

TFT LCD Approval Specification

MODEL NO.: V315B5 - L05

Customer:	
Approved by:	
	· ·
Note:	

	•				
America d Div	TV Head Division				
Approved By	CC Chung				
Reviewed By	QA Dept.	Product Development Div.			
Tioviowed By	Hsin-nan Chen	WT Lin			
Dropored Dy	LCD TV Marketing and Product Management Div.				
Prepared By					

1

CY Chang

Kevin Tsai

Approval

CONTENTS -

REVISION HISTORY		3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS		4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 PACKAGE STORAGE 2.3 ELECTRICAL ABSOLUTE RATINGS 2.3.1 TFT LCD MODULE 2.3.2 BACKLIGHT UNIT 2.4 ENVIRONMENT TEST CONDITION		5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT INVERTER UNIT 3.2.1 CCFL(Cold Cathode Fluorescent Lamp) CHARACTE 3.2.2 INVERTER CHARACTERISTICS 3.2.3 INVERTER INTERFACE CHARACTERISTICS	ERISTICS	8
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE		14
5. INTERFACE PIN CONNECTION 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 INVERTER UNIT 5.4 BLOCK DIAGRAM OF INTERFACE 5.5 LVDS INTERFACE 5.6 COLOR DATA INPUT ASSIGNMENT		15
6. INTERFACE TIMING6.1 INPUT SIGNAL TIMING SPECIFICATIONS6.2 POWER ON/OFF SEQUENCE		21
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS		24
8. DEFINITION OF LABELS 8.1 CMO MODULE LABEL		28
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD		30
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS 10.3 SAFETY STANDARDS 10.4 EMC		32
11. MECHANICAL CHARACTERISTICS		34

②

REVISION HISTORY

	REVISION HISTORY						
Version	Date	Page (New)	Section	Description			
Ver 2.0	Jun 15,2009	All	All	Approval Specification was first issued.			
Ver 2.1	July 1,2009	7	2-4	Add ENVIRONMENT TEST CONDITION			
		33	10-3	Add SAFETY STANDARDS			
Ver 2.2	July 2,2009	33	10.4	Add EMC			

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V315B5- L05 s a 31.5" TFT Liquid Crystal Display module with 4U-type CCFL Backlight unit and 1ch-LVDS interface. This module supports 1366 x 768 WXGA format and can display 16.7M (6-bit+Hi-FRC) colors. The inverter module for backlight is built-in.

1.2 FEATURES

- -High brightness (450 nits)
- Ultra-high contrast ratio (3000:1)
- Fast response time (gray to gray average 8.5ms)
- High color saturation NTSC 72%
- Ultra wide viewing angle : 176(H)/176(V) (CR≥20) with Super MVA technology
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Color reproduction (nature color)

1.3 APPLICATION

- TFT LCD TVs
- Multi-Media Display

1.4 GENERAL SPECIFICATIONS

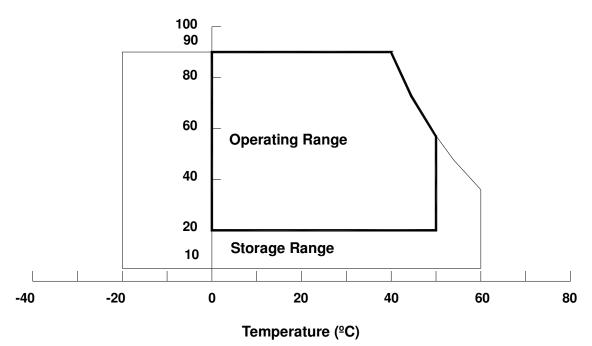
Item	Specification	Unit	Note
Active Area	697.6845 (H) x 392.256 (V) (31.51" diagonal)	mm	(1)
Bezel Opening Area	703.8 (H) x 398.4 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	
Pixel Number	1366 x R.G.B. x 768	pixel	
Pixel Pitch (Sub Pixel)	0.17025(H) x 0.51075 (V)	mm	
Pixel Arrangement	RGB vertical stripe	ı	
Display Colors	16.7M	color	
Display Operation Mode	Transmissive mode / Normally black	- 1	
Surface Treatment	Anti-Glare coating (Haze 11%), Hard coating (3H)	-	

1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	759	760	761	mm	(1)
Module Size	Vertical(V)	449	450	451	mm	(1)
Wodule Size	Depth(D)	31.5	32.5	33.5	mm	To Rear
	Depth(D)	49.2	50.2	51.2	mm	To inverter cover
Weight			5390		g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Issued Date: Nov 19, 2009 Model No.: V315B5 - L05


2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Unit	Note		
item	Syllibol	Min.	Max.	Offic	NOLE	
Storage Temperature	T _{ST}	-20	+60	ōC	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	oC	(1), (2)	
Shock (Non-Operating)	S _{NOP}	•	50	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	-	1.0	G	(4), (5)	

- Note (1) Temperature and relative humidity range is shown in the figure below.
 - (a) 90 %RH Max. (Ta \leq 40 ${}^{\circ}$ C).
 - (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
 - (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Issued Date: Nov 19, 2009 Model No.: V315B5 - L05

Approval

2.2 Package storage

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note
item	Syllibol	Min.	Max.	Offic	Note
Power Supply Voltage	Vcc	-0.3	13.0	V	(1)
Input Signal Voltage	VIN	-0.3	3.6	V	(1)

2.3.2 BACKLIGHT UNIT

Item	Symbol		lue	Unit	Note	
item	Symbol	Min.	Max.	Oill	NOLE	
Lamp Voltage	V_{W}		3000	V_{RMS}		
Power Supply Voltage	V_{BL}	0	30	V	(1)	
Control Signal Level	_	-0.3	7	V	(1), (3)	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Functional operation should be restricted to the conditions described under normal operating conditions.

