

remative Specification
Preliminary Specification
Approval Specification

MODEL NO.: V320BJ6 **SUFFIX: PE1**

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your cosignature and comments.	onfirmation with your

Approved By	Checked By	Prepared By
Chao-Chun Chung	Vincent Chou	Andy Chen

CONTENTS

Version 2.0 Date: Mar 19,	. 2012
9. PACKAGING	26
8.1 OPEN CELL LABEL	25
8. DEFINITION OF LABELS	
7.1 TEST CONDITIONS	22
7. OPTICAL CHARACTERISTICS	
6.1 INPUT SIGNAL TIMING SPECIFICATIONS	
6. INTERFACE TIMING	18
5.4 COLOR DATA INPUT ASSIGNMENT	16
5.3 LVDS INTERFACE	15
5.2 BLOCK DIAGRAM OF INTERFACE	14
5.1 TFT LCD Module Input	12
5. INPUT TERMINAL PIN ASSIGNMENT	12
4.1 TFT LCD MODULE	11
4. BLOCK DIAGRAM OF INTERFACE	
3.1 TFT LCD MODULE	8
3. ELECTRICAL CHARACTERISTICS	
2.3.1 TFT LCD MODULE	
2.3 ELECTRICAL ABSOLUTE RATINGS	
2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED ON CMI MODULE V315B5-LE3)	
2. ABSOLUTE MAXIMUM RATINGS	6
1.3 MECHANICAL SPECIFICATIONS	5
1.2 FEATURES	5
1.1 OVERVIEW	
1. GENERAL DESCRIPTION	5
REVISION HISTORY	4

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

	9.1 PACKAGING SPECIFICATIONS	.26
	9.2 PACKAGING METHOD	.26
10	PRECAUTIONS	28
		.20
11	MECHANICAL CHARACTERISTIC	20

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver. 1.0 Ver. 2.0	Jan. 16, 2012 Mar. 19, 2012	All All	All All	Preliminary Specification was first issued. Approval Specification was first issued.

Version 2.0 4 Date: Mar 19, 2012

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

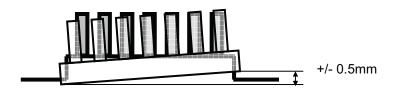
PRODUCT SPECIFICATION

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V320BJ6-PE1 is a 32" TFT Liquid Crystal Display product. This product supports 1366 x 768 WXGA format and can display true 16.7M (8-bit/color) colors.

1.2 FEATURES


CHARACTERISTICS ITEMS	SPECIFICATIONS
Screen Diagonal [in]	31.5
Pixels [lines]	1366 x 768
Active Area [mm]	697.6845 (H) x 392.256 (V) (31.5" diagonal)
Sub-Pixel Pitch [mm]	0.17025 (H) x 0.51075 (V)
Pixel Arrangement	RGB vertical stripe
Weight [g]	880
Physical Size [mm]	716.1(W) × 410.0(H) × 1.35(D) Typ.
Display Mode	Transmissive mode / Normallly black
Contrast Ratio	3000:1 Typ.
	(Typical value measure at CMI's module)
Glass thickness (Array / CF) [mm]	0.5 / 0.5
Viewing Angle (CR>20)	+88/-88(H), +88/-88(V) Typ. (CR≥20)
	(Typical value measure at CMI's module)
Color Chromaticity	TBD
	* Please refer to "color chromaticity" on p.22
Cell Transparency [%]	6.0%
	(Typical value measured at CMI's module)
Polarizer Surface Treatment	Anti-Glare coating (Haze 1%), Hard coating (3H)

1.3 MECHANICAL SPECIFICATIONS

Item	Min.	Тур.	Max.	Unit	Note
Weight		880		g	-
I/F connector mounting position	The mounting incli screen center with	ination of the conning $\pm~0.5$ mm as the	ector makes the horizontal.		(2)

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Connector mounting position

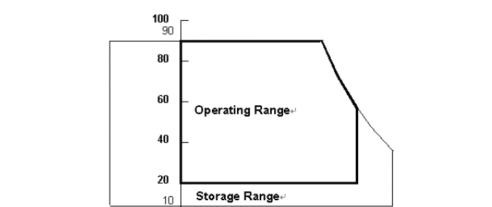
2. ABSOLUTE MAXIMUM RATINGS

Global LCD Panel Exchange Center

2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED ON CMI MODULE V315B5-LE3)

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Offic		
Storage Temperature	T _{ST}	-20	+60	°C	(1), (3)	
Operating Ambient Temperature	T _{OP}	0	50	°C	(1), (2), (3)	

- Note (1) Temperature and relative humidity range is shown in the figure below.
 - (a) 90 %RH Max. (Ta \leq 40 °C).
 - (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).


-20↔

Relative Humidity (%RH)~

0⊷

(c) No condensation.

40₽

Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.

20₽ Temperature (°C)√ 40₽

60₽

80

Note (3) The rating of environment is base on LCD module. Leave LCD cell alone, this environment condition can't be guaranteed. Except LCD cell, the customer has to consider the ability of other parts of LCD module and LCD module process.

PRODUCT SPECIFICATION

2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)

Storage Condition: With shipping package.

Storage temperature range: 25±5 °C Storage humidity range: 50±10%RH

Shelf life: a month

2.3 ELECTRICAL ABSOLUTE RATINGS

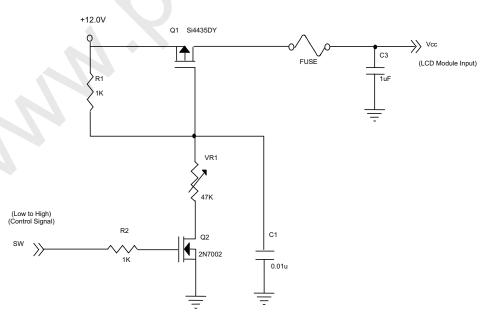
2.3.1 TFT LCD MODULE

Item	Symbol	Symbol		Unit	Note
item	Symbol	Min.	Max.	Offic	Note
Power Supply Voltage	VCC	-0.3	13.5	V	(1)
Input Signal Voltage	VIN	-0.3	3.6	V	(1)

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Functional operation should be restricted to the conditions described under normal operating conditions.

PRODUCT SPECIFICATION

3. ELECTRICAL CHARACTERISTICS

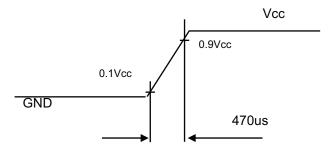

3.1 TFT LCD MODULE

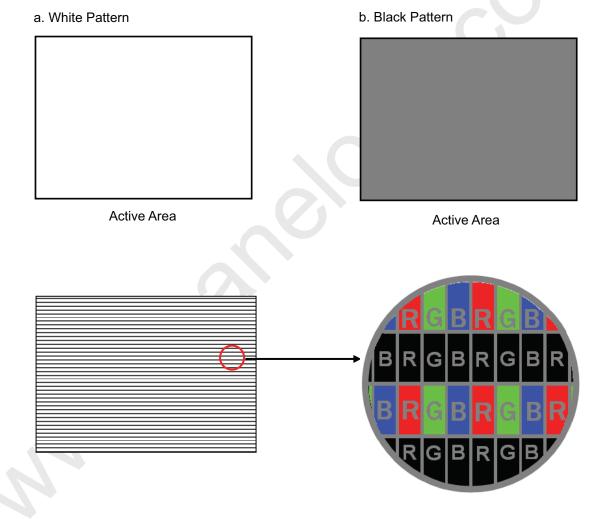
 $(Ta = 25 \pm 2 \, ^{\circ}C)$

Doromotor			Symbol	Value			l lait	NI-4-	
	Parameter			Min.	Тур.	Max.	Unit	Note	
Power Supply Voltage			V _{CC}	10.8	12	13.2	V	(1)	
Rush Curr	ent		I _{RUSH}	_	_	2.50	Α	(2)	
		White Pattern	_	_	0.31	0.36	Α		
Power Sup	oply Current	Horizontal Stripe	_	_	0.47	0.57	A	(3)	
		Black Pattern	_	_	0.29	0.35	А		
	Differential Input High Threshold Voltage		V_{LVTH}	+100	-	-	mV		
	Differential Input Low Threshold Voltage		V _{LVTL}	_		-100	mV		
LVDS interface	Common Inp	Common Input Voltage		1.0	1.2	1.4	V	(4)	
	Differential in	Differential input voltage		200		600	mV		
	Terminating Resistor		R _T	1-6	100	_	ohm		
CMOS	Input High T	hreshold Voltage	V _{IH}	2.7	_	3.3	V		
interface	Input Low Threshold Voltage		V _{IL}	0	_	0.7	V		

Note (1) The module should be always operated within the above ranges.

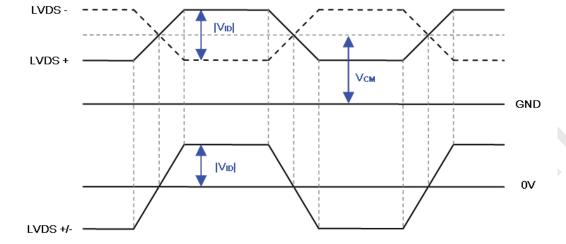
Note (2) Measurement condition:



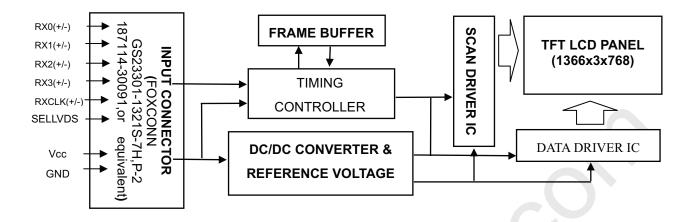


PRODUCT SPECIFICATION

Vcc rising time is 470us


Note (3) The specified power supply current is under the conditions at Vcc = 12 V, Ta = 25 \pm 2 °C, f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The LVDS input characteristics are as follows:

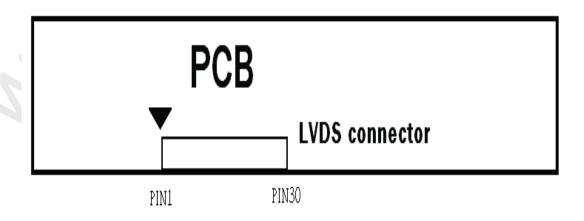


PRODUCT SPECIFICATION

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

PRODUCT SPECIFICATION

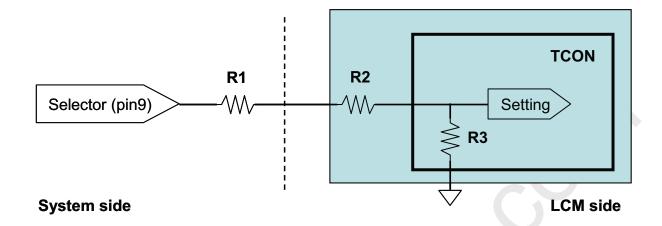

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD Module Input

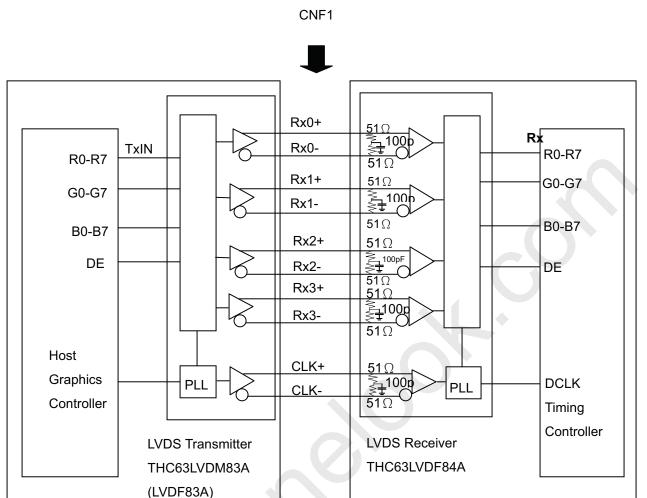
CNF1 Connector Pin Assignment

Pin No.	Symbol	Description	Note
1	VCC	Power supply: +12V	
2	VCC	Power supply: +12V	
3	VCC	Power supply: +12V	
4	VCC	Power supply: +12V	
5	GND	Ground	
6	GND	Ground	
7	GND	Ground	
8	WP	EEPROM Write Protection (for auto Vcom) (0V~0.7V/Open→Disable, 2.7V~3.3V→Enable)	
9	SELLVDS	Select LVDS data format	(2),(4)
10	NC	No connection	(3)
11	GND	Ground	
12	RX0-	Negative transmission data of pixel 0	
13	RX0+	Positive transmission data of pixel 0	
14	GND	Ground	
15	RX1-	Negative transmission data of pixel 1	
16	RX1+	Positive transmission data of pixel 1	
17	GND	Ground	
18	RX2-	Negative transmission data of pixel 2	
19	RX2+	Positive transmission data of pixel 2	
20	GND	Ground	
21	RXCLK-	Negative of clock	
22	RXCLK+	Positive of clock	
23	GND	Ground	
24	RX3-	Negative transmission data of pixel 3	
25	RX3+	Positive transmission data of pixel 3	
26	GND	Ground	
27	NC	No connection	(3)
28	SCL	Serial clock input (for auto Vcom)	
29	SDA	Serial data input (for auto Vcom)	
30	GND	Ground	

Note (1) LVDS connector pin orderdefined as follows



Note (2) Low = Open or connect to GND: VESA Format, High = Connect to +3.3V: JEIDA Format.


- Note (3) Reserved for internal use. Please leave it open.
- Note (4) LVDS signal pin connected to the LCM side has the following diagram. R1 in the system side should be less than 1K Ohm. (R1 < 1K Ohm)

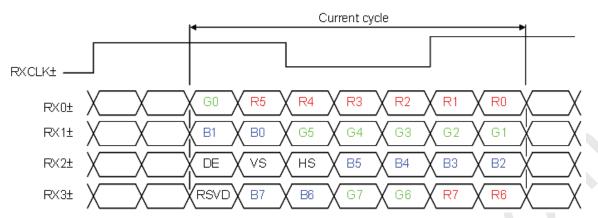
5.2 BLOCK DIAGRAM OF INTERFACE

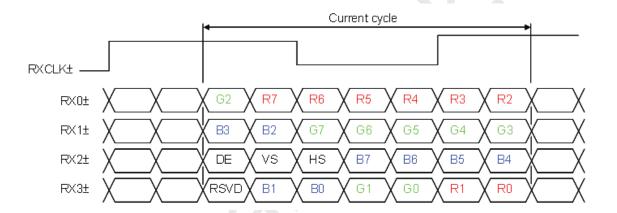
R0~R7 : Pixel R Data G0~G7 : Pixel G Data B0~B7 : Pixel B Data

DE : Data Enable Signal
DCLK : Data clock signal

Note (1) The system must have the transmitter to drive the module.

Note (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.




PRODUCT SPECIFICATION

5.3 LVDS INTERFACE

VESA LVDS format: (SELLVDS pin=L or open)

JEIDA LVDS format: (SELLVDS pin=H)

R0~R7: Pixel R Data (7; MSB, 0; LSB) G0~G7: Pixel G Data (7; MSB, 0; LSB)

B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE: Data enable signal

Notes (1) RSVD(reserved)pins on the transmitter shall be "H" or ("L" or OPEN)

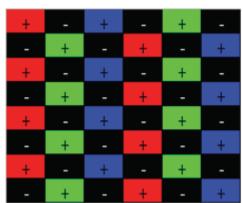
PRODUCT SPECIFICATION

5.4 COLOR DATA INPUT ASSIGNMENT

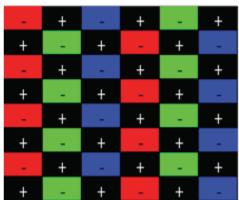
The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data innut

data in	put.	1																							
Data Signal																									
Color		Red				Green				Blue															
	_	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	B5	В4	ВЗ	В2	В1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:			:	:	:	:	:	:	:	:	:	:	:	:	:
Of Red	:	:	:	:	:	:	:	:	:		:		:	:	:	:	:	:	:	:	:	:	:	:	:
	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:				:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale Of	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage



PRODUCT SPECIFICATION


5.5 FLICKER (Vcom) ADJUSTMENT

(1) Sub-pixel on/off pattern

Frame N

Frame N+1₽

Gray level = 128

(2) Adjustment method: (Digital V-com)

Programmable memory IC is used for Digital V-com adjustment in this model. CMI provide Auto Vcom tools to adjust Digital V-com. The detail connection and setting instruction, please directly contact with Account FAE or refer CMI Auto V-com adjustment OI. Below items is suggested to be ready before Digital V-com adjustment in customer LCM line.

- a. USB Sensor Board
- b. Programmable software

PRODUCT SPECIFICATION

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

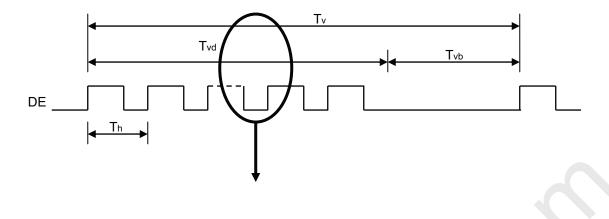
 $(Ta = 25 \pm 2 \, ^{\circ}C)$

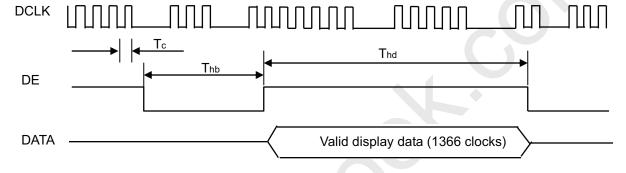
The input signal timing specifications are shown as the following table and timing diagram.

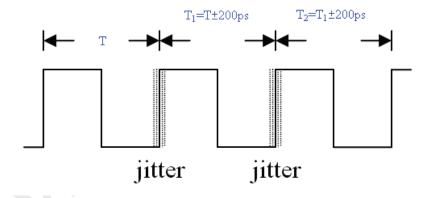
	ar arriing opcomoations a					- 5 -	
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	F _{clkin} (=1/TC)	60	76	82	MHz	
LVDS	Input cycle to cycle jitter	T _{rcl}			200	ps	(3)
Receiver Clock	Spread spectrum modulation range	Fclkin_mo	F _{clkin} -2%		F _{clkin} +2%	MHz	(4)
	Spread spectrum modulation frequency	F _{SSM}			200	KHz	(4)
LVDS Receiver Data	Receiver Skew Margin	T _{RSKM}	-400	I	400	ps	(5)
	Frame Rate	F _{r5}	47	50	53	Hz	
Vertical	Traine rate	F _{r6}	57	60	63	Hz	
Active Display	Total	Tv	776	806	1018	Th	Tv=Tvd+Tv b
Term	Display	Tvd	768	768	768	Th	_
	Blank	Tvb	8	38	250	Th	_
Horizontal	Total	Th	1442	1560	2006	Tc	Th=Thd+T hb
Active Display	Display	Thd	1366	1366	1366	Tc	_
Term	Blank	Thb	76	194	640	Тс	_

Note (1) Please make sure the range of pixel clock has follow the below equation:

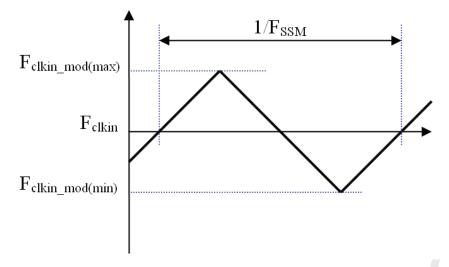
Fclkin(max)
$$\geq$$
 Fr6 \times Tv \times Th

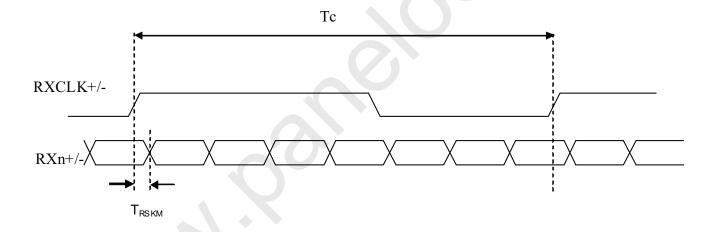

 $Fr5 \times Tv \times Th \ge Fclkin(min)$


Note (2) This module is operated in DE only mode and please follow the input signal timing diagram below:



PRODUCT SPECIFICATION

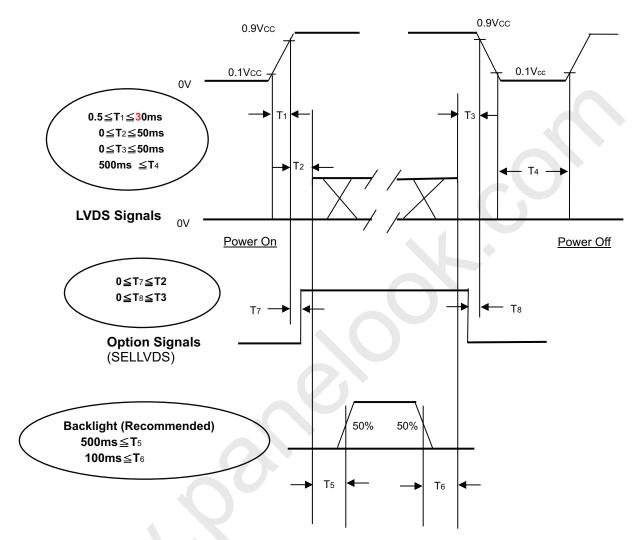

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$


PRODUCT SPECIFICATION

Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) LVDS receiver skew margin is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM



6.2 POWER ON/OFF SEQUENCE

Global LCD Panel Exchange Center

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the LED voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0,that maybe cause electrical overstress failure.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

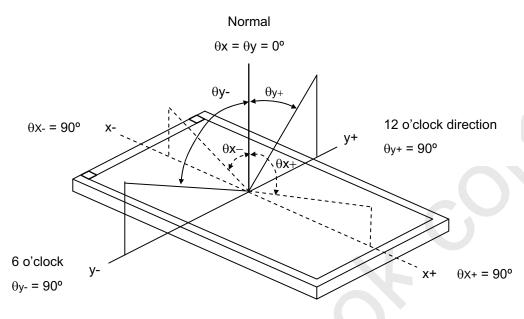
Item	Symbol	Value	Unit				
Ambient Temperature	Та	25±2	°C				
Ambient Humidity	На	50±10	%RH				
Supply Voltage	V _{cc}	12.0	V				
Input Signal According to typical value in "3. ELECTRICAL CHARACTERISTICAL CHARACTERISTICAL CHARACTERISTICAL CHARACTERISTICAL CHARACTERISTICAL CHARACTERISTICAL CHARACTERISTICAL CHARACTERISTICAL CHARACTERISTICAL CHARACTER							
LED Current	I _L	130	mA				

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown as below. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
	Red	Rx		Тур0.03	0.657	Typ+0.03	-	(1) (5)	
	rteu	Ry			0.329		-		
	Green	Gx	$\theta_x=0^\circ$, $\theta_Y=0^\circ$		0.277		-		
Color	Gibbii	Gy	Viewing angle at		0.596		-		
Chromaticity	Blue	Bx	normal direction	Тур0.03	0.133	Τγρ+0.03	-	(1),(5)	
	Dide	Ву	With C source		0.111		-		
	White	Wx			0.308		-		
	VVIIILE	Wy			0.347		-		
Center Trans	mittance	Т%	$\theta_x = 0^\circ$, $\theta_Y = 0^\circ$	-	6.0	-	%	(1), (7)	
Contrast Ratio		CR	With CMI Module	2000	3000	-	-	(1), (3)	
Response	Time	Gray to gray average	θ_x =0°, θ_Y =0° With CMI Module@60Hz	-	8.5	-	ms	(4)	
White Variation		δW	θ_x =0°, θ_Y =0° With CMI Module	-	1	1.3	-	(1), (6)	
	Horizontal	θ_{x} +		-	88	-			
Viowing Angle	Horizontal	θ_{x} -	CR≥20	-	88	-	Dog	(1) (2)	
Viewing Angle	Vertical	θ_{Y} +	With CMI Module	-	88	-	Deg.	(1), (2)	
	vertical	θ_{Y} -		-	88	-			

Note (1) Light source is the standard light source "C" which is defined by CIE and driving voltages are based on suitable gamma voltages. The calculating method is as following:


- 1. Measure Module's and BLU's spectrums. W, R, G, B are with signal input. BLU(for V315B5-LE3) is supplied by CMI.
- 2. Calculate cell's spectrum.
- 3. Calculate cell's chromaticity by using the spectrum of standard light source "C"

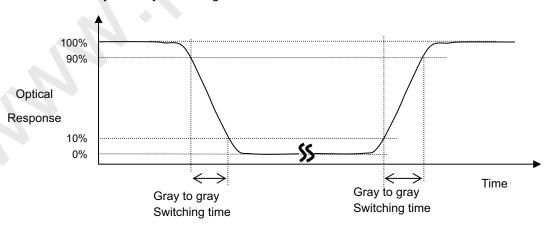
PRODUCT SPECIFICATION

Note (2) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Autronic Conoscope Cono-80

Note (3) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.


Contrast Ratio (CR) = L255 / L0

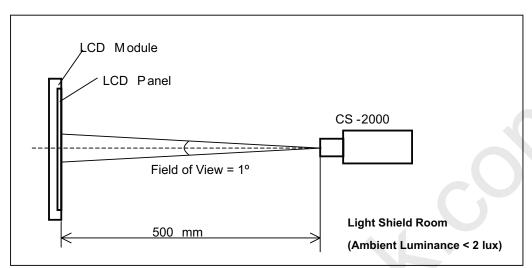
L255: Luminance of gray level 255

L 0: Luminance of gray level 0

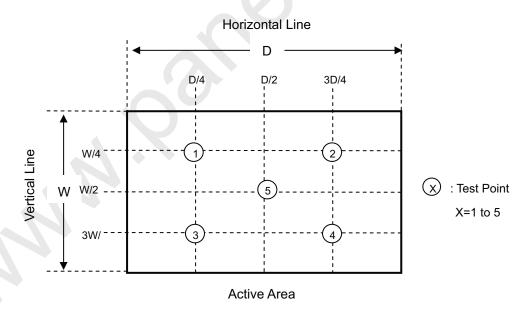
CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6).

Note (4) Definition of Gray-to-Gray Switching Time:

The driving signal means the signal of luminance 0%, 20%, 40%, 60%, 80%, 100%. Gray to gray average time means the average switching time of luminance 0%, 20%,


40%, 60%, 80%, 100% to each other.

Note (5) Measurement Setup:


Global LCD Panel Exchange Center

The LCD module should be stabilized at given temperature for 60 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 60 minutes in a windless room.

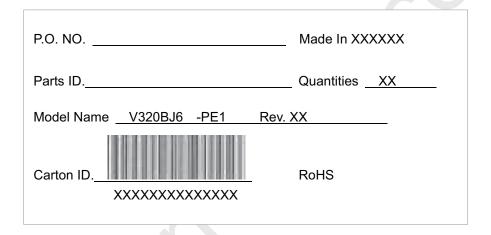
Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points δW = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)] where L (X) is corresponding to the luminance of the point X at the figure below.

Note (7) Definition of Transmittance (T%):

Module is without signal input.

8. DEFINITION OF LABELS


8.1 OPEN CELL LABEL

The barcode nameplate is pasted on each open cell as illustration for CMI internal control.

8.2 CARTON LABEL

The barcode nameplate is pasted on each box as illustration, and its definitions are as following explanation.

(a) Model Name: V320BJ6- PE1

(b) Carton ID: CMI internal control

(c) Quantities: xx

9. PACKAGING

9.1 PACKAGING SPECIFICATIONS

Global LCD Panel Exchange Center

(1) 10PCS LCD TV Panels / 1 Box

(2) Box dimensions: 810 (L) X 555 (W) X 92 (H) mm

(3) Weight: approximately 16Kg (10 panels per box)

(4) 260 LCD TV Panels / 1 Group

9.2 PACKAGING METHOD

Figures 9-1 and 9-2 are the packing method

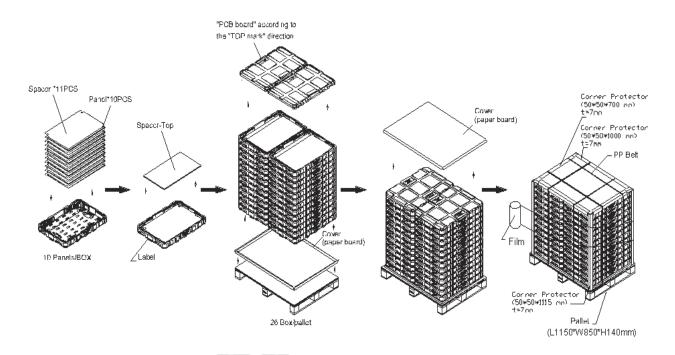


Figure.9-1 packing method

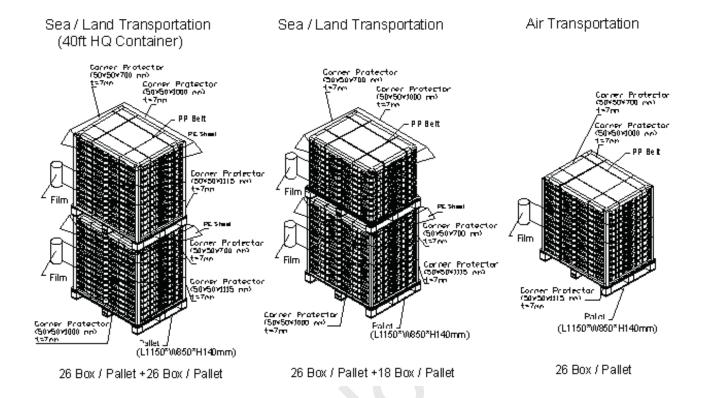
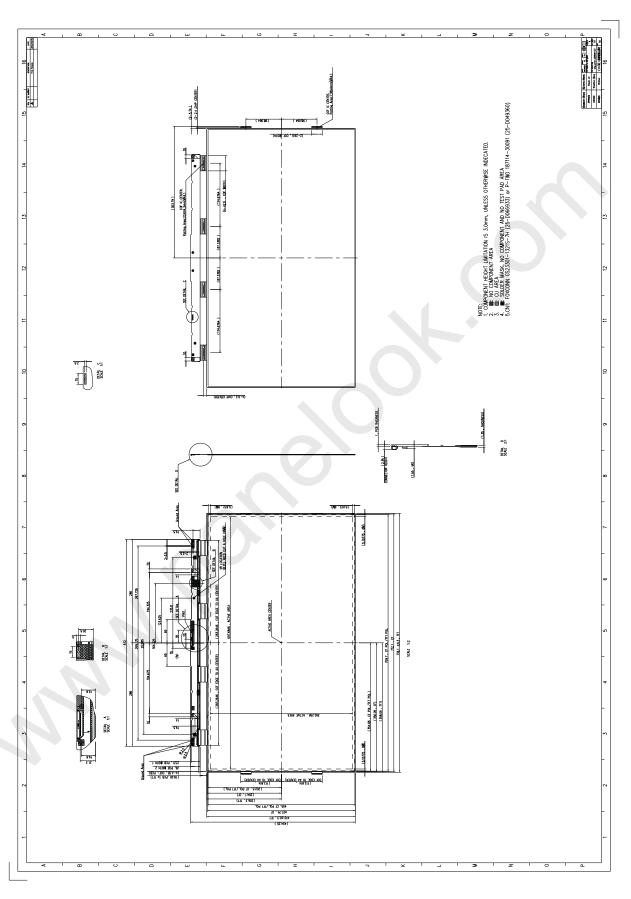


Figure.9-2 packing method

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the product during assembly.
- (2) To assemble backlight or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel will be damaged.
- (4) Always follow the correct power sequence when the product is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (7) It is dangerous that moisture come into or contacted the product, because moisture may damage the product when it is operating.
- (8) High temperature or humidity may reduce the performance of module. Please store this product within the specified storage conditions.
- (9) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.


10.2 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the product's end of life, it is not harmful in case of normal operation and storage.

11. MECHANICAL CHARACTERISTIC

Version 2.0 29 Date: Mar 19, 2012

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited