

Tentative Specification
Preliminary Specification
Approval Specification

MODEL NO.: V315B5 SUFFIX:L08

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your confirmand comments.	nation with your signature

Approved By	Checked By	Prepared By
Chao-Chun Chung	Josh Chi	Chloe Chen

Version 3.0 Date: 04 Aug 2010

CONTENTS -

REVISION HISTORY		3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS		4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2PACKAGE STORAGE 2.3ELECTRICAL ABSOLUTE RATINGS		5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 CCFL(Cold Cathode Fluorescent Lamp) CHARACTERIS	STICS	7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE		13
5. INTERFACE PIN CONNECTION 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 INVERTER UNIT 5.4 LVDS INTERFACE 5.5 COLOR DATA INPUT ASSIGNMENT		14
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE		20
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS		24
8. DEFINITION OF LABELS 8.1 CMO MODULE LABEL		29
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD		30
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS		32
11. MECHANICAL CHARACTERISTICS		33

Version 3.0 Date: 04 Aug 2010 2

REVISION HISTORY

Version 3.0 Date: 04 Aug 2010

PRODUCT SPECIFICATION

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V315B5- L08 s a 31.5" TFT Liquid Crystal Display module with 4U-type CCFL Backlight unit and 1ch-LVDS interface. This module supports 1366 x 768 WXGA format and can display 16.7M (8-bit/color)colors. The inverter module for backlight is built-in.

1.2 FEATURES

- -High brightness (450 nits)
- Ultra-high contrast ratio (3500:1)
- Fast response time (gray to gray average 8.5ms)
- High color saturation NTSC 72%
- Ultra wide viewing angle: 176(H)/176(V)(CR≥20)with Super MVA technology
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Color reproduction (nature color)
- Low color shift function

1.3 APPLICATION

- TFT LCD TVs
- Multi-Media Display

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note				
Active Area	697.6845 (H) x 392.256 (V) (31.51" diagonal)	mm	(1)				
Bezel Opening Area	703.8 (H) x 399.0 (V)	mm	(1)				
Driver Element	a-si TFT active matrix	-					
Pixel Number	1366 x R.G.B. x 768	pixel					
Pixel Pitch (Sub Pixel)	0.17025(H) x 0.51075 (V)	mm					
Pixel Arrangement	RGB vertical stripe	-					
Display Colors	16.7M	color					
Display Operation Mode	Transmissive mode / Normally black	-					
Surface Treatment	Anti-Glare coating (Haze 11%), Hard coating (3H)	-					

1.5 MECHANICAL SPECIFICATIONS

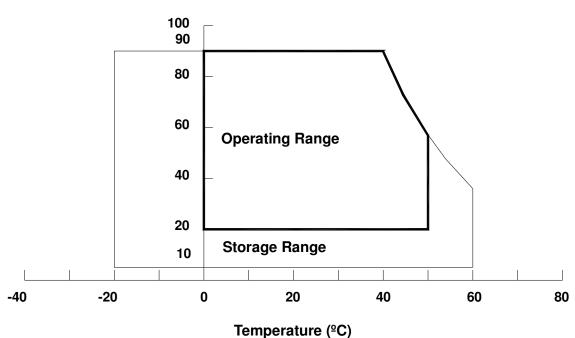
Ite	em	Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	759	760	761	mm	(1)
Madula Cina	Vertical(V)	449	450	451	mm	(1)
Module Size	Depth(D)	31.5	32.5	33.5	mm	To Rear
	Depth(D)	46.9	47.9	48.9	mm	To Inverter Cover
Weight			5189			g

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Version 3.0 4 Date: 04 Aug 2010

PRODUCT SPECIFICATION

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Unit	Note	
item	Syllibol	Min.	Max.	Offic	Note
Storage Temperature	T _{ST}	-20	+60	ōC	(1)
Operating Ambient Temperature	T _{OP}	0	+50	oC	(1), (2)
Shock (Non-Operating)	S _{NOP}	•	50	G	(3), (5)
Vibration (Non-Operating)	V_{NOP}	-	1.0	G	(4), (5)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 $^{\circ}$ C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Version 3.0 5 Date: 04 Aug 2010

PRODUCT SPECIFICATION

2.2 Package storage

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Item	Symbol	Value		Unit	Note
item	Symbol	Min.	Max.	Ullit	Note
Power Supply Voltage	Vcc	-0.3	13.5	V	(1)
Input Signal Voltage	VIN	-0.3	3.6	V	(1)

2.3.2 BACKLIGHT UNIT

Item	Symbol	Va	lue	Unit	Note	
item	Syllibol	Min.	Max.	Offic	Note	
Lamp Voltage	V_{W}		3000	V_{RMS}		
Power Supply Voltage	V_{BL}	0	30	V	(1)	
Control Signal Level	_	-0.3	7	V	(1), (3)	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Functional operation should be restricted to the conditions described under normal operating conditions.

Note (2) No moisture condensation or freezing.

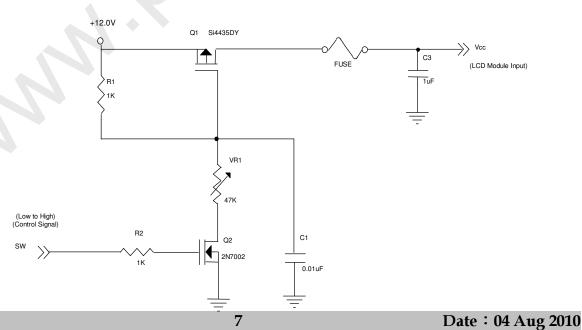
Note (3)The control signals include On/Off Control, External PWM Control and DET_5V signal for inverter status output.

Version 3.0 6 Date: 04 Aug 2010

PRODUCT SPECIFICATION

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

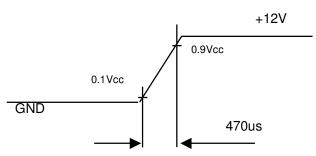

Ta = 25 ± 2 °C

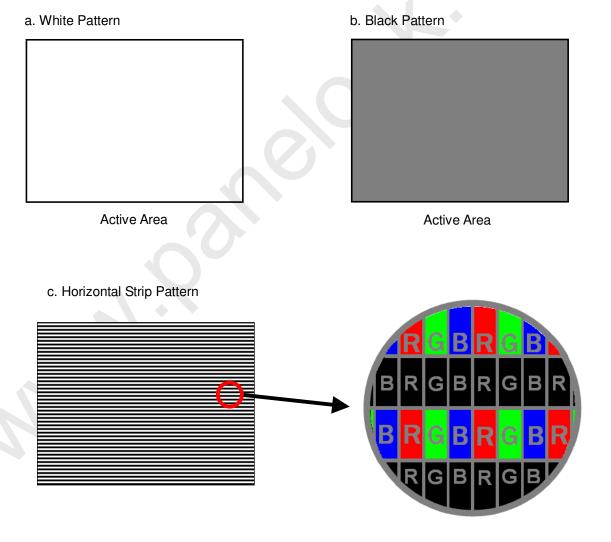
	Param	otor	Cumbal	Value			Unit	Note
	T drameter		Symbol	Min.	Тур.	Max.	Uriit	Note
Power Sur	oply Voltage		V _{CC}	10.8	12	13.2	V	(1)
Rush Curr	ent		I _{RUSH}	_	_	3.3	Α	(2)
		White Pattern	_		0.56	-	Α	
Power Sup	oply Current	Horizontal Stripe	_		0.72	0.87	Α	(3)
	Black Pattern		_		0.40	(-)	Α	
	Differential Input High Threshold Voltage		V_{LVTH}	+100	-1	_	mV	
	Differential Input Low Threshold Voltage		V _{LVTL}	-		-100	mV	
LVDS interface	Common Input Voltage		V _{CM}	1.0	1.2	1.4	V	(4)
merrace	Differential ir (single-end)	Differential input voltage (single-end)		200	_	600	mV	
	Terminating Resistor		R _T		100	_	ohm	
CMOS	Input High T	hreshold Voltage	V _{IH}	2.7	_	3.3	V	
interface	Input Low Th	reshold Voltage	V _{IL}	0	_	0.7	V	

Note (1) The module should be always operated within above ranges.

Note (2) Measurement Conditions:

Version 3.0

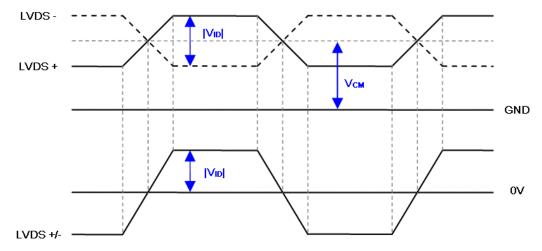




PRODUCT SPECIFICATION

Vcc rising time is 470us

Note (3) The specified power supply current is under the conditions at Vcc =12V, Ta = 25 \pm 2 $^{\circ}$ C, f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.


Version 3.0 8 Date: 04 Aug 2010

PRODUCT SPECIFICATION

Note (4) The LVDS input characteristics are as follows:

Version 3.0 9 Date: 04 Aug 2010

PRODUCT SPECIFICATION

3.2 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

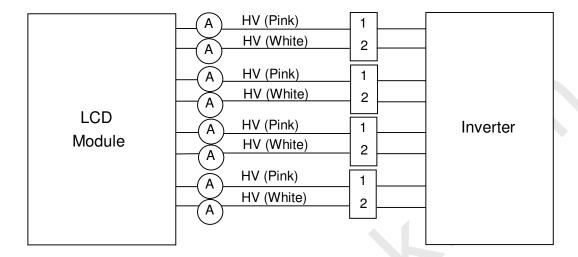
Parameter	Symbol		Value	Unit	Note	
raiaillelei	Syllibol	Min.	Тур.	Max.	Offic	Note
Lamp Input Voltage	V_{L}	1	1560	-	V_{RMS}	
Lamp Current	Ι _L	11.8	12.3	12.8	mA_{RMS}	(1)
Lamp Turn On Voltage	Vs	-	-	2710	V_{RMS}	$Ta = 0 {}^{\circ}C (2)$
Lamp rum On voltage	VS	-	-	2260	V_{RMS}	$Ta = 25 {}^{\circ}C (2)$
Operating Frequency	F_L	40	-	70	KHz	
Lamp Life Time	L_BL	50,000	60,000	-	Hrs	(4)

3.2.2 INVERTER CHARACTERISTICS (Ta = 25 ± 2 $^{\circ}$ C)

Doromotor	Cymbol		Value	Unit	Note		
Parameter	Symbol	Min.	Тур.	Max.	Unit	INOLE	
Total Power Consumption	P _{BL}	-	74	78	W	(5), (6), I _L =12.3mA	
Power Supply Voltage	V_{BL}	22.8	24	25.2	V_{DC}		
Power Supply Current	I _{BL}	-	3.08	3.25	Α	Non Dimming	
Input Ripple Noise	-	-	-	912	mV_{P-P}	V _{BL} =22.8V	
Oscillating Frequency	Fw	60	63	66	kHz	(3)	
Dimming frequency	F_B	150	160	170	Hz		
Minimum Duty Ratio	D_{MIN}	10	20	-	%	(7)	

- Note (1) Lamp current is measured by utilizing AC current probe and its value is average by measuring master and slave board.
- Note (2) The lamp starting voltage V_s should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency of the display input signals, and it may result in line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point of lamp.) as the time in which it continues to operate under the condition at Ta = 25 $\pm 2^{\circ}$ C and $I_L = 11.8 \sim 12.8 mArms$.
- Note (5) The power supply capacity should be higher than the total inverter power consumption PBL. Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when inverter dimming.
- Note (6) The measurement condition of Max. value is based on 31.5" backlight unit under input voltage 24V,

Version 3.0 **10** Date : 04 Aug 2010


CHIMEI INNOLUX

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

average lamp current 12.6 mA and lighting 30 minutes later.

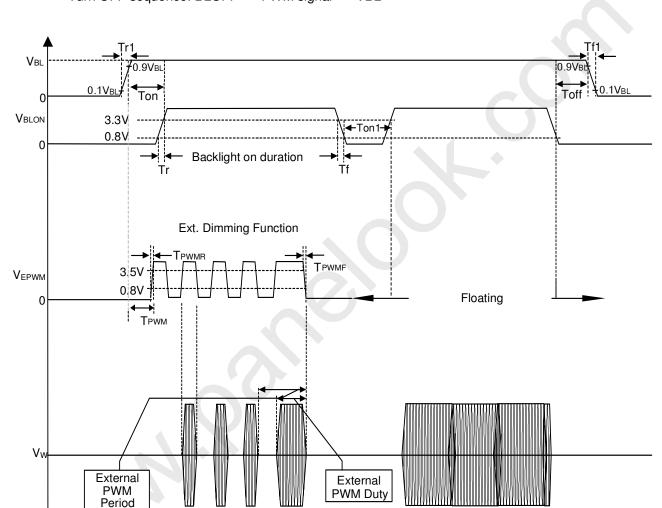
Note (7) 10% minimum duty ratio is only valid for electrical operation

3.2.3 INVERTER INTERFACE CHARACTERISTICS

ITEM		SYMBOL	TEST CONDITION	MIN	TYPE	MAX	UNIT	NOTE
DET EV		DET 5V	_	4.5	5.0	5.5	٧	Abnormal
DET_5V		DET_5V		0	_	0.8	V	Normal
On/Off Control Voltage	ON	V) -)	3.3	_	5.3	V	
On/Off Control Voltage	OFF	V _{BLON}	<u> </u>	0	_	0.8	V	
External PWM Control	HI	V _{EPWM}	_	3.5		5.3	V	Duty on
Voltage	LO	V EPWM	_	0		0.8	٧	Duty off
Control Signal Rising	Time	Tr	_	_	_	100	ms	
Control Signal Falling	Time	Tf	_	_		100	ms	
VBL Rising Time)	Tr1	_	30	_		ms	10%-90%V _{BL}
VBL Falling Time	Э	Tf1	_	30	_		ms	10 /6-90 /6 V BL
PWM Signal Rising	Time	T _{PWMR}	_	_	_	100	us	
PWM Signal Falling	Time	T _{PWMF}	_	_	_	100	us	
Input impedance)	R _{IN}		1	_		ΜΩ	
PWM Delay Time		T _{PWM}	_	100			mS	
RI ON Delay Tim		Ton	_	300	_	_	mS	
BLON Delay Time		T _{on1}		300	_		mS	
BLON Off Time		T _{OFF}	_	300			mS	

Note (1) The Dimming signal should be valid before backlight turns on by BLON signal. It is inhibited to

Version 3.0 11 Date: 04 Aug 2010

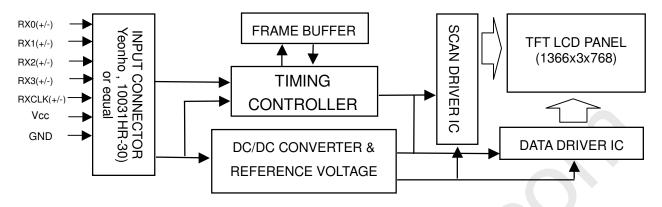


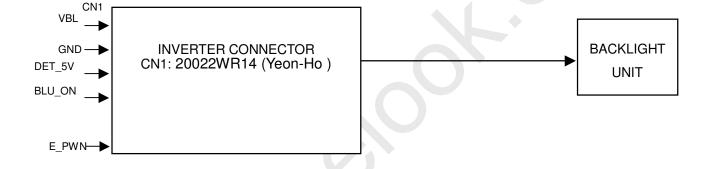
change the internal/external PWM signal during backlight turn on period.

- Note (2) The power sequence and control signal timing are shown in the following figure. For a certain reason, the inverter has a possibility to be damaged with wrong power sequence and control signal timing.
- Note (3) While system is turned ON or OFF, the power sequences must follow as below descriptions:

Turn ON sequence: VBL \rightarrow PWM signal \rightarrow BLON Turn OFF sequence: BLOFF \rightarrow PWM signal \rightarrow VBL

Version 3.0 12 Date : 04 Aug 2010





PRODUCT SPECIFICATION

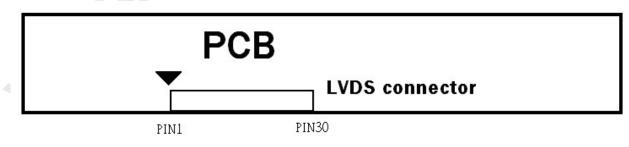
4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