Note (2) No moisture condensation or freezing.

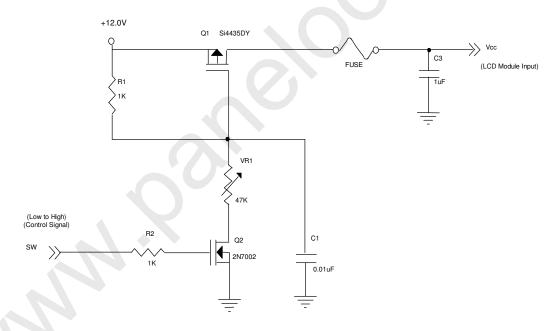
Note (3) The control signals include On/Off Control, Internal PWM Control, External PWM Control.

2.4 ENVIRONMENT TEST CONDITION

No.	Test Item	Condition			
1	High temperature storage test	Ta=60°C 500hrs			
2	Low temperature storage test	Ta= -25°C 500hrs			
3	High temperature high humidity storage test	Ta= 50°C 90%RH 500hrs			
4	High temperature operation test	Ta= 50°C 500hrs			
5	Low temperature operation test	Ta=0°C 500hrs			
6	High temperature high humidity Operation	Ta= 40°C 95%RH 500hrs			
7	Thermal shock	Ta= -20°C/ 30min~60°C/ 30min 100cycles			
		Wave form: Sine wave			
		Vibration level: 1.0G			
8	Vibration test (non-operation)	Freq. range: 10~500Hz			
		Duration: X, Y, Z, 60min,			
		One time each direction			
		Wave form: half sine wave, 11ms			
9	Shook toot (non operation)	Shock level: 50G			
9	Shock test (non-operation)	±X, ±Y, ± Z,			
		One time each direction			
		Storage: Contact mode +/-20kV,			
		Air mode +/-20kV			
10	ESD	Operation: Contact mode +/-20kV,			
		Air mode +/-20kV			
		Condition: 150pF, 330ohm (Follow IEC 6100-4-2 standard)			
		Wave form: Sine wave			
		Vibration level: 1.0G			
11	Package Vibration	Freq. range: 5~50Hz			
		Duration: 15min for X, Y, 60 min for Z.			
		One time each direction			
10	Parkers Duran	Drop 1 corner, 3 sides, 6 faces, each one for 1 time. Height			
12	Package Drop	is 30cm. (Test environment: 25°ℂ)			

Approval

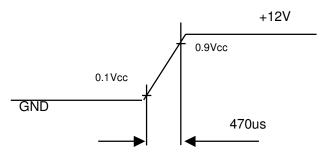
3. ELECTRICAL CHARACTERISTICS

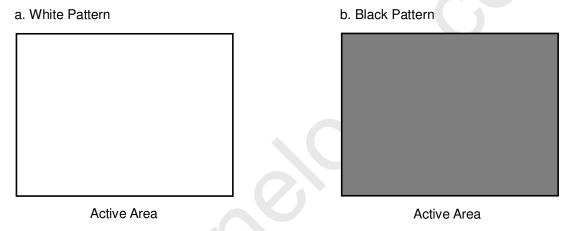

3.1 TFT LCD MODULE

Ta = 25 ± 2 °C

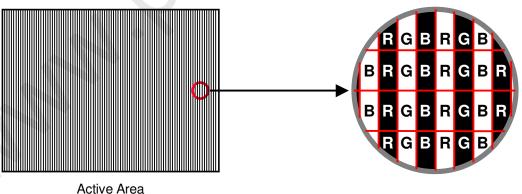
	Parameter		Symbol		Value	Unit	Note	
			Symbol	Min.	Тур.	Max.	Offic	Note
Power Supply Voltage		V _{cc}	11.4	12.0	12.6	V	(1)	
Power Su	pply Ripple Vol	tage	V_{RP}	-	-	100	mV	
Rush Curi	rent		I _{RUSH}	-	ı	3.4	Α	(2)
		White		-	0.42	0.5	Α	
Power S	upply Current	Black	I _{cc}		0.28	-	Α	(3)
		Vertical Stripe		-	0.4	-	Α	
L)/DC	Differential Inp		V_{LVTH}	+100	-		mV	
LVDS Interface	Differential Inp Threshold Vol		V_{LVTL}		-	-100	mV	
Common Inpu		t Voltage	V_{LVC}	1.125	1.25	1.375	V	
	Terminating R	esistor	R _T	-	100	-	ohm	
CMOS	Input High Threshold Voltage		V _{IH}	2.7	-	3.3	V	
interface	Input Low Thr	eshold Voltage	V_{IL}	0	- ,	0.7	V	

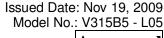
Note (1) The module should be always operated within above ranges.


Note (2) Measurement Conditions:



Issued Date: Nov 19, 2009 Model No.: V315B5 - L05 Approval

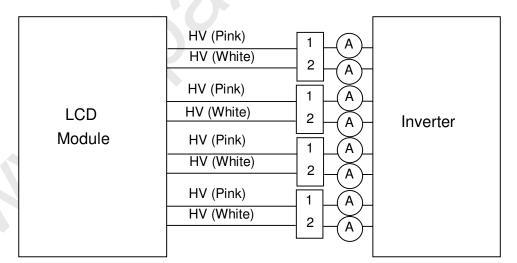

Vcc rising time is 470us



Note (3) The specified power supply current is under the conditions at Vcc =12V, Ta = 25 \pm 2 $^{\circ}$ C, f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

Approval

3.2 BACKLIGHT INVERTER UNIT


3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol		Value	Unit	Note	
i arameter	Syllibol	Min.	Тур.	Max.	Offic	Note
Lamp Voltage	V _W	-	1550	-	V_{RMS}	$I_{L} = 10.5 mA$
Lamp Current	Ι _L	10	10.5	11	mA_{RMS}	(1)
Lauren Otautinan Valtaana	M	-	-	2700	V_{RMS}	(2), Ta = 0 ^o C
Lamp Starting Voltage	Vs	-	-	2290	V_{RMS}	(2), Ta = 25 ^o C
Operating Frequency	Fo	30	-	80	KHz	
Lamp Life Time	L_BL	50,000		-	Hrs	(4)

3.2.2 INVERTER CHARACTERISTICS (Ta = 25 ± 2 $^{\circ}$ C)

Parameter	Symbol		Value	Unit	Note	
rafameter	Syllibol	Min.	Тур.	Max.	Offit	Note
Power Consumption	P_{BL}	1	65	69	W	$(5),(6), I_L = 10.5mA$
Input Voltage	V_{BL}	22.8	24	25.2	V_{DC}	
Input Current	I_{BL}	-	2.71	2.88	Α	Non Dimming
Input Ripple Noise	-	-	-	912	mV_{P-P}	V _{BL} =22.8V
Oscillating Frequency	Fw	60	63	66	kHz	(3)
Dimming frequency	F _B	150	160	170	Hz	
Minimum Duty Ratio	D _{MIN}	-	20	-	%	

Note (1) Lamp current is measured by utilizing AC current probe Tektronix P6022 as shown below:

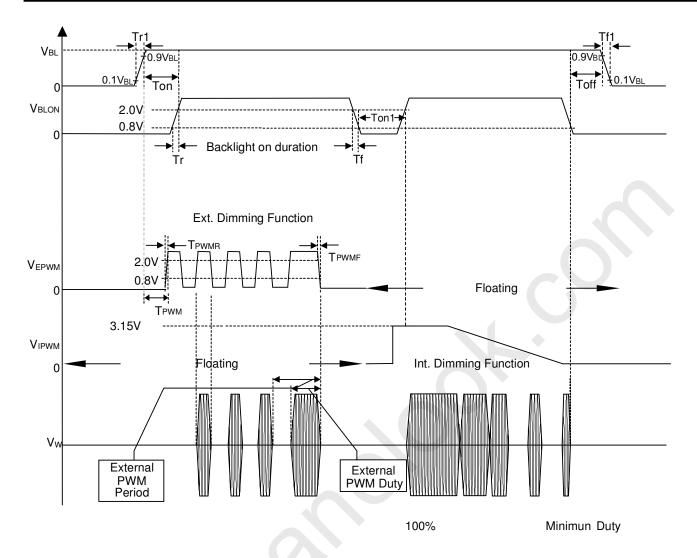
- **Note (2)** The lamp starting voltage V_S should be applied to the lamp for more than 1 second under starting up duration. Otherwise the lamp could not be lighted on completed.
- **Note (3)** The lamp frequency may produce interference with horizontal synchronous frequency of the display input signals, and it may result in line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point of lamp.) as the time in which it continues to operate under the condition at $Ta = 25 \pm 2$ °C and $I_L = 10.0 \sim 11.0 \text{ mA}_{RMS}$.
- **Note (5)** The power supply capacity should be higher than the total inverter power consumption P_{BL}. Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when inverter dimming.
- **Note (6)** The measurement condition of Max. value is based on 31.5" backlight unit under input voltage 24V, average lamp current 10.8 mA and lighting 30 minutes later.

Issued Date: Nov 19, 2009 Model No.: V315B5 - L05 Approval

3.2.3 INVERTER INTERFACE CHARACTERISTICS

Damanadan	0	Test		Value		1.124	Mata		
Parameter		Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
On/Off Control Voltage	ON	V_{BLON}		2.0	_	5.0	V		
On/On Control Voltage	OFF	▼ BLON	_	0	_	0.8	V		
Internal PWM Control	MAX	V_{IPWM}	_	3.0	3.15	3.3	V	Maximum duty ratio	
Voltage	MIN	V IPWM		_	0	_	V	Minimum duty ratio	
External PWM Control	HI	V_{EPWM}	_	2.0	_	5.0	V	Duty on	
Voltage	LO	V EPWM		0	_	8.0	V	Duty off	
Error Signal	HI	ERR	_	3.0	3.3	3.6	V	Abnormal	
Lifor Signal	LO	LITT		0	_	0.8	V	Normal	
VBL Rising Time		Tr1	_	30	_	_	ms	10%-90%V _{BL}	
VBL Falling Time		Tf1		30	_	_	ms		
Control Signal Rising Tin	ne	Tr	_		_	100	ms		
Control Signal Falling Tir	ne	Tf	_		_	100	ms		
PWM Signal Rising Time)	T_{PWMR}	_			50	us		
PWM Signal Falling Time	Э	T_{PWMF}	_		_	50	us		
Input impedance		R_{IN}	_	1			ΜΩ		
PWM Delay Time	PWM Delay Time			100		_	ms		
BLON Delay Time		Ton		300		_	ms		
DEON Delay Tille		T _{on1}	-	300) –	_	ms		
BLON Off Time		T_{off}	_	300	_	_	ms		

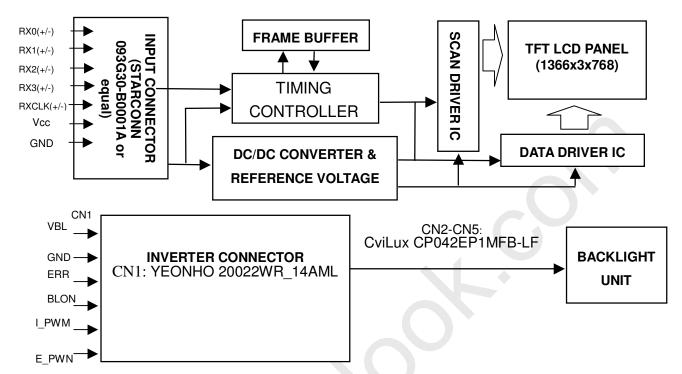
- Note (1) The Dimming signal should be valid before backlight turns on by BLON signal. It is inhibited to change the internal/external PWM signal during backlight turn on period.
- Note (2) The power sequence and control signal timing are shown in the following figure. For a certain reason, the inverter has a possibility to be damaged with wrong power sequence and control signal timing.
- Note (3) While system is turned ON or OFF, the power sequences must follow as below descriptions:


Turn ON sequence: VBL → PWM signal → BLON

Turn OFF sequence: BLOFF → PWM signal → VBL

Issued Date: Nov 19, 2009 Model No.: V315B5 - L05

Approval



Approval

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

Issued Date: Nov 19, 2009 Model No.: V315B5 - L05

Approval

5. INTERFACE PIN CONNECTION

5.1 TFT LCD MODULE

CNF1 Connector Pin Assignment

Pin No.	Symbol	Description	Note
1	VCC	Power supply: +12V	
2	VCC	Power supply: +12V	
3	VCC	Power supply: +12V	
4	VCC	Power supply: +12V	
5	GND	Ground	
6	GND	Ground	
7	GND	Ground	
8	GND	Ground	
9	SELLVDS	Select LVDS data format	(2)
10	ODSEL	Overdrive Lookup Table Selection	(3)
11	GND	Ground	
12	RX0-	Negative transmission data of pixel 0	
13	RX0+	Positive transmission data of pixel 0	
14	GND	Ground	
15	RX1-	Negative transmission data of pixel 1	
16	RX1+	Positive transmission data of pixel 1	
17	GND	Ground	
18	RX2-	Negative transmission data of pixel 2	
19	RX2+	Positive transmission data of pixel 2	
20	GND	Ground	
21	RXCLK-	Negative of clock	
22	RXCLK+	Positive of clock	
23	GND	Ground	
24	RX3-	Negative transmission data of pixel 3	
25	RX3+	Positive transmission data of pixel 3	
26	GND	Ground	
27	NC	No connection	(4)
28	NC	No connection	(4)
29	GND	Ground	
30	GND	Ground	

Note (1) Connector type: STARCONN 093G30-B0001A or P-TWO 187053-30091 or compatible

Note (2) Ground or OPEN: VESA, High: JEIDA LVDS format

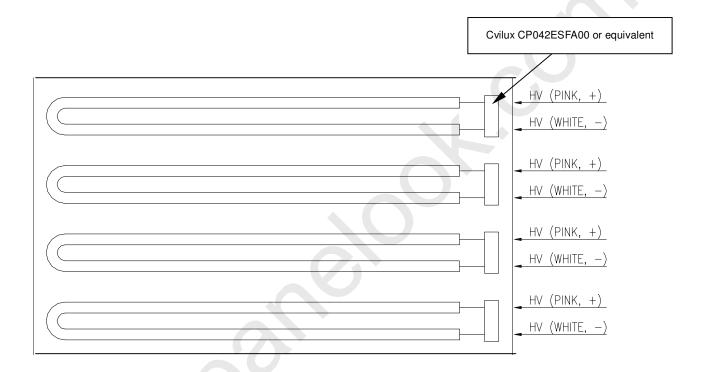
Please refer to 5.5 LVDS INTERFACE

Note (3) Overdrive lookup table selection. The Overdrive lookup table should be selected in accordance to the frame rate to optimize image quality.

ODSEL	Note
L or Open	Lookup table was optimized for 60 Hz frame rate.
Н	Lookup table was optimized for 50 Hz frame rate.

Note (4) Reserved for internal use. Left it open.

Approval


5.2 BACKLIGHT UNIT

The pin configuration for the housing and leader wire is shown in the table below.

CN2-CN5 (Housing): Cvilux CP042ESFA00 or equivalent

Pin No.	Symbol	Description	Wire Color
1	HV	High Voltage	PINK
2	HV	High Voltage	WHITE

Note (1) The backlight interface housing for high voltage side is Cvilux CP042ESFA00 or equivalent. The mating header on inverter part number is Cvilux CP042EP1MFB-LF or equivalent

Approval

5.3 INVERTER UNIT

CN1(Header): YEONHO 20022WR 14AML or equivalent

Pin No.	Symbol	Description
1		
2		
3	VBL	+24V Power input
4		
5		
6		
7		
8	GND	Ground
9		
10		
11	ERR	Normal (GND)
		Abnormal (open collector)
12	BLON	Backlight on/off control
13	I_PWM	Internal PWM control signal
14	E PWM	External PWM control signal

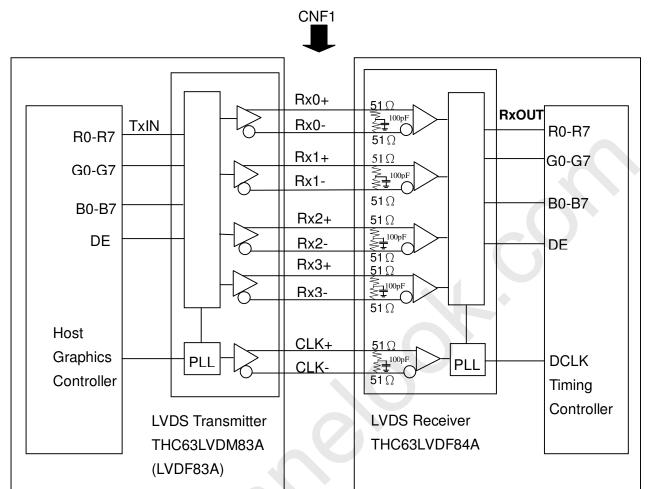
Notice:

Note (1) PIN 13:Internal PWM Control (Use Pin 13): Pin 14 must open.

Note (2) PIN 14:Extermal PWM Control (Use Pin 14): Pin 13 must open.

Note (3) Pin 13(I_PWM) and Pin 14(E_PWM) can't open in same period.

CN2(Header): CviLux CP042EP1MFB-LF or equivalent


Pin No	. Symbol	Description
1	CCFL HOT	CCFL high voltage
2	CCFL HOT	CCFL high voltage

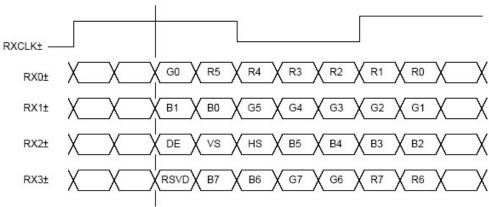
Approval

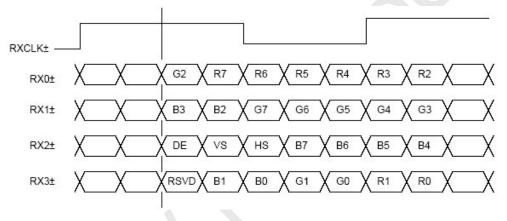
5.4 BLOCK DIAGRAM OF INTERFACE

R0~R7 : Pixel R Data ,
G0~G7 : Pixel G Data ,
B0~B7 : Pixel B Data ,
DE : Data enable signal

Note (1) The system must have the transmitter to drive the module.

Note (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.




Approval

5.5 LVDS INTERFACE

$SELLVDS = L or Open \quad (VESA)$

SELLVDS = H (JEIDA)

R0~R7: Pixel R Data (7; MSB, 0; LSB)

G0~G7: Pixel G Data (7; MSB, 0; LSB)

B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE: Data enable signal

Notes(1) RSVD(reserved)pins on the transmitter shall be "H" or("L" or OPEN)

Approval

5.6 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

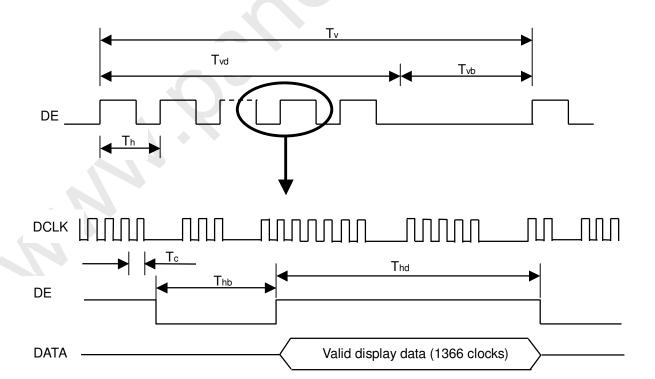
versus	data input.	1																							
												Da		Sigr											
	Color		Red			1	Green						Blue												
	T	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	B6	B5	B4	ВЗ	B2	B1	Е
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	L
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Scale	:	:	:	:	:	:	:	:		:		:):)	:	:	:	:	:	:	:	:	:	:	:	
Of	:	:	:	:	:	:	:	:	÷	i.	:		:	:	:	:	:	:	:	:	:	:	:	:	
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
i ieu	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	
Scale	:	:	:	:	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
Of	:	\ <u>:</u>	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Grove	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
Gray	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	ĺ
Scale Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	
Blue	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Approval

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

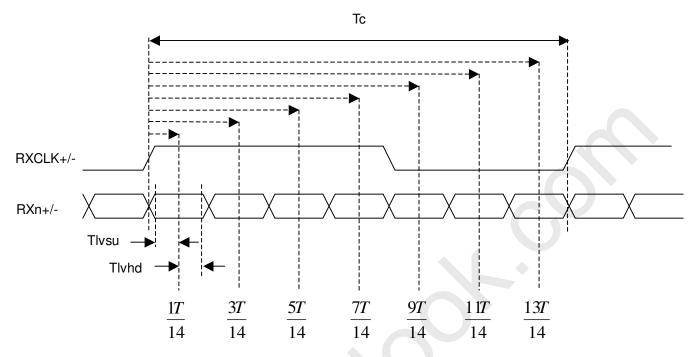

The input signal timing specifications are shown as the following table and timing diagram.

1 3 3 1			0		0 0		
Signal	Item	Symbol	Min.	Typ.	Max.	Unit	Note
	Frequency	1/Tc	60	76	82	MHz	
LVDS Receiver Clock	Input cycle to cycle jitter	Trcl	-	-	200	ps	
LVDS Receiver Data	Setup Time	Tlvsu	600	-	-	ps	
LVD3 Neceiver Data	Hold Time	Tlvhd	600	-	-	ps	
	Frame Rate	Fr5	47	50	53	Hz	(2)
	riame nate	Fr6	57	60	63	Hz	(=)
Vertical Active Display Term	Total	Tv	778	806	888	Th	Tv=Tvd+Tvb
	Display	Tvd	768	768	768	Th	-
	Blank	Tvb	10	38	120	Th	-
	Total	Th	1442	1560	1936	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	1366	1366	1366	Tc	_
	Blank	Thb	76	194	570	Tc	-

Note (1) Since this module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this module would operate abnormally.

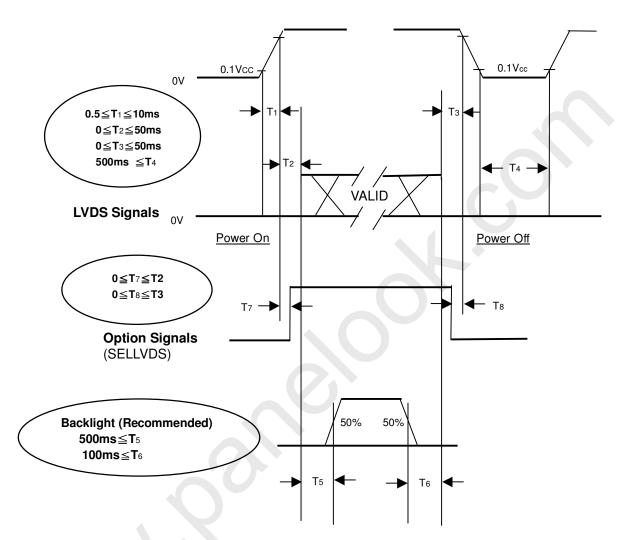
(2) Please refer to 5.1 for detail information.

INPUT SIGNAL TIMING DIAGRAM



Approval

LVDS RECEIVER INTERFACE TIMING DIAGRAM



Approval

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0, that maybe cause electrical overstress failures.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

Approval

7. OPTICAL CHARACTERISTICS

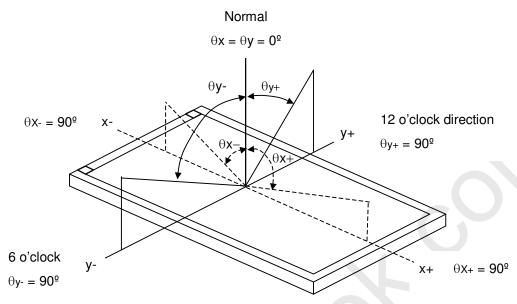
7.1 TEST CONDITIONS

Item	Symbol	Value	Unit				
Ambient Temperature	Ta	25±2	°C				
Ambient Humidity	На	50±10	%RH				
Supply Voltage	V_{CC}	12.0	V				
Input Signal	According to typical value	According to typical value in "3. ELECTRICAL CHARACTERISTICS"					
Lamp Current	l _L	10.5±0.5	mA				
Oscillating Frequency (Inverter)	F _W	63±3	KHz				
Frame rate	Fr	60	Hz				

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Ite	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note		
Contrast Ratio	Contrast Ratio			2500	3000	•	-	(2)		
Response Tim	е	Gray to gray average			8.5	14	ms	(3)		
Center Lumina	nce of White	L _C		360	450	•	cd/m ²	(4)		
White Variation	า	δW		-	-	1.3	-	(7)		
Cross Talk		CT	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$	-	-	4.0	%	(5)		
	Red	Rx			0.647	Typ +0.03	-			
	neu	Ry	Viewing Angle at		0.334		-			
	Green	Gx	Normal Direction	Тур	0.272		-			
Color		Gy	Normal Birodion		0.596		-	(6)		
Chromaticity	Blue	Bx		-0.03	0.142		-			
Cilionalicity		Ву			0.068		-			
	White	Wx			0.285		-			
	VVIIILE	Wy			0.293		-			
	Color Gamut	CG			72		%	NTSC		
	Horizontal	θ_{x} +		80	88	-				
Viewing	rionzoniai	θ_{x} -	CR≥20	80	88	-	Deg.	(1)		
Angle	Vertical	θγ+	OI 1∠20	80	88	-	Deg.	(1)		
	Vertical	θ_{Y} -		80	88	-				



Issued Date: Nov 19, 2009 Model No.: V315B5 - L05

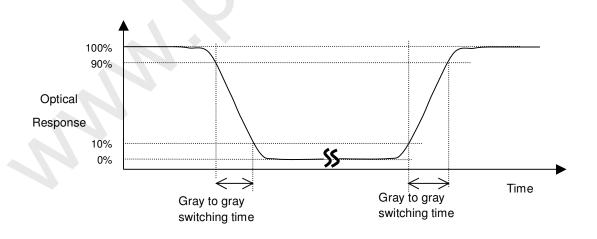
Approval

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by EZ-Contrast 160R (Eldim)

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.


Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

Note (3) Definition of Gray to Gray Switching Time:

The driving signal means the signal of luminance 0%, 25%, 50%, 75%, 100%.

Gray to gray average time means the average switching time of luminance 0%,25%,

50%, 75%, 100% to each other.

Approval

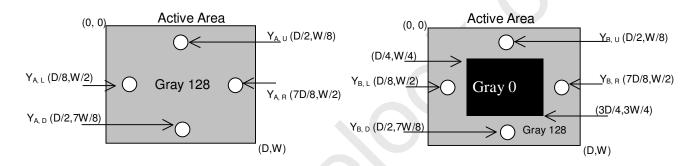
Note (4) Definition of Luminance of White (L_C, L_{AVE}) :

Measure the luminance of gray level 255 at center point and 5 points

$$L_C = L(5)$$

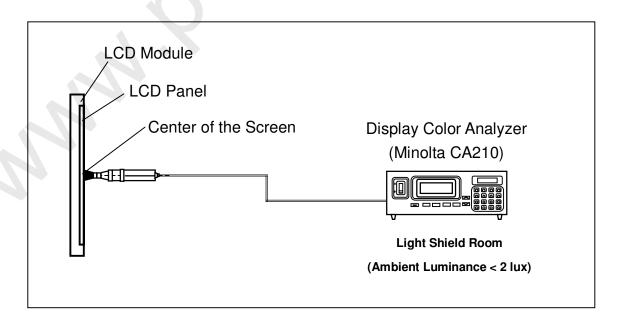
$$L_{AVE} = [L(1) + L(2) + L(3) + L(4) + L(5)] / 5$$

where L (x) is corresponding to the luminance of the point X at the figure in Note (7).


