

PRODUCT SPECIFICATION

- □ Tentative Specification
- □ Preliminary Specification
- Approval Specification

MODEL NO.: V315H3 **SUFFIX: L02**

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your consignature and comments.	firmation with your

	Approved By	Checked By	Prepared By
(Chao-Chun Chung	Josh Chi	Edouard Huang

CONTENTS

Version 2.0	2	Date : 13 Apr 2011
		29
7. OPTICAL CHARACTERISTICS		29
6.2 POWER ON/OFF SEQUENCE	Ξ	28
		25
		25
5.7 FLICKER (Vcom) ADJUSTME	NT	24
		23
		22
		20
		19
		19
		16
		16
4.1 TFT LCD MODULE		15
		15
3.2 BACKLIGHT CONNECTOR P	IN CONFIGURATION	11
3.1 TFT LCD MODULE		9
		9
2.3.2 BACKLIGHT INVERTER	₹ UNIT	8
		3
		3
2.1 ABSOLUTE RATINGS OF EN	VIRONMENT	
1.5 MECHANICAL SPECIFICATION)NS	6
		5
		5
1.2 FEATURES		
		5

7.2 OPTICAL SPECIFICATIONS	30
PRECAUTIONS	33
8.1 ASSEMBLY AND HANDLING PRECAUTIONS	33
8.2 SAFETY PRECAUTIONS	33
9. DEFINITION OF LABELS	
9.1 CMI MODULE LABEL	34
10. PACKAGING	35
10.1 PACKAGING SPECIFICATIONS	35
10.2 PACKAGING METHOD	35
11 MECHANICAL CHARACTERISTIC	37

Version 2.0 3 Date: 13 Apr 2011

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

REVISION HISTORY

Date: 13 Apr 2011 Version 2.0

PRODUCT SPECIFICATION

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V315H3-L02 is a 31.5" TFT Liquid Crystal Display module with 4U-type CCFL Backlight unit and 2ch-LVDS interface. This module supports 1920 x 1080 Full HDTV format and can display 16.7M colors (8-bit). The inverter module for backlight is built-in.

1.2 FEATURES

- -High brightness (450 nits)
- Ultra-high contrast ratio (6000:1)
- Fast response time (gray to gray average 8.5ms)
- High color saturation NTSC 72%
- Full HDTV (1920 x 1080 pixels) resolution, true HDTV format
- Ultra wide viewing angle: 176(H)/176(V)(CR≥20)with Super MVA technology
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Optimized response time for 60Hz frame rate
- Color reproduction (nature color)
- Low color shift function
- RoHs compliance

1.3 APPLICATION

- TFT LCD TVs
- Multi-Media Display

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	698.4 (H) x 392.85 (V) (31.51" diagonal)	mm	(4)
Opening Area	703.8 (H) x 399.0 (V)		(1)
Driver Element	a-si TFT active matrix	-	
Pixel Number	1920 x R.G.B. x 1080	pixel	
Pixel Pitch(Sub Pixel)	0.12125 (H) x 0.36375 (V)	mm	
Pixel Arrangement	RGB vertical stripe	-	
Power consumption	74	W	
Display Colors	Transmissive mode / Normally black	-	
Display Operation Mode	Anti-Glare coating (Haze 11%),Hard coating (3H)	-	
Surface Treatment	Anti-Glare coating (Haze 11%),Hard coating (3H)	mm	(1)

Note (1) Please refer to the attached drawings in chapter 9 for more information about the front and back outlines.

Note (2) Please refer sec 3.1 and 3.2 for more information of Power consumption

Note (3) The spec. of the surface treatment is temporarily for this phase. CMI reserves the rights to change this feature.

1.5 MECHANICAL SPECIFICATIONS

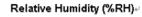
Item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	759	760	761	mm	(1)
Module Size	Vertical (V)	449	450	451	mm	(1)
Woddie Oize	Depth (D)	41	42	43	mm	(2)
	Depth (D)	53.8	54.8	55.8	mm	(3)
Weight			5211		g	-

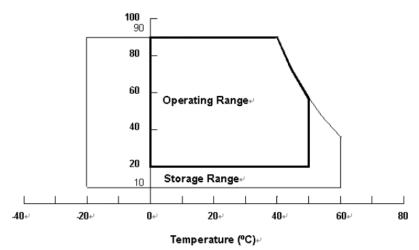
Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Module Depth is between bezel to T-CON cover.

Note (3) Module Depth is between bezel to Inverter cover.

PRODUCT SPECIFICATION


2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Offic		
Storage Temperature	TST	-20	+60	°C	(1)	
Operating Ambient Temperature	TOP	0	50	°C	(1), (2)	
Shock (Non-Operating)	SNOP	-	50	G	(3), (5)	
Vibration (Non-Operating)	VNOP	-	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time, It is highly recommended to store the module with temperature from 0 to 35 $^{\circ}$ C at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Itom	Item Symbol		lue	Unit	Note
nem	Symbol	Min.	Max.	Unit	Note
Power Supply Voltage	VCC	-0.3	13.5	V	(1)
Logic Input Voltage	VIN	-0.3	3.6	V	(1)

2.3.2 BACKLIGHT INVERTER UNIT

ltore	Symbol	Value			Value		Unit	Note
Item	Symbol	Min.	Max.	Offic	Note			
Lamp Voltage	V	-	3000	VRMS				
Power Supply Voltage	VBL	0	30	V	(1)			
Control Signal Level	-	-0.3	7	V	(1), (3)			

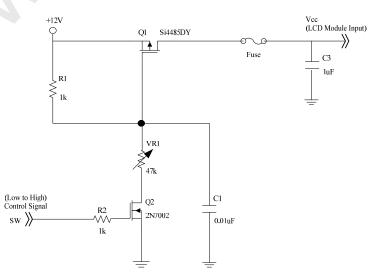
Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) No moisture condensation or freezing.

Note (3) The control signals include On/Off Control, External PWM Control and DET_5V signal for inverter status output.

PRODUCT SPECIFICATION

3. ELECTRICAL CHARACTERISTICS

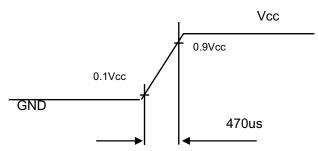

3.1 TFT LCD MODULE

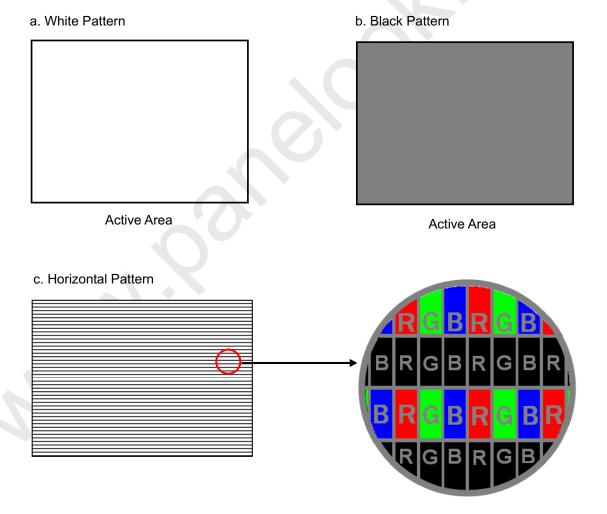
 $(Ta = 25 \pm 2 \, ^{\circ}C)$

Parameter		C) make al	Value			l lmi4	Note	
	Parame	eter	Symbol	Min.	Тур.	Max.	Unit	Note
Power Supply Voltage		V _{CC}	10.8	12	13.2	V	(1)	
Rush Curr	ent		I _{RUSH}	_	_	3.5	Α	(2)
		White Pattern		_	4.18	5.16		
Power cor	sumption	Black Pattern	P _T	_	4.03	4.8	W	(3)
		Horizontal Stripe		_	6.48	8.16		
White Pattern Power Supply Current Black Pattern		_	_	0.35	0.43	Α		
		Black Pattern	_	_	0.34	0.40	Α	(3)
		Horizontal Stripe	_	- (0.54	0.68	А	
	Differential Ir Threshold Vo	nput High oltage	V_{LVTH}	+100		_	mV	
	Differential Ir Threshold Vo	put Low	V_{LVTL}		_	-100	mV	
LVDS interface		Common Input Voltage		1.0	1.2	1.4	V	(4)
	Differential ir (single-end)	Differential input voltage (single-end)		200	_	600	mV	
		Terminating Resistor		_	100	_	ohm	
CMIS	Input High Ti	nreshold Voltage	V _{IH}	2.7	_	3.3	V	
interface Input Low Threshold Volt		reshold Voltage	V_{IL}	0	_	0.7	V	

Note (1) The module should be always operated within the above ranges.

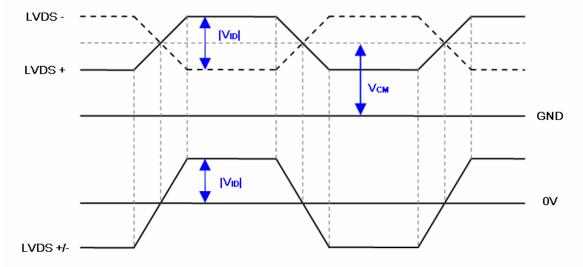
Note (2) Measurement Conditions:





PRODUCT SPECIFICATION

Vcc rising time is 470us


Note (3) The specified power supply current and power consumption is under the conditions at Vcc = 12 V, Ta = 25 ± 2 °C, f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

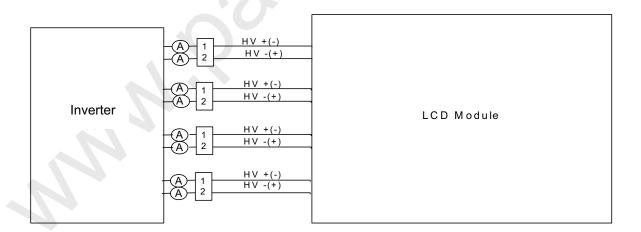
Note (4) The LVDS input characteristics are as follows :

3.2 BACKLIGHT CONNECTOR PIN CONFIGURATION

3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

Daramatar	Cumbal		Value	Linit	Note	
Parameter	Symbol	Min.	Min. Typ. Ma		Unit	Note
Lamp Input Voltage	V_L	-	1560	-	V_{RMS}	
Lamp Current	ΙL	11.8	12.3	12.8	mA _{RMS}	(1)
Lamp Turn On Voltage	V_{S}	ı	-	2710	V_{RMS}	Ta = 0 °C (2)
Lamp rum on voltage	٧s	-	-	2260	V_{RMS}	Ta = 25 °C (2)
Operating Frequency	F_L	40	-	70	KHz	(3)
Lamp Life Time	L_BL	50,000	60,000	-	Hrs	(4)

3.2.2 INVERTER CHARACTERISTICS (Ta = 25 ± 2 °C)


Parameter	Symbol		Value		Unit	Note
Farameter	Symbol	Min.	Тур.	Max.	Offic	Note
Total Power Consumption	P _{IP}	-	74	78	W	(5), (6), IL =12.3mA
Power Supply Voltage	V _{BL}	22.8	24	25.2	V_{DC}	
Power Supply Current	I _{BL}	-	3.08	3.25	А	Non Dimming
Input Ripple Noise	-	ı	-	912	mV_{p-p}	V _{BL} =22.8V
Oscillating Frequency	F _W	60	63	66	KHz	(3)
Dimming Frequency	F _B	150	160	170	Hz	
Minimum Duty Ratio	D _{MIN}	10	20		Hz	(7)

Note (1) Lamp current is measured by utilizing AC current probe and its value is average by measuring master and slave board.:

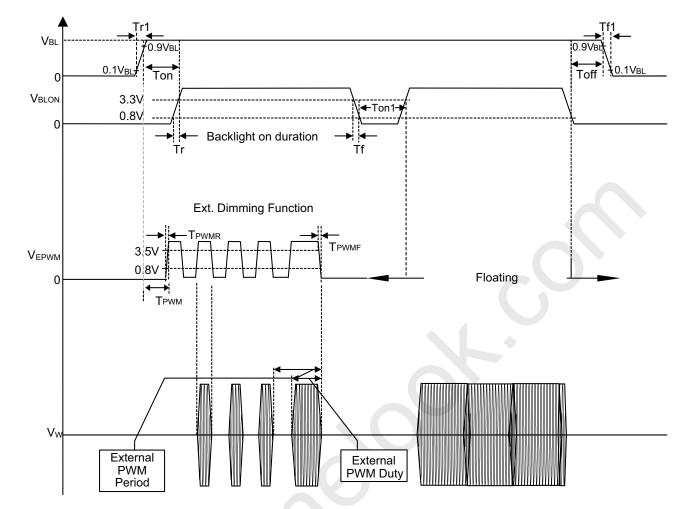
PRODUCT SPECIFICATION

- Note (2) The lamp starting voltage V_S should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency of the display input signals, and it may result in line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point of lamp.) as the time in which it continues to operate under the condition at Ta = 25 ±2 $^{\circ}$ C and I_L = 11.8~12.8 mArms.
- Note (5) The power supply capacity should be higher than the total inverter power consumption PBL. Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when inverter dimming.
- Note (6) The measurement condition of Max. value is based on 31.5" backlight unit under input voltage 24V, average lamp current 12.6 mA and lighting 30 minutes later.
- Note (7) 10% minimum duty ratio is only valid for electrical operation

PRODUCT SPECIFICATION

3.2.3 INVERTER INTERFACE CHARACTERISTICS

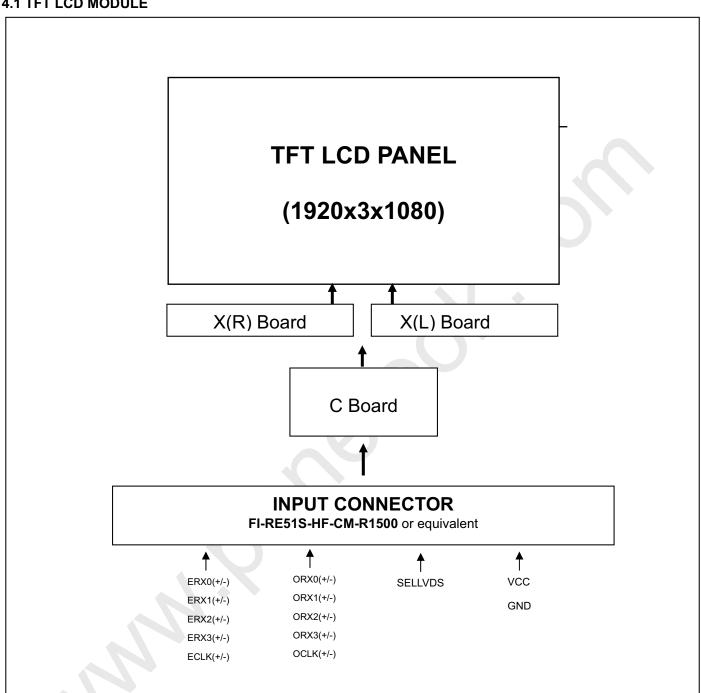
ITEM		SYMBOL	TEST CONDITION	MIN	TYPE	MAX	UNIT	NOTE
DET 6V		DET 51/	_	4.5	5.0	5.5	V	Abnormal
DET_5V		DET_5V	1	0	-	0.8	٧	Normal
On/Off Control Voltage	ON	.,,		3.3	_	5.3	V	
On/Off Control Voltage	OFF	V_{BLON}	1	0		0.8	V	
External PWM Control	HI	V	1	3.5		5.3	V	Duty on
Voltage	LO	V _{EPWM}		0	_	0.8	٧	Duty off
Control Signal Rising	Time	Tr	_	_	_	100	ms	
Control Signal Falling	Time	Tf		-	_	100	ms	
VBL Rising Time)	Tr1	_	30	_	-	ms	10%-90%V _{BL}
VBL Falling Time	e	Tf1	_	30	-	-	ms	10 /0-90 /0 V BL
PWM Signal Rising	Time	T _{PWMR}	I	1	_	100	us	
PWM Signal Falling	Time	T _{PWMF}		-		100	us	
Input impedance)	R _{IN}	I	1		1	МΩ	
PWM Delay T	ïme	T _{PWM}	-	100		1	mS	
BLON Delay Tim		T _{on}	-	300	_	_	mS	
BLOIN Delay Tilli		T _{on1}		300	_	_	mS	
BLON Off Time		T _{OFF}		300	_	_	mS	

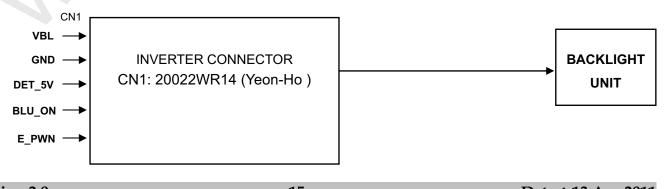

- Note (1) The Dimming signal should be valid before backlight turns on by BLON signal. It is inhibited to change the internal/external PWM signal during backlight turn on period.
- Note (2) The power sequence and control signal timing are shown in the following figure. For a certain reason, the inverter has a possibility to be damaged with wrong power sequence and control signal timing.
- Note (3) While system is turned ON or OFF, the power sequences must follow as below descriptions:

Turn ON sequence: VBL → PWM signal → BLON Turn OFF sequence: BLOFF → PWM signal → VBL

PRODUCT SPECIFICATION

Date: 13 Apr 2011 Version 2.0





PRODUCT SPECIFICATION

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

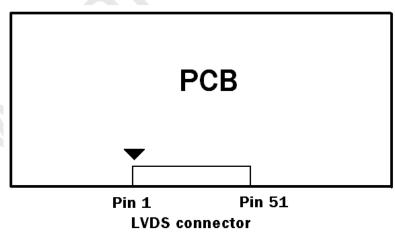
5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD Module Input

CNF1 Connector Part No.: JAE Taiwan (台灣航空電子) FI-RE51S-HF-CM-R1500 or equivalent.

Pin	Name	Description	Note
1	VCC	+12V power supply	
2	VCC	+12V power supply	
3	VCC	+12V power supply	
4	VCC	+12V power supply	
5	VCC	+12V power supply	
6	N.C.	No Connection	(3)
7	GND	Ground	
8	GND	Ground	
9	GND	Ground	
10	ORX0-	Odd pixel Negative LVDS differential data input. Channel 0	
11	ORX0+	Odd pixel Positive LVDS differential data input. Channel 0	
12	ORX1-	Odd pixel Negative LVDS differential data input. Channel 1	(1)
13	ORX1+	Odd pixel Positive LVDS differential data input. Channel 1	(1)
14	ORX2-	Odd pixel Negative LVDS differential data input. Channel 2	
15	ORX2+	Odd pixel Positive LVDS differential data input. Channel 2	
16	GND	Ground	
17	OCLK-	Odd pixel Negative LVDS differential clock input	(1)
18	OCLK+	Odd pixel Positive LVDS differential clock input.	(1)
19	GND	Ground	
20	ORX3-	Odd pixel Negative LVDS differential data input. Channel 3	(1)
21	ORX3+	Odd pixel Positive LVDS differential data input. Channel 3	(1)
22	N.C.	No Connection	(2)
23	N.C.	No Connection	(3)
24	GND	Ground	
25	ERX0-	Even pixel Negative LVDS differential data input. Channel 0	
26	ERX0+	Even pixel Positive LVDS differential data input. Channel 0	
27	ERX1-	Even pixel Negative LVDS differential data input. Channel 1	(4)
28	ERX1+	Even pixel Positive LVDS differential data input. Channel 1	(1)
29	ERX2-	Even pixel Negative LVDS differential data input. Channel 2	
30	ERX2+	Even pixel Positive LVDS differential data input. Channel 2	
31	GND	Ground	
32	ECLK-	Even pixel Negative LVDS differential clock input.	/4\
33	ECLK+	Even pixel Positive LVDS differential clock input.	(1)

Date: 13 Apr 2011 Version 2.0 16



34 GND	Ground	
35 ERX3-	Even pixel Negative LVDS differential data input. Channel 3	
36 ERX3+	Even pixel Positive LVDS differential data input. Channel 3	(1)
37 N.C.	No Connection	(0)
38 N.C.	No Connection	(3)
39 GND	Ground	
40 SCL	EEPROM Serial Clock	
41 N.C.	No Connection	(3)
42 N.C.	No Connection	(3)
43 WP	EEPROM Write Protection	
44 SDA	EEPROM Serial Data	
45 SELLVDS	LVDS data format selection	(4)(5)
46 N.C.	No Connection	
47 N.C.	No Connection	
48 N.C.	No Connection	(3)
49 N.C.	No Connection	(3)
50 N.C.	No Connection	
51 N.C.	No Connection	

Note (1) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel

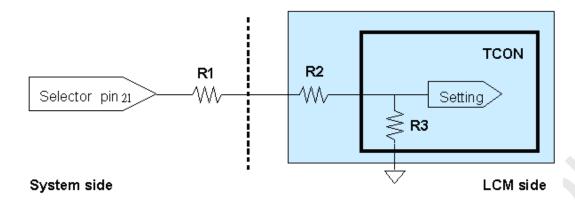
Note (2) LVDS connector pin order defined as follows

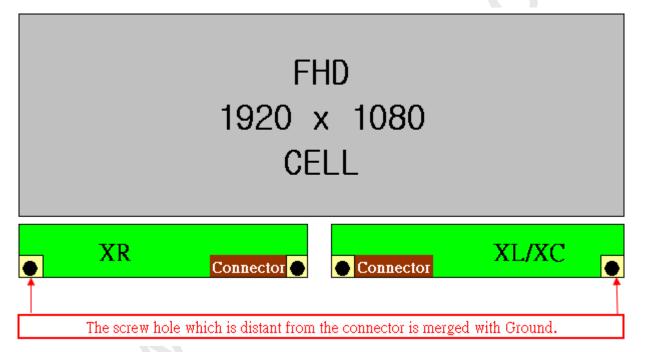
Note (3) Reserved for internal use. Please leave it open.

Note (4)

SELLVDS	Mode
L(default)	JEIDA
Н	VESA

L: Connect to GND, H: Connect to +3.3V



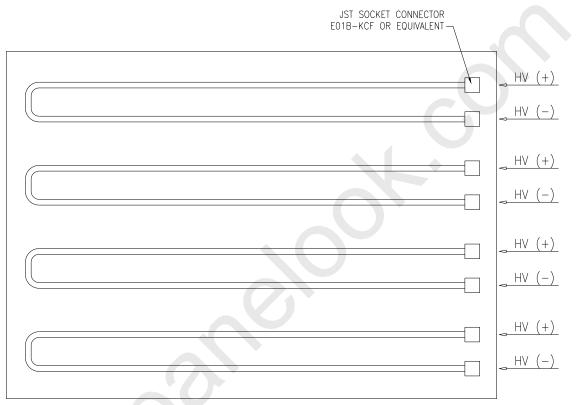

PRODUCT SPECIFICATION

Note (5) LVDS signal pin connected to the LCM side has the following diagram.

R1 in the system side should be less than 1K Ohm. (R1 < 1K Ohm)

Note (6) The screw hole which is distant from the connector is merged with Ground

PRODUCT SPECIFICATION


5.2 BACKLIGHT UNIT

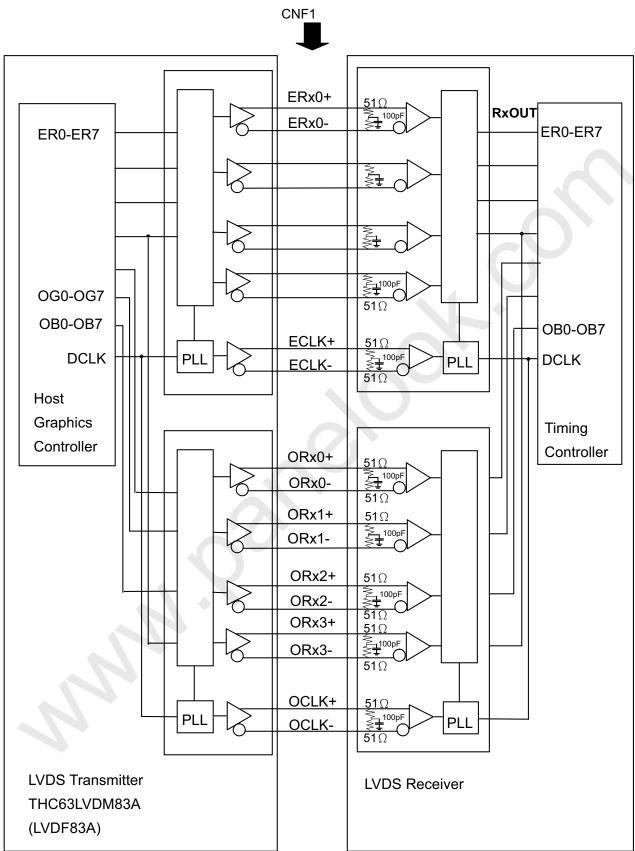
The pin configuration for the housing and leader wire is shown in the table below.

CN2-CN5 (Socket Connector): E01B-KCF or equivalent

Pin No.	Symbol	Description	Remark
1	HV	High Voltage	
	HV	High Voltage	

Note (1) The backlight interface housing for high voltage side is a model E01B-KCF, manufactured by JST or equivalent.

5.3 INVERTER UNIT


CN1(Header): 20022WR14 (Yeon-Ho)

Pin No.	Symbol	Description
1 2		·
3 4 5	VBL	+24V Power input
6 7		
8	GND	Ground
9	<u> </u>	
11	DET_5V	Check Lamp Ignition.
12	BLU_ON	BL ON/OFF
13	N.C.	No connect.
14	E_PWM	External PWM Control

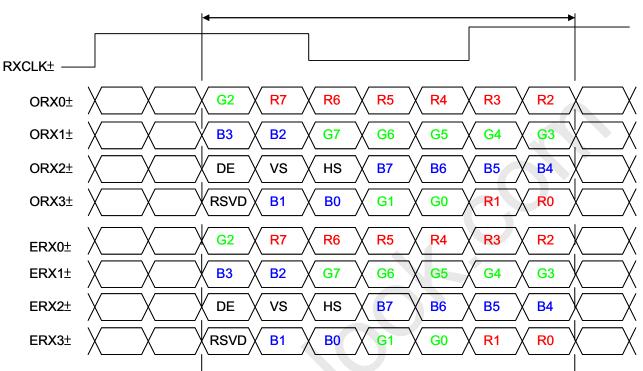
5.4 BLOCK DIAGRAM OF INTERFACE

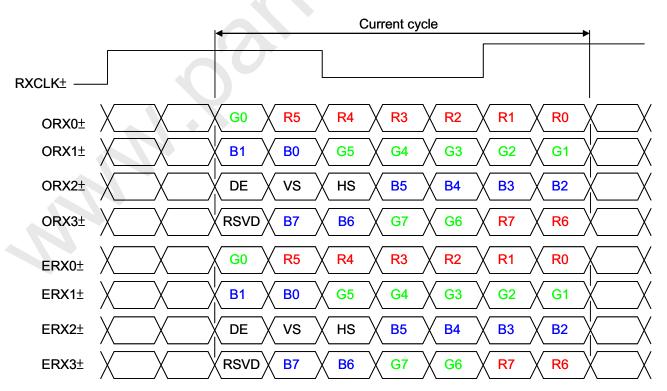
ER0~ER7: Even pixel R data
EG0~EG7: Even pixel G data
EB0~EB7: Even pixel B data
OR0~OR7: Odd pixel R data
OG0~OG7: Odd pixel G data
OB0~OB7: Odd pixel B data
DE: Data enable signal
DCLK: Data clock signal

Note (1) The system must have the transmitter to drive the module.

Note (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.

Note (3) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel.




PRODUCT SPECIFICATION

5.5 LVDS INTERFACE

JEDIA Format: SELLVDS=L or Open

VESA Format: SELLVDS=H

R0~R7: Pixel R Data (7; MSB, 0; LSB) G0~G7: Pixel G Data (7; MSB, 0; LSB) B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE: Data enable signal DCLK: Data clock signal

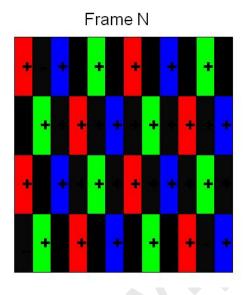
Notes (1) RSVD (reserved) pins on the transmitter shall be "H" or "L".

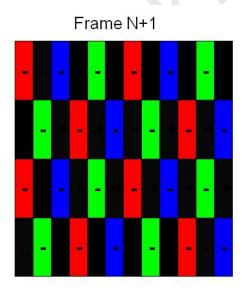
5.6 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

i.		ı																			<u> </u>				
												D	ata	Sigr	nal										
	Color				Re	ed							G	reer	1						Bli	ue			
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G	В7	В6	B5	B4	ВЗ	B2	В1	В
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	:	\ :	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale	: .		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	Red (253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red (254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	Green (253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green (254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green (255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0

PRODUCT SPECIFICATION


	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Gray Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue (253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Diue	Blue (254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1


Note (1) 0: Low Level Voltage, 1: High Level Voltage

5.7 FLICKER (Vcom) ADJUSTMENT

(1) Adjustment Pattern:

Inversion pattern was shown as below. If customer need below pattern, please directly contact with Account FAE.

(2) Adjustment method: (Digital V-com)

Programmable memory IC is used for Digital V-com adjustment in this model. CMI provide Auto Vcom tools to adjust Digital V-com. The detail connection and setting instruction, please directly contact with Account FAE or refer CMI Auto V-com adjustment OI.

PRODUCT SPECIFICATION

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

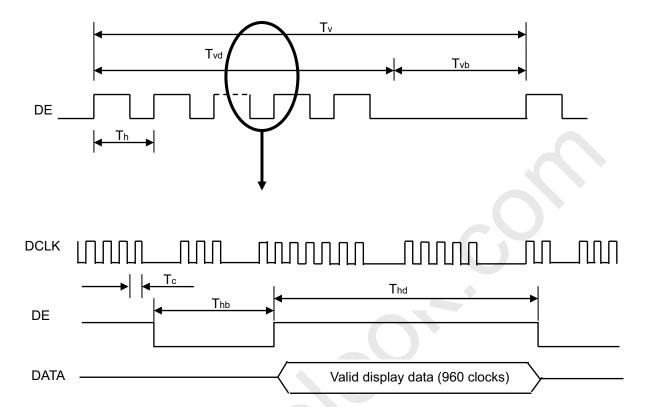
 $(Ta = 25 \pm 2 \, ^{\circ}C)$

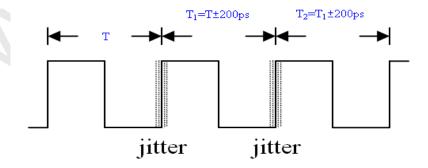
The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	F _{clkin} (=1/TC)	60	74.25	80	MHz	
LVDS	Input cycle to cycle jitter	T _{rcl}	_	_	200	ps	(3)
Receiver Clock	Spread spectrum modulation range	Fclkin_mod	F _{clkin} -2%	_	F _{clkin} +2%	MHz	(4)
	Spread spectrum modulation frequency	F _{SSM}	_	_	200	KHz	(4)
LVDS	Setup Time	Tlvsu	600	_		ps	
Receiver Data	Hold Time	Tlvhd	600			ps	(5)
	Frame Rate	F _{r5}	47	50	53	Hz	
Vertical	Traine Nate	F _{r6}	57	60	63	Hz	
Active Display	Total	Tv	1090	1125	1480	Th	Tv=Tvd+Tvb
Term	Display	Tvd	1080	1080	1080	Th	
	Blank	Tvb	10	45	400	Th	
Horizontal	Total	Th	1030	1100	1325	Тс	Th=Thd+Thb
Active	Display	Thd	960	960	960	Тс	
Display Term	Blank	Thb	70	140	365	Tc	

Note (1) Please make sure the range of pixel clock has follow the below equation:

Fclkin(max)
$$\geq$$
 Fr6 \times Tv \times Th
Fr5 \times Tv \times Th \geq Fclkin(min)

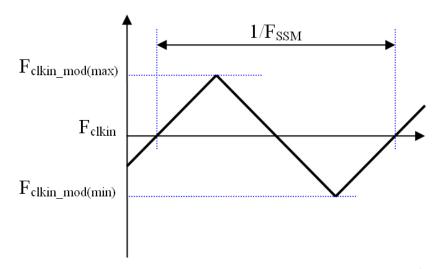

Note (2) This module is operated in DE only mode and please follow the input signal timing diagram below:



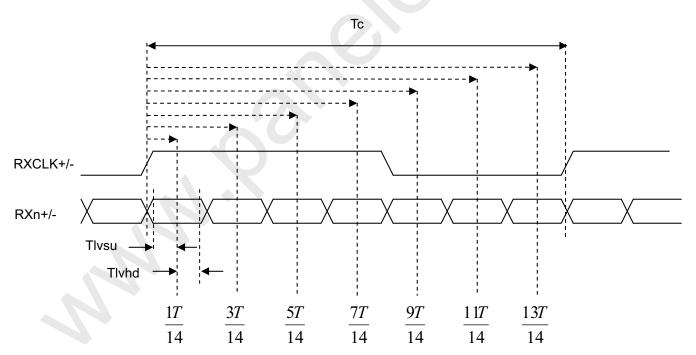
PRODUCT SPECIFICATION

INPUT SIGNAL TIMING DIAGRAM

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$



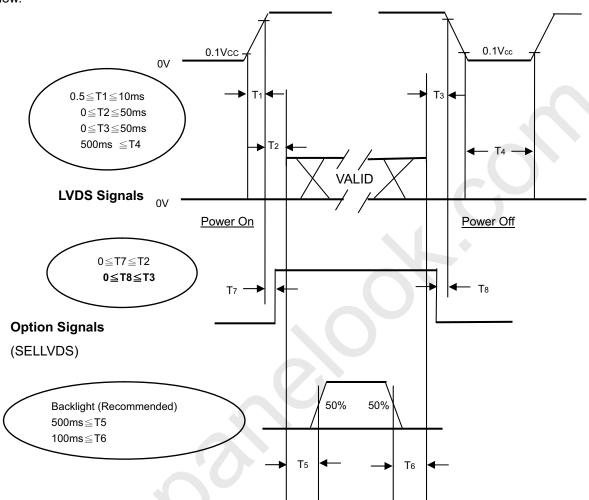
Date: 13 Apr 2011 Version 2.0


PRODUCT SPECIFICATION

Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM



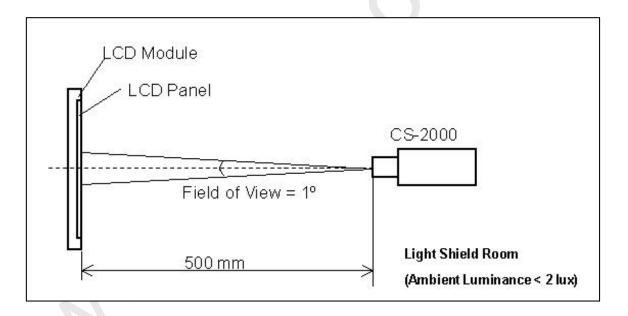
6.2 POWER ON/OFF SEQUENCE

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of VCC is in off level, please keep the level of input signals on the low or high impedance.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.


7. OPTICAL CHARACTERISTICS

Global LCD Panel Exchange Center

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Та	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	VCC	12	V
Input Signal	According to typical v	alue in "3. ELECTRICAL (CHARACTERISTICS"
Lamp Current	IL	12.3±0.5	mA
Oscillating Frequency (Inverter)	FW	58±3	KHz
Vertical Frame Rate	Fr	60	Hz

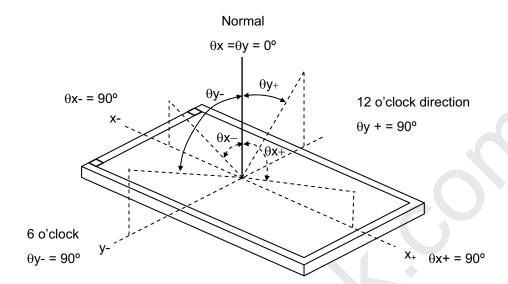
The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring in a windless room.

Date: 13 Apr 2011 Version 2.0

PRODUCT SPECIFICATION

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in 7.1.

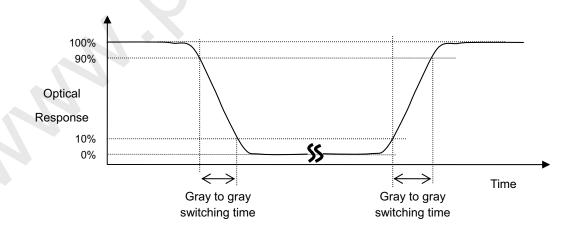

It	tem	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Rati	0	CR		4000	6000	-	-	(2)
Response Tir	me (VA)	Gray to gray		-	8.5	-	ms	(3)
Center Lumin	ance of White	L _C		360	450	-	cd/m ²	(4)
White Variation	on	δW		-	-	1.3	-	(6)
Cross Talk		СТ		-	-	4	%	(5)
	Ded	Rx	θx=0°, θy =0°		0.642		-	
	Red	Ry	Viewing angle		0.326		-	
	0	Gx	at normal direction		0.292		-	
	Green	Gy		Тур.	0.604	Тур.	-	
Color Chromaticity	Blue	Вх		-0.03	0.143	+0.03	-	-
Omomaticity	Blue	Ву			0.064		-	
	VA (In it a	Wx			0.281		-	
	White	Wy			0.288		-	
	Color Gamut	C.G		-	72	-	%	NTSC
	l lowing artal	θх+	7	80	88	-		
Viewing	Horizontal	θх-	CR≥20 (VA)	80	88	-	Dos	(4)
Angle	Vantiani	θΥ+		80	88	-	Deg.	(1)
	Vertical	θΥ-		80	88	-		

PRODUCT SPECIFICATION

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Conoscope Cono-80 (or Eldim EZ-Contrast 160R)

Note (2) Definition of Contrast Ratio (CR):


The contrast ratio can be calculated by the following expression.

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6).

Note (3) Definition of Gray-to-Gray Switching Time:

The driving signal means the signal of gray level 0, 31, 63, 95, 127, 159, 191, 223 and 255.

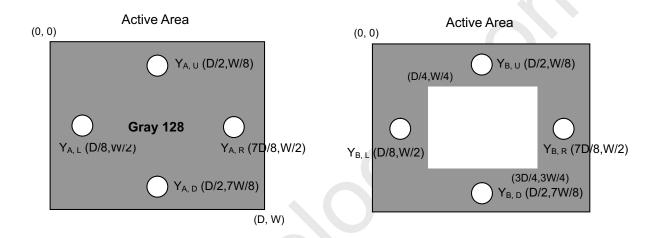
Gray to gray average time means the average switching time of gray level 0, 31, 63, 95, 127, 159, 191, 223 and 255. to each other.

Note (4) Definition of Luminance of White (L_C):

PRODUCT SPECIFICATION

Measure the luminance of gray level 255 at center point and 5 points

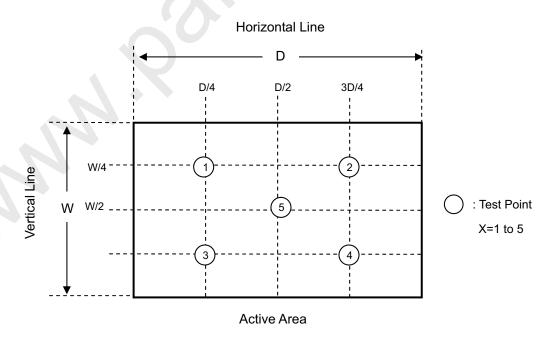
L_C = L (5), where L (X) is corresponding to the luminance of the point X at the figure in Note (6).


Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

Y_A = Luminance of measured location without gray level 255 pattern (cd/m2)


 Y_B = Luminance of measured location with gray level 255 pattern (cd/m2)

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

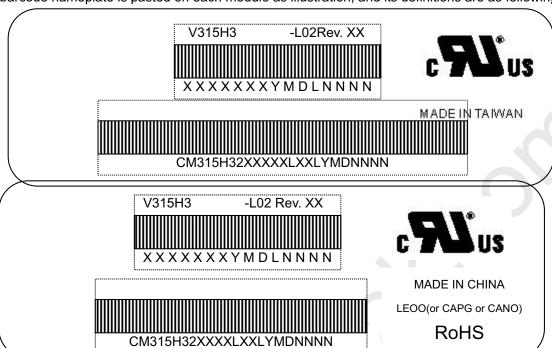
PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

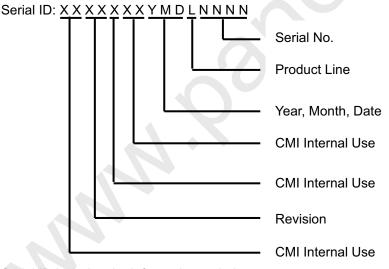
- [1] Do not apply rough force such as bending or twisting to the module during assembly.
- [2] It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- [3] Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- [4] Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMIS LSI chips.
- [5] Bezel of Set can not press or touch the panel surface. It will make light leakage or scrape.
- [6] Do not plug in or pull out the I/F connector while the module is in operation.
- [7] Do not disassemble the module.
- [8] Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- [9] Moisture can easily penetrate into LCD module and may cause the damage during operation.
- [10] When storing modules as spares for a long time, the following precaution is necessary.
 - [10.1] Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
 - [10.2] The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.
- [11] When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

8.2 SAFETY PRECAUTIONS

- [1] The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the Backlight unit.
- [2] If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- [3] After the module's end of life, it is not harmful in case of normal operation and storage.



9. DEFINITION OF LABELS


9.1 CMI MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

Model Name: V315H3-L02

Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

Manufactured Date:

Year: 2001=1, 2002=2, 2003=3, 2004=4...2010=0, 2011=1, 2012=2...

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

Revision Code: Cover all the change

Serial No.: Manufacturing sequence of product Product Line : $1 \rightarrow \text{Line } 1$, $2 \rightarrow \text{Line } 2$, ...etc.

PRODUCT SPECIFICATION

10. PACKAGING

10.1 PACKAGING SPECIFICATIONS

(1) 5 LCD TV modules / 1 Box

(2) Box dimensions: 826(L) X 376 (W) X 540 (H)

(3) Weight: approximately 30Kg (5 modules per box)

a.Panel module each pcs: 5.211 kg

b.Panel Packing Box

-Cushion: 0.494 kg (5 pcs per box)

-Carton: 2.3 kg

-Panel: 5.211 kg x 5pcs =26.055 kg

-Panel Packing Box Total (1 Box) =28.849 kg

c.Total Packing weight

1)For Vessel shipment Pallet (1 Pallet =6 Box or 9 Box)

-Pallet weight: 12 kg

-Pallet Cushion: 2.96 kg or 4.44 kg

-Pallet Packing Total = 185.09 kg or 271.6 kg

2)For Air shipment Pallet (1 Pallet =6 Box)


-Pallet weight: 12 kg

-Pallet Cushion: 2.96 kg

-Pallet Packing Total =185.09 kg

10.2 PACKAGING METHOD

Figures 10-1 and 10-2 are the packing method

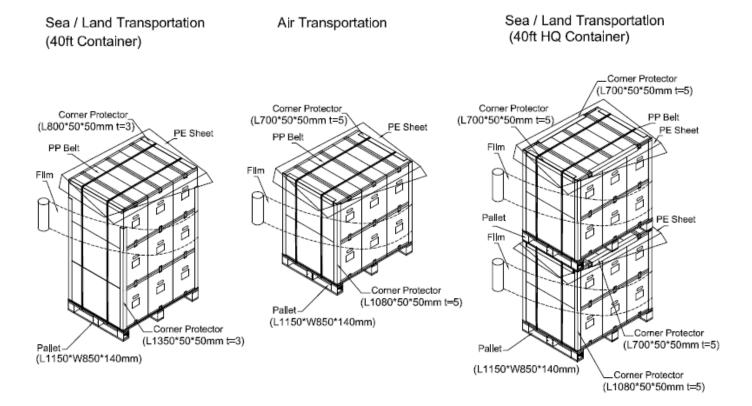
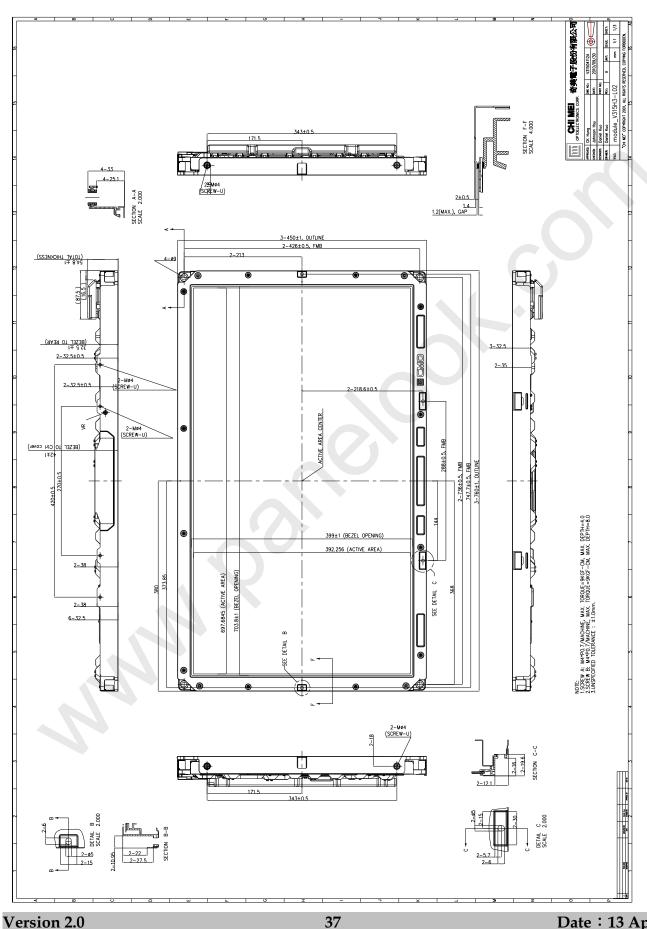
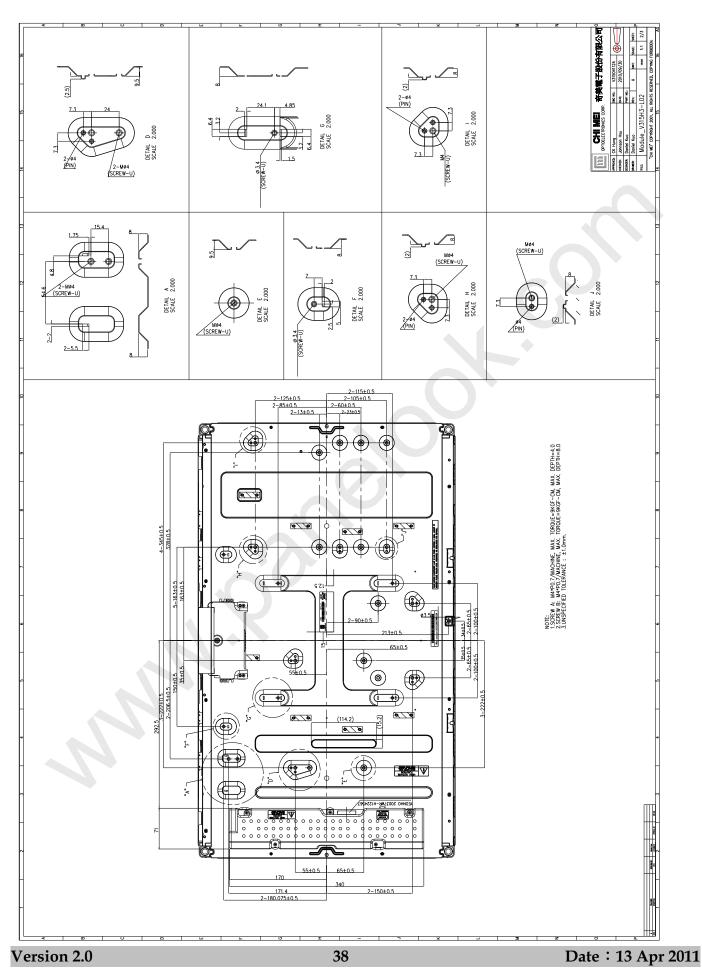
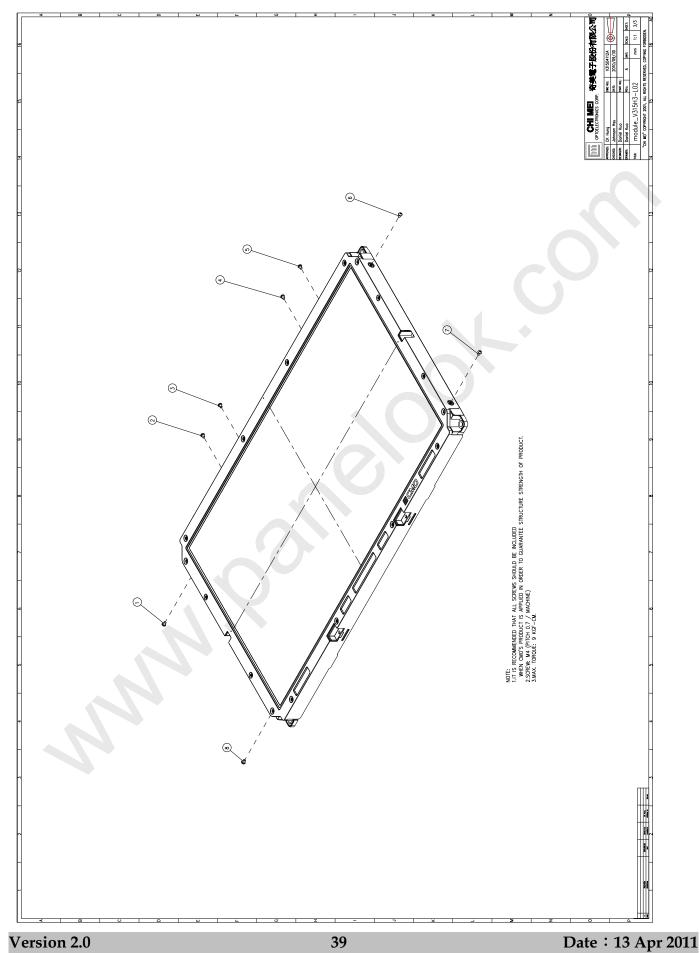



Figure 10-2 packing method



11. MECHANICAL CHARACTERISTIC



Date: 13 Apr 2011

Version 2.0 40 Date: 13 Apr 2011

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited