

Issue Date:Aug 13,2009 Model No .: V315H1-LH3

Approval

TFT LCD Approval Specification

MODEL NO.: V315H1-LH3

Customer:	
Approved by:	
Note:	

Approved By	TV Product Marketing & Management Div
	Chao-Chun Chung

Reviewed By	QA Dept.	Product Development Div.
Reviewed by	Hsin-Nan Chen	WT Lin

Prepared By	LCD TV Marketing and Product Management Div.				
	Josh Chi	Cindy Yang			

Version 2.1

1

REVISION HISTORY

1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION

1. GENERAL DESCRIPTION

1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS

 $\langle P \rangle$

- CONTENTS -

Issue Date:Aug 13,2009 Model No.: V315H1-LH3 Approval

3

4

5

7

12

13

23

26

24

25

28

31

2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2PACKAGE STORAGE 2.3ELECTRICAL ABSOLUTE RATINGS 2.3.1 TFT LCD MODULE 2.3.2 BACKLIGHT UNIT **3. ELECTRICAL CHARACTERISTICS** 3.1 TFT LCD MODULE **3.2 BACKLIGHT INVERTER UNIT** 3.2.1 CCFL(Cold Cathode Fluorescent Lamp) CHARACTERISTICS 3.2.2 INVERTER CHARACTERISTICS **3.2.3 INVERTER INTERFACE CHARACTERISTICS** 4. BLOCK DIAGRAM 4.1 TFT LCD MODULE 5. INTERFACE PIN CONNECTION 5.1 TFT LCD MODULE **5.2 BACKLIGHT UNIT 5.3 INVERTER UNIT 5.4 BLOCK DIAGRAM OF INTERFACE** 5.5 LVDS INTERFACE 5.6 COLOR DATA INPUT ASSIGNMENT 6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE 7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS 8. DEFINITION OF LABELS 8.1 CMO MODULE LABEL 9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD **10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS 10.3 SAFETY STANDARDS 11. MECHANICAL CHARACTERISTICS**

2

OPTOELECTRONICS CORP.

 \Diamond

m

屏库:全球液晶屏交易中心

 \bigotimes

Issue Date:Aug 13,2009 Model No.: V315H1-LH3 Approval

Version	Date	Page (New)	Section	Description
Ver 2.0	Jul. 14,09'	All	All	Approval Specification was first issued.
Ver 2.1	Jan. 11,10'	34-36	11	3D drawing update
		4	1	Updated OVERVIEW description
		30	8	Updated Manufactured Date definition
				anelook

Version 2.1

3

肩库:全球液晶质 中心

Issue Date:Aug 13,2009 Model No.: V3<u>15H1-LH3</u> Approva

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V315H1- LH3 s a 31.5" TFT Liquid Crystal Display module with 4U-type CCFL Backlight unit and 4ch-LVDS interface. This module supports 1920 x 1080 HDTV format and can display 1.07G colors (10-bit/color). The inverter module for backlight is built-in.

1.2 FEATURES

- -High brightness (450 nits)
- Ultra-high contrast ratio (4000:1)
- Fast response time (gray to gray average 4.5 ms)
- High color saturation NTSC 72%
- Ultra wide viewing angle : 176(H)/176(V) (CR≥20) with Super MVA technology
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Color reproduction (nature color)
- Low color shift function

1.3 APPLICATION

- TFT LCD TVs
- Multi-Media Display

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	698.4(H) x 392.85 (V)	mm	
Bezel Opening Area	703.8 (H) x 398.4 (V)	mm	
Driver Element	a-si TFT active matrix	-	
Pixel Number	1920 x R.G.B. x 1080	pixel	
Pixel Pitch (Sub Pixel)	0.12125 (H) x 0.36375 (V)	mm	
Pixel Arrangement	RGB vertical stripe	-	
Display Colors	1.07G	color	
Display Operation Mode	Transmissive mode / Normally black	-	
Surface Treatment	Glare coating,Hard coating (3H)	-	

1.5 MECHANICAL SPECIFICATIONS

lt	em	Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	759	760	761	mm	
~	Vertical(V)	449	450	451	mm	
Module Size	Depth(D)	31.5	32.5	33.5	mm	To Rear
	Depth(D)	53.2	54.2	55.2	mm	To Inverter Cover
	Depth(D)	46.5	47.5	48.5	mm	To PCB cover
Weight		-	5760	-	g	

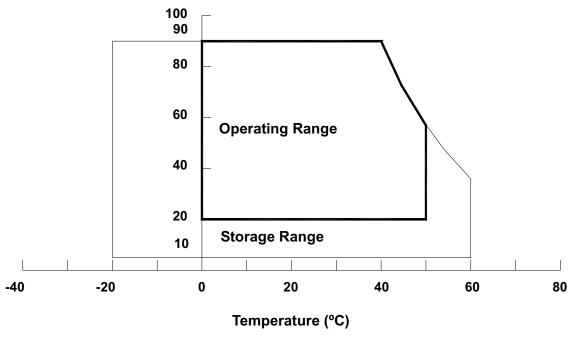
Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

屏库:全球液晶 中心

> Issue Date:Aug 13,2009 Model No.: V315H1-LH3

Approva

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

ltem	Symbol	Va	Unit	Note		
liem	Symbol	Min.	Max.	Unit	Note	
Storage Temperature	T _{ST}	-20	+60	°C	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)	
Vibration (Non-Operating)	V _{NOP}	-	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

(a) 90 %RH Max. (Ta \leq 40 °C).

- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Relative Humidity (%RH)

Version 2.1

5

Issue Date:Aug 13,2009 Model No.: V315H1-LH3 Approval

2.2 Package storage

When storing modules as spares for a long time, the following precaution is necessary.

(a) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.

(b)The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Itom	Symbol	Va	Value		Note	
Item	Symbol	Min.	Max.	Unit	Note	
Power Supply Voltage	Vcc	-0.3	13.5	V		
Input Signal Voltage	Vin	-0.3	3.6	V		

2.3.2 BACKLIGHT UNIT

Item	Symbol	Va	lue	Unit	Note
Item	Symbol	Min.	Max.	Unit	NOLE
Lamp Voltage	Vw		3000	V _{RMS}	
Power Supply Voltage	V _{BL}	0	30	V	(1)
Control Signal Level	—	-0.3	7	V	(1), (3)

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Functional operation

should be restricted to the conditions described under normal operating conditions.

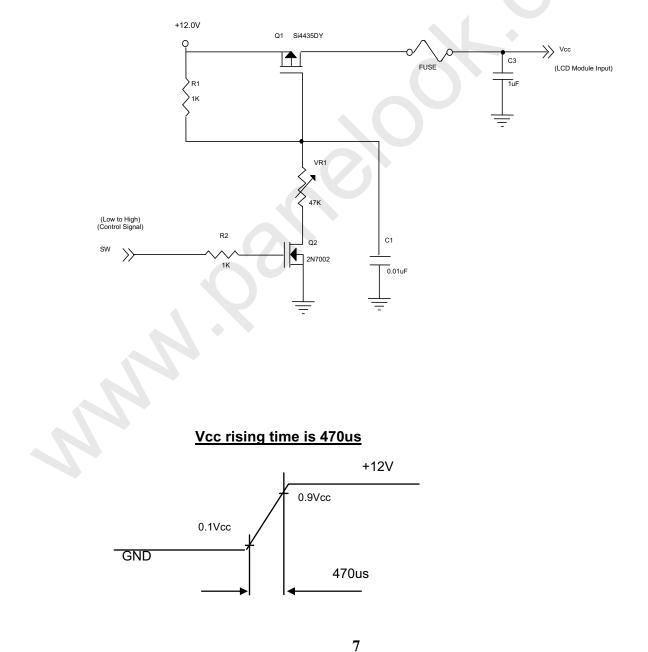
Note (2) No moisture condensation or freezing.

Note (3) The control signals includes Backlight On/Off Control, I_PWM Control, E_PWM Control and ERR signal for inverter status output.

 \oslash

Issue Date:Aug 13,2009 Model No.: V315H1-LH3

Approval

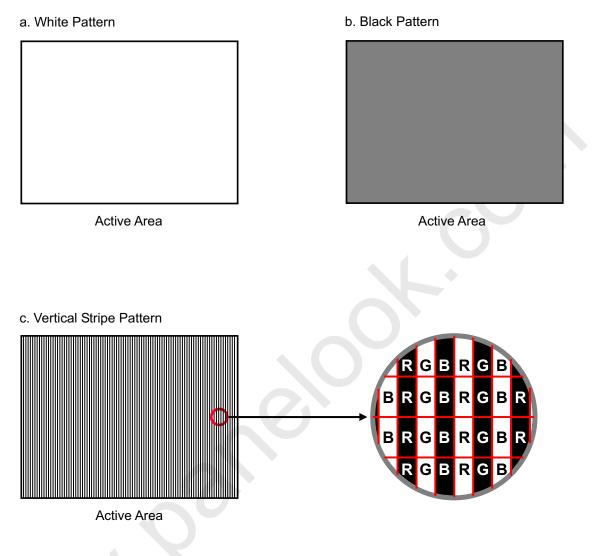

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

.1 TFT LC	TFT LCD MODULE							
	Parameter				Value		Unit	Note
	Farameter		Symbol	Min.	Тур.	Max.	Unit	NOLE
Power Su	pply Voltage		V _{cc}	10.8	12.0	13.2	V	(1)
Power Su	pply Ripple Vo	oltage	V _{RP}	-	-	350	mV	
Rush Curi	rent		I _{RUSH}	-	-	4.8	A	(2)
		White		-	2	2.6	A	
Power Su	pply Current	Black	I _{CC}	-	1.6		A	(3)
		Vertical Stripe		-	2.1		А	
LVDS	Common Input Voltage		V _{LVC}	1.125	1.25	1.375	V	
interface	face Terminating Resistor		RT	-	100	-	ohm	Ť
CMOS	Input High Threshold Voltage		V _{IH}	2.7	-	3.3	V	
interface	Input Low Th	reshold Voltage	VIL	0	-	0.7	V	

Note (1) The module should be always operated within above ranges.

Note (2) Measurement Conditions:



Global LCD Panel Exchange Center

 $\langle p \rangle$

Issue Date:Aug 13,2009 Model No.: V315H1-LH3 Approval $\langle p \rangle$

Note (3) The specified power supply current is under the conditions at Vcc =12V, Ta = 25 ± 2 °C, f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

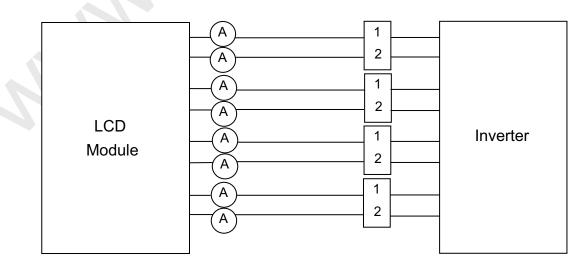
3.2 BACKLIGHT INVERTER UNIT

3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol		Value	Unit	Note	
Falametei	Symbol	Min.	Тур.	Max.	Offic	nole
Lamp Voltage	Vw	-	1470	-	V _{RMS}	I _L = 12.3mA
Lamp Current	١L	11.8	12.3	12.8	mA _{RMS}	(1)
Leven Charting Valters	N/	-	-	2760	V _{RMS}	(2), Ta = 0 °C
Lamp Starting Voltage	Vs	-	-	2300	V _{RMS}	(2), Ta = 25 ⁰C
Operating Frequency	Fo	40	-	80	KHz	(3)
Lamp Life Time	L _{BL}	50,000		-	Hrs	(4)

屏库:全球液晶屏交

Issue Date:Aug 13,2009 Model No.: V315H1-LH3


3.2.2 INVERTER CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol		Value	Unit	Note	
Falametei	Symbol	Min.	Тур.	Max.		NOLE
Power Consumption	P _{BL}	-	79	81	W	(5),(6), I _L = 12.3mA
Input Voltage	V _{BL}	22.8	24	25.2	V _{DC}	
Input Current	I _{BL}	-	3.29	3.38	Α	Non Dimming
Input Ripple Noise	-	-	-	912	mV _{P-P}	V _{BL} =22.8V
Oscillating Frequency	Fw	60	63	66	kHz	(3)
Dimming frequency	F _B	150	160	170	Hz	
Minimum Duty Ratio	D _{MIN}	-	20	-	%	

Note (1) Lamp current is measured by utilizing AC current probe and its value is average by measuring master and slave board.

Note (2) The lamp starting voltage V_S should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.

- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency of the display input signals, and it may result in line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point of lamp.) as the time in which it continues to operate under the condition at Ta = 25 ± 2 $^{\circ}$ C and I_L = 11.8~ 12.8mArms.
- Note (5) The power supply capacity should be higher than the total inverter power consumption P_{BL}. Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when inverter dimming.
- Note (6) The measurement condition of Max. value is based on 31.5" backlight unit under input voltage 24V, average lamp current 12.6 mA and lighting 30 minutes later.

9

Ø

Issue Date:Aug 13,2009 Model No.: V315H1-LH3

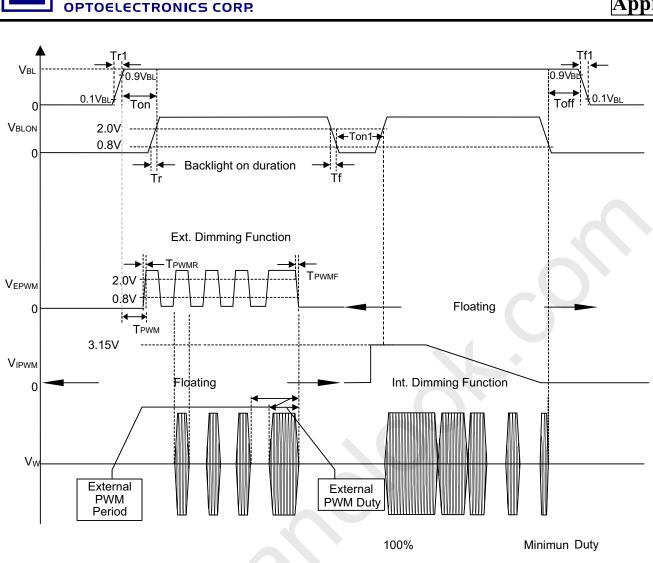
OPTOELECTRONICS CORP.

3.2.3 INVERTER INTERFACE CHARACTERISTICS

			Test		Value			
Parameter		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
On/Off Control Voltage	ON	V _{BLON}	_	2.0		5.0	V	
On/On Control Voltage	OFF	✓ BLON	_	0	_	0.8	V	
Internal PWM Control	MAX	VIPWM	_	2.85	3.0	3.15	V	Maximum duty ratio
Voltage	MIN	V IPWM		_	0	_	V	Minimum duty ratio
External PWM Control	HI	V _{EPWM}	_	2.0	_	5.0	V	Duty on
Voltage	LO	✓ EPWM		0	_	0.8	V	Duty off
Error Signal		ERR		_	_	_	V	
VBL Rising Time		Tr1	_	30			ms	10%-90%V _{BL}
VBL Falling Time		Tf1		30			ms	10 %-90 % v _{BL}
Control Signal Rising Tir	ne	Tr				100	ms	
Control Signal Falling Ti	ne	Tf				100	ms	
PWM Signal Rising Time	•	T _{PWMR}				50	us	
PWM Signal Falling Time	e	T _{PWMF}				50	us	
Input impedance		R _{IN}	_	1	1	-	MΩ	
PWM Delay Time		T _{PWM}	_	100			ms	
BLON Delay Time		T _{on}	_	300			ms	
DECIN Delay TITLE		T _{on1}	_	300		-	ms	
BLON Off Time		T _{off}	_	300		_	ms	

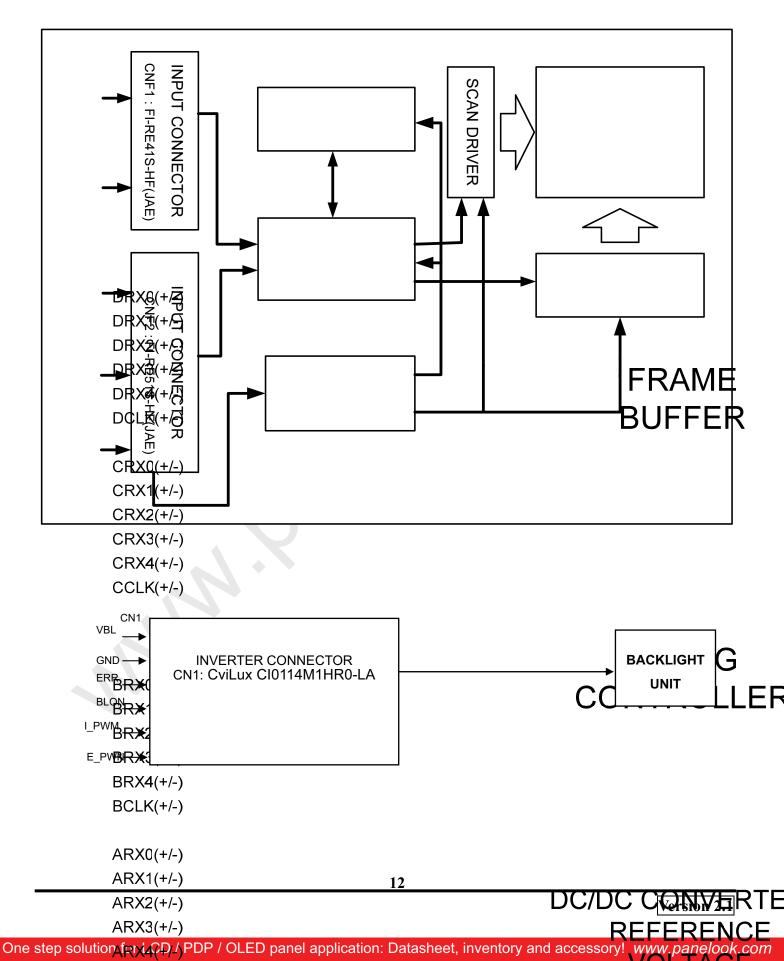
- Note (1) The Dimming signal should be valid before backlight turns on by BLON signal. It is inhibited to change the internal/external PWM signal during backlight turn on period.
- Note (2) The power sequence and control signal timing are shown in the following figure. For a certain reason, the inverter has a possibility to be damaged with wrong power sequence and control signal timing.
- Note (3) While system is turned ON or OFF, the power sequences must follow as below descriptions: Turn ON sequence: VBL \rightarrow PWM signal \rightarrow BLON

Turn OFF sequence: BLOFF \rightarrow PWM signal \rightarrow VBL


Note (4) When inverter protective function is triggered, ERR will output open collector status; In normal operation, the signal of ERR will output a low level voltage.

10

Issue Date:Aug 13,2009 Model No.: V315H1-LH3



Issue Date:Aug 13,2009 Model No.: V315H1-LH3

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

 \bigotimes

Issue Date:Aug 13,2009 Model No.: V315H1-LH3

5. INTERFACE PIN CONNECTION

5.1 TFT LCD MODULE

CNF2 Connector Pin Assignment (FI-RE51S-HF(JAE) or equivalent)

Pin	Name	Description	Note
1	GND	Ground	
2	N.C.	No Connection	(1)
3	N.C.	No Connection	(1)
4	N.C.	No Connection	(1)
5	N.C.	No Connection	(1)
6	N.C.	No Connection	(1)
7	SELLVDS	LVDS Data Format Selection	(2)
8	N.C.	No Connection	(1)
9	N.C.	No Connection	(1)
10	N.C.	No Connection	(1)
11	GND	Ground	
12	ARX0-	First pixel Negative LVDS differential data input. Channel 0	
13	ARX0+	First pixel Positive LVDS differential data input. Channel 0	
14	ARX1-	First pixel Negative LVDS differential data input. Channel 1	
15	ARX1+	First pixel Positive LVDS differential data input. Channel 1	
16	ARX2-	First pixel Negative LVDS differential data input. Channel 2	
17	ARX2+	First pixel Positive LVDS differential data input. Channel 2	
18	GND	Ground	
19	ACLK-	First pixel Negative LVDS differential clock input.	
20	ACLK+	First pixel Positive LVDS differential clock input.	
21	GND	Ground	
22	ARX3-	First pixel Negative LVDS differential data input. Channel 3	
23	ARX3+	First pixel Positive LVDS differential data input. Channel 3	
24	ARX4-	First pixel Negative LVDS differential data input. Channel 4	
25	ARX4+	First pixel Positive LVDS differential data input. Channel 4	
26	N.C.	No Connection	(1)
27	N.C.	No Connection	(1)

m

Issue Date:Aug 13,2009 Model No.: V315H1-LH3

Approval

 \oslash

28	BRX0-	Second pixel Negative LVDS differential data input. Channel 0	
29	BRX0+	Second pixel Positive LVDS differential data input. Channel 0	
30	BRX1-	Second pixel Negative LVDS differential data input. Channel 1	
31	BRX1+	Second pixel Positive LVDS differential data input. Channel 1	
32	BRX2-	Second pixel Negative LVDS differential data input. Channel 2	
33	BRX2+	Second pixel Positive LVDS differential data input. Channel 2	
34	GND	Ground	
35	BCLK-	Second pixel Negative LVDS differential clock input.	
36	BCLK+	Second pixel Positive LVDS differential clock input.	
37	GND	Ground	
38	BRX3-	Second pixel Negative LVDS differential data input. Channel 3	
39	BRX3+	Second pixel Positive LVDS differential data input. Channel 3	
40	BRX4-	Second pixel Negative LVDS differential data input. Channel 4	
41	BRX4+	Second pixel Positive LVDS differential data input. Channel 4	
42	N.C.	No Connection	(1)
43	N.C.	No Connection	(1)
44	GND	Ground	
45	GND	Ground	
46	GND	Ground	
47	N.C.	No Connection	(1)
48	VCC	+12V power supply	
49	VCC	+12V power supply	
50	VCC	+12V power supply	
51	VCC	+12V power supply	

CNF1 Connector Pin Assignment (FI-RE41S-HF(JAE) or equivalent)

Pin	Name	Description	Note
1	GND	Ground	
2	N.C.	No Connection	(1)
3	N.C.	No Connection	(1)
4	N.C.	No Connection	(1)
5	N.C.	No Connection	(1)

14

OPTOELECTRONICS CORP.

m

屏库:全球液晶屏交易中心

Issue Date:Aug 13,2009 Model No.: V315H1-LH3

6	N.C.	No Connection	(1)
7	N.C.	No Connection	(1)
8	N.C.	No Connection	(1)
9	GND	Ground	
10	CRX0-	Third pixel Negative LVDS differential data input. Channel 0	
11	CRX0+	Third pixel Positive LVDS differential data input. Channel 0	
12	CRX1-	Third pixel Negative LVDS differential data input. Channel 1	
13	CRX1+	Third pixel Positive LVDS differential data input. Channel 1	
14	CRX2-	Third pixel Negative LVDS differential data input. Channel 2	
15	CRX2+	Third pixel Positive LVDS differential data input. Channel 2	
16	GND	Ground	
17	CCLK-	Third pixel Negative LVDS differential clock input.	
18	CCLK+	Third pixel Positive LVDS differential clock input.	
19	GND	Ground	
20	CRX3-	Third pixel Negative LVDS differential data input. Channel 3	
21	CRX3+	Third pixel Positive LVDS differential data input. Channel 3	
22	CRX4-	Third pixel Negative LVDS differential data input. Channel 4	
23	CRX4+	Third pixel Positive LVDS differential data input. Channel 4	
24	N.C.	No Connection	(1)
25	N.C.	No Connection	(1)
26	DRX0-	Fourth pixel Negative LVDS differential data input. Channel 0	
27	DRX0+	Fourth pixel Positive LVDS differential data input. Channel 0	
28	DRX1-	Fourth pixel Negative LVDS differential data input. Channel 1	
29	DRX1+	Fourth pixel Positive LVDS differential data input. Channel 1	
30	DRX2-	Fourth pixel Negative LVDS differential data input. Channel 2	
31	DRX2+	Fourth pixel Positive LVDS differential data input. Channel 2	
32	GND	Ground	
33	DCLK-	Fourth pixel Negative LVDS differential clock input.	
34	DCLK+	Fourth pixel Positive LVDS differential clock input.	
35	GND	Ground	
36	DRX3-	Fourth pixel Negative LVDS differential data input. Channel 3	

Issue Date:Aug 13,2009 Model No.: V315H1-LH3

Approval

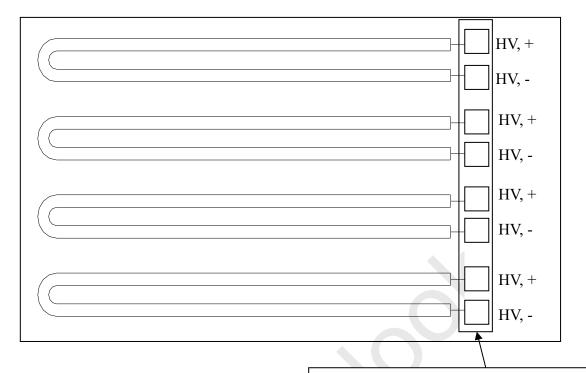
37	DRX3+	Fourth pixel Positive LVDS differential data input. Channel 3	
38	DRX4-	Fourth pixel Negative LVDS differential data input. Channel 4	
39	DRX4+	Fourth pixel Positive LVDS differential data input. Channel 4	
40	N.C.	No Connection	(1)
41	N.C.	No Connection	(1)

Note (1) Please be reserved to open.

Note (2) Low or Open: VESA Format (Default), High: JEIDA Format.

Note (3) LVDS 4-port Data Mapping

()		
Port	Channel of LVDS	Data Stream
1st Port	First Pixel	1, 5, 9,1913, 1917
2nd Port	Second Pixel	2, 6, 10,1914, 1918
3rd Port	Third Pixel	3, 7, 11,1915, 1919
4th Port	Fourth Pixel	4, 8, 12,1916, 1920


Issue Date:Aug 13,2009 Model No.: V315H1-LH3

Approval

5.2 BACKLIGHT UNIT

The backlight interface for high voltage side is Yeoho 90050GS-32DLQ or JST E08B-KCBSH-450

Yeoho 90050GS-32DLQ or JST E08B-KCBSH-450

Issue Date:Aug 13,2009 Model No.: V315H1-LH3

5.3 INVERTER UNIT

CN1(Header): CviLux CI0114M1HR0-LA

OPTOELECTRONICS CORP.