Note (5) Definition of Cross Talk (CT):

$$CT = | YB - YA | / YA \times 100 (\%)$$

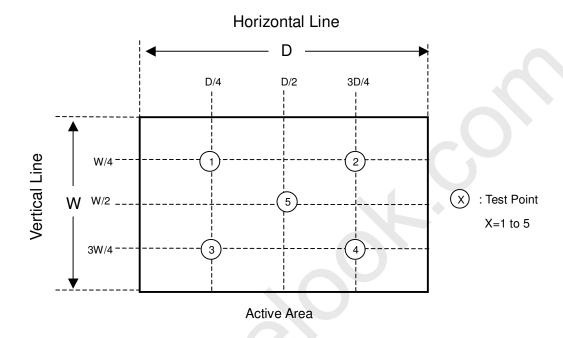
Where:


Y_A = Luminance of measured location without gray level 0 pattern (cd/m2)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m2)

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 1 hour in a windless room.

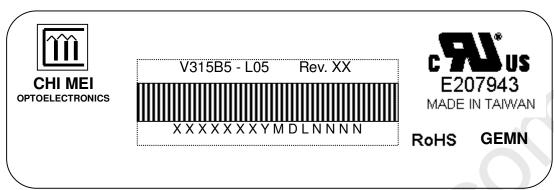

Issued Date: Nov 19, 2009 Model No.: V315B5 - L05

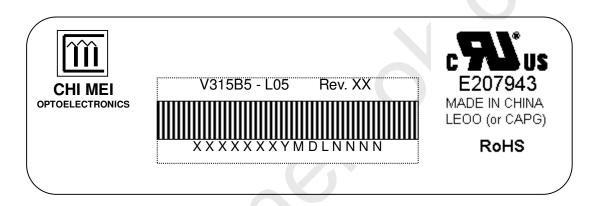
Approval

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

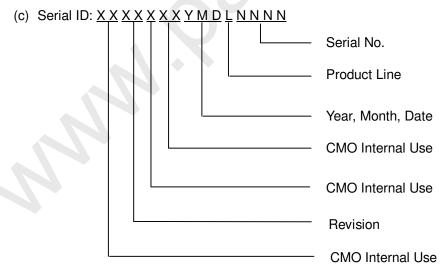
 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$


Issued Date: Nov 19, 2009 Model No.: V315B5 - L05


Approval

8. DEFINITION OF LABELS

8.1 CMO MODULE LABEL


The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: V315B5-L05

(b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Approval

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2000~2009,

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

(b) Revision Code: Cover all the change

(c) Serial No.: Manufacturing sequence of product

(d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

Issued Date: Nov 19, 2009 Model No.: V315B5 - L05

Approval

9. PACKAGING

9.1 PACKING SPECIFICATIONS

(1) 5 LCD TV modules / 1 Box

(2) Box dimensions : 826(L) X 376 (W) X 540 (H)

(3) Weight: approximately 30Kg (5 modules per box)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method

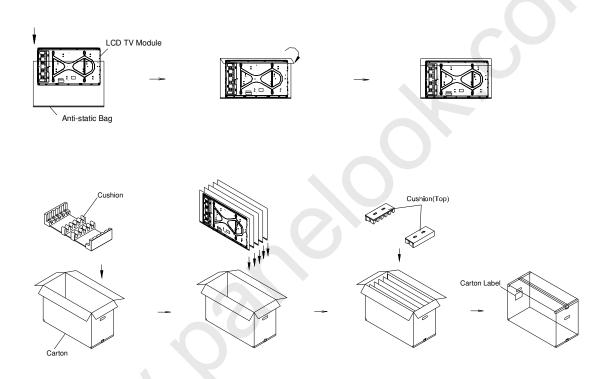


Figure.9-1 packing method

Approval

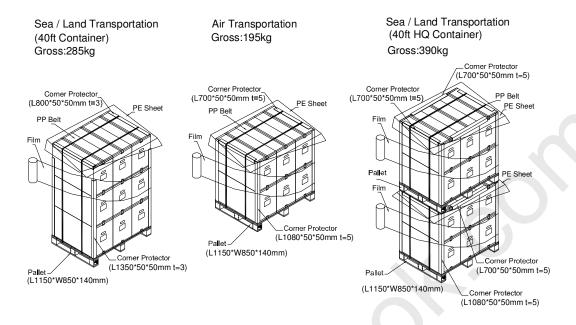


Figure.9-2 packing method

Approval

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

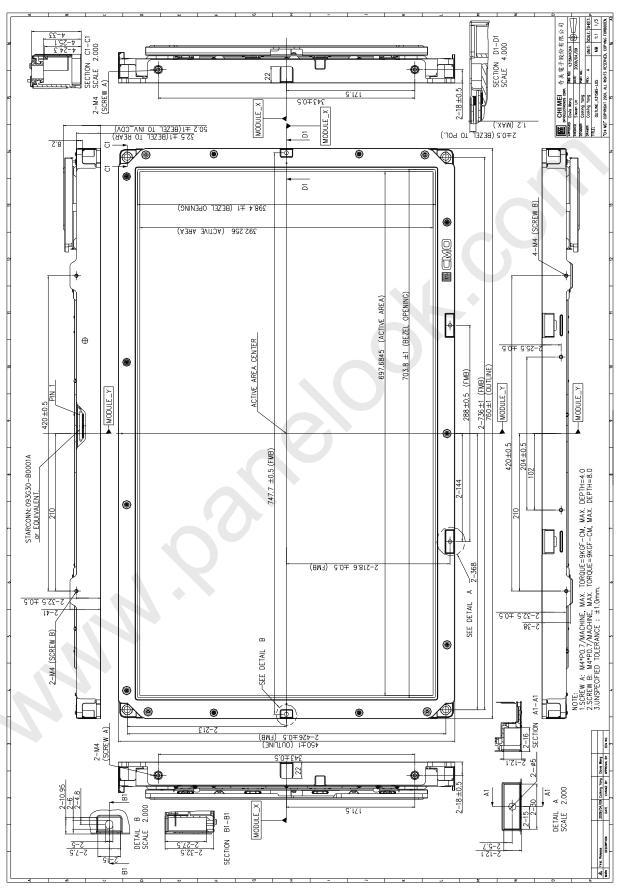
Approval

10.3 SAFETY STANDARDS

(1) SAFETY APPROVALS

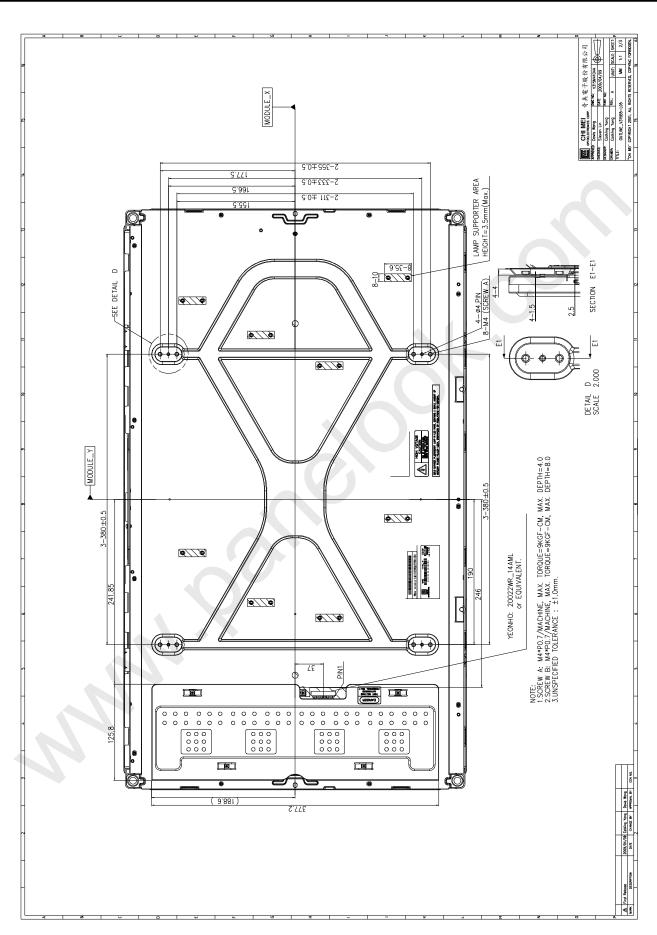
Regulatory	Item	Standard
	UL	UL 60950-1: 2003 or
		UL 60950-1:2006
Information Technology equipment	cUL	CAN/CSA C22.2 No.60950-1-03 or
information rechnology equipment		CAN/CSA C22.2 No.60950-1-03: 2006
	СВ	IEC 60950-1:2001 or
		IEC 60950 -1:2005
	UL	UL 60065: 2003 or
		UL 60065:2006
Audio/Vidoo Apparatus	cUL	CAN/CSA C22.2 No.60065-03 or
Audio/Video Apparatus		CAN/CSA C22.2 No.60065-03: 2006
	СВ	IEC 60065:2001 or
		IEC 60065:2006

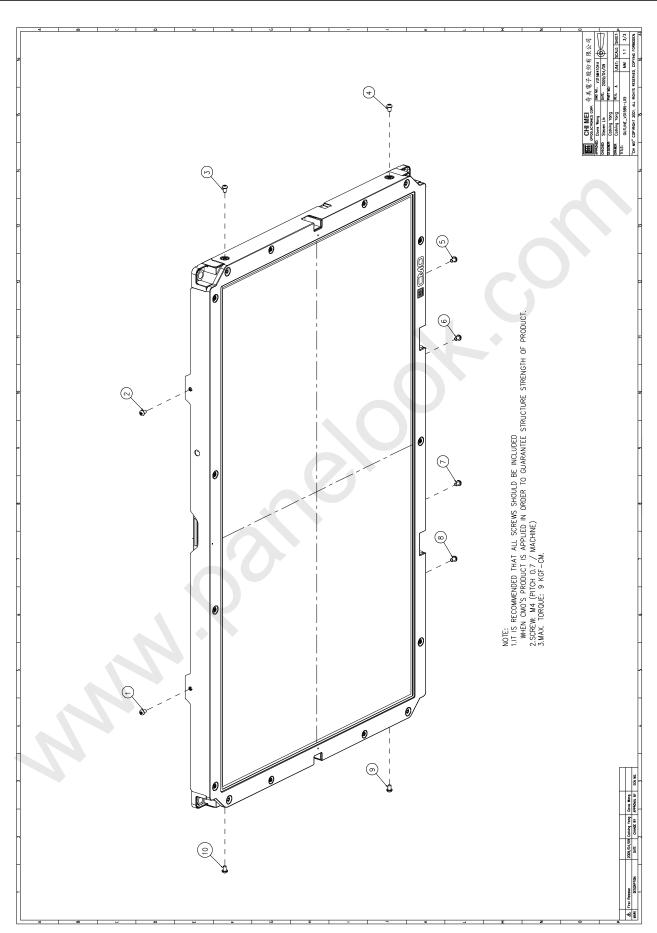
10.4 EMC


- (1) FCC class B part15
- (2) CISPR20

 $Note (1) CMO \ product \ can \ support \ to \ meet \ FCC \ class \ B \ part 15 \ and \ CISPR20 \ standard$

Approval


11. MECHANICAL CHARACTERISTICS


Approval

Approval