Version 3.0 **13** Date: 04 Aug 2010

PRODUCT SPECIFICATION

5. INTERFACE PIN CONNECTION


5.1 TFT LCD MODULE

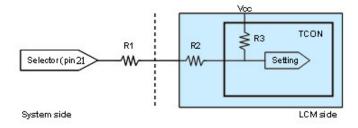
CNF1 Connector Pin Assignment

Pin No.	Symbol	Description	Note
1	NC	No connection	(3)
2	SCL	EEPROM Serial Clock	
3	SDA	EEPROM Serial Data	
4	GND	Ground	
5	RX0-	Negative transmission data of pixel 0	
6	RX0+	Positive transmission data of pixel 0	
7	GND	Ground	
8	RX1-	Negative transmission data of pixel 1	
9	RX1+	Positive transmission data of pixel 1	
10	GND	Ground	
11	RX2-	Negative transmission data of pixel 2	
12	RX2+	Positive transmission data of pixel 2	
13	GND	Ground	
14	RXCLK-	Negative of clock	
15	RXCLK+	Positive of clock	
16	GND	Ground	
17	RX3-	Negative transmission data of pixel 3	
18	RX3+	Positive transmission data of pixel 3	
19	GND	Ground	
20	NC	No connection	(3)
21	SELLVDS	Select LVDS data format	(2)(4)
22	WP	EEPROM Write Protection	
23	GND	Ground	
24	GND	Ground	
25	GND	Ground	
26	VCC	Power supply: +12V	
27	VCC	Power supply: +12V	
28	VCC	Power supply: +12V	
29	VCC	Power supply: +12V	
30	VCC	Power supply: +12V	

Note (1) Connector type: 10031HR-30 (Yeonho) or compatible

LVDS connector pin orderdefined as follows

Note (2) HIGH = Connect to +3.3V or OPEN: VESA, LOW = connect to GND: JEIDA LVDS format Please refer to 5.4 LVDS INTERFACE

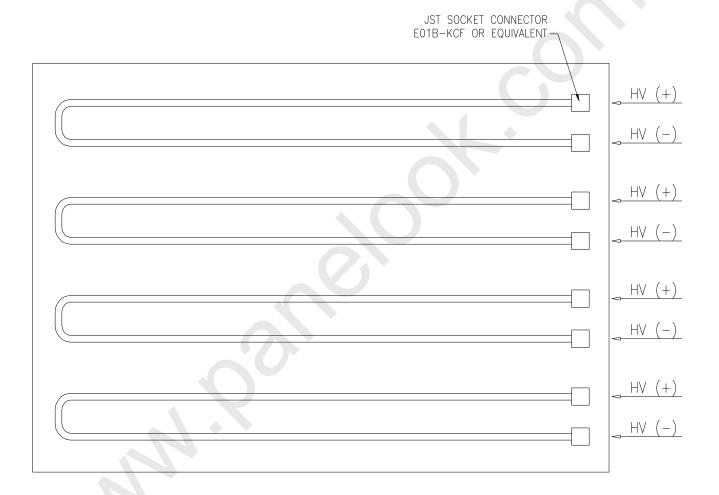

Note (3) Reserved for internal use. Left it open.

Version 3.0 **14 Date**: 04 Aug 2010

Note (4) LVDS signal pin connected to the LCM side has the following diagram. R1 in the system side should be less than 1K Ohm. (R1 < 1K Ohm)

Version 3.0 15 Date : 04 Aug 2010

PRODUCT SPECIFICATION


5.2 BACKLIGHT UNIT

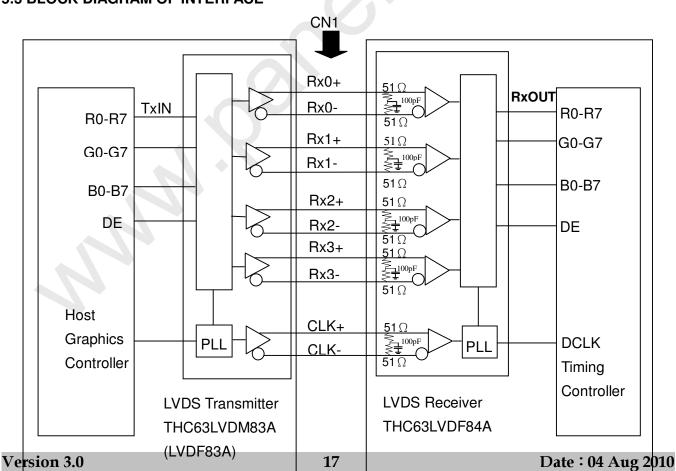
The pin configuration for the housing and leader wire is shown in the table below.

CN2-CN5 (Socket Connector): E01B-KCF or equivalent

	Pin No.	Symbol	Description	Remark
ſ	1	HV	High Voltage	
		HV	High Voltage	

Note (1) The backlight interface housing for high voltage side is a model E01B-KCF, manufactured by JST or equivalent.

Version 3.0 16 **Date**: 04 Aug 2010



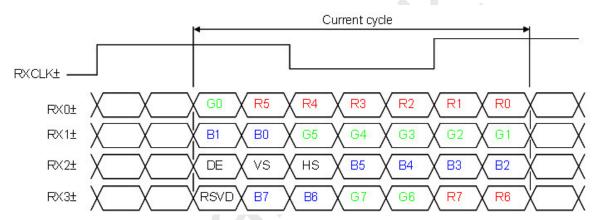
5.3 INVERTER UNIT

CN1(Header): 20022WR14 (Yeon-Ho)

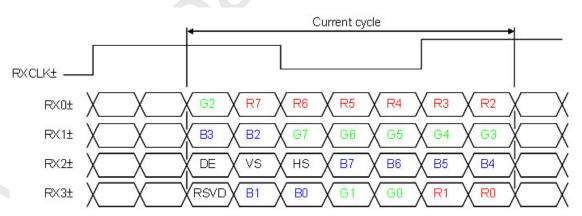
Pin No.	Symbol		Description
1			
2			
3	VBL	+24V Power input	
4			
5			
6			
7			
8	GND	Ground	
9			
10			
11	DET_5V		Check Lamp Ignition.
12	BLU_ON		BL ON/OFF
13	N.C.		No connect.
14	E PWM		External PWM Control

5.3 BLOCK DIAGRAM OF INTERFACE

PRODUCT SPECIFICATION


R0~R7 : Pixel R Data G0~G7 : Pixel G Data B0~B7 : Pixel B Data DE : Data enable signal

Note (1) The system must have the transmitter to drive the module.


Note (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.

5.4 LVDS INTERFACE

VESA LVDS format: (SELLVDS pin=H or open)

JEDIA LVDS format: (SELLVDS pin=L)

R0~R7: Pixel R Data (7; MSB, 0; LSB)

G0~G7: Pixel G Data (7; MSB, 0; LSB)

B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE: Data enable signal

Notes(1) RSVD(reserved)pins on the transmitter shall be "H" or ("L" or OPEN)

Version 3.0 18 **Date**: 04 Aug 2010

5.5 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

versus	data input.																								
												Da	ata	Sigr	nal										
	Color				Re	ed							G	reer	1						Blı	ue			
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	B5	B4	ВЗ	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:		;	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	ŀ	1			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Version 3.0 19 Date : 04 Aug 2010

PRODUCT SPECIFICATION

Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

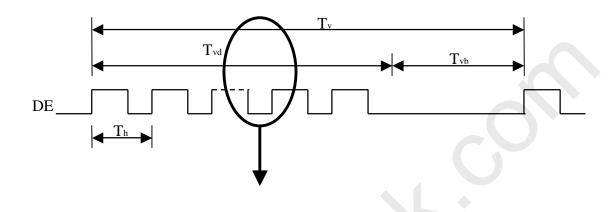
The input signal timing specifications are shown as the following table and timing diagram.

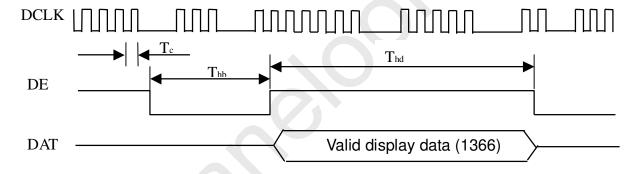
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	F _{clkin} (=1/TC)	60	76	82	MHz	0
LVDS	Input cycle to cycle jitter	T _{rcl}	_	-	200	ps	(3)
Receiver Clock	Spread spectrum modulation range	Fclkin_mod	F _{clkin} -2%	_	F _{clkin} +2%	MHz	
	Spread spectrum modulation frequency	F _{SSM}		C	200	KHz	(4)
LVDS	Setup Time	Tlvsu	600		_	ps	
Receiver Data	Hold Time	Tlvhd	600		_	ps	(5)
	Frame Rate	F _{r5}	47	50	53	Hz	
Vertical	Trame nate	F _{r6}	57	60	63	Hz	
Active	Total	Tv	778	806	888	Th	Tv=Tvd+Tvb
Display Term	Display	Tvd	768	768	768	Th	_
	Blank	Tvb	10	38	120	Th	_
Horizontal	Total	Th	1442	1560	1936	Тс	Th=Thd+Thb
Active	Display	Thd	1366	1366	1366	Тс	_
Display Term	Blank	Thb	76	194	570	Тс	_

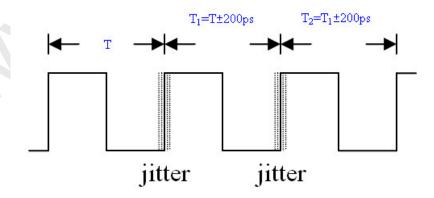
Please make sure the range of pixel clock has follow the below equation:

$$\mathsf{Fclkin}(\mathsf{max}) \geqq \mathsf{Fr_6} \mathop{\diagdown} \mathsf{Tv} \mathop{\diagdown} \mathsf{Th}$$

$$\mathsf{Fr}_5 \times \mathsf{Tv} \times \mathsf{Th} \ge \mathsf{Fclkin}(\mathsf{min})$$

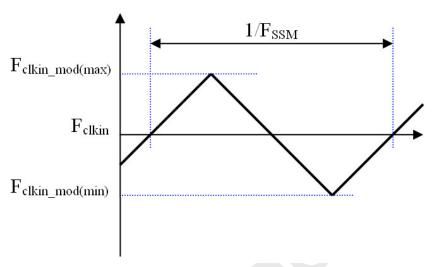

Note (2) This module is operated in DE only mode and please follow the input signal timing diagram below:


