

TFT LCD Preliminary Specification

MODEL NