$\langle p \rangle$

PRODUCT SPECIFICATION

Tentative Specification

Preliminary Specification

Approval Specification

MODEL NO.: V390HJ1 SUFFIX: P03

39"FHD_60Hz_Open Cell

Source Board + Control Board + FFC Cable

Customer:								
APPROVED BY SIGNATURE								
<u>Name / Title</u> Note								
· Please return 1 copy	•	n with your						
signature and common • Refer to "V390" Incor		C						
Approved By	Checked By	Prepared By						
Chao-Chun Chung	Roger Huang	WJ Chang						

Version 2.0

1

Date : 10 May. 2012

 \bigotimes

PRODUCT SPECIFICATION

CONTENTS

REVISION HISTORY	4
1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	
1.2 FEATURES	
1.3 MECHANICAL SPECIFICATIONS	
2. ABSOLUTE MAXIMUM RATINGS	6
2.1 ABSOLUTE RATINGS OF ENVIRONMENT	
2.2 PACKAGE STORAGE	
2.3 ELECTRICAL ABSOLUTE RATINGS	7
3. ELECTRICAL CHARACTERISTICS	8
3.1 TFT LCD MODULE	8
4. BLOCK DIAGRAM OF INTERFACE	
4.1 TFT LCD OPEN CELL	
5. INPUT TERMINAL PIN ASSIGNMENT	12
5.1 TFT LCD Module Input	12
5.2 LVDS INTERFACE	15
5.3 COLOR DATA INPUT ASSIGNMENT	16
5.4 FLICKER (V-com/Gamma) ADJUSTMENT	17
6. INTERFACE TIMING	18
6.1 INPUT SIGNAL TIMING SPECIFICATIONS	18
6.2 POWER ON/OFF SEQUENCE	21
7. OPTICAL CHARACTERISTICS	22
7.1 TEST CONDITIONS	22
7.2 OPTICAL SPECIFICATIONS	23
8. PRECAUTIONS	23
8.1 ASSEMBLY AND HANDLING PRECAUTIONS	26
8.2 SAFETY PRECAUTIONS	26
9. DEFINITION OF LABELS	
Version 2.0 2	Date : 10 May. 2012
The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohil	bited

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

 \oslash

PRODUCT SPECIFICATION

	9.1 CMI OPEN CELL LABEL	28
	9.2 CARTON LABEL	28
10.	PACKAGING	29
	10.1 PACKAGING SPECIFICATIONS	29
	10.2 PACKAGING METHOD	29

11. MECHANICAL CHARACTERISTIC	31
-------------------------------	----

Version 2.0

3

Date : 10 May. 2012

REVISION HISTORY					
Version	Date	Page(New)	Section	Description	
Ver. 2.0	May. 10, 2012	All	All	The Approval Specification was first issued.	
Ver. 2.0	May. 10, 2012	All		The Approval Specification was first issued.	

REVISION HISTORY

Version 2.0

4

Date : 10 May. 2012

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V390HJ1-P03 is a 39" TFT Liquid Crystal Display product with driver ICs and 2ch-LVDS interface. This module supports 1920 x 1080 Full HDTV format and can display 16.7M colors (8-bit). The backlight unit is not built in.

1.2 FEATURES

CHARACTERISTICS ITEMS	SPECIFICATIONS
Screen Diagonal [in]	39
Pixels [lines]	1920 × 1080
Active Area [mm]	853.92(H) x 480.33(V) (38.5" diagonal)
Sub-Pixel Pitch [mm]	0.14825 (H) x 0.44475 (V)
Pixel Arrangement	RGB vertical stripe
Weight [g]	TYP. 1260g(Not Include Control Board and FFC Cable)
Physical Size [mm]	881.00 (H) × 522.53(V) × 1.8(D) Typ.
Display Mode	Transmissive mode / Normally black
Contrast Ratio	5000:1 Тур.
	(Typical value measure at CMI's module)
Glass thickness (Array / CF) [mm]	0.5 / 0.5
Viewing Angle (CR>20)	+88/-88(H), +88/-88(V) Typ. (CR≧20)
	(Typical value measure at CMI's module)
Color Chromaticity	R = (0.656, 0.323)
	G = (0.266, 0.576)
	B = (0.135, 0.104)
	W= (0.302, 0.344)
	* Please refer to "color chromaticity" on p.23
Cell Transparency [%]	5.5%
Polarizer Surface Treatment	Anti-Glare coating (Haze 3.5%), Hardness 3H

1.3 MECHANICAL SPECIFICATIONS

Item	Min.	Тур.	Max.	Unit	Note
Weight		1260		g	-
I/E connector mounting position	The mounting incli	37/37	(1)(2)		
I/F connector mounting position	screen center with	in ± 0.5mm as the	horizontal.	37/37	(1)(2)

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Connector mounting position

Version 2.0

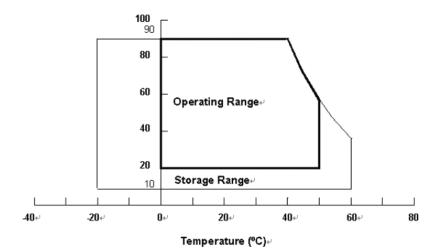
5

Date : 10 May. 2012

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
nem	Symbol	Min.	Max.	Onit		
Storage Temperature	TST	-20	+60	°C	(1)	
Operating Ambient Temperature	TOP	0	50	°C	(1), (2)	


Note (1) Temperature and relative humidity range is shown in the figure below.

(a) 90 %RH Max. (Ta \leq 40 °C).

(b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).

- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.

Relative Humidity (%RH)↔

Version 2.0

6

Date : 10 May. 2012

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time, It is highly recommended to store the module with temperature from 0 to 35 $^{\circ}$ C at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

Item	Symbol	Value		Unit	Note	
nem	Symbol -	Min.	Max.	Unit	Note	
Power Supply Voltage	VCC	-0.3	13.5	V		
Logic Input Voltage	VIN	-0.3	3.6	V	(1)	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

 $\langle p \rangle$

PRODUCT SPECIFICATION

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

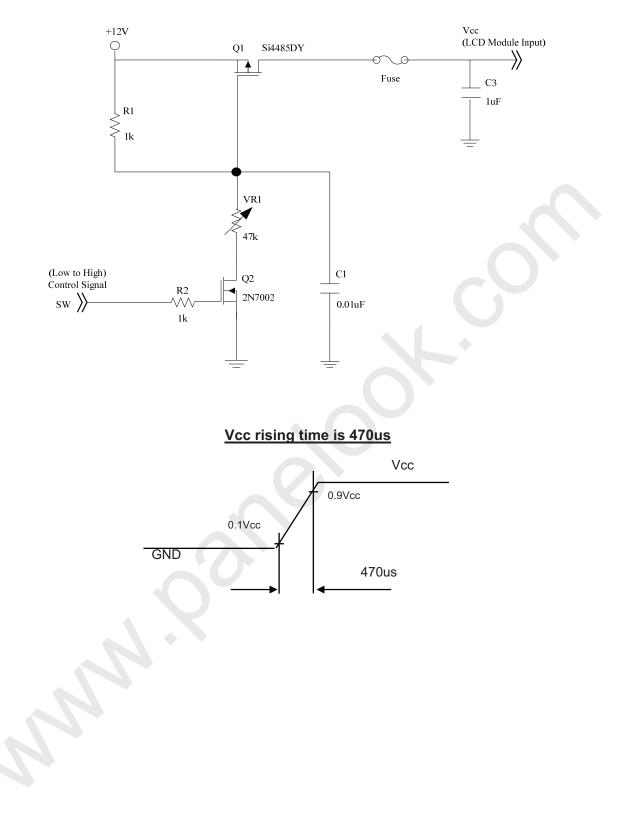
(Ta = 25 ± 2 °C)

Parameter		Symbol	Value			Unit	Note	
		Symbol	Min.	Тур.	Max.	Offic	NOLE	
Power Sup	oply Voltage		V _{cc}	10.8	12	13.2	V	(1)
Rush Curr	ent		I _{RUSH}	_	_	2.457	А	(2)
		White Pattern	_	_	0.228	0.312	А	
Power Sup	oply Current	Horizontal Stripe	_	_	0.48	0.637	A	(3)
		Black Pattern	_	_	0.24	0.321	A	
	Differential Input High Threshold Voltage		V _{LVTH}	+100	_		mV	
	Differential Input Low Threshold Voltage		V _{lvtl}	_		-100	mV	
LVDS interface	Common Input Voltage		V_{CM}	1.0	1.2	1.4	V	(4)
	Differential input voltage		V _{ID}	200		600	mV	
	Terminating	Terminating Resistor			100		ohm	
CMOS Input High Threshold Voltage		VIH	2.7		3.3	V		
interface	Input Low Th	nreshold Voltage	VIL	0	_	0.7	V	

Note (1) The module should be always operated within the above ranges.

Note (2) Measurement condition:

Version 2.0


8

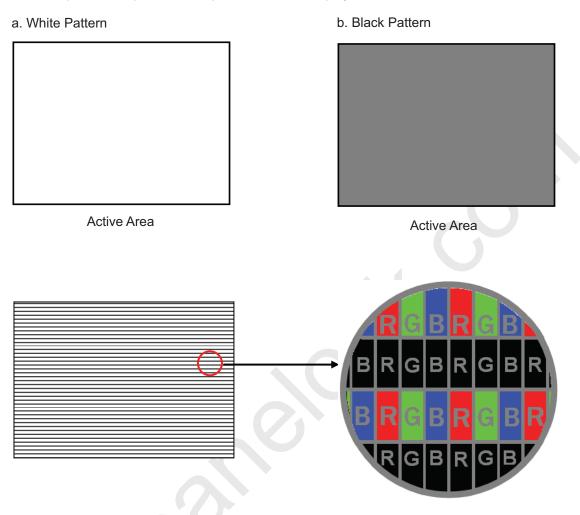
Date : 10 May. 2012

 \oslash

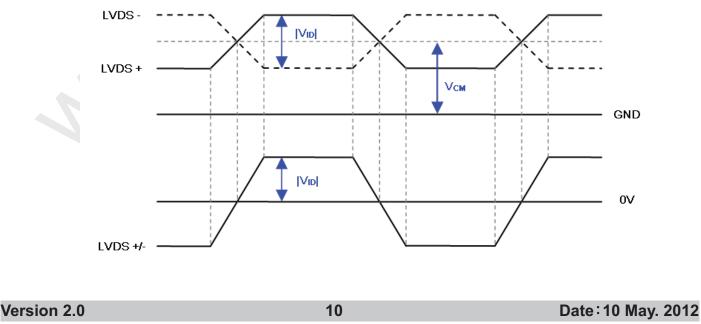
PRODUCT SPECIFICATION

Version 2.0

9


Date : 10 May. 2012

 $\langle p \rangle$

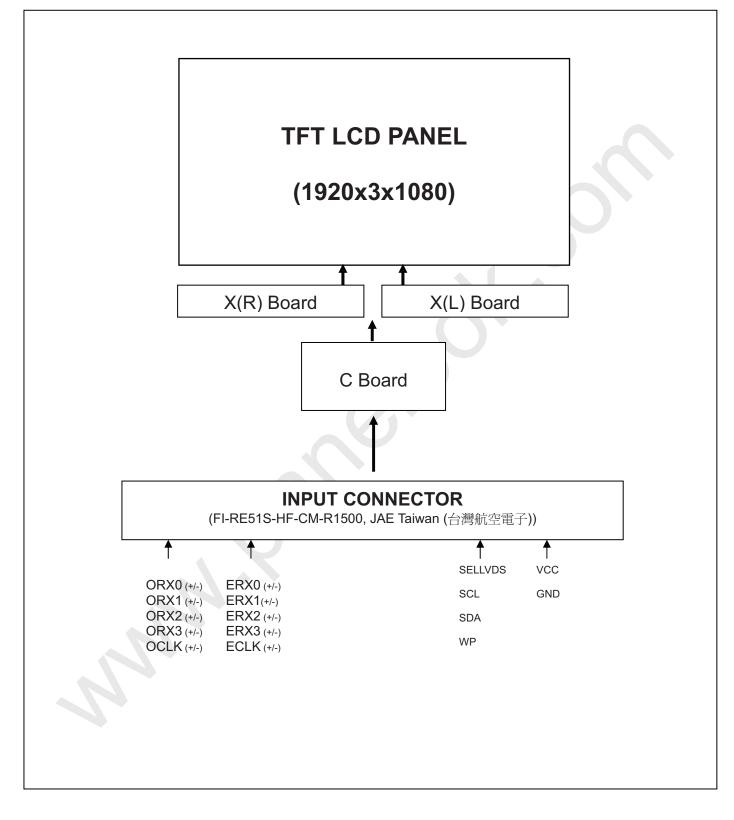


PRODUCT SPECIFICATION

Note (3) The specified power supply current is under the conditions at Vcc = 12 V, Ta = 25 ± 2 °C, $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The LVDS input characteristics are as follows:

奇美電子


CHIMEI INNOLUX

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD OPEN CELL

Version 2.0

11

Date: 10 May. 2012

奇美電子

PRODUCT SPECIFICATION

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD Module Input

CNF1 Connector Part No.: JAE Taiwan (台灣航空電子) FI-RE51S-HF-CM-R1500

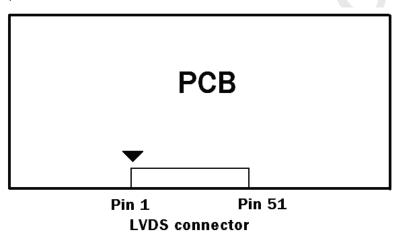
Pin	Name	Description	Note
1	VCC	+12V power supply	
2	VCC	+12V power supply	
3	VCC	+12V power supply	
4	VCC	+12V power supply	
5	VCC	+12V power supply	
6	N.C.	No Connection	(3)
7	GND	Ground	
8	GND	Ground	
9	GND	Ground	
10	ORX0-	Odd pixel Negative LVDS differential data input. Channel 0	
11	ORX0+	Odd pixel Positive LVDS differential data input. Channel 0	
12	ORX1-	Odd pixel Negative LVDS differential data input. Channel 1	
13	ORX1+	Odd pixel Positive LVDS differential data input. Channel 1	(1)
14	ORX2-	Odd pixel Negative LVDS differential data input. Channel 2	
15	ORX2+	Odd pixel Positive LVDS differential data input. Channel 2	
16	GND	Ground	
17	OCLK-	Odd pixel Negative LVDS differential clock input	
	OCLK+	Odd pixel Positive LVDS differential clock input.	(1)
19	GND	Ground	
-	ORX3-	Odd pixel Negative LVDS differential data input. Channel 3	
	ORX3+	Odd pixel Positive LVDS differential data input. Channel 3	(1)
	N.C.	No Connection	
	N.C.	No Connection	(3)
	GND	Ground	
	ERX0-	Even pixel Negative LVDS differential data input. Channel 0	
	ERX0+	Even pixel Positive LVDS differential data input. Channel 0	
	ERX1-	Even pixel Negative LVDS differential data input. Channel 1	
	ERX1+	Even pixel Positive LVDS differential data input. Channel 1	(1)
29	ERX2-	Even pixel Negative LVDS differential data input. Channel 2	
	ERX2+	Even pixel Positive LVDS differential data input. Channel 2	
31	GND	Ground	
	ECLK-	Even pixel Negative LVDS differential clock input.	
33	ECLK+	Even pixel Positive LVDS differential clock input.	(1)
_	GND	Ground	
-	ERX3-	Even pixel Negative LVDS differential data input. Channel 3	
	ERX3+	Even pixel Positive LVDS differential data input. Channel 3	(1)
	N.C.	No Connection	
	N.C.	No Connection	(3)
	GND	Ground	
	SCL	EEPROM Serial Clock	
	N.C.	No Connection	(2)
41	N.C.		(3)

Version 2.0

12

Date: 10 May. 2012

$\langle \! \! \rangle$


奇美電子

PRODUCT SPECIFICATION

42	N.C.	No Connection	(3)
43	WP	EEPROM Write Protection	
44	SDA	EEPROM Serial Data	
45	SELLVDS	LVDS data format selection	(4)(5)
46	N.C.	No Connection	
47	N.C.	No Connection	
48	N.C.	No Connection	(2)
49	N.C.	No Connection	(3)
50	N.C.	No Connection	
51	N.C.	No Connection	

Note (1) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel

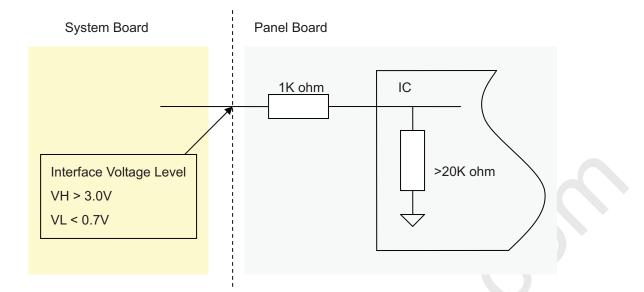
Note (2) LVDS connector pin order defined as follows

Note (3) Reserved for internal use. Please leave it open.

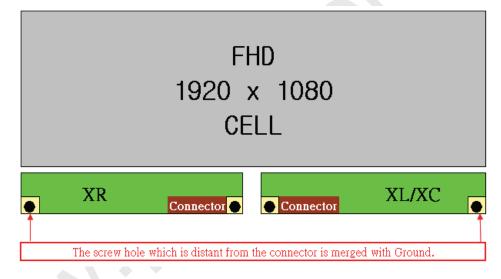
Note (4)Low = Open or connect to GND: JEIDA Format, High = Connect to +3.3V: VESA Format.

Note (5) Interface optional pin has internal scheme as following diagram. Customer should keep the interface voltage level requirement as below.

Version 2.0


13

Date: 10 May. 2012


 \oslash

PRODUCT SPECIFICATION

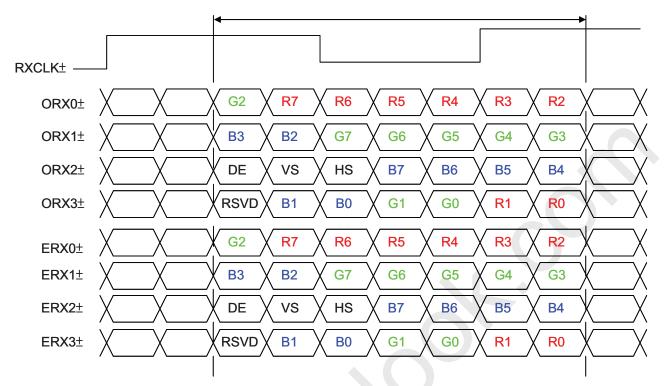
Note (6) The screw hole which is distant from the connector is merged with Ground

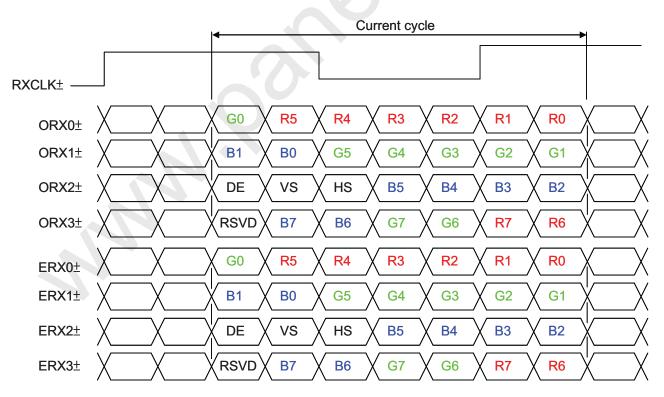
Version 2.0

14

Date: 10 May. 2012

奇美電子


CHIMEI INNOLUX


PRODUCT SPECIFICATION

5.2 LVDS INTERFACE

JEIDA Format : SELLVDS=L or Open

VESA Format : SELLVDS=H

Version 2.0

15

Date: 10 May. 2012

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

R0~R7: Pixel R Data (7; MSB, 0; LSB) G0~G7: Pixel G Data (7; MSB, 0; LSB) B0~B7: Pixel B Data (7; MSB, 0; LSB) DE: Data enable signal DCLK: Data clock signal Notes (1) RSVD (reserved) pins on the transmitter shall be "H" or "L".

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

		Data Signal																							
	Color		Red				Green					Blue													
	1	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red (2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red (253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reu	Red (254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green (253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green (254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green (255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue (253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Dide	Blue (254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

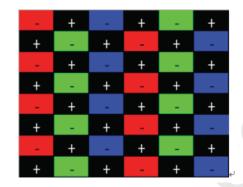
Note (1) 0: Low Level Voltage, 1: High Level Voltage

Version 2.0

16

Date: 10 May. 2012

5.4 FLICKER (V-com/Gamma) ADJUSTMENT


(1) Adjustment Pattern:

Sub-pixel on/off pattern was shown as below. If customer need below pattern, please directly contact with Account FAE. (bright sub-pixel : G128 ; dark sub-pixel : G0)

Frame N+1₽

(2) Adjustment method: (Digital V-com)

Programmable memory IC is used for Digital V-com adjustment in this model. CMI provide Auto Vcom tools to adjust Digital V-com. The detail connection and setting instruction, please directly contact with Account FAE or refer CMI Auto V-com adjustment OI. Below items is suggested to be ready before Digital V-com adjustment in customer LCM line.

Version 2.0

17

 $\langle P \rangle$

PRODUCT SPECIFICATION

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

(Ta = 25 ± 2 °C)

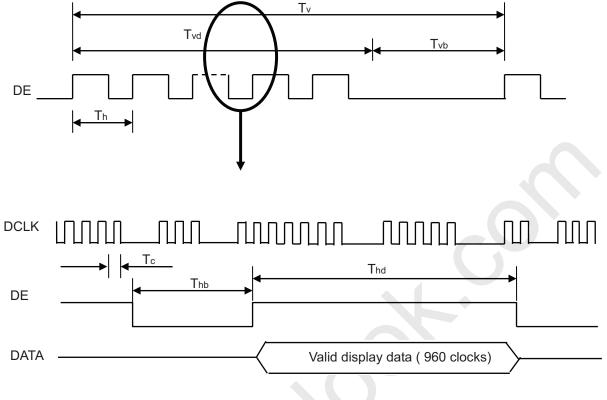
The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	F _{clkin} (=1/TC)	60	74.25	80	MHz	
LVDS	Input cycle to cycle jitter	T _{rcl}	_	_	200	ps	(3)
Receiver Clock	Spread spectrum modulation range	Fclkin_mod	F _{clkin} -2%	_	F _{clkin} +2%	MHz	
	Spread spectrum modulation frequency	F _{SSM}	_	_	200	KHz	(4)
LVDS Receiver Data	Receiver Skew Margin	T _{RSKM}	-400	_	400	ps	(5)
	Frame Rate	F _{r5}	—	50	-	Hz	
Vertical		F _{r6}	_	60		Hz	
Active Display	Total	Τv	1115	1125	1135	Th	Tv=Tvd+Tvb
Term	Display	Tvd	1080	1080	1080	Th	—
	Blank	Tvb	35	45	55	Th	—
Horizontal	Total	Th	1030	1100	1325	Тс	Th=Thd+Thb
Active Display	Display	Thd	960	960	960	Тс	_
Term	Blank	Thb	70	140	365	Тс	_

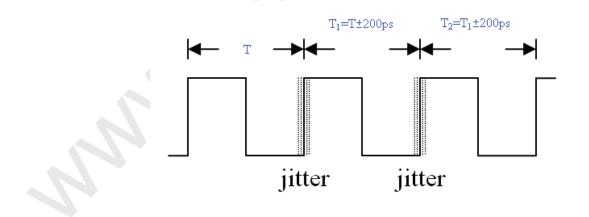
Note (1) Please make sure the range of pixel clock has follow the below equation :

 $\mathsf{Fclkin}(\mathsf{max}) \ge \mathsf{Fr}_6 \times \mathsf{Tv} \times \mathsf{Th}$

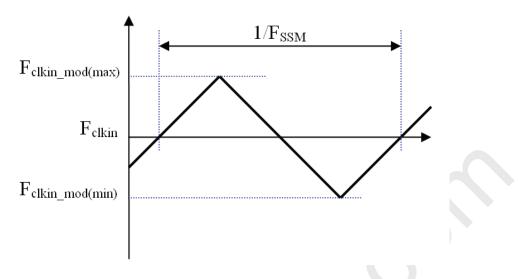
 $\mathsf{Fr}_{5} \bigotimes \mathsf{Tv} \bigotimes \mathsf{Th} \geqq \mathsf{Fclkin}(\mathsf{min})$


Note (2) This module is operated in DE only mode and please follow the input signal timing diagram below :

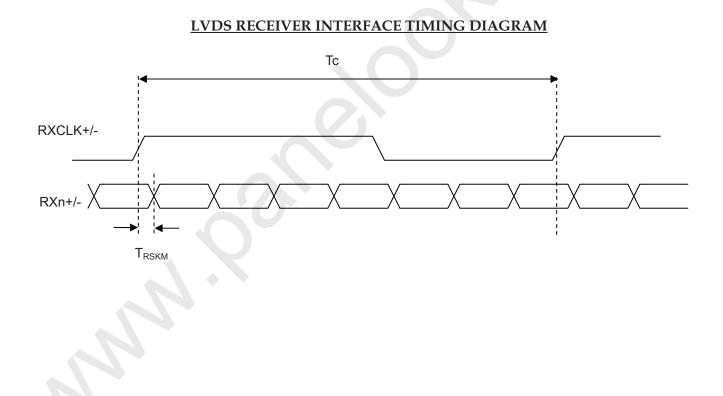
18


Date: 10 May. 2012

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = I $T_1 - TI$


Version 2.0

19


Date: 10 May. 2012

Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

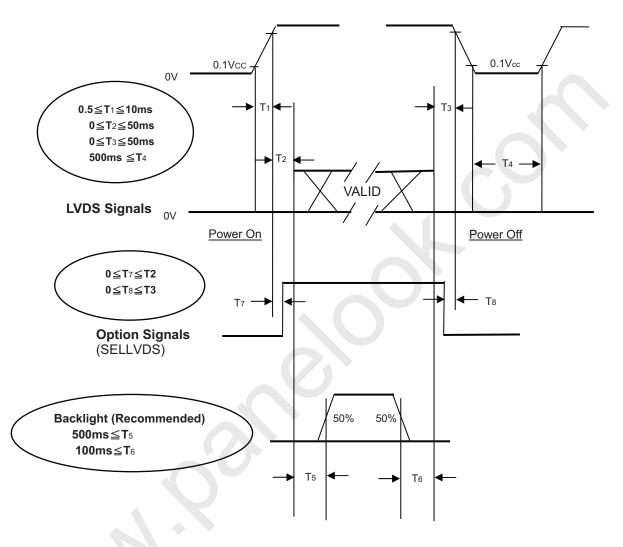
Version 2.0

20

Date: 10 May. 2012

 $\langle p \rangle$

May. 2012



PRODUCT SPECIFICATION

6.2 POWER ON/OFF SEQUENCE

(Ta = 25 ± 2 °C)

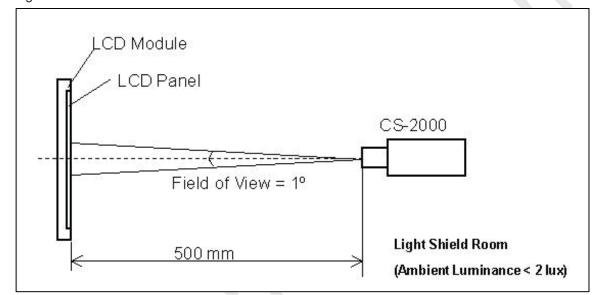
To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0,that maybe cause electrical overstress failure.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

Version 2.0	21	Date:10

 $\langle p \rangle$


PRODUCT SPECIFICATION

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Та	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	V _{cc}	12	V
Input Signal	According to typical v	alue in "3. ELECTRICAL (CHARACTERISTICS"

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring in a windless room.

Version 2.0

22

Date: 10 May. 2012

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown as below. The following items should be measured under the test conditions described in 7.1 and stable environment shown in 7.1.

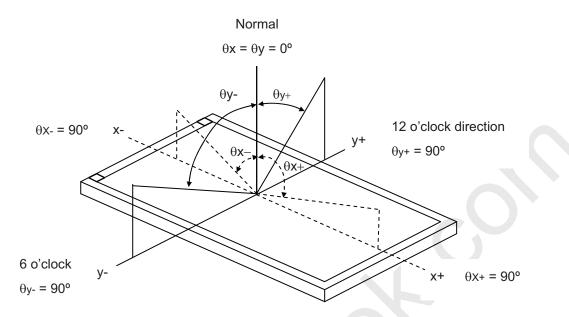
lte	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
	Red	Rcx			0.656		-		
	Reu	Rcy			0.323		-		
	Green	Gcx			0.266		-		
Color	Green	Gcy	$\theta_x=0^\circ, \theta_Y=0^\circ$ Viewing Angle at Normal	Тур.	0.576	Тур		(0)	
Chromaticit	-	Всх	Direction Standard light source "C"	0.03	0.135	+ 0.03	-	(0)	
	Diue	Blue Bcy			0.104		-		
	\\/hite	Wcx			0.302		-		
	White	Wcy			0.344		-		
Center Tran	smittance	Т%	θ _x =0°, θ _Y =0°	-	5.5	-	%	(1),(6)	
Contrast Ra	atio	CR	with CMI module	3500	5000	-	-	(1),(3)	
Response 1	Time	Gray to gray	$\theta_x=0^\circ, \theta_Y=0^\circ$ with CMI Module		9.0	18	ms	(1),(4)	
White Varia	tion	δW	$\theta_x=0^\circ, \theta_Y=0^\circ$ with CMI module		-	1.3	-	(1),(5)	
	Horizontal	θ_x +		80	88	-			
Viewing	rionzontal	θ _x -	With CMI module	80	88	-			
Angle	Vertical	θ γ +		80	88	-	Deg.	(1),(2)	
	vertical	θ _Y -		80	88	-			

Note (0) Light source is the standard light source "C" which is defined by CIE and driving voltage are based on suitable gamma voltages. The calculating method is as following:

- 1. Measure Module's W,R,G,B spectrum and BLU's spectrum. Which BLU (for V390HK1-LS5) is supplied by CMI.
- 2. Calculate cell's spectrum.
- 3. Calculate cell's chromaticity by using the spectrum of standard light source "C".
- Note (1) Light source is the BLU which supplied by CMI and driving voltage are based on suitable gamma voltages.

23

Date: 10 May. 2012


Date: 10 May. 2012

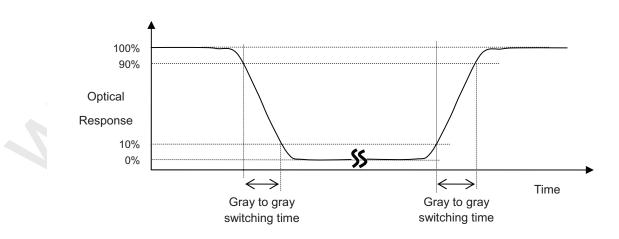
PRODUCT SPECIFICATION

Note (2) Definition of Viewing Angle ($\theta x, \theta y$):

Viewing angles are measured by Autronic Conoscope Cono-80 (or Eldim EZ-Contrast 160R)

Note (3) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.


Contrast Ratio (CR) = Surface Luminance of L255 Surface Luminance of L0

L255: Luminance of gray level 255


L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6).

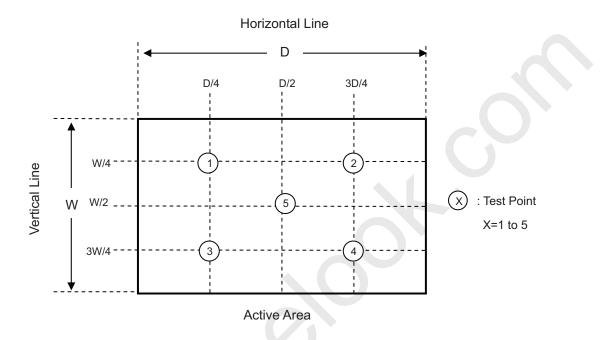
Note (4) Definition of Gray-to-Gray Switching Time:

The driving signal means the signal of gray level 0, 31, 63, 95, 127, 159, 191, 223 and 255. Gray to gray average time means the average switching time of gray level 0, 31, 63, 95, 127, 159, 191, 223 and 255 to each other.

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

24

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com



CHIMEI INNOLUX

Note (5) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

δW = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]

Note (6) Definition of Transmittance (T%) :

Measure the luminance of gray level 255 at center point of LCD module.

Transmittance (T%) = $\frac{\text{Luminance of LCD module}}{\text{Luminance of backligh unit}} \times 100\%$

Version 2.0

25

Date: 10 May. 2012

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

- [1] Do not apply rough force such as bending or twisting to the module during assembly.
- [2] It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- [3] Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- [4] Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- [5] The distance between COF edge and rib of BLU must bigger than 5mm. This can prevent the damage of COF when assemble the module.
- [6] Do not design sharp-pointed structure / parting line / tooling gate on the COF position of plastic parts, because the burr will scrape the COF.
- [7] If COF would bended to assemble in the module. Do not put the IC location on the bending corner of COF.
- [8] The gap between COF IC and any structure of BLU must bigger than 2mm. This can prevent the damage of COF IC
- [9] Bezel opening must have no burr. Burr will scrape the panel surface.
- [10] Bezel of module and bezel of set can not press or touch the panel surface. It will make light leakage or scrape.
- [11] When module used FFC / FPC, but no FFC / FPC to be attached in the open cell. Customer can refer the FFC / FPC drawing and buy it by self.
- [12] The gap between Panel and any structure of Bezel must bigger than 2mm. This can prevent the damage of Panel.
- [13] Do not plug in or pull out the I/F connector while the module is in operation.
- [14] Do not disassemble the module.
- [15] Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- [16] Moisture can easily penetrate into LCD module and may cause the damage during operation.
- [17] When storing modules as spares for a long time, the following precaution is necessary.
 - [17.1] Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
 - [17.2] The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.
- $[\ 18\]$ When ambient temperature is lower than 10°C, the display quality might be reduced.

8.2 SAFETY PRECAUTIONS

- [1] The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the Backlight unit.
- [2] If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of **Version 2.0 26 Date:10 May. 2012**

奇美電子

EI *INNOLUX*

CH

PRODUCT SPECIFICATION

contact with hands, skin or clothes, it has to be washed away thoroughly with soap.

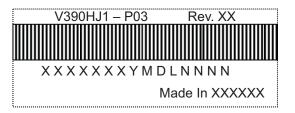
[3] After the module's end of life, it is not harmful in case of normal operation and storage.

Version 2.0

27

Date: 10 May. 2012

屏库:全球液晶屏交易中心



PRODUCT SPECIFICATION

9. DEFINITION OF LABELS

9.1 CMI OPEN CELL LABEL

The barcode nameplate is pasted on each open cell as illustration for CMI internal control.

9.2 CARTON LABEL

The barcode nameplate is pasted on each box as illustration, and its definitions are as following explanation

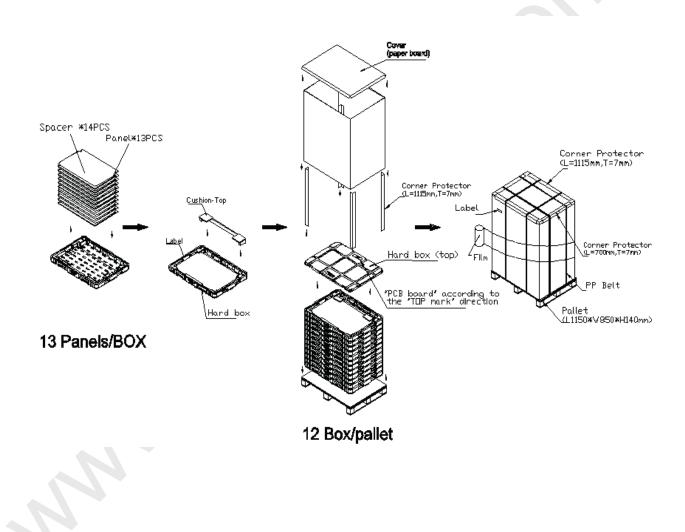
PO. NO	Made in XXXXXX
Parts ID.	_ Quantities <u>13</u>
Model Name	
Carton ID.	RoHS

- (a) Model Name: V390HJ1-P03
- (b) Carton ID: CMI internal control
- (c) Quantities: 13

28

 $\langle p \rangle$

PRODUCT SPECIFICATION


10. PACKAGING

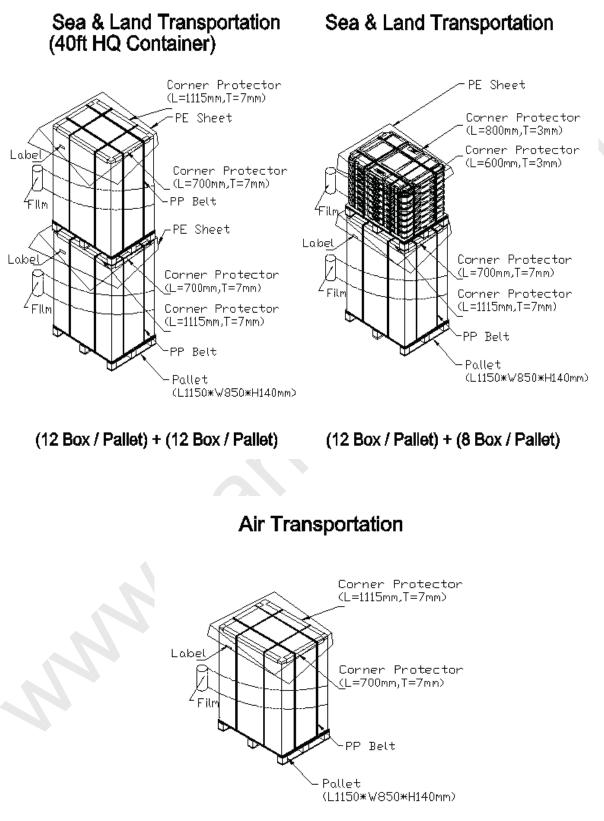
10.1 PACKAGING SPECIFICATIONS

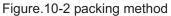
- (1) 13 LCD TV Panels / 1 Box
- (2) Box dimensions : 1110 (L) X 810 (W) X99 (H)mm
- (3) Weight : approximately 26Kg (13 panels per box)
- (4) 156 LCD TV Panels / 1 Group

10.2 PACKAGING METHOD

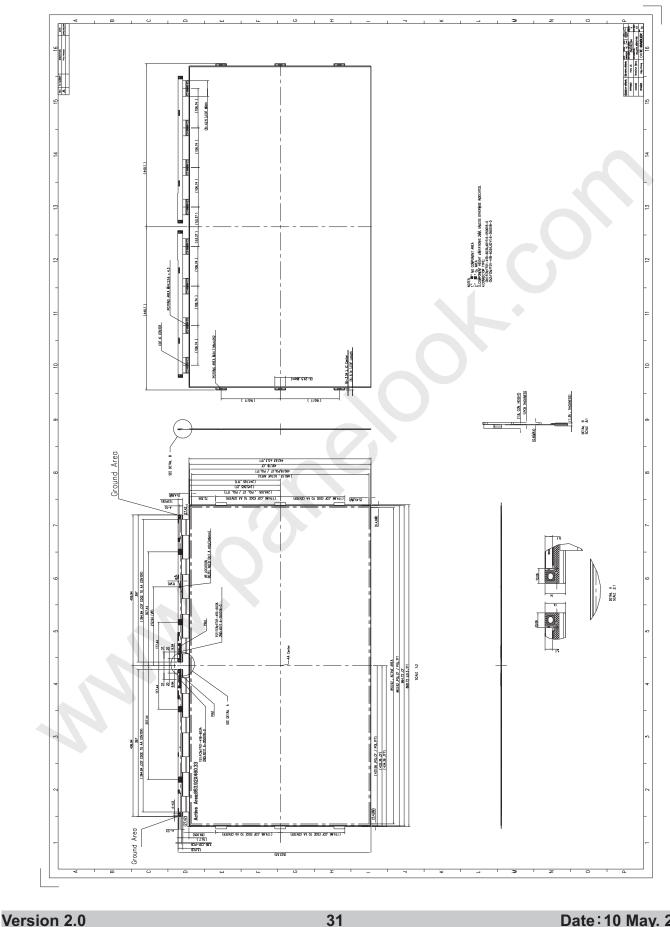
Figures 10-1 and 10-2 are the packing method

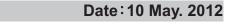
Figure.10-1 packing method


Version 2.0


29

Date: 10 May. 2012


Version 2.0


30

Date: 10 May. 2012

11. MECHANICAL CHARACTERISTIC

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

31