does not include connectors.


Issued Date: April. 26, 2005 Model No.: V270W1 - L06


2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Offic		
Storage Temperature	T _{ST}	-20	+60	°C	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	100	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	-	1.0	G	(4), (5)	

- Note (1) Temperature and relative humidity range is shown in the figure below.
 - (a) 90 %RH Max. (Ta \leq 40 °C).
 - (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
 - (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 60 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 60 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 2 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 500 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Approval

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.		Note	
Power Supply Voltage	Vcc	-0.3	+6.0	V	(1)	
Logic Input Voltage	V_{IN}	-0.3	4.3	V	(1)	

2.2.2 BACKLIGHT UNIT

Item	Symbol	Test Condition	Min.	Туре	Max.	Unit	Note
Lamp Voltage	V _W	Ta = 25 °C	-	_	3000	V_{RMS}	
Power Supply Voltage	V_{BL}	_	0	_	30	V	(1)
Control Signal Level	_	_	-0.3	_	7	V	(1), (3)

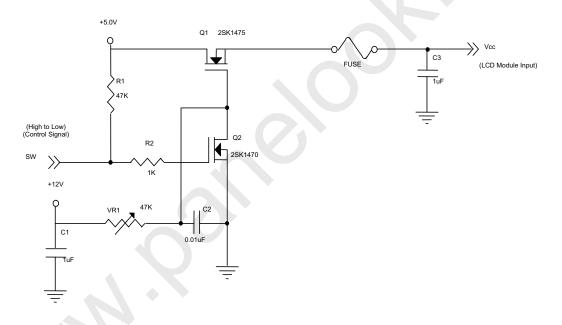
Note (1) Permanent damage to the device may occur if maximum values are exceeded. Functional operation should be restricted to the conditions described under normal operating conditions.

Note (2) No moisture condensation or freezing.

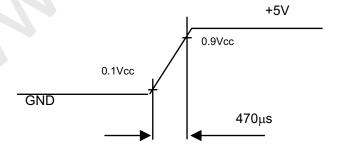
Note (3) The control signals includes Backlight On/Off Control, Internal PWM Control, External PWM Control and Internal/External PWM Selection.

Approval

3. ELECTRICAL CHARACTERISTICS


3.1 TFT LCD MODULE

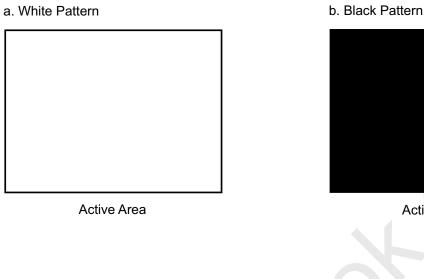
Ta = 25 ± 2 °C

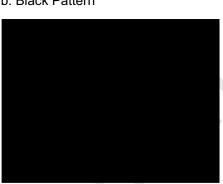

Parameter		Symbol		Value		Unit	Note
Farame	Syllibol	Min.	Тур.	Max.	Offic	Note	
Power Supply Voltage		Vcc	4.5	5.0	5.5	V	-
Ripple Voltage		V_{RP}	-	-	200	mV	-
Rush Current		I _{RUSH}	ı	2.1	3	Α	(2)
	White		ı	1.4	-	Α	(3)a
Power Supply Current	Black	Icc	-	1	-	Α	(3)b
	Vertical Stripe		-	1.2	-	Α	(3)c
LVDS differential input h	igh threshold	V_{TH}		_	+100	mV	
voltage		V TH	-	-	1100	IIIV	
LVDS differential input lo	V_{TL}	-100			mV		
voltage	V TL	-100	-	_	IIIV	>	
LVDS common input vol	Vic	1.125	1.25	1.375	V		
Terminating Resistor		RT	-	100	_	ohm	

Note (1) The module should be always operated within above ranges.

Note (2) Measurement Conditions:

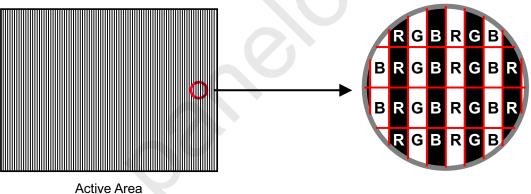
Vcc rising time is 470µs





Issued Date: April. 26, 2005 Model No.: V270W1 - L06

pprova


Note (3) The specified power supply current is under the conditions at Vcc = 5 V, Ta = 25 \pm 2 °C, f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

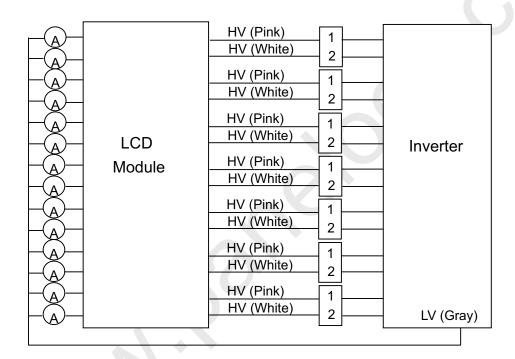
Active Area

c. Vertical Stripe Pattern

3.2 BACKLIGHT UNIT

3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol		Value	Unit	Note	
Farameter	Symbol	Min. Typ. Max.		Offic	Note	
Lamp Voltage	V_W	-	860	-	V_{RMS}	$I_L = 4.7 \text{mA}$
Lamp Current	L	4.2	4.7	5.2	mA _{RMS}	(1)
Laway Ctanting Valtage	\	-	1790	-	V_{RMS}	(2), Ta = 0 °C
Lamp Starting Voltage	Vs	-	1200	-	V_{RMS}	(2), Ta = 25 °C
Operating Frequency	Fo	50	-	70	KHz	(3)
Lamp Life Time	L_BL	50,000	60,000	-	Hrs	(4)


Issued Date: April. 26, 2005 Model No.: V270W1 - L06

nnrova

3.2.2 INVERTER CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol		Value	Unit	Note	
Farameter	Syllibol	Min.	Тур.	Max.	Offic	Note
Power Consumption	P_{BL}	-	92	-	W	(5), $I_L = 4.7 \text{mA}$
Input Voltage	V_{BL}	22.8	24	25.2	V_{DC}	
Input Current	I _{BL}	-	3.8	-	Α	Non Dimming
Input Ripple Noise	-	-	-	500	mV_{P-P}	V _{BL} =21.6V
Backlight Turn on	W	1790	-	-	V_{RMS}	Ta = 0 °C
Voltage	V_{BS}	1200	-	-	V_{RMS}	Ta = 25 °C
Oscillating Frequency	F _W	53	56	59	kHz	
Dimming Frequency	F _B	150	160	170	Hz	
Minimum Duty Ratio	D _{MIN}	-	10	-	%	

Note (1) Lamp current is measured by utilizing high frequency current meters as shown below:

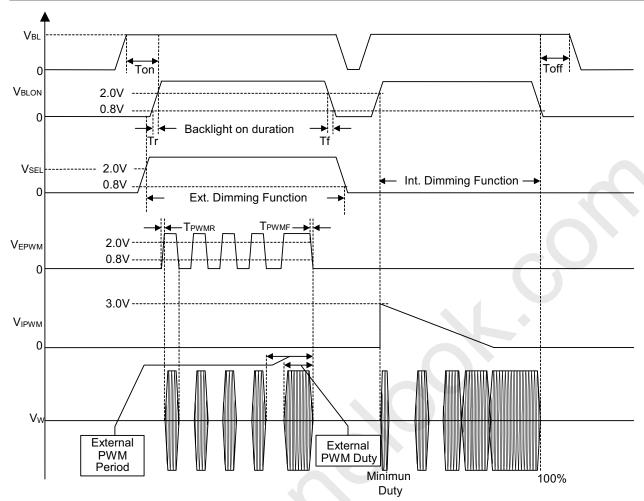
- Note (2) The lamp starting voltage V_S should be applied to the lamp for more than 1 second under starting up duration. Otherwise the lamp could not be lighted on completed.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency from the display, and this may cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point.) as the time in which it continues to operate under the condition Ta = 25 $\pm 2^{\circ}$ C and I_L = 4.2 ~ 5.2 mA_{RMS}.

Approval

Note (5) The power supply capacity should be higher than the total inverter power consumption P_{BL}. Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when inverter dimming.

3.2.3 INVERTER INTERTFACE CHARACTERISTICS

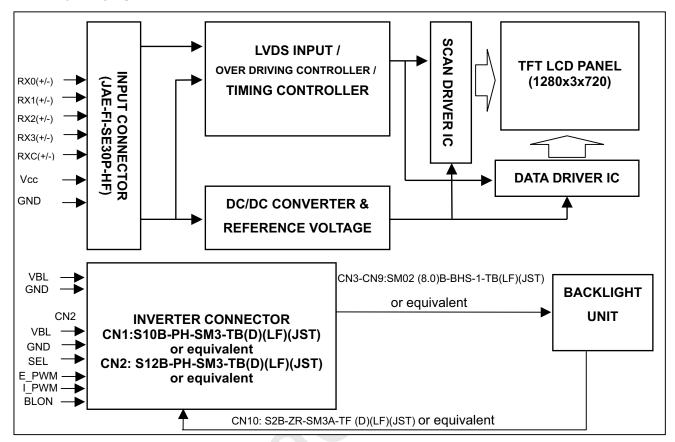
3.2.3 HVERTER HTERTIAGE GHARAGTERIGHGG										
Item		Symbol	Test Condition	Min.	Тур.	Max.	Unit	Note		
On/Off Control	ON	V	_	2.0	_	5.0	V			
Voltage	OFF	V_{BLON}	_	0	_	0.8	V			
Internal/External	HI	\/	_	2.0	- 4	5.0	V			
PWM Select Voltage	LO	V_{SEL}	_	0	_	0.8	V			
Internal PWM	MAX	V	\/ -1	_		3.0	V	minimum duty ratio		
Control Voltage	MIN	V_{IPWM}	V _{SEL} = L	-/	0	_	V	maximum duty ratio		
External PWM	HI	.,	V	HI	V _{SEL} = H	2.0		5.0	V	duty on
Control Voltage	LO	V_{EPWM}	V SEL - II	0	_	8.0	V	duty off		
Control Signal Rising	g Time	T _r	- (_	100	ms			
Control Signal Falling	g Time	T _f	-	_	_	100	ms			
PWM Signal Rising	Time	T _{PWMR}		_	-	50	us			
PWM Signal Falling Time		T _{PWMF}		_		50	us			
Input impedance		R _{IN}	_	1	-	-	$M\Omega$			
BLON Delay Time		Ton		1		1	ms			
BLON Off Time	,	T _{off}	_	1	_	_	ms			


Note (1) The SEL signal should be valid before backlight turns on by BLON signal. It is inhibited to change the internal/external PWM selection (SEL) during backlight turn on period.

Note (2) The power sequence and control signal timing are shown as the following figure.

10

Approval



Approval

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

Approval

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin	Name	Description
1	NC	No Connection
2	NC	No Connection
3	NC	No Connection
4	NC	No Connection
5	NC	No Connection
6	NC	No Connection
7	NC	No Connection
8	GND	Ground
9	RX3+	Positive LVDS differential data input. Channel 3
10	RX3-	Negative LVDS differential data input. Channel 3
11	RXCLK+	Positive LVDS differential clock input.
12	RXCLK-	Negative LVDS differential clock input.
13	GND	Ground
14	GND	Ground
15	RX2+	Positive LVDS differential data input. Channel 2
16	RX2-	Negative LVDS differential data input. Channel 2
17	RX1+	Positive LVDS differential data input. Channel 1
18	RX1-	Negative LVDS differential data input. Channel 1
19	RX0+	Positive LVDS differential data input. Channel 0
20	RX0-	Negative LVDS differential data input. Channel 0
21	GND	Ground
22	GND	Ground
23	GND	Ground
24	GND	Ground
125	GND	Ground
26	VCC	+5.0V power supply
27	VCC	+5.0V power supply
28	VCC	+5.0V power supply
29	VCC	+5.0V power supply
30	VCC	+5.0V power supply

Note (1) Connector Part No.: FI-SE30P-HF (JAE)

Note (2) The first pixel is even.

13

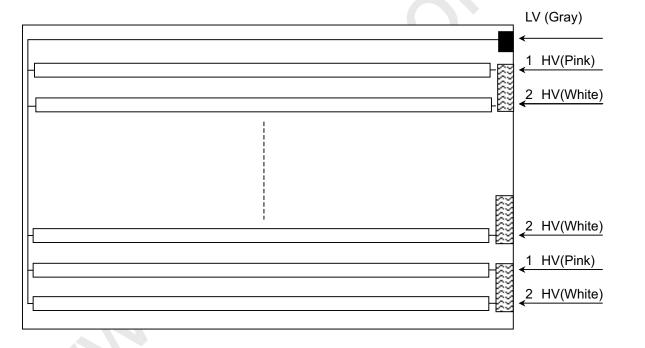
Approval

5.2 BACKLIGHT UNIT

The pin configuration for the housing and leader wire is shown in the table below.

CN3-CN9 (Housing): BHR-03VS-1

Pin	Name	e Description	Wire Color
1	HV	High Voltage	Pink
2	HV	High Voltage	White


Note (1) The backlight interface housing for high voltage side is a model BHR-03VS-1, manufactured by JST. The mating header on inverter part number is SM02(8.0)B-BHS-1-TB.

CN10 (Housing): ZHR-2 or equivalent

Pin	Name	Description	Wire Color
1	LV	Low Voltage	Gray
2	NC	-	-

Note (2) The backlight interface housing and return cable for low voltage side is a model ZHR-2 or equivalent, manufactured by JST or equivalent. The mating header on inverter part number is S2B-ZR-SM3A-TF or equivalent.

RETURN CABLE

5.3 INVERTER UNIT

CN1(Header):S10B-PH-SM3-TB(JST) or equivalent.

Pin	Symbol	Description
1		
2		
3	VBL	+24V Power input
4		
5		
6		
7		
8	GND	Ground
9		
10		

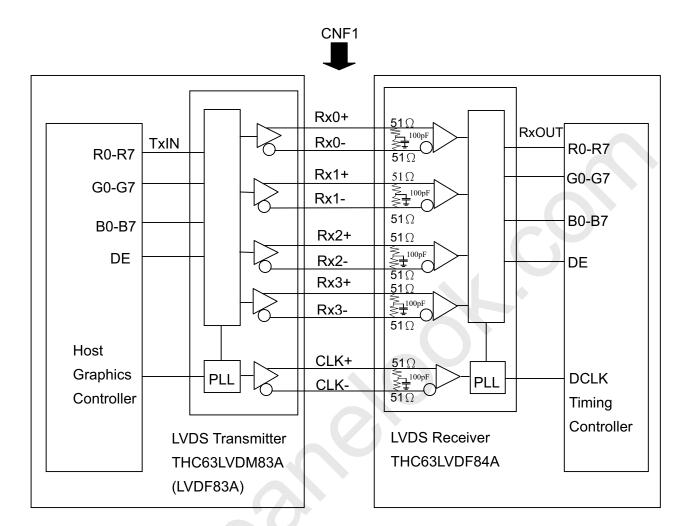
CN2(Header): S12B-PH-SM3-TB(JST) or equivalent.

Pin	Symbol	Description					
1							
2							
3	VBL	+24V Power input					
4							
5							
6							
7	GND	Ground					
8							
9	SEL	Internal/external PWM selection High: external dimming					
		Low : internal dimming					
		External PWM control signal					
10	E_PWM	E_PWM should be connected to low when internal PWM was selected (SEL = low).					
		Internal PWM control signal					
11	I_PWM	I_PWM should be connected to ground when external PWM was selected					
		(SEL = high).					
12	BLON	Backlight on/off control					

CN3-CN9(Header): SM02(8.0)B-BHS-1-TB(JST) or equivalent

Pin	Symbol	Description
1	CCFL HOT	CCFL high voltage
2	CCFL HOT	CCFL high voltage

CN10(Header): S2B-ZR-SM3A-TF(JST) or equivalent


Pin	Symbol	Description
1	CCFL COLD	CCFL low voltage
2	NC	-

Note (1) Floating of any control signal is not allowed.

5.4 BLOCK DIAGRAM OF INTERFACE

R0~R7 : Pixel R Data
G0~G7 : Pixel G Data
B0~B7 : Pixel B Data

DE : Data Enable signal

Notes: 1) The system must have the transmitter to drive the module.

2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.

Approval

5.5 LVDS INTERFACE

	SIGNAL	TRANSMITTER THC63LVDM83A		INTERFACE C	ONNECTOR	7	RECEIVER THC63LVDF84A	TFT CONTROL	
	OIOIV/ (E	PIN	INPUT	Host	TFT-LCD	PIN	OUTPUT	INPUT	
	R0	51	TxIN0			27	Rx OUT0	R0	
	R1	52	TxIN1			29	Rx OUT1	R1	
	R2	54	TxIN2	TA OUT0+	Rx 0+	30	Rx OUT2	R2	
	R3	55	TxIN3			32	Rx OUT3	R3	
	R4	56	TxIN4			33	Rx OUT4	R4	
	R5	3	TxIN6	TA OUT0-	Rx 0-	35	Rx OUT6	R5	
	G0	4	TxIN7			37	Rx OUT7	G0	
	G1	6	TxIN8			38	Rx OUT8	G1	
	G2	7	TxIN9			39	Rx OUT9	G2	
	G3	11	TxIN12	TA OUT1+	Rx 1+	43	Rx OUT12	G3	
	G4	12	TxIN13			45	Rx OUT13	G4	
	G5	14	TxIN14			46	Rx OUT14	G5	
	B0	15	TxIN15	TA OUT1-	Rx 1-	47	Rx OUT15	B0	
	B1	19	TxIN18			51	Rx OUT18	B1	
	B2	20	TxIN19			53	Rx OUT19	B2	
	B3	22	TxIN20			54	Rx OUT20	B3	
24bit	B4	23	TxIN21	TA OUT2+	Rx 2+	55	Rx OUT21	B4	
	B5	24	TxIN22			1	Rx OUT22	B5	
	DE	30	TxIN26			6	Rx OUT26	DE	
	R6	50	TxIN27	TA OUT2-	Rx 2-	7	Rx OUT27	R6	
	R7	2	TxIN5			34	Rx OUT5	R7	
	G6	8	TxIN10			41	Rx OUT10	G6	
	G7	10	TxIN11			42	Rx OUT11	G7	
	B6	16	TxIN16	TA OUT3+	Rx 3+	49	Rx OUT16	B6	
	B7	18	TxIN17			50	Rx OUT17	B7	
	RSVD 1	25	TxIN23			2	Rx OUT23	Not connect	
	RSVD 2	27	TxIN24	TA OUT3-	Rx 3-	3	Rx OUT24	Not connect	
	RSVD 3	28	TxIN25			5	Rx OUT25	Not connect	
	DCLK	31	TxCLK IN	TxCLK OUT+		26	RxCLK OUT	DCLK	
				TxCl K OUT-	RxCl K IN-			1	

R0~R7: Pixel R Data (7; MSB, 0; LSB) G0~G7: Pixel G Data (7; MSB, 0; LSB) B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE : Data Enable signal

Notes: 1)RSVD(reserved)pins on the transmitter shall be "H" or "L".

Approval

5.6 COLOR DATA INPUT ASSIGNMENT

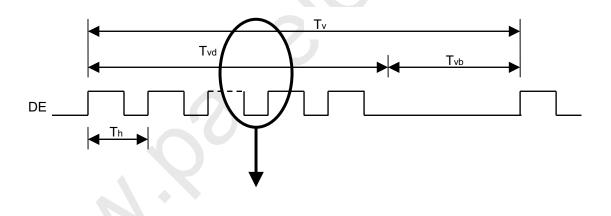
The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

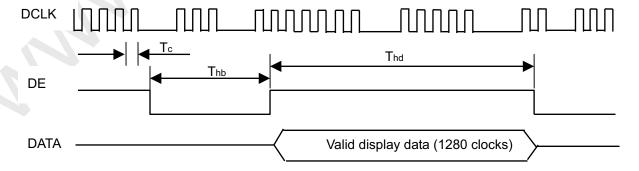
	Color											Da		Sigr											
				Re									reer							Blu					
	1	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	В6	B5	B4		B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:	:	:	:	:	:	:	:			:		:	:	:	:	:	:	:	:
Scale	<u> </u>	:	:	:	:	:	:	:	:	:	:	:	:	:			:	:	:	:	:	:	:	:	:
Of	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:				:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:				•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:		:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
Of	: .	\ :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Dide	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Approval

6. INTERFACE TIMING

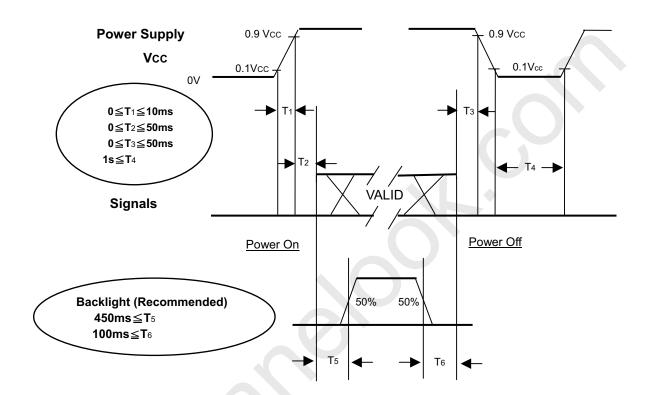

6.1 INPUT SIGNAL TIMING SPECIFICATIONS


The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	1/Tc	70	74	80	MHZ	-
Clock	Input cycle to cycle jitter	1/Tc 70 to Trcl -	-	200	ps	-	
	Frame Rate	Fr	48	60	-	Hz	Tv=Tvd+Tvb
Vertical Active Display Term	Total	Tv	730	750	850	Th	-
Vertical Active Display Term	Display	Tvd	720	720	720	Th	-
	Blank	Tvb	10	30	130	Th	-
	Total	Th	1450	1650	2000	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	1280	1280	1280	Tc	-
	Blank	Thb	170	370	720	Tc	-

Note: Because of this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM



pprova

6.2 POWER ON/OFF SEQUENCE

Global LCD Panel Exchange Center

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

Note.

- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation of the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power of and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

Approval

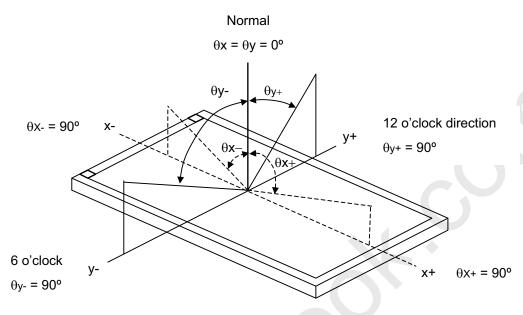
7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Ta	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	V_{CC}	5.0	V
Input Signal	According to typical va	alue in "3. ELECTRICAL (CHARACTERISTICS"
Lamp Current	lL	4.7±0.3	mA
Oscillating Frequency (Inverter)	F _W	56±2	KHz
Vertical Frame Rate	F _r	60	Hz

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).


Ite	em	Symbol	Condition	Min.	Typ.	Max.	Unit	Note	
Contrast Ratio		CR		750	900	ı	-	Note(2)	
Response Time		Gray to gray Average			8	12	ms	Note(3)	
Center Lumina	nce of White	L _C		450	550	1	cd/m ²	Noto(4)	
Average Lumin	nance of White	L _{AVE}		400	450	-	cd/m ²	Note(4)	
White Variation	1	δW	$\theta_x=0^\circ, \ \theta_Y=0^\circ$	-	-	1.3	-	Note(7)	
Cross Talk		CT	Viewing Normal Angle	-	-	4.0	%	Note(5)	
	Red	Rx	viewing viewian angle	0.616	0.646	0.676	-		
	Neu	Ry		0.302	0.332	0.362	-	Note(6)	
	Green	Gx		0.239	0.269	0.299	-		
Color		Gy		0.570	0.600	0.630	-		
Chromaticity	Blue	Bx		0.112	0.142	0.172	-		
	blue	Ву		0.042	0.072	0.102	-		
	White	Wx		0.255	0.285	0.315	-		
	vviille	Wy		0.263	0.293	0.323	-		
	Harizontal	θ_{x} +		80	88	-			
Viewing	Horizontal	θ_{x} -	CD>20	80	88	-	Dog	Note(1)	
Angle	Vertical	θ _Y +	CR≥20	80	88	-	Deg.		
	vertical	θ_{Y} -		80	88	-			

Issued Date: April 26, 2005 Model No.: V270W1 - L06 pproval

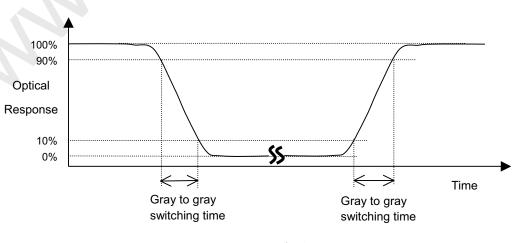
Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Eldim EZ-Contrast 160R

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0


L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

Note (3) Definition of Gray to Gray Switching Time:

22 / 31

The information described in this technical specification is tentative and it is possible to be changed without prior notice. Please contact CMO 's representative while your product design is based on this specification. **Version 2.0**

Issued Date: April 26, 2005 Model No.: V270W1 - L06 pprova

The driving signal means the signal of gray level 0, 63, 127, 191, 255.

Gray to gray average time means the average switching time of gray level 0 ,63,127,191,255 to each other.

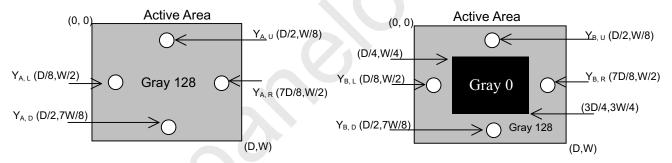
Note (4) Definition of Luminance of White (L_C, L_{AVE}):

Measure the luminance of gray level 255 at center point and 5 points

$$L_{C} = L (5)$$

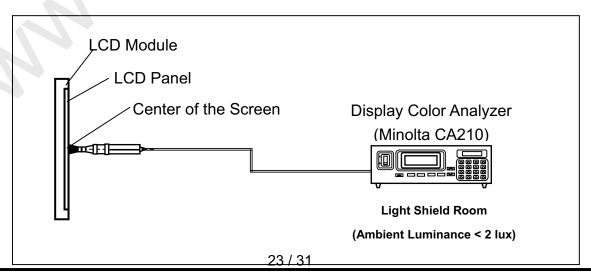
$$L_{AVE} = [L (1) + L (2) + L (3) + L (4) + L (5)] / 5$$

L(x) is corresponding to the luminance of the point X at the figure in Note (7).


Note (5) Definition of Cross Talk (CT):

$$CT = |Y_B - Y_A| / Y_A \times 100 (\%)$$

Where:

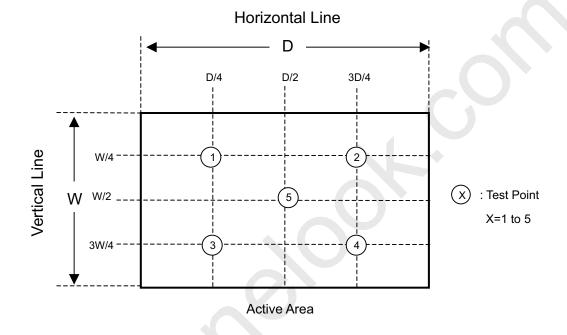

Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 1 hour in a windless room.

The information described in this technical specification is tentative and it is possible to be changed without prior notice. Please contact CMO 's representative while your product design is based on this specification.



Issued Date: April 26, 2005 Model No.: V270W1 - L06 pproval

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

Approval

8. PACKAGING

8.1 PACKING SPECIFICATIONS

- (1) 4 LCD TV Modules / Carton
- (2) Carton Dimensions: 742(L) X 327 (W) X 510 (H)
- (3) Weight: Approximately 19Kg (4 Modules Per Carton)

8.2 PACKING METHOD

Figures 8-1 and 8-2 are the packing method

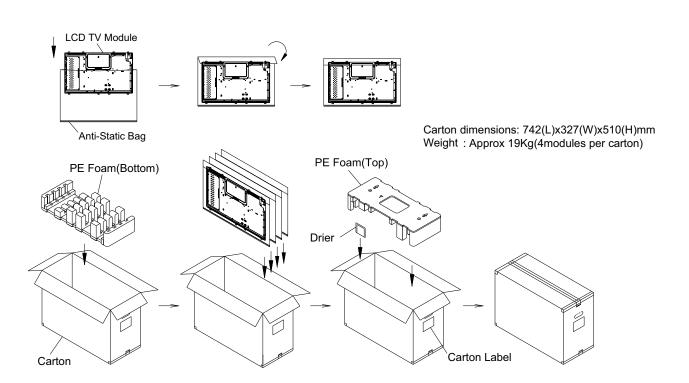


Figure.8-1 packing method

Issued Date: April 26, 2005 Model No.: V270W1 - L06

Approval

Corner Protector:L1020*50mm*50mm

Pallet:L1100*W1100*H135mm

Corrugated Fiberboard:L1100*W1100mm

Pallet Stack:L1100*W1100*H1163mm

Gross:170kg

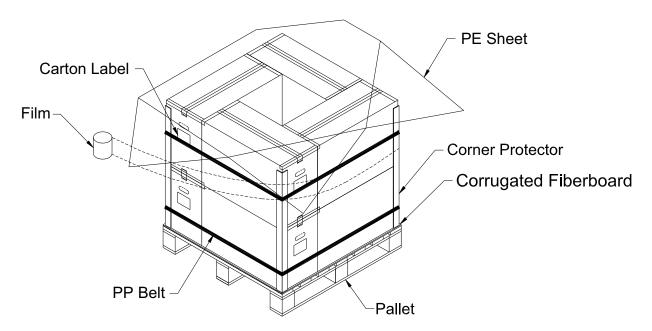
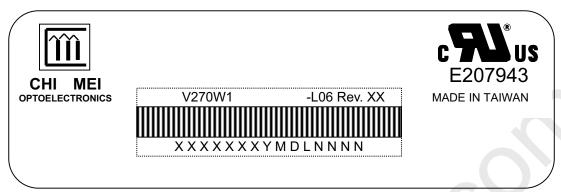
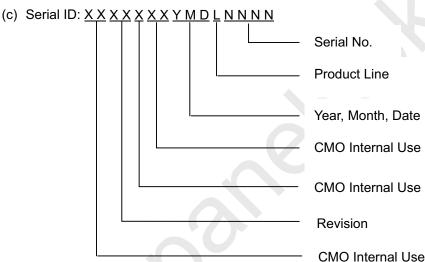


Figure. 8-2 packing method



Approval

9. DEFINITION OF LABELS


9.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: V270W1-L06

(b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2000~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

(b) Revision Code: Cover all the change

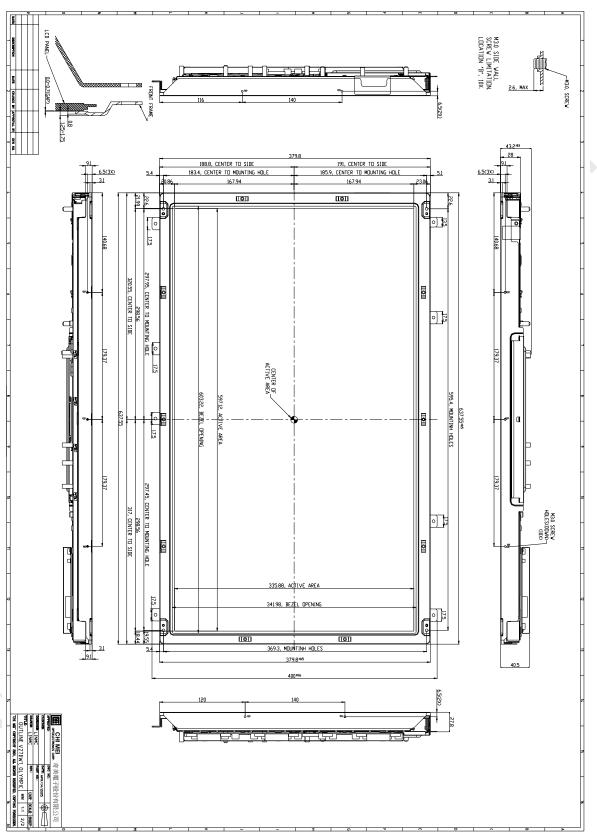
(c) Serial No.: Manufacturing sequence of product

(d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

10. PRECAUTIONS

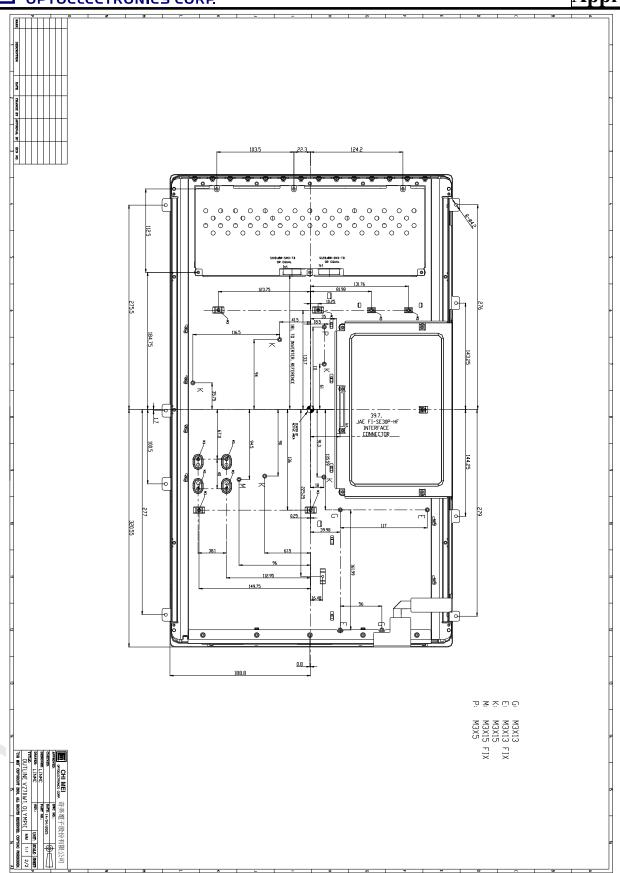
10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

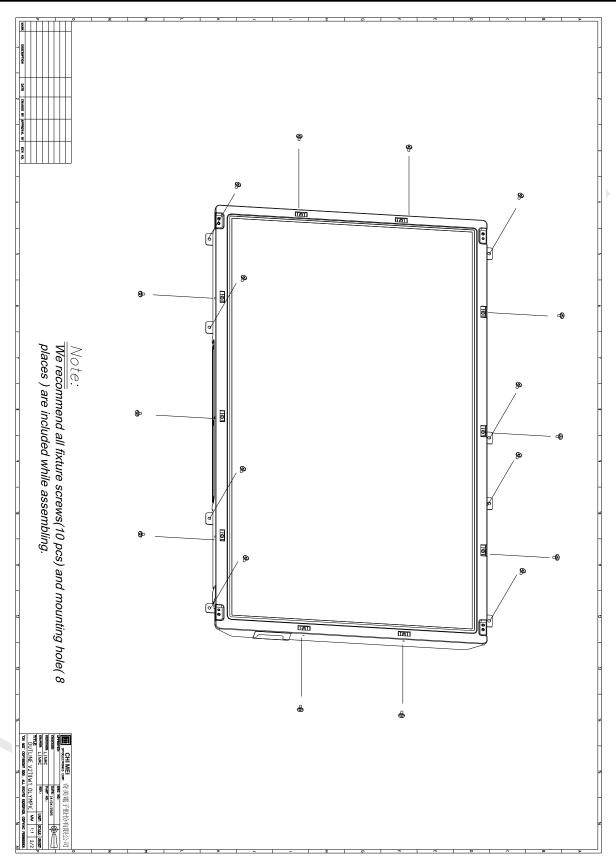

10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

Approval


11. MECHANICAL CHARACTERISTICS

Approval



30 / 31

The information described in this technical specification is tentative and it is possible to be changed without prior notice. Please contact CMO 's representative while your product design is based on this specification. **Version 2.0**

Approval

31 / 31

The information described in this technical specification is tentative and it is possible to be changed without prior notice. Please contact CMO 's representative while your product design is based on this specification. **Version 2.0**