Version 3.0 20 **Date**: 04 Aug 2010

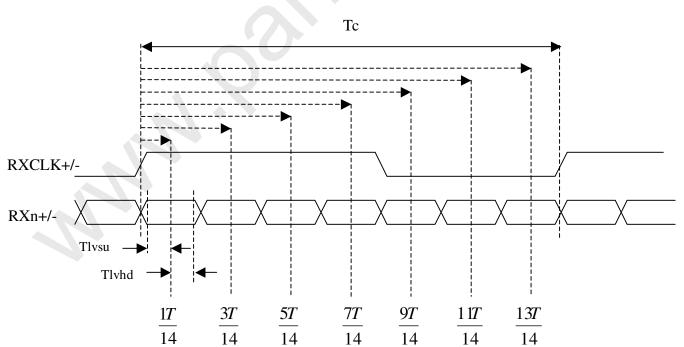


INPUT SIGNAL TIMING DIAGRAM

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$



Version 3.0 21 Date : 04 Aug 2010


PRODUCT SPECIFICATION

Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

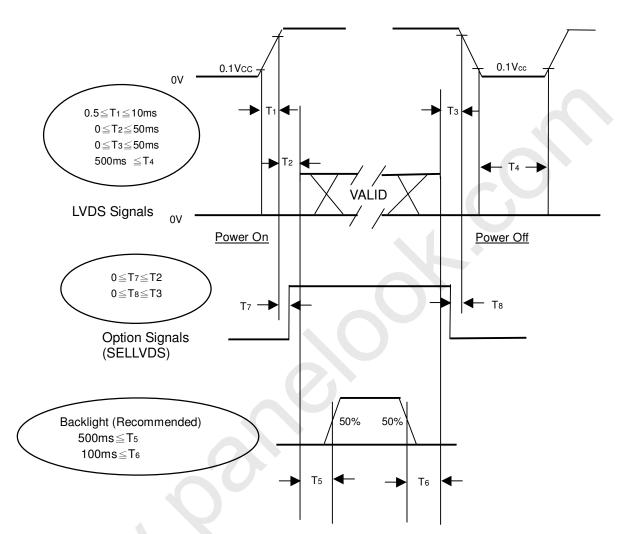
Version 3.0 22 Date: 04 Aug 2010

Version 3.0

23

Date: 04 Aug 2010

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited



PRODUCT SPECIFICATION

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0, that maybe cause electrical overstress failures.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

Version 3.0 24 Date : 04 Aug 2010

7. OPTICAL CHARACTERISTICS

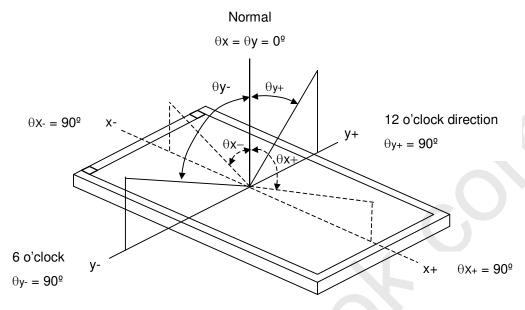
7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Ta	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	V_{CC}	12.0	V
Input Signal	According to typical va	alue in "3. ELECTRICAL (CHARACTERISTICS"
Lamp Current	lμ	12.3±0.5	mA
Oscillating Frequency (Inverter)	F_{W}	63±3	KHz
Frame rate	Fr	60	Hz

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Ite	em	Symbol	Condition	Min.	Typ.	Max.	Unit	Note
Contrast Ratio		CR		2600	3500	•	ı	(2)
Response Tim	Response Time				8.5	14	ms	(3)
Center Lumina	ince of White	L _C		360	450	•	cd/m ²	(4)
White Variation	า	δW		-	-	1.3	-	(7)
Cross Talk		CT	0 00 00	ı	-	4.0	%	(5)
	Red	Rx	$\theta_x=0^\circ, \ \theta_Y=0^\circ$		0.648	Тур +0.03	-	
	Red	Ry	Viewing Angle at		0.331		-	(6)
	Green	Gx	Normal Direction		0.272		-	
Color		Gy	Normal Birodion	Тур	0.601		-	
Chromaticity	Blue	Bx		-0.03	0.143		-	
Cilionalicity	Dide	Ву			0.064		-	
	White	Wx			0.280		-	
	VVIIILE	Wy			0.290		-	
	Color Gamut	CG			72		%	NTSC
	Horizontal	θ_x +		80	88	-		
Viewing	Tionzoniai	θ_{x} -	CR≥20	80	88	-	Deg.	(1)
Angle	Vertical	θγ+	OI 1∠20	80	88	-	Deg.	(1)
	Vortical	θ _Y -		80	88	-		


Version 3.0 25 Date: 04 Aug 2010

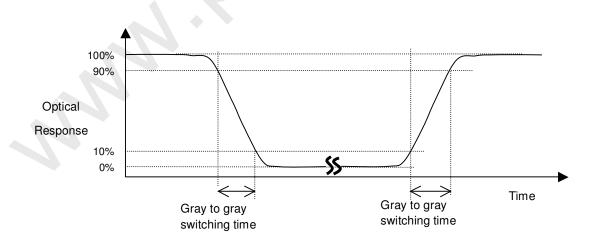
PRODUCT SPECIFICATION

Note (1) Definition of Viewing Angle $(\theta x, \theta y)$:

Viewing angles are measured by Autronic Conoscope Cono-80.

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.


Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

Note (3) Definition of Gray to Gray Switching Time :

The driving signal means the signal of luminance 0%, 20%, 40%, 60%, 80%, 100%.

Version 3.0 26 Date : 04 Aug 2010

PRODUCT SPECIFICATION

Gray to gray average time means the average switching time of luminance 0%, 20%, 40%, 60%, 80%, 100% to each other.

Note (4) Definition of Luminance of White (L_C, L_{AVE}) :

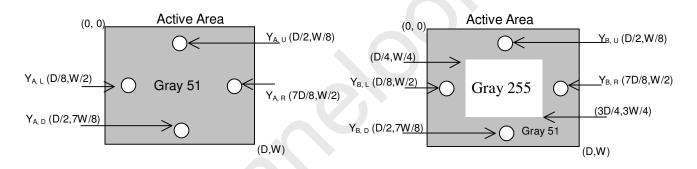
Measure the luminance of gray level 255 at center point and 5 points

$$L_C = L(5)$$

$$L_{AVE} = [L(1) + L(2) + L(3) + L(4) + L(5)] / 5$$

where L (x) is corresponding to the luminance of the point X at the figure in Note (7).

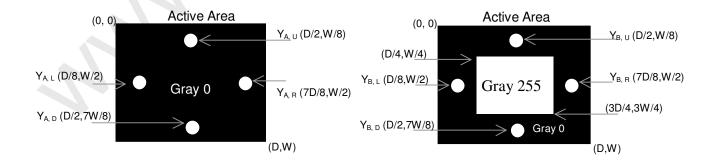
Note (5) Definition of Cross Talk (CT):


$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

(a)

 Y_A = Luminance of measured location without gray level 255 pattern (cd/m²)


 Y_B = Luminance of measured location with gray level 255 pattern (cd/m²)

(b)

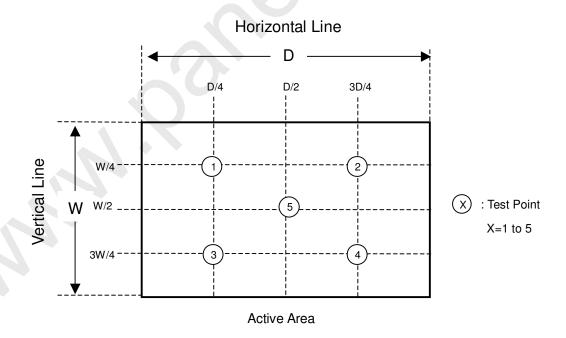
Y_A = Luminance of measured location without gray level 255 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 255 pattern (cd/m²)

Note (6) Measurement Setup:

> The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed

Version 3.0 Date : 04 Aug 2010

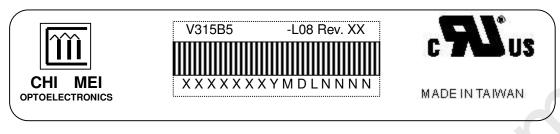

PRODUCT SPECIFICATION

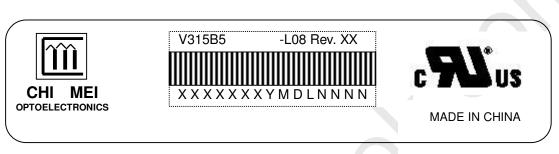
after lighting Backlight for 1 hour in a windless room.

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

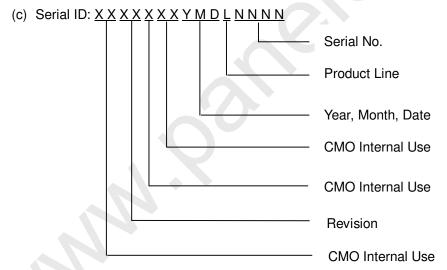
Version 3.0 28 **Date**: 04 Aug 2010





8. DEFINITION OF LABELS

8.1 CMO MODULE LABEL


The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: V315B5-L08

(b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Version 3.0 29 Date : 04 Aug 2010

PRODUCT SPECIFICATION

9. PACKAGING

9.1 PACKING SPECIFICATIONS

- (1) 5 LCD TV modules / 1 Box
- (2) Box dimensions: 826(L) X 376 (W) X 540 (H)
- (3) Weight: approximately 30Kg (5 modules per box)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method

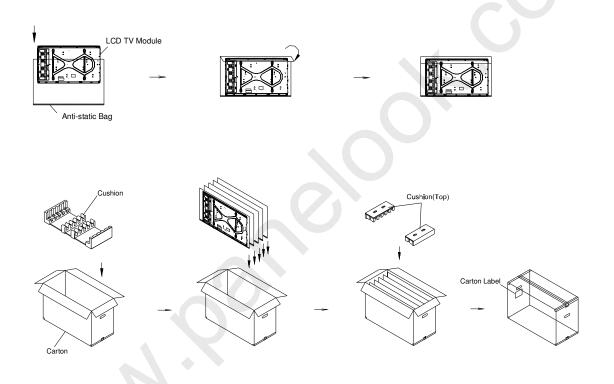


Figure.9-1 packing method

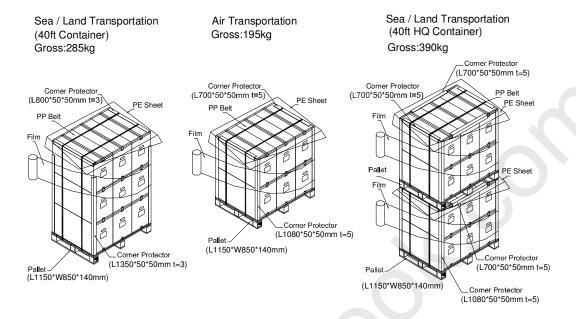


Figure.9-2 packing method

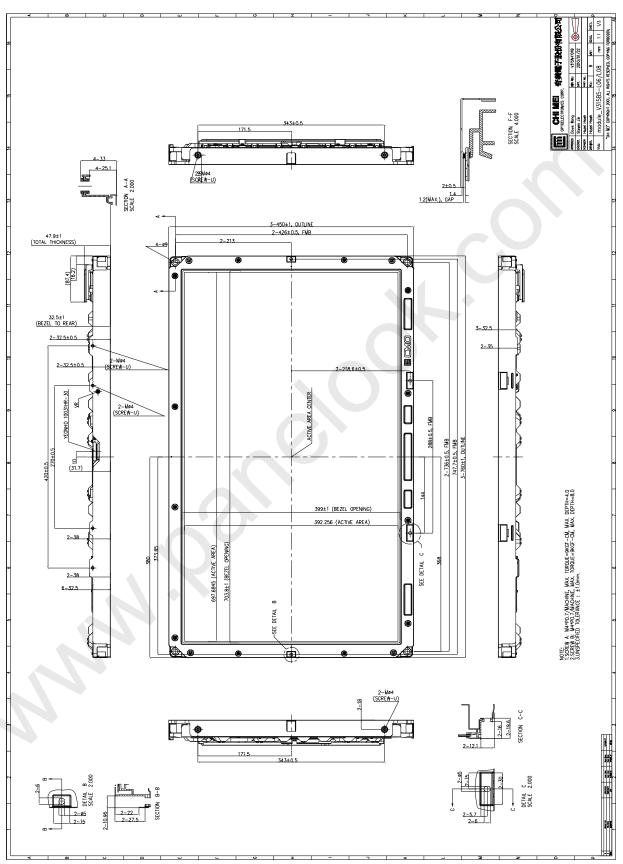
Version 3.0 31 Date : 04 Aug 2010

10. PRECAUTIONS

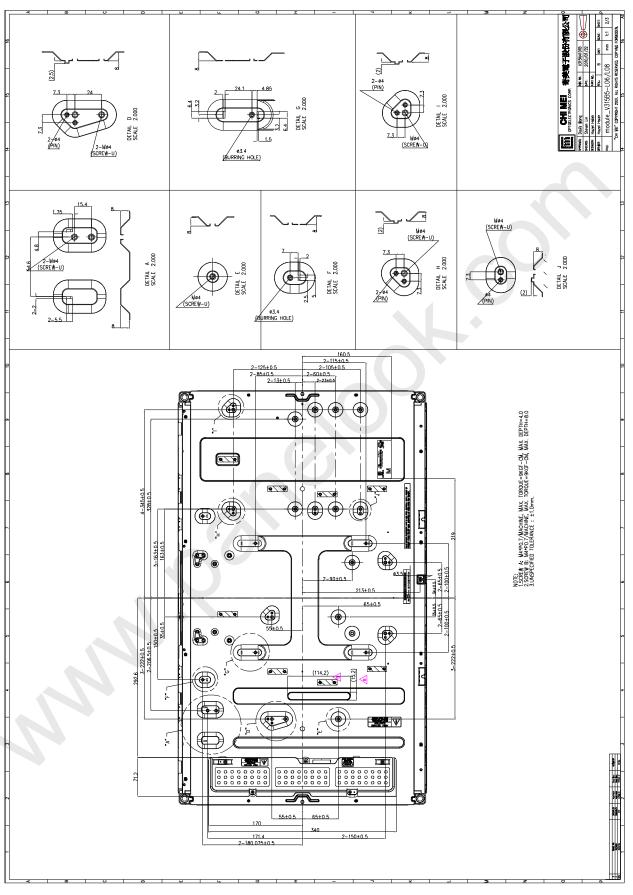
10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

10.2 SAFETY PRECAUTIONS

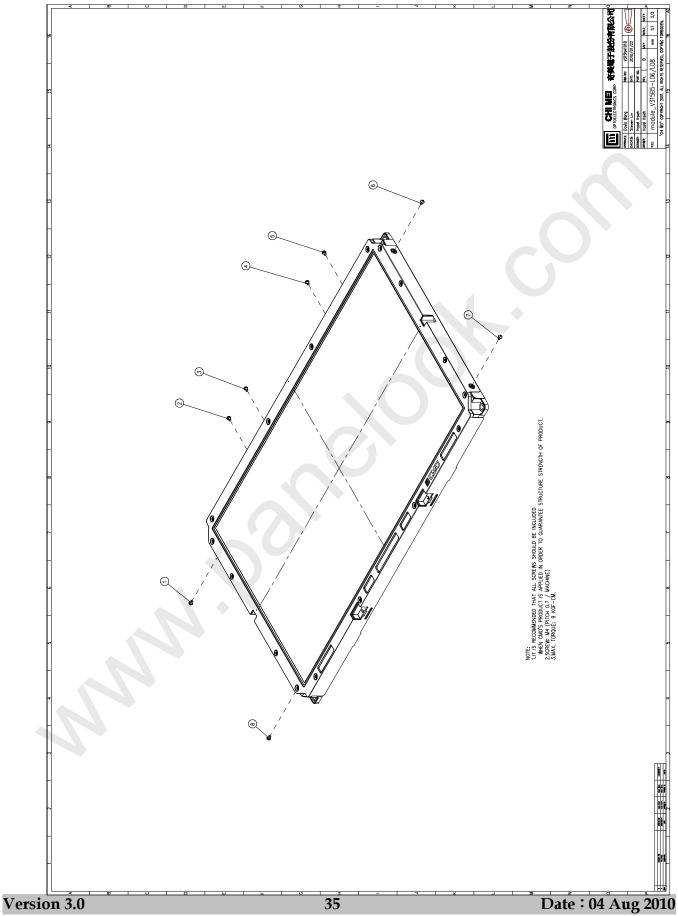

- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

Version 3.0 32 Date: 04 Aug 2010



11. MECHANICAL CHARACTERISTICS

Version 3.0 33 Date: 04 Aug 2010



Version 3.0 Date: 04 Aug 2010 34

PRODUCT SPECIFICATION

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited