

rentative Specification
Preliminary Specification
Approval Specification

MODEL NO.: V315H3 SUFFIX: LS5

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your corsignature and comments.	firmation with your

Approved By	Checked By	Prepared By
Chao-Chun Chung	Vincent Chou	Perry Lin

Version 2.0 1 Date : 5 July. 2011

CONTENTS

1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 FEATURES	5
1.3 APPLICATION	5
1.4 GENERAL SPECIFICATIONS	5
1.5 MECHANICAL SPECIFICATIONS	6
2. ABSOLUTE MAXIMUM RATINGS	7
2.1 ABSOLUTE RATINGS OF ENVIRONMENT	7
2.2 PACKAGE STORAGE	8
2.3 ELECTRICAL ABSOLUTE RATINGS	
2.3.1 TFT LCD MODULE	
2.3.2 BACKLIGHT UNIT	
3. ELECTRICAL CHARACTERISTICS	
3.1 TFT LCD MODULE Ta = 25 ± 2 °C	
3.2 BACKLIGHT CONVERTER UNIT	
3.2.1 LED LIGHT BAR CHARACTERISTICS (Ta = 25 ± 2 °C)	12
3.2.2 CONVERTER CHARACTERISTICS (Ta = 25 ± 2 °C)	12
3.2.3 CONVERTER INTERFACE CHARACTERISTICS	
4. BLOCK DIAGRAM OF INTERFACE	
4.1 TFT LCD MODULE	
5. INTERFACE PIN CONNECTION	
5.1 TFT LCD MODULE	
5.2 BACKLIGHT UNIT	
5.3 CONVERTER UNIT	22
5.4 BLOCK DIAGRAM OF INTERFACE	24
5.5 LVDS INTERFACE	27
5.6 COLOR DATA INPUT ASSIGNMENT	
6. INTERFACE TIMING	30
6.1 INPUT SIGNAL TIMING SPECIFICATIONS (Ta = 25 ± 2 °C)	30
6.1.1 Timing spec for Frame Rate = 100Hz	30
6.1.2 Timing spec for Frame Rate = 120Hz	31
6.2 POWER ON/OFF SEQUENCE	
6.2.1 POWER ON/OFF SEQUENCE (Ta = 25 ± 2 °C)	
6.2.2 2D/3D MODE CHANGE SIGNAL SEQUENCE WITHOUT VCC TURN OFF AND TURN ON	
7. OPTICAL CHARACTERISTICS	35
7. OPTICAL CHARACTERISTICS	36
7.1 TEST CONDITIONS	36

Version 2.0

2

Date: 5 July. 2011

7.2 OPTICAL SPECIFICATIONS	37
8. DEFINITION OF LABELS	43
8.1 CMI MODULE LABEL	43
9. PACKAGING	44
9.1 PACKING SPECIFICATIONS	44
9.2 PACKING METHOD	44
10. International Standard	46
10.1 Safety	46
10.2 EMC	46
11. PRECAUTIONS	47
11.1 ASSEMBLY AND HANDLING PRECAUTIONS	47
11.2 SAFETY PRECAUTIONS	47
40 MECHANICAL CHARACTERISTICS	40

REVISION HISTORY

Version	Date	Page(New)	Section	Description
Ver. 2.0	Date July. 5, 2011	Page(New) All		Description The approval specification was first issued.
N				

Version 2.0 Date: 5 July. 2011

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V315H3- LS5 is a 31.5" TFT Liquid Crystal Display module with LED Backlight and 4ch-LVDS interface. This module supports 1920 x 1080 Full HDTV format and can display 1.07G colors (8-bit + FRC). The converter module for backlight is built-in.

1.2 FEATURES

- High brightness (400 nits)
- Ultra-high contrast ratio (5000:1)
- Faster response time (gray to gray average 6 ms)
- High color saturation NTSC 72% (72%)
- Ultra wide viewing angle: 176(H)/176(V) (CR≥20) with Super MVA technology
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Low color shift function
- RoHs compliance

1.3 APPLICATION

- TFT LCD TVs
- Multi-Media Display

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	698.4 (H) x 392.85 (V)	mm	(1)
Bezel Opening Area	705.4 (H) x 400 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	
Pixel Number	1920 x R.G.B. x 1080	pixel	
Pixel Pitch (Sub Pixel)	0.12125 (H) x 0.36375 (V)	mm	
Pixel Arrangement	RGB vertical stripe	-	
Power Consumption	(49.2 W) (LVDS input Power 13.2W + LED Backlight Power 36W)	Watt	(2)
Display Colors	1.07G	color	
Display Operation Mode	Transmissive mode / Normally Black	-	
Surface Treatment	Anti-Glare Coating (Haze 11%) Hard Coating (3H)	-	(3)

Note (1) Please refer to the attached drawings in chapter 9 for more information about the front and back outlines.

Note (2) Please refer sec 3.1 and 3.2 for more information of Power consumption

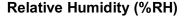
Note (3) The spec. of the surface treatment is temporarily for this phase. CMI reserves the rights to change this feature.

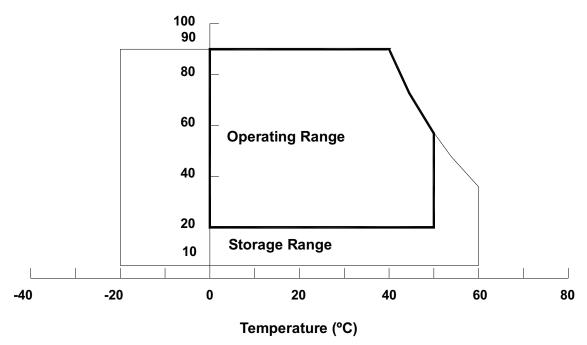
1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	724.2	725.2	726.2	mm	(1)
	Vertical(V)	420.9	421.9	422.9	mm	(1)
Module Size	Depth(D)	14.1	15.1	16.1	mm	
	Depth(D)	22.6	23.6	24.6	mm	To converter cover
Weight			4220		g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT


Item	Symbol	Va	Unit	Note	
item	Syllibol	Min.	Max.	Offic	Note
Storage Temperature	T _{ST}	-20	+60	°C	(1)
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)
Vibration (Non-Operating)	V_{NOP}	-	1.0	G	(4), (5)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C.

 The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for \pm X, \pm Y, \pm Z.
- Note (4) $10 \sim 200$ Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Version 2.0 7 Date ∶ 5 July. 2011

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note
Item	Syllibol	Min.	Max.	Offic	Note
Power Supply Voltage	Vcc	-0.3	13.5	V	
Input Signal Voltage	Vin	-0.3	3.6	V	

2.3.2 BACKLIGHT UNIT

Item	Symbol	Test Condition	Min.	Type	Max.	Unit	Note
Light Bar Voltage	V_W	Ta = 25 ℃	-	1	60	V_{RMS}	3D Mode
Converter Input Voltage	V_{BL}	-	0		30	V	
Control Signal Level	-	-	-0.3) -	7	V	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Functional operation should be restricted to the conditions described under normal operating conditions.

Note (2) No moisture condensation or freezing.

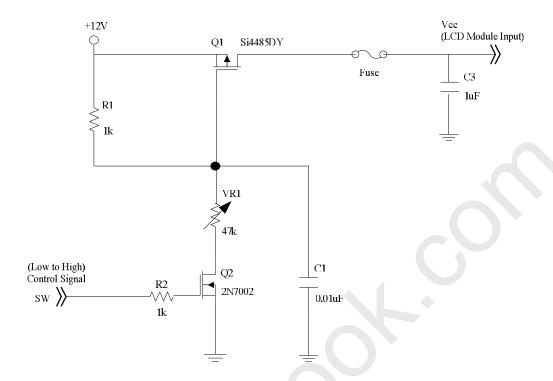
Note (3) The control signals include On/Off Control and External PWM Control.

Version 2.0 Date: 5 July. 2011

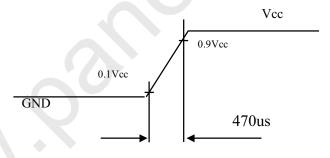
3. ELECTRICAL CHARACTERISTICS

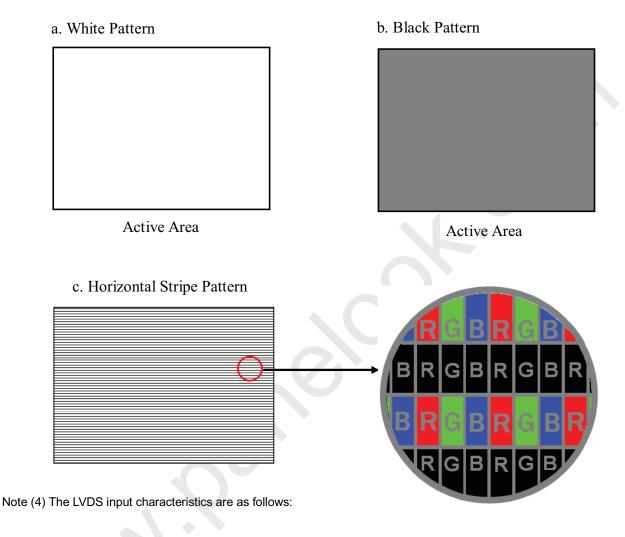
3.1 TFT LCD MODULE

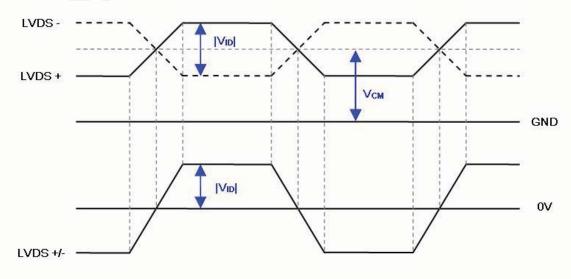
3.1 TFT LCD MODULE		$Ta = 25 \pm 2$	°C				
Dow	am atar	Cumbal		Unit	Note		
Parameter		Symbol	Min. Typ.			Max.	Onit
Power Supply Voltage		V _{cc}	10.8	12	13.2	V	(1)
Rush Current		I _{RUSH}	-	-	1.96	Α	(2)
	White Pattern	-		6.0	6.5	W	
Power Consumption	Horizontal Stripe	-		10.9	13.2	W	•
	Black Pattern	-		5.9	6.3	W	(2)
	White Pattern	-	-	0.50	0.54	Α	(3)
Power Supply Current	Horizontal Stripe	-	-	0.91	1.1	А	
	Black Pattern	-	-	0.49	0.53	Α	
	Differential Input High Threshold Voltage	V_{LVTH}	+100		-	mV	
	Differential Input Low Threshold Voltage	V _{LVTL}	(-	-100	mV	(4)
interface	Common Input Voltage	V _{CM}	1.0	1.2	1.4	V	(4)
	Differential input voltage	[V _{ID}]	200	-	600	mV	
	Terminating Resistor	R _T	-	100	-	ohm	
CMOS interface	Input High Threshold Voltage	V _{IH}	2.7	-	3.3	V	
	Input Low Threshold Voltage	V _{IL}	0	-	0.7	V	


Note (1) The module should be always operated within above ranges.

Note (2) Measurement Conditions:


Version 2.0 Date: 5 July. 2011


Vcc rising time is 470us



Version 2.0 10 Date : 5 July. 2011

Note (3) The specified power consumption and power supply current is under the conditions at Vcc = 12 V, $Ta = 25 \pm 2 \text{ °C}$, fv = 120 Hz, whereas a power dissipation check pattern below is displayed.

Version 2.0 11 Date ∶ 5 July. 2011

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

3.2 BACKLIGHT CONVERTER UNIT

3.2.1 LED LIGHT BAR CHARACTERISTICS (Ta = 25 ± 2 °C)

The backlight unit contains 2 pcs light bar.

Parameter	Symbol	Value			Unit	Note
Farameter	Symbol	Min.	Тур.	Max.	Offic	Note
Total Current (12 String)	lf	-	1200.0	1272.0	mA	
On a Stain a Commant	I _{L(2D)}	-	100.0	106.0	mA	
One String Current	I _{L(3D)}	-	300.0	318.0	mApeak	3D ENA=ON
One String Voltage	V_W	24.3	-	30.6	V _{DC}	I _L =100mA
One String Voltage Variation	$\triangle V_W$	-	-	2	V	
Life time	-	30,000	-	- (Hrs	(1)

Note (1) The lifetime is defined as the time which luminance of the LED decays to 50% compared to the initial value, Operating condition: Continuous operating at Ta = $25\pm2^{\circ}$ C, IL =100mA

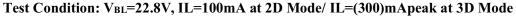
3.2.2 CONVERTER CHARACTERISTICS (Ta = 25 ± 2 °C)

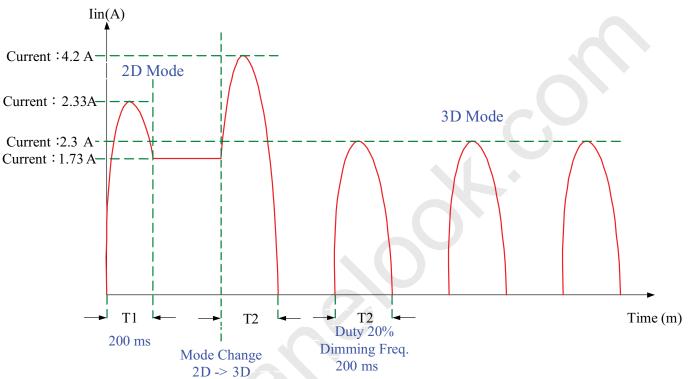
Barranta	0	Value			11.26	Note	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note	
Power Consumption	P _{BL(2D)}	- (36.0	41.4	W	(1), (2) IL = 100 mA	
Power Consumption	P _{BL(3D)}	-	27.0	32.0	W	(1), (2) IL=3*typ.	
Converter Input Voltage	VBL	22.8	24.0	25.2	VDC		
Converter Input Current	I _{BL(2D)}	1.2	1.5	1.73	Α	Non Dimming	
Converter input current	I _{BL(3D)}	0.9	1.13	1.33	Α		
Input Inruch Current	I _{R(2D)}	-	-	2.33	Apeak	V _{BL} =22.8V,(IL=typ.) (3), (6)	
Input Inrush Current	I _{R(3D)}	-	-	4.2	Apeak	V _{BL} =22.8V,(IL=3*typ.) (3), (6)	
Dimming Frequency	FB	150	160	170	Hz	(5)	
Minimum Duty Ratio	DMIN	5	10	-	%	(4), (5)	

Note (1) The power supply capacity should be higher than the total converter power consumption PBL. Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off.

The transient response of power supply should be considered for the changing loading when converter dimming.

Note (2) The measurement condition of Max. value is based on 31.5" backlight unit under input voltage 24V, average LED current 106 mA at 2D Mode (LED current 318 mApeak at 3D Mode) and lighting 1 hour later.


Note (3) For input inrush current measure, the VBL rising time from 10% to 90% is about 30ms.


Version 2.0 12 Date : 5 July. 2011

- Note (4) 5% minimum duty ratio is only valid for electrical operation.
- Note (5) FB and DMIN are available only at 2D Mode.
- Note (6) Below diagram is only for power supply design reference.

Version 2.0 13 Date: 5 July. 2011

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

3.2.3 CONVERTER INTERFACE CHARACTERISTICS

Parameter		C) male of	Test		Value		Unit	Note	
		Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
Out Off Countries I Malta are	ON	V/DL ON	_	2.0	_	5.0	V		
On/Off Control Voltage	OFF	VBLON	_	0	_	0.8	V		
External PWM Control	НІ		_	2.0	_	5.25	V	Duty on	
Voltage	LO	VEPWM	_	0	_	0.8	V	Duty off (5), (6)	
Error Signal		ERR	_	_	_	_		Abnormal: Open collector Normal: GND (4)	
VBL Rising Time		Tr1		30	-	E	ms	10%-90%V _{BL}	
Control Signal Rising Tir	me	Tr	_	-		100	ms		
Control Signal Falling Ti	me	Tf	_	_		100	ms		
PWM Signal Rising Time	Э	TPWMR	-)-	50	us	(6)	
PWM Signal Falling Time		TPWMF	-6		_	50	us	(6)	
Input Impedance		Rin		1	_	_	МΩ	EPWM, BLON	
PWM Delay Time		TPWM	->	100	_	_	ms	(6)	
DI ON DI L		T _{on}	_	300	_	_	ms		
BLON Delay Time		T _{on1}	_	300	_	_	ms		
BLON Off Time		Toff	_	300	_	_	ms		

Note (1) The Dimming signal should be valid before backlight turns on by BLON signal. It is inhibited to change the external PWM signal during backlight turn on period.

Note (2) The power sequence and control signal timing are shown in the Fig.1. For a certain reason, the converter has a possibility to be damaged with wrong power sequence and control signal timing.

Note (3) While system is turned ON or OFF, the power sequences must follow as below descriptions:

Turn ON sequence: $VBL \rightarrow PWM \text{ signal} \rightarrow BLON$

Turn OFF sequence: $BLOFF \rightarrow PWM \text{ signal} \rightarrow VBL$

Note (4) When converter protective function is triggered, ERR will output open collector status.

Note (5) The EPWM interface that inserts a pull up resistor to 5V in Max Duty (100%), please refers to Fig.2.

Note (6) EPWM is available only at 2D Mode.

14 Version 2.0 Date: 5 July. 2011

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

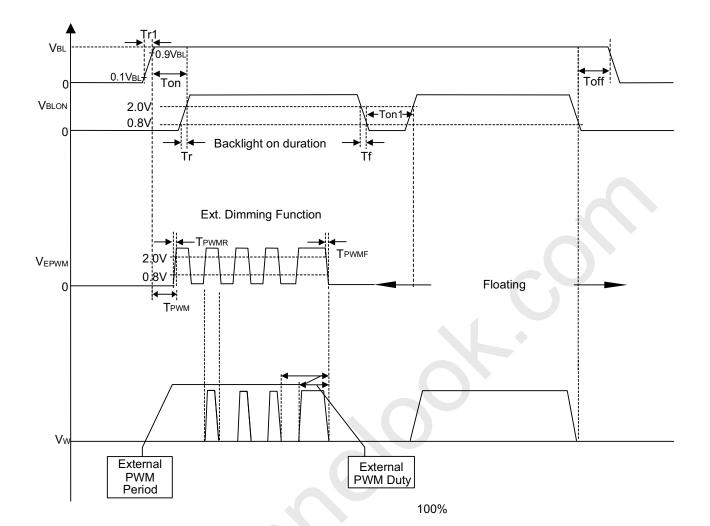


Fig. 1

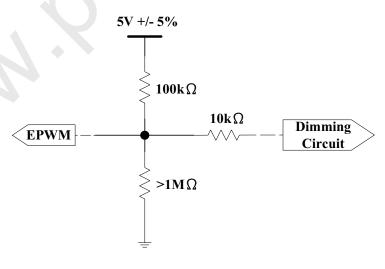
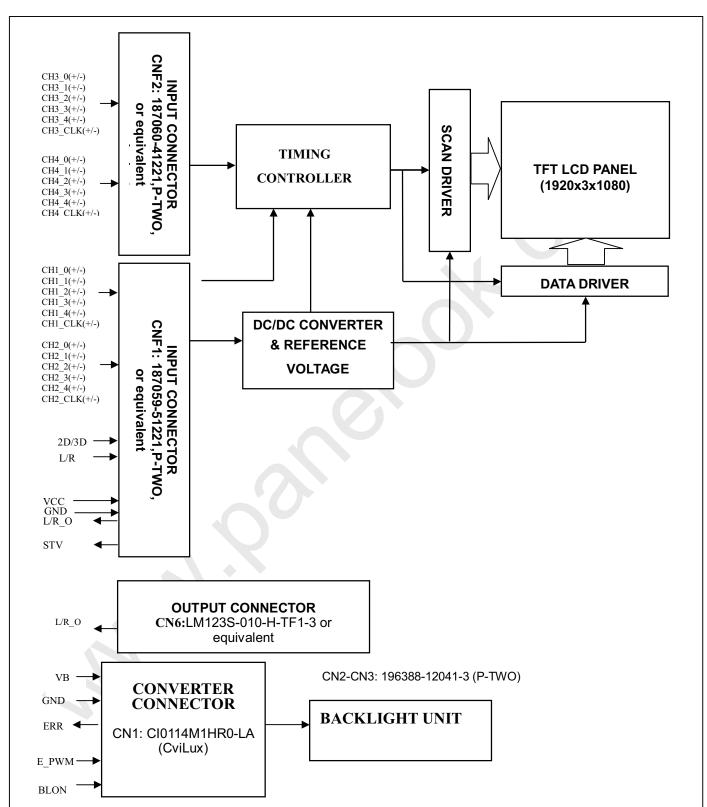


Fig. 2


Version 2.0 15 Date: 5 July. 2011

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

Version 2.0 16 Date: 5 July. 2011

5. INTERFACE PIN CONNECTION

5.1 TFT LCD MODULE

CNF1 Connector Pin Assignment: (187059-51221, P-TWO or equivalent)

Pin	Name	Description	Note	
1	Vin	Power input (+12V)		
2	Vin	Power input (+12V)		
3	Vin	Power input (+12V)		
4	Vin	Power input (+12V)		
5	Vin	Power input (+12V)		
6	N.C.	No Connection	(1)	
7 8	GND GND	Ground Ground		
9	GND	Ground		
10	CH2[0]-	Second pixel Negative LVDS differential data input. Pair 0		
11	CH2[0]+	Second pixel Positive LVDS differential data input. Pair 0		
12	CH2[1]-	Second pixel Negative LVDS differential data input. Pair 1		
13	CH2[1]+	Second pixel Positive LVDS differential data input. Pair 1	(6)	
14	CH2[2]-	Second pixel Negative LVDS differential data input. Pair 2		
15	CH2[2]+	Second pixel Positive LVDS differential data input. Pair 2		
16	GND	Ground		
17	CH2CLK-	Second pixel Negative LVDS differential clock input.	(0)	
18	CH2CLK+	Second pixel Positive LVDS differential clock input.	(6)	
19	GND	Ground		
20	CH2[3]-	Second pixel Negative LVDS differential data input. Pair 3		
21	CH2[3]+	Second pixel Positive LVDS differential data input. Pair 3	(6)	
22	CH2[4]-	Second pixel Negative LVDS differential data input. Pair 4	(6)	
23	CH2[4]+	Second pixel Positive LVDS differential data input. Pair 4		
24	GND	Ground		
25	CH4[0]-	Fourth pixel Negative LVDS differential data input. Pair 0		
26	CH4[0]+	Fourth pixel Positive LVDS differential data input. Pair 0		
27	CH4[1]-	Fourth pixel Negative LVDS differential data input. Pair 1	(6)	
28	CH4[1]+	Fourth pixel Positive LVDS differential data input. Pair 1	(0)	
29	CH4[2]-	Fourth pixel Negative LVDS differential data input. Pair 2		
30	CH4[2]+	Fourth pixel Positive LVDS differential data input. Pair 2		
31	GND	Ground		
32	CH4CLK-	Fourth pixel Negative LVDS differential clock input.	(6)	
33	CH4CLK+	Fourth pixel Positive LVDS differential clock input.	(0)	
34	GND	Ground		
35	CH4[3]-	Fourth pixel Negative LVDS differential data input. Pair 3	(6)	

Version 2.0 17 Date: 5 July. 2011

36	CH4[3]+	Fourth pixel Positive LVDS differential data input. Pair 3	(6)
37	CH4[4]-	Fourth pixel Negative LVDS differential data input. Pair 4	
38	CH4[4]+	Fourth pixel Positive LVDS differential data input. Pair 4	
39	GND	Ground	
40	N.C.	No Connection	(4)
41	N.C.	No Connection	(1)
42	2D/3D	Input signal for 2D/3D Mode Selection	(3)(5)
43	N.C.	No Connection	(1)
44	NC	No Connection	(1)
45	STV	Output signal from Tcon Real Vertical out for panel	
46	N.C.	No Connection	(1)
47	N.C.	No Connection	
48	L/R	Input signal for Left Right eye frame synchronous	(4) (5)
49	L/R_O	Output signal for Left Right Glasses control	(7)
50	N.C.	No Connection	
51	N.C.	No Connection	(1)

CNF2 Connector Pin Assignment (187060-41221(P-TWO) or equivalent)

Pin	Name	Description	Note
1	Vin	Power input (+12V)	
2	Vin	Power input (+12V)	
3	Vin	Power input (+12V)	
4	Vin	Power input (+12V)	
5	Vin	Power input (+12V)	
6	N.C.	No Connection	(1)
7	GND	Ground	
8	GND	Ground	
9	GND	Ground	
10	CH1[0]-	First pixel Negative LVDS differential data input. Pair 0	
11	CH1[0]+	First pixel Positive LVDS differential data input. Pair 0	
12	CH1[1]-	First pixel Negative LVDS differential data input. Pair 1	(0)
13	CH1[1]+	First pixel Positive LVDS differential data input. Pair 1	(6)
14	CH1[2]-	First pixel Negative LVDS differential data input. Pair 2	
15	CH1[2]+	First pixel Positive LVDS differential data input. Pair 2	
16	GND	Ground	
17	CH1CLK-	First pixel Negative LVDS differential clock input.	(6)
18	CH1CLK+	First pixel Positive LVDS differential clock input.	(6)
19	GND	Ground	
20	CH1[3]-	First pixel Negative LVDS differential data input. Pair 3	(6)
21	CH1[3]+	First pixel Positive LVDS differential data input. Pair 3	(6)

Version 2.0 18 Date: 5 July. 2011

22	CH1[4]-	First pixel Negative LVDS differential data input. Pair 4	(6)
23	CH1[4]+	First pixel Positive LVDS differential data input. Pair 4 (6)	
24	GND	Ground	
25	CH3[0]-	Third pixel Negative LVDS differential data input. Pair 0	
26	CH3[0]+	Third pixel Positive LVDS differential data input. Pair 0	
27	CH3[1]-	Third pixel Negative LVDS differential data input. Pair 1	(6)
28	CH3[1]+	Third pixel Positive LVDS differential data input. Pair 1	(6)
29	CH3[2]-	Third pixel Negative LVDS differential data input. Pair 2	
30	CH3[2]+	Third pixel Positive LVDS differential data input. Pair 2	
31	GND	Ground	
32	CH3CLK-	Third pixel Negative LVDS differential clock input.	(0)
33	CH3CLK+	Third pixel Positive LVDS differential clock input.	(6)
34	GND	Ground	
35	CH3[3]-	Third pixel Negative LVDS differential data input. Pair 3	
36	CH3[3]+	Third pixel Positive LVDS differential data input. Pair 3	(0)
37	CH3[4]-	Third pixel Negative LVDS differential data input. Pair 4	(6)
38	CH3[4]+	Third pixel Positive LVDS differential data input. Pair 4	
39	GND	Ground	
40	N.C.	No Connection	(1)
41	N.C.	No Connection	(1)

CN6 Connector Pin Assignment (LM123S-010-H-TF1-3 (UNE) or equivalent)

1	N.C.	No Connection	
2	N.C.	No Connection	(1)
3	N.C.	No Connection	
4	GND	Ground	
5	N.C.	No Connection	(1)
6	L/R_O	Output signal for Left Right Glasses control	(7)
7	N.C.	No Connection	
8	N.C.	No Connection	(1)
9	N.C.	No Connection	(1)
10	N.C.	No Connection	

Version 2.0 19 Date: 5 July. 2011

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

Note (1) Reserved for internal use. Please leave it open.

Note (2) LVDS format selection.

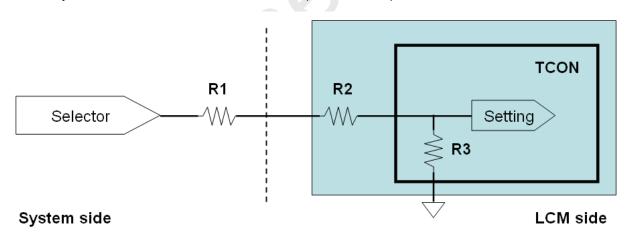
L= Connect to GND or Open, H=Connect to +3.3V

SELLVDS	Note
L or Open	JEDIA Format
Н	VESA Format

Note (3) 2D/3D mode selection.

L= Connect to GND or Open, H=Connect to +3.3V

2D/3D	Note
L or Open	2D Mode
Н	3D Mode


Note (4) Input signal for Left Right eye frame synchronous

$$V_{IL}$$
=0~0.8 V, V_{IH} =2.0~3.3 V

L/R	Note
L	Right synchronous signal
Н	Left synchronous signal

Note (5) 2D/3D, L/R signal pin connected to the LCM side has the following diagram.

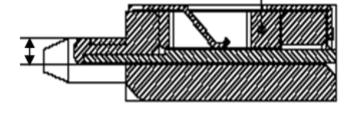
R1 in the system side should be less than 1K Ohm. (R1 < 1K Ohm)

System side: R1 < 1K

Note (6) LVDS 4-port Data Mapping

Port	Channel of LVDS	Data Stream
1st Port	Second Pixel	2, 6, 10,1914, 1918
2nd Port	Fourth Pixel	4, 8, 12,1916, 1920
3rd Port	First Pixel	1, 5, 9,1913, 1917
4th Port	Third Pixel	3, 7, 11,1915, 1919

Version 2.0 20 Date: 5 July. 2011



Note (7) The definition of L/R_O signal as follows

L= 0V , H= +3.3 \lor

L/R_O	Note
L	Right glass turn on
Н	Left glass turn on

Note (8) LVDS connector mating dimension range request is 0.93mm~1.0mm as follow

Version 2.0 21 Date: 5 July. 2011

5.2 BACKLIGHT UNIT

The pin configuration for the housing and leader wire is shown in the table below.

CN2-CN3 (Housing): 196388-12041-3 (P-TWO) or equivalent

Pin №	Symbol	Feature
1	VLED-	
2	VLED-	
3	VLED-	Negative of LED String
4	VLED-	Negative of LED String
5	VLED-	
6	VLED-	
7	NC	
8	NC	No Connection
9	NC	No connection
10	NC	
11	VLED+	Positive of LED String
12	VLED+	Positive of LED String

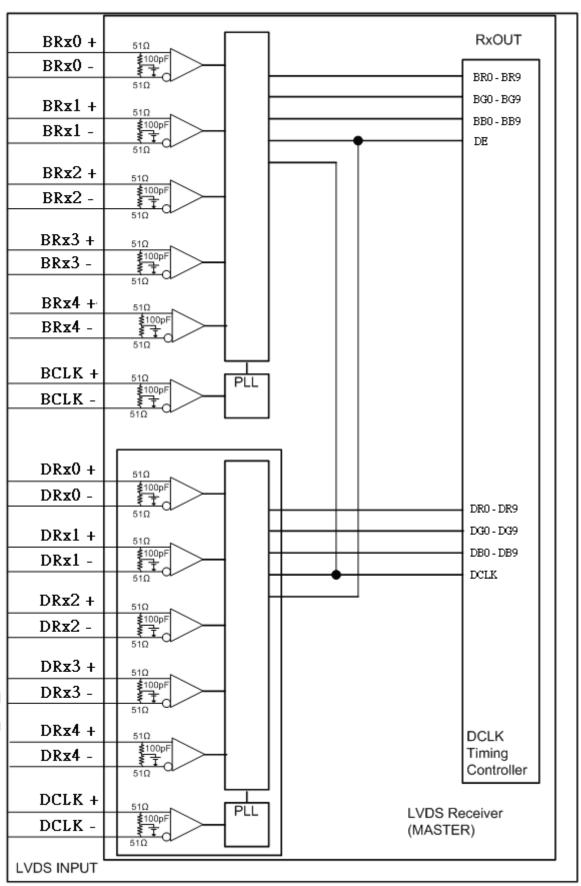
5.3 CONVERTER UNIT

CN1(Header): CI0114M1HR0-LA (CviLux)

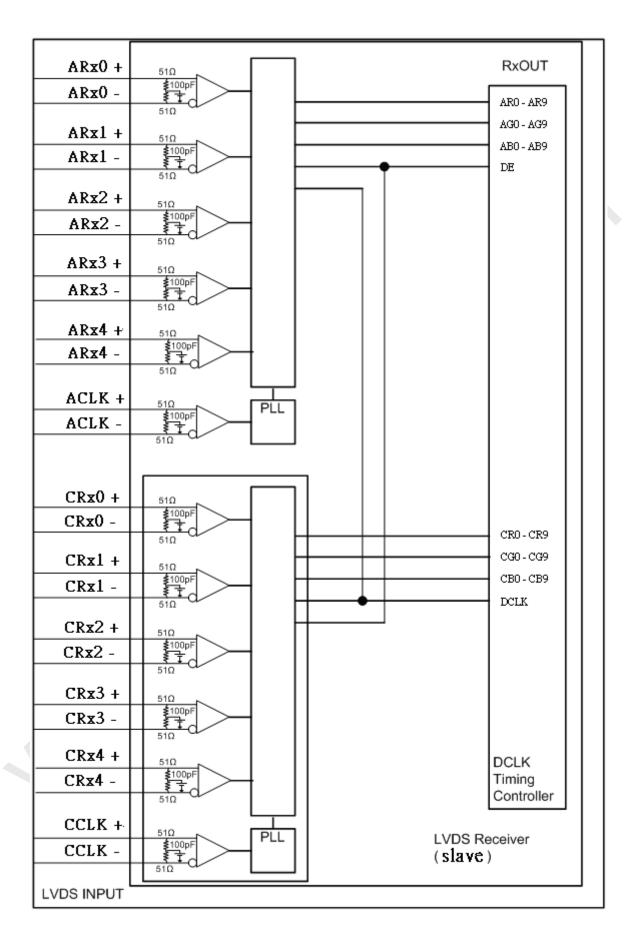
Pin №	Symbol	Feature
1		
2		
3	VBL	+24V
4		
5		
6		
7		
8	GND	GND
9		
10		
11	ERR	Normal (GND) Abnormal (Open collector)
12	BLON	BL ON/OFF
13	NC	NC
14	E_PWM	External PWM Control

Notice (1) If Pin14 is open, E_PWM is 100% duty.

Version 2.0 22 Date: 5 July. 2011


CN2 ~ CN3 : 196388-12041-3 (P-TWO)

Pin №	Symbol	Feature
1	VLED-	
2	VLED-	
3	VLED-	Negative of LED String
4	VLED-	Negative of LED String
5	VLED-	
6	VLED-	
7	NC	
8	NC	No Connection
9	NC	No connection
10	NC	
11	VLED+	Positive of LED String
12	VLED+	1 Usitive of LED Stillig


5.4 BLOCK DIAGRAM OF INTERFACE

Version 2.0 24 Date: 5 July. 2011

Version 2.0 25 Date: 5 July. 2011

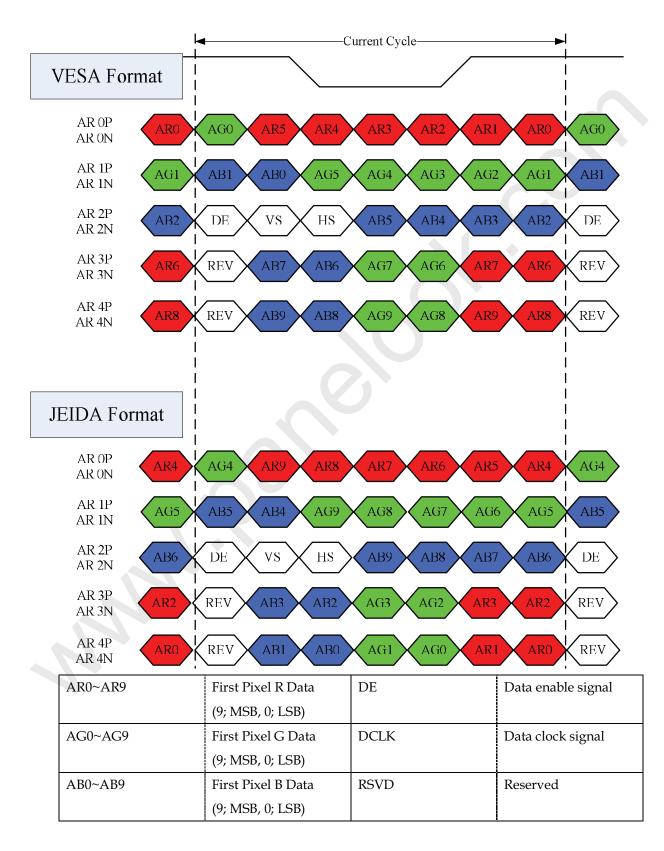
BR0~BR9	Second Pixel R Data	DR0~DR9	Fourth Pixel R data
BG0~BG9	Second Pixel G Data	DG0~DG9	Fourth Pixel G data
BB0~BB9	Second Pixel B Data	DB0~OB9	Fourth Pixel B data
		DE	Data enable signal
		DCLK	Data clock signal

The third and fourth pixel are followed the same rules.

AR0~AR9	First Pixel R Data	CR0~CR9	Third Pixel R data
AG0~AG9	First Pixel G Data	CG0~CG9	Third Pixel G data
AB0~AB9	First Pixel B Data	CB0~CB9	Third Pixel B data

- Note (1) A \sim D channel are first, second, third and fourth pixel respectively.
- Note (2) The system must have the transmitter to drive the module.
- Note (3) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.

Version 2.0 26 Date : 5 July. 2011


Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

5.5 LVDS INTERFACE

JEIDA Format : SELLVDS = L or Open

VESA Format : SELLVDS = H

27 Version 2.0 Date : 5 July. 2011

5.6 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 10-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

															[Data	Sig	nal													
	Color					R	ed					Green									Blue										
		R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	В9	В8	В7	В6	В5	В4	вз	В2	В1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red (2)	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:			:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:			:	:	:	:	:	:		:			:	:	:	:	:	:	:	:	;	:	:	:	:	:	:	:	:	:
Red	Red (1021)	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
i veu	Red (1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0 <	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Gray	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	÷		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	i.			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green (1021)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0
Orcon	Green (1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	Green (1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Scale	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Diue	Blue (1021)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1

Version 2.0 28 Date: 5 July. 2011

	Blue (1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
	Blue (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Version 2.0 29 Date: 5 July. 2011

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS (Ta = 25 ± 2 °C)

The input signal timing specifications are shown as the following table and timing diagram.

, ,	0 1		0		0 0		
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	F _{clkin} (=1/TC)	60	74.25	80	MHz	
LVDS Receiver	Input cycle to cycle jitter	T _{rcl}	1	-	200	ps	(3)
Clock	Spread spectrum modulation range	Fclkin_mo	F _{clkin} -2%	-	F _{clkin} +2%	MHz	(4)
	Spread spectrum modulation frequency	F _{SSM}	-	-	200	KHz	(4)
LVDS	Setup Time	Tlvsu	600		•	ps	
Receiver Data	Hold Time	Tlvhd	600		-	ps	(5)

6.1.1 Timing spec for Frame Rate = 100Hz

3 - 1								
Signal		Item	Symbol	Min.	Тур.	Max.	Unit	Note
Frame rate	20) mode	F _{r5}	94	100	106	Hz	
Frame rate	30) mode	F _{r5}	100	100	100	Hz	(7)
		Total	Tv	1090	1350	1395	Th	Tv=Tvd+Tvb
Vertical	2D Mode	Display	Tvd	1080	1080	1080	Th	-
Active		Blank	Tvb	10	270	315	Th	-
Display		Total	Tv		1350		Th	
Term	3D Mdoe	Display	Tvd		1080		Th	(6) (8)
		Blank	Tvb		270	Th		
. N		Total	Th	520	550	670	Tc	Th=Thd+Thb
Horizontal	2D Mode	Display	Thd	480	480	480	Tc	_
Active		Blank	Thb	40	70	190	Tc	_
Display		Total	Th	520	550	670	Tc	Th=Thd+Thb
Term	3D Mdoe	3D Mdoe Display		480	480	480	Tc	_
		Blank	Thb	40	70	190	Тс	_

Version 2.0 30 Date: 5 July. 2011

6.1.2 Timing spec for Frame Rate = 120Hz

Signal		Item	Symbol	Min.	Тур.	Max.	Unit	Note
Frame rate	20) mode	F _{r6}	114	120	126	Hz	
Frame rate	30) mode	F _{r6}	120	120	120	Hz	(7)
		Total	Tv	1090	1125	1395	Th	Tv=Tvd+Tv b
Vertical	2D Mode	Display	Tvd	1080	1080	1080	Th	_
Active		Blank	Tvb	10	45	315	Th	· –
Display Term		Total	Tv		1125			
	3D Mdoe	Display	Tvd		1080			(6)(8)
		Blank	Tvb		45			
		Total	Th	520	550	670	Тс	Th=Thd+T hb
Horizontal	2D Mode	Display	Thd	480	480	480	Тс	_
Active		Blank	Thb	40	70	190	Tc	_
Display Term		Total	Th	520	550	670	Тс	Th=Thd+T hb
	3D Mdoe	Display	Thd	480	480	480	Тс	_
1					1	1	1	1

Note (1) Since the module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level.

Otherwise, this module would operate abnormally.

40

70

190

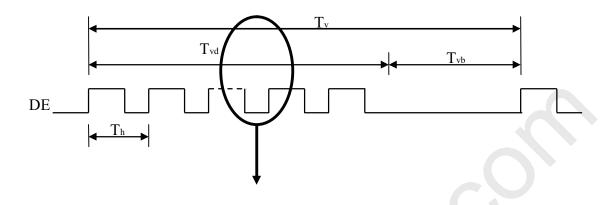
Тс

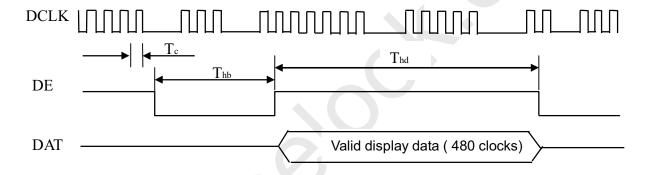
Thb

Note (2) Please make sure the range of pixel clock has follow the below equation:

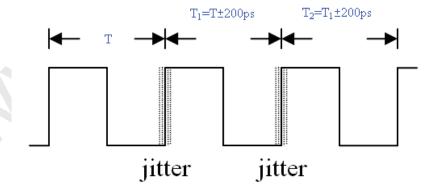
Blank

 $\begin{aligned} & \text{Fclkin(max)} \geqq & \text{Fr6} \swarrow \text{Tv} \swarrow \text{Th} \\ & \text{Fr5} \swarrow \text{Tv} \swarrow \text{Th} \geqq & \text{Fclkin(min)} \end{aligned}$





Global LCD Panel Exchange Center

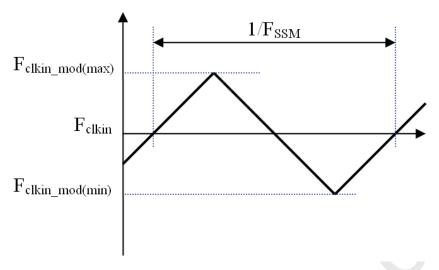

PRODUCT SPECIFICATION

INPUT SIGNAL TIMING DIAGRAM

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = I T1 – TI

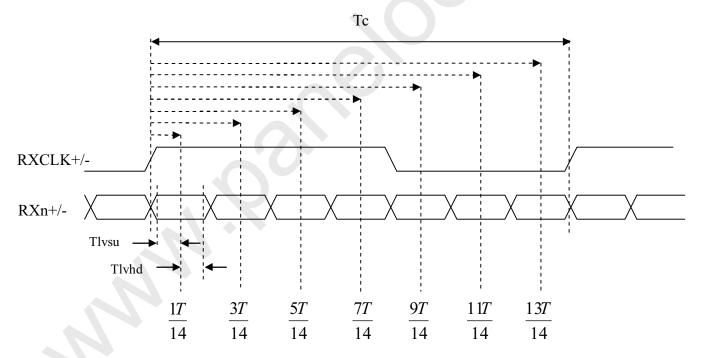
Version 2.0 32 Date: 5 July. 2011

Date : 5 July. 2011



Version 2.0

Global LCD Panel Exchange Center


PRODUCT SPECIFICATION

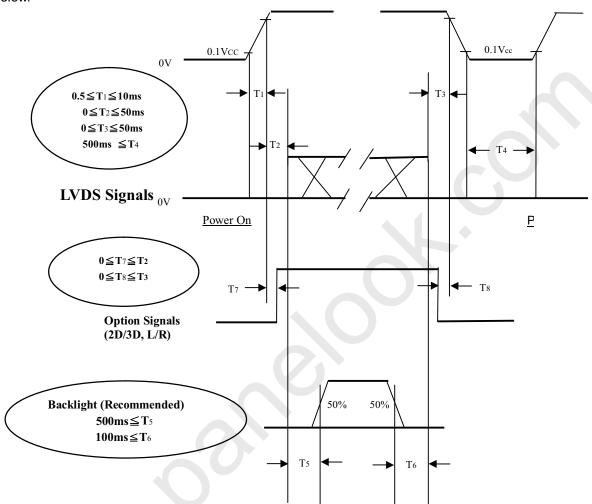
Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

- Note (6) Please fix the Vertical timing (Vertical Total =1350 / Display =1080 / Blank = 270) in 100Hz 3D mode and Vertical timing (Vertical Total =1125 / Display =1080 / Blank = 45) in 120Hz 3D mode.
- Note (7) In 3D mode, the set up Fr5 and Fr6 in Typ. ±3 HZ .In order to ensure that the electric function performance to avoid no display symptom.(Except picture quality symptom.)
- Note (8) In 3D mode, the set up Tv and Tvb in Typ. ±30.In order to ensure that the electric function performance to avoid no display symptom.(Except picture quality symptom.)

33

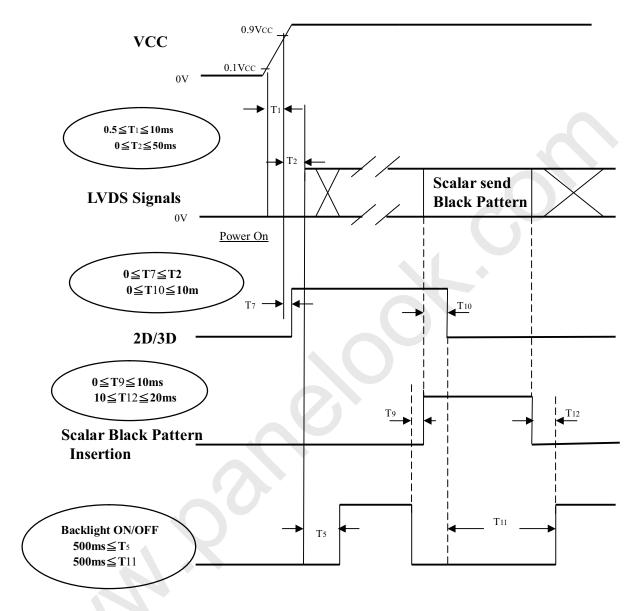

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

6.2 POWER ON/OFF SEQUENCE

6.2.1 POWER ON/OFF SEQUENCE(Ta = 25 ± 2 °C)

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

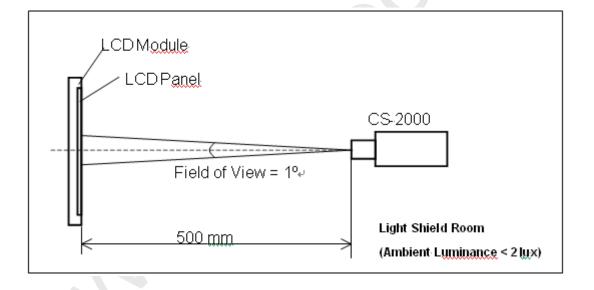


Power ON/OFF Sequence

6.2.2 2D/3D MODE CHANGE SIGNAL SEQUENCE WITHOUT VCC TURN OFF AND TURN ON

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the LED voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0,that maybe cause electrical overstress failure.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

Version 2.0 35 Date : 5 July. 2011



7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

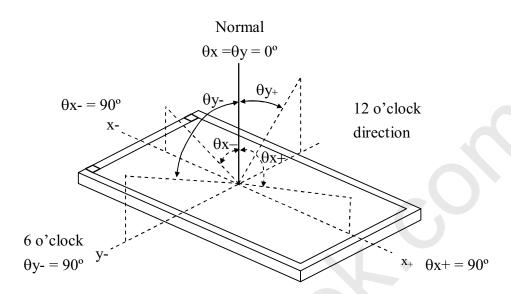
Item	Symbol	Value	Unit		
Ambient Temperature	Та	25±2	оС		
Ambient Humidity	На	50±10	%RH		
Supply Voltage	VCC	12	V		
Input Signal	According to typical v	alue in "3. ELECTRICAL (CHARACTERISTICS"		
LED Current	IL	100	mA		
Vertical Frame Rate	Fr	120	Hz		

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in 7.1.

Item		Symbol		Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR			3500	5000	-	-	(2)
Response Time (VA)		Gray to gray			-	6	12	ms	(3)
Center Luminance of White		L _C	2D		320	400	-	cd/m ²	(4)
			3D		-	60	-	cd/m ²	(8)
White Variation		δW			-	-	1.3	-	(6)
Cross Talk		СТ	2D	θx=0°, θy =0° Viewing angle at normal direction	-	-	4	%	(5)
			3D-W		- 1	4	-	%	(8)
			3D-D			11	-	%	(8)
Color Chromaticity	Red	Rx				0.636	Typ. +0.03	-	_
		Ry			Typ0.03	0.334		-	
	Green	Gx				0.296		-	
		Gy				0.601		-	
	Blue	Вх				0.152		-	
		Ву				0.054		-	
	White	Wx				0.280		-	
		Wy				0.290		-	
	Correlated color temperature			-	10000	-	К	-	
	Color Gamut	C.G.			-	72	-	%	NTSC
Viewing Angle	Horizontal	θ x +		CR≥20	80	88	-	- Deg.	(1)
		θx-			80	88	-		
	Vertical	θу+			80	88	-		
			θу-		80	88	-		
Transmission direction of the up polarizer		$\Phi_{\sf up}$		-	-	90	-	Deg.	(7)

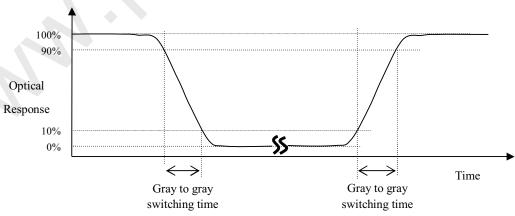

Version 2.0 37 Date: 5 July. 2011

PRODUCT SPECIFICATION

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Autronic Conoscope Cono-80

Note (2) Definition of Contrast Ratio (CR):


The contrast ratio can be calculated by the following expression.

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6).

Note (3) Definition of Gray-to-Gray Switching Time:

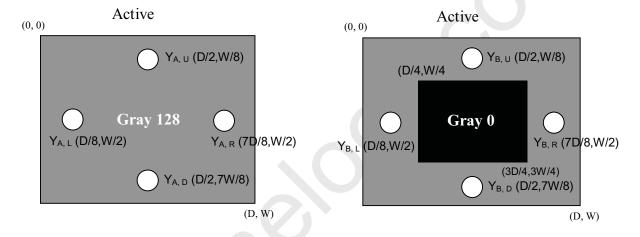
The driving signal means the signal of gray level 0, 124, 252, 380, 508, 636, 764, 892 and 1023. Gray to gray average time means the average switching time of gray level 0, 124, 252, 380, 508, 636, 764, 892 and 1023 to each other.

Version 2.0 38 Date: 5 July. 2011

Note (4) Definition of Luminance of White (LC):

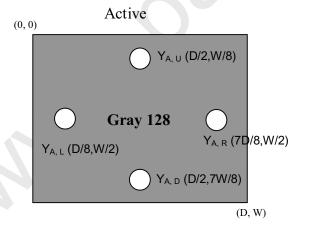
Measure the luminance of gray level 255 at center point and 5 points

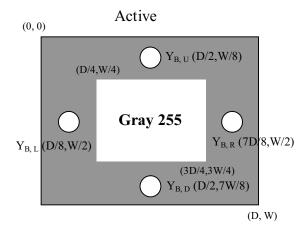
 $L_C = L(5)$, where L(X) is corresponding to the luminance of the point X at the figure in Note (6).


Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

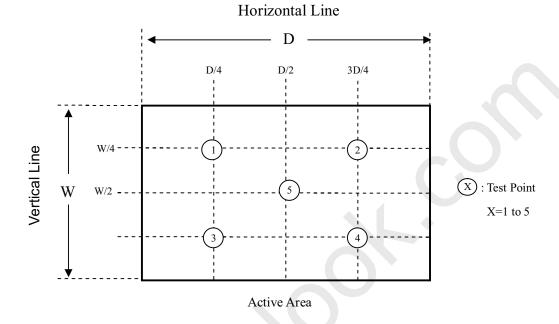
Where:


Y_A = Luminance of measured location without gray level 0 pattern (cd/m2)


Y_B = Luminance of measured location with gray level 0 pattern (cd/m2)

Y_A = Luminance of measured location without gray level 255 pattern (cd/m2)

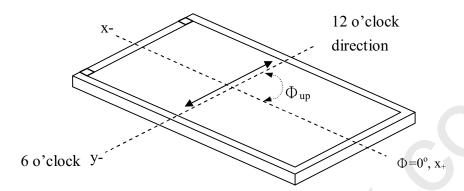
Y_B = Luminance of measured location with gray level 255 pattern (cd/m2)

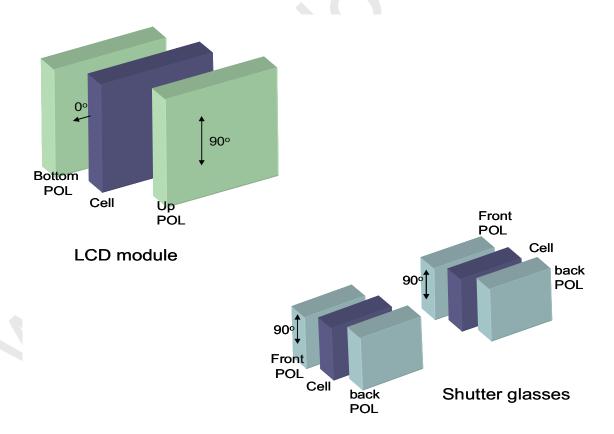


PRODUCT SPECIFICATION

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

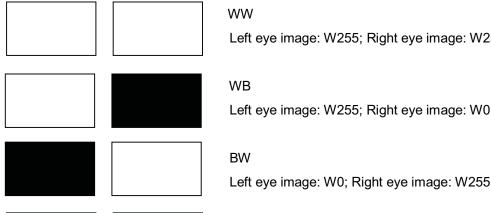

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$


Version 2.0 40 Date: 5 July. 2011

Note (7) This is a reference for designing the shutter glasses of 3D application. (VA) Definition of the transmission direction of the up polarizer:

The transmission axis of the front polarizer of the shutter glasses should be parallel to this panel transmission direction to get a maximum 3D mode luminance.

Version 2.0 41 Date: 5 July. 2011



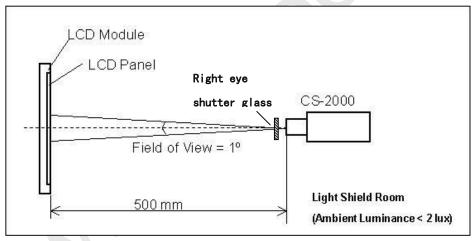
PRODUCT SPECIFICATION

Note (8) Definition of the 3D mode performance (measured under 3D mode, use CMI's shutter glass):

a. Test pattern

Left eye image and right eye image are displayed alternated

Left eye image: W255; Right eye image: W255


Left eye image: W0; Right eye image: W255

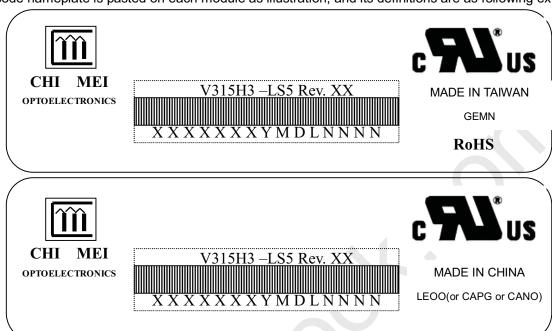
BB

Left eye image: W0; Right eye image: W0

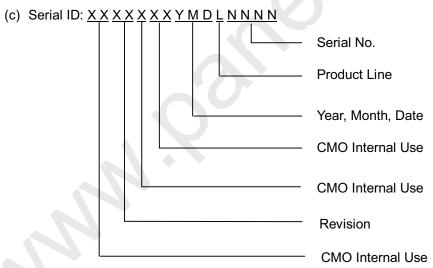
Measurement setup

Shutter glasses are well controlled under suitable timing, and measure the luminance of the center point of the panel through the right eye glass. The transmittance of the glass should be larger than 40.0% under 3D mode operation. The luminance of the test pattern "WW", denoted L(WW); the luminance of the test pattern "WB", denoted L(WB); the luminance of the test pattern "BW", denoted L(BW); the luminance of the test pattern "BB", denoted "L(BB)

- c. Definition of the Center Luminance of White, Lc (3D): L(WW)
- Definition of the 3D mode white crosstalk, CT (3D-W): $CT(3D-W) \equiv \frac{L(WB) L(BB)}{L(WW) L(BB)}$
- Definition of the 3D mode dark crosstalk, CT (3D-D) : $CT(3D-D) = \frac{|L(WW) L(BW)|}{|L(WW) L(BB)|}$



PRODUCT SPECIFICATION


8. DEFINITION OF LABELS

8.1 CMI MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: V315H3-LS5
- (b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 2001=1, 2002=2, 2003=3, 2004=4....2010=0, 2011=1, 2012=2....

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

- (b) Revision Code: Cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

43 Version 2.0 Date: 5 July. 2011

9. PACKAGING

9.1 PACKING SPECIFICATIONS

(1) 6 LCD TV modules / 1 Box

(2) Box dimensions: 826(L)x376(W)x540(H)mm(3) Weight: Approx. 30 Kg(6 modules per carton)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method

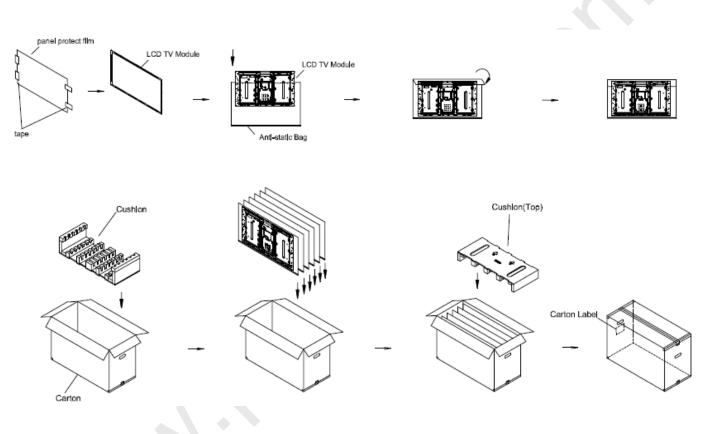


Figure.9-1 packing method

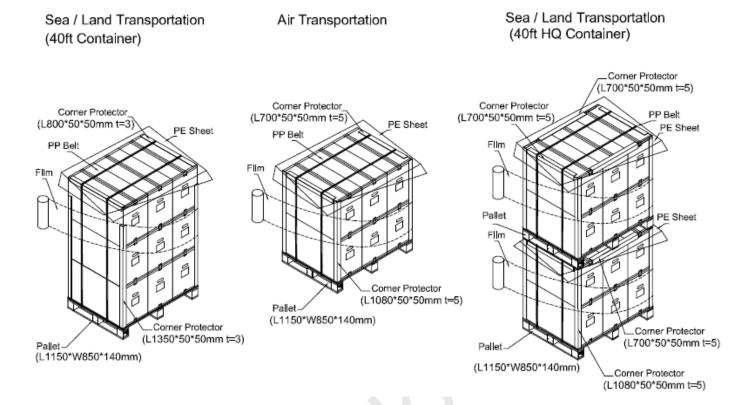


Figure.9-2 packing method

Version 2.0 45 Date : 5 July. 2011

10. International Standard

10.1 Safety

- (1) UL 60950-1, UL 60065: Standard for Safety of Information Technology Equipment Including electrical Business Equipment.
- (2) IEC 60950-1:2005, IEC 60065:2001+ A1:2005; Standard for Safety of International Electrotechnical Commission.
- (3) EN 60950-1:2006+ A11:2009, EN60065:2002 + A1:2006 + A11:2008; European Committee for Electrotechnical Standardization (CENELEC), EUROPEAN STANDARD for Safety of Information Technology Equipment Including Electrical Business Equipment.

10.2 EMC

- (1) ANSI C63.4 Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHZ. "American National standards Institute(ANSI)
- (2) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment. " International Special committee on Radio Interference.
- (3) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment. "European Committee for Electortechnical Standardization.(CENELEC)

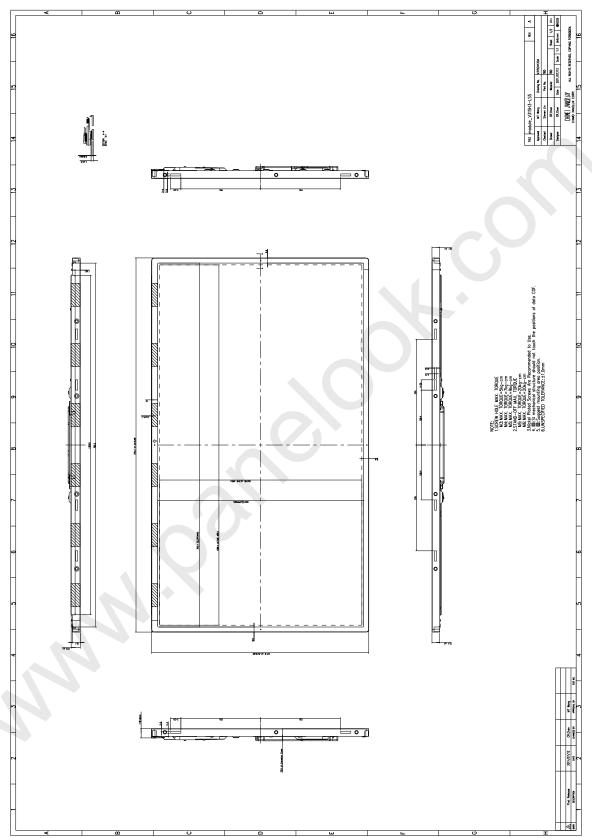
Version 2.0 46 Date : 5 July. 2011

11. PRECAUTIONS

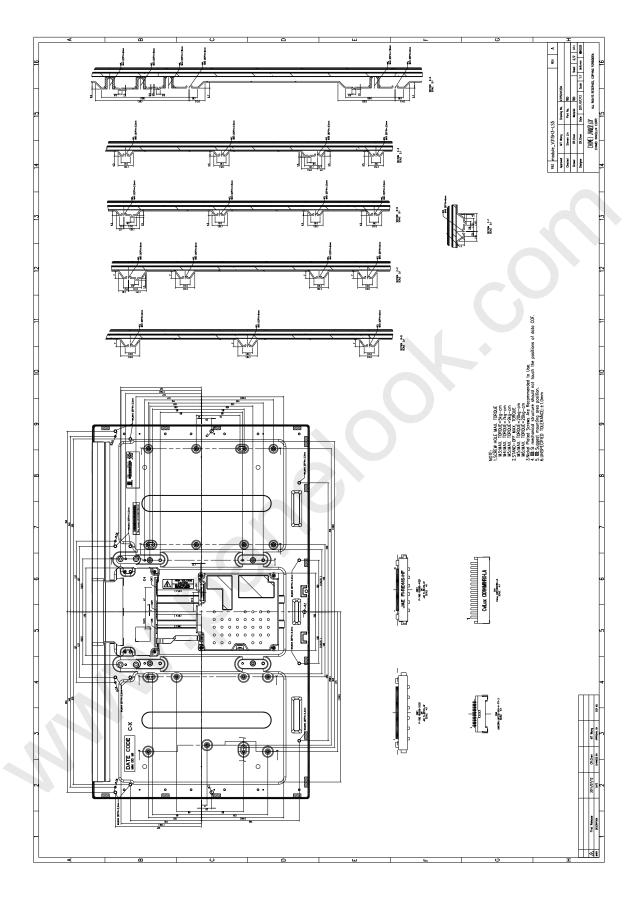
11.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of LED light bar will be higher than that of room temperature.

11.2 SAFETY PRECAUTIONS


- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the converter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

47 Date: 5 July. 2011 Version 2.0


12. MECHANICAL CHARACTERISTICS

Version 2.0 48 Date: 5 July. 2011

Version 2.0 49 Date: 5 July. 2011