Pin No.	Symbol	Description
1		
2		
3	VBL	+24V Power input
4		
5		
6		
7		
8	GND	Ground
9		
10		
11	ERR	Normal (GND) Abnormal (open collector)
12	BLON	Backlight on/off control
13	I_PWM	Internal PWM control signal
14	E_PWM	External PWM control signal

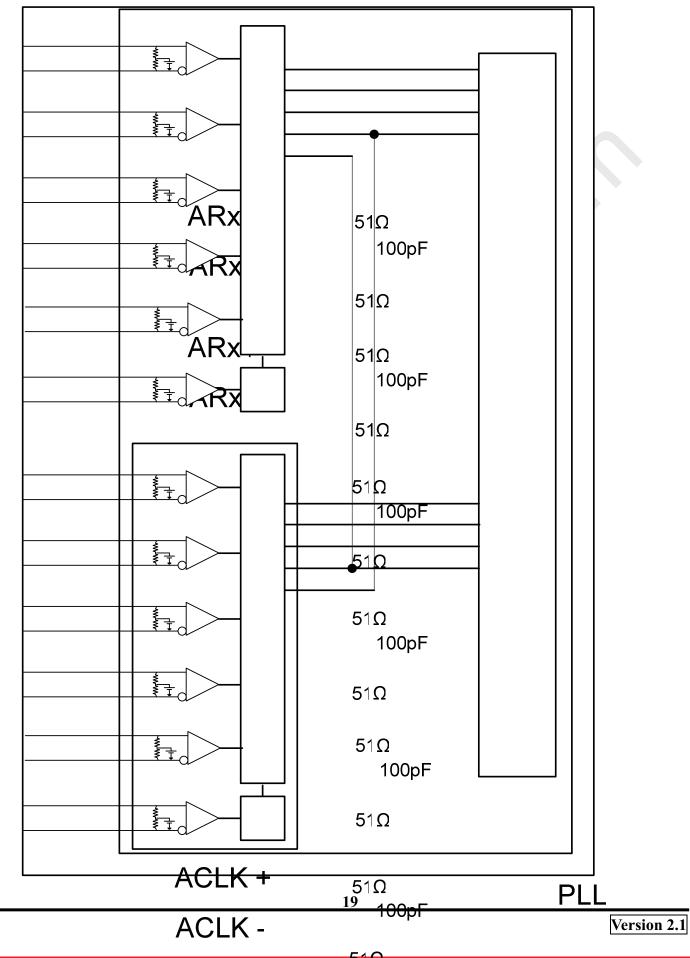
Notice:

#PIN 13: Internal PWM control (Use Pin 13): Pin 14 must open.

#PIN 14: External PWM control (Use Pin 14): Pin 13 must open.

#Pin 13(I_PWM) and Pin 14(E_PWM) can not open in same period.

Version 2.1


18

Issue Date:Aug 13,2009 Model No.: V315H1-LH3

5.4 BLOCK DIAGRAM OF INTERFACE

One step solution for LCD / PDP / OLED panel application: Datasneet, inventory and accessory! www.panelook.com

Issue Date:Aug 13,2009 Model No.: V315H1-LH3

Approval

AR0~AR9: First pixel R data AG0~AG9: First pixel G data AB0~AB9: First pixel B data BR0~BR9: Second pixel R data BG0~BG9: Second pixel G data BB0~BB9: Second pixel B data DE: Data enable signal DCLK: Data clock signal

The third and fourth pixel are followed the same rules.

CR0~CR9: Third pixel R data

CG0~CG9: Third pixel G data CB0~CB9: Third pixel B data

DR0~DR9: Fourth pixel R data

DG0~DG9: Fourth pixel G data

DB0~DB9: Fourth pixel B data

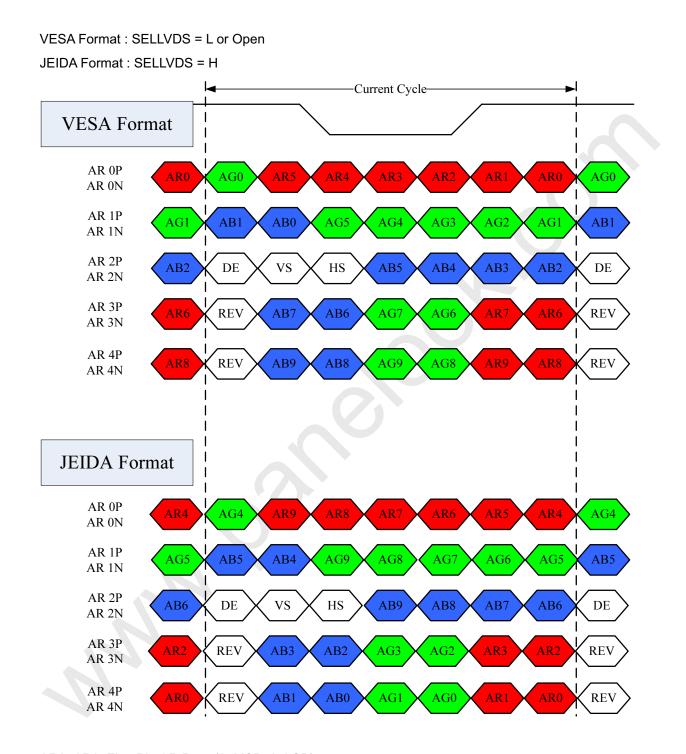
Note (1) A ~ D channel are first, second, third and fourth pixel respectively.

Note (2) The system must have the transmitter to drive the module.

Note (3) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.

OPTOELECTRONICS CORP.

屏库:全球液晶屏交易中心



Issue Date:Aug 13,2009 Model No.: V315H1-LH3

5.5 LVDS INTERFACE

m

AR0~AR9: First Pixel R Data (9; MSB, 0; LSB) AG0~AG9: First Pixel G Data (9; MSB, 0; LSB) AB0~AB9: First Pixel B Data (9; MSB, 0; LSB) DE : Data enable signal DCLK : Data clock signal

21

Issue Date:Aug 13,2009 Model No.: V315H1-LH3

Approval

RSVD : Reserved

5.6 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 10-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

															D	ata	Sigr	nal													
	Color					Re	ed									Gre	een					Blue									
		R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	В9	B8	B7	B6	B5	В4	В3	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red (2)	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:			:	:	:	:	:	:	÷	÷	··	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:			:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	;	:	:	:	:	:	:	:	:	:
Red	Red (1021)	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
riou	Red (1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1023)	1	1	1 (1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Gray	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Scale	Ċ.	:	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green (1021)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0
	Green (1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	Green (1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Scale	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

 $\langle \! \! \rangle$

CHIME OPTOELECTRONICS CORP.

Issue Date:Aug 13,2009 Model No.: V315H1-LH3

Approval

Blue (1021)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1
Blue (1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
Blue (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

			-				
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	1/Tc	60	74.25	80	MHz	(1)
LVDS Receiver Clock	Input cycle to cycle jitter	Trcl	-	-	200	ps	(1)
LVDS Receiver Data	Setup Time	Tlvsu	600	-	-	ps	(1)
LVDS Receiver Data	Hold Time	Tlvhd	600	-		ps	(1)
	Frame Rate	Fr5		120		Hz	(2)
	Trame Rate	Fr6		100		Hz	(-)
Vertical Active Display Term	Total	Τv	1115	1125	1135	Th	Tv=Tvd+Tvb
	Display	Tvd	1080	1080	1080	Th	-
	Blank	Tvb	35	45	55	Th	-
	Total	Th	525	550	575	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	480	480	480	Tc	_
	Blank	Thb	45	70	95	Tc	-

Note (1) Since this module is operated in DE only mode, Hsync and Vsync input signals should be set to low

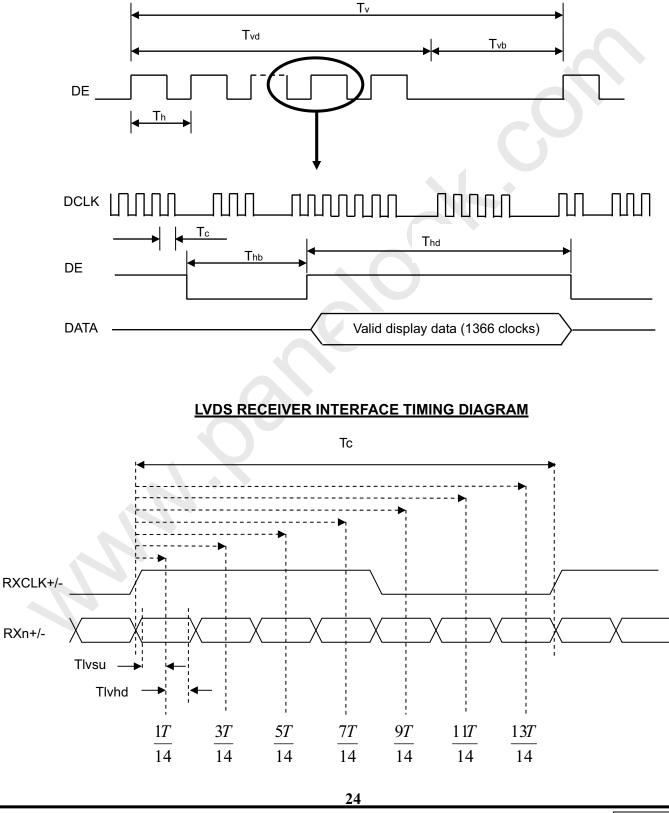
logic level. Otherwise, this module would operate abnormally.

(2) Please refer to 5.1 for detail information.

OELECTRONICS CORP.

OP

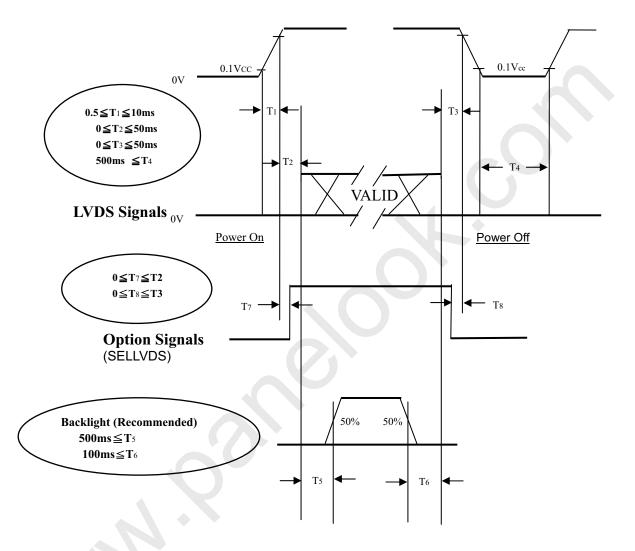
m


屏库:全球液晶屏交易中心

Issue Date:Aug 13,2009 Model No.: V315H1-LH3

INPUT SIGNAL TIMING DIAGRAM

Issue Date:Aug 13,2009 Model No.: V315H1-LH3



Approval

6.2 POWER ON/OFF SEQUENCE

(Ta = 25 ± 2 °C)

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

Note (1):The supply voltage of the external system for the module input should follow the definition of Vcc. Note (2): Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD

operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.

Note(3):In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0,that maybe cause electrical overstress failure.

Note (4):T4 should be measured after the module has been fully discharged between power off and on period.

Note (5): Interface signal shall not be kept at high impedance when the power is on.

Issue Date:Aug 13,2009 Model No.: V315H1-LH3

Approval

7. OPTICAL CHARACTERISTICS

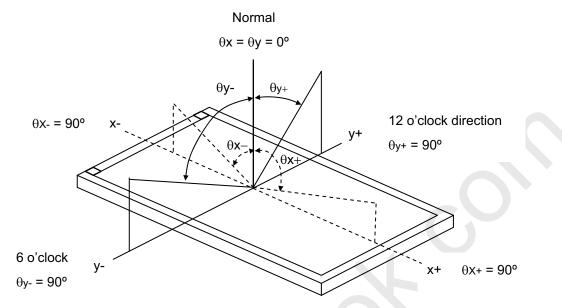
7.1 TEST CONDITIONS

Item	Symbol	Value	Unit			
Ambient Temperature	Ta	25±2	°C			
Ambient Humidity	На	50±10	%RH			
Supply Voltage	V _{CC}	5.0	V			
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"					
Lamp Current	ΙL	12.3 ± 0.5	mA			
Oscillating Frequency (Inverter)	Fw	63±3	KHz			
Frame rate	Fr	60	Hz			

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

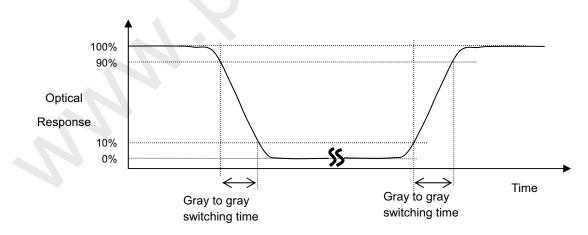
lte	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR		3000	4000		-	(2)
Response Time		Gray to gray average			4.5	9	ms	(3)
Center Luminance of White		L _C		360	450		cd/m ²	(4)
White Variation		δW		-	-	1.3	-	(7)
Cross Talk		СТ		-	-	4.0	%	(5)
Color Chromaticity	Red	Rx	θ _x =0°, θ _Y =0° Viewing Angle at Normal Direction		0.633	Тур +0.03	-	(6)
		Ry		Тур -0.03	0.322		-	
	Green	Gx			0.288		-	
		Gy			0.603		-	
	Blue	Bx			0.146		-	
		Ву			0.055		-	
	White	Wx			0.280		-	
		Wy			0.290		-	
	Color Gamut	CG		68	72		%	NTSC
Viewing	Horizontal	θ_x +	CR≥20	80	88	-	Deg.	(1)
		θ _x -		80	88	-		
	Vertical	θγ+		80	88	-		
		θγ-		80	88	-		


Issue Date:Aug 13,2009 Model No.: V315H1-LH3

Note (1) Definition of Viewing Angle $(\theta x, \theta y)$:

Viewing angles are measured by EZ-Contrast 160R (Eldim)

Note (2) Definition of Contrast Ratio (CR):


The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L1023 / L0

L1023: Luminance of gray level 1023

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

Note (3) Definition of Gray to Gray Switching Time :

The driving signal means the signal of gray level 0, 255, 511, 767, 1023

Gray to gray average time means the average switching time of gray level 0, 255, 511, 767, 1023 to each other.

Issue Date:Aug 13,2009 Model No.: V315H1-LH3

Approval

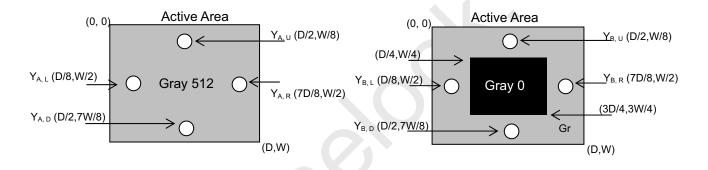
Note (4) Definition of Luminance of White (L_C, L_{AVE}):

Measure the luminance of gray level 255 at center point and 5 points

$$L_{AVE} = [L (1)+L (2)+L (3)+L (4)+L (5)] / 5$$

where L (x) is corresponding to the luminance of the point X at the figure in Note (7).

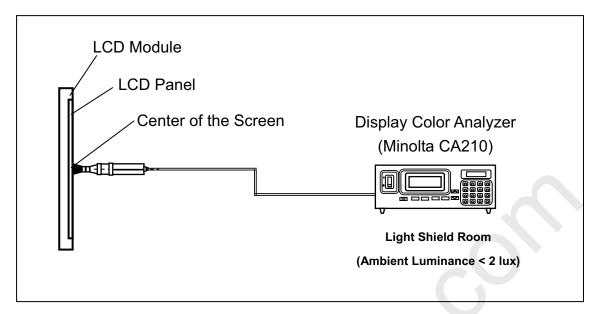
Note (5) Definition of Cross Talk (CT):


 $CT = |Y_B - Y_A| / Y_A \times 100$ (%)

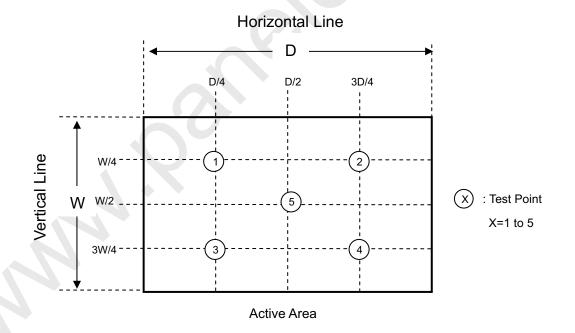
Where:

(a)

Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)


 Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

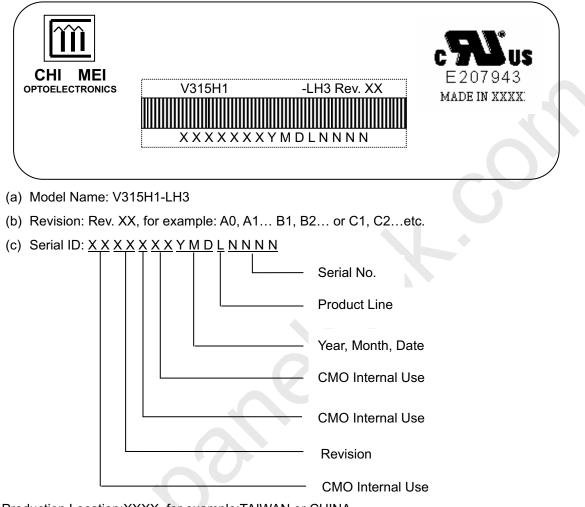
Issue Date:Aug 13,2009 Model No.: V315H1-LH3


 $\langle p \rangle$

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 1023 at 5 points

δW = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]


Issue Date:Aug 13,2009 Model No.: V315H1-LH3 Approval

8. DEFINITION OF LABELS

8.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(d) Production Location:XXXX, for example:TAIWAN or CHINA .

Serial ID includes the information as below:

(a) Manufactured Date: 2001=1, 2002=2, 2003=3, 2004=4....2010=0,2011=1,2012=2....

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1^{st} to 31^{st} , exclude I ,O, and U.

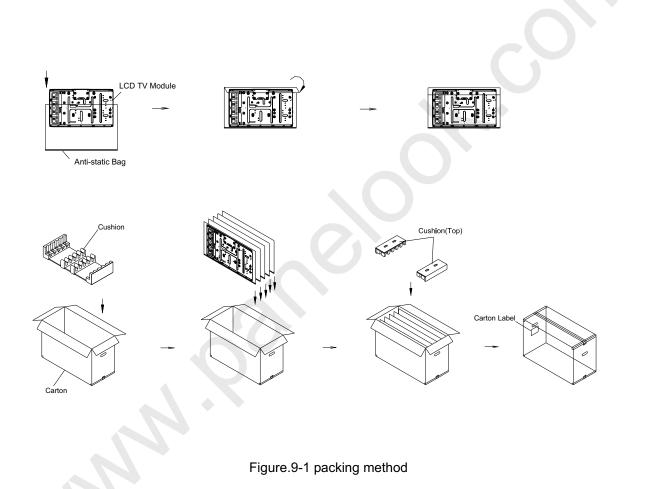
- (b) Revision Code: Cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

Issue Date:Aug 13,2009 Model No.: V315H1-LH3

9. PACKAGING

OP

9.1 PACKING SPECIFICATIONS


(1) 5 LCD TV modules / 1 Box

TOELECTRONICS CORP.

- (2) Box dimensions : 826(L) X 376 (W) X 540 (H)
- (3) Weight : approximately 30Kg (5 modules per box)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method

OPTOELECTRONICS CORP.

 $\langle \mathcal{P} \rangle$

屏库:全球液晶屏交易中心

Issue Date:Aug 13,2009 Model No.: V315H1-LH3

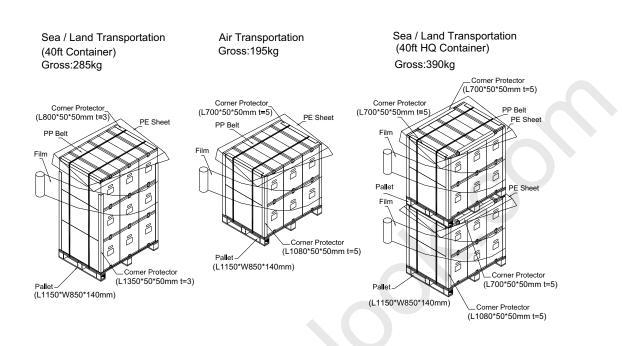


Figure.9-2 packing method

屏库:全球液晶屏交

Issue Date:Aug 13,2009 Model No.: V315H1-LH3

Approval

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

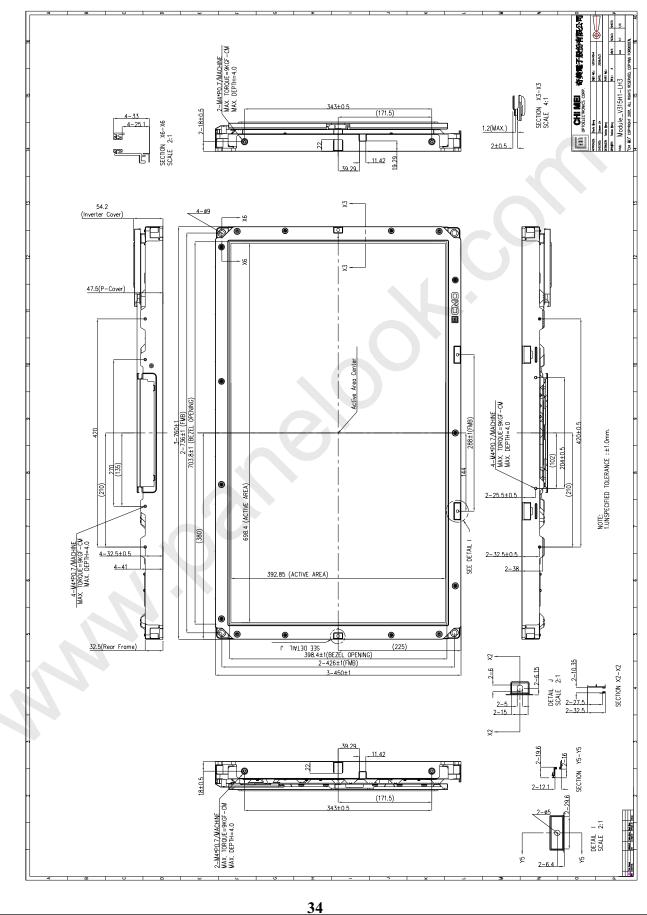
10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

10.3 SAFETY STANDARDS

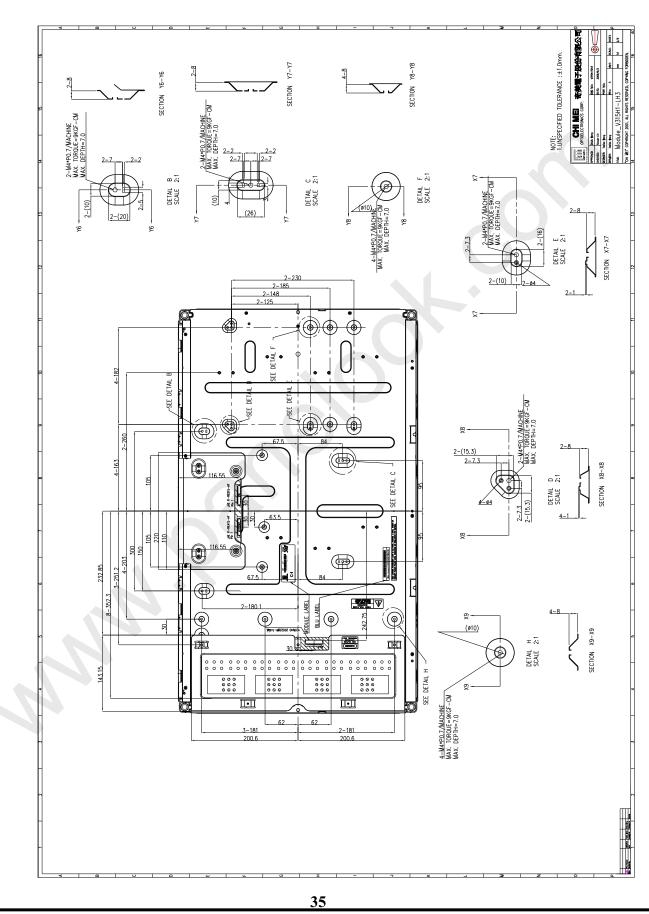
The LCD module should be certified with safety regulations as follows:

Regulatory	Item	Standard
Information Technology equipment	UL	UL 60950-1: 2003
	cUL	CAN/CSA C22.2 No.60950-1-03
	СВ	IEC 60950-1:2001
Audio/Video Apparatus	UL	UL 60065: 2003
	cUL	CAN/CSA C22.2 No.60065-03
	СВ	IEC 60065:2001


If the module displays the same pattern for a long period of time, the phenomenon of image sticking may be occurred.

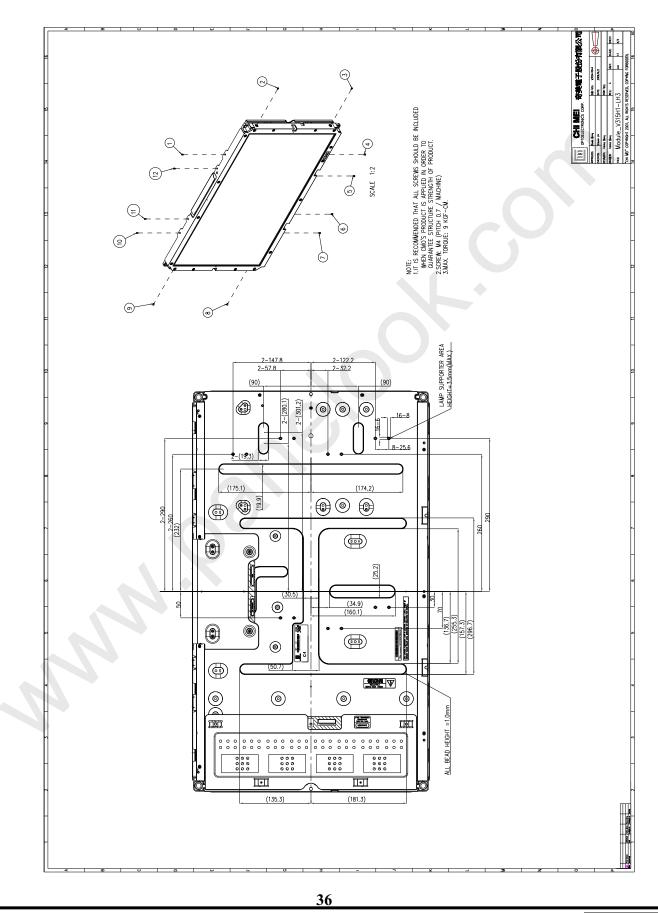
Issue Date:Aug 13,2009 Model No.: V315H1-LH3

11. MECHANICAL CHARACTERISTICS



Issue Date:Aug 13,2009 Model No.: V315H1-LH3

Approval



Issue Date:Aug 13,2009 Model No.: V315H1-LH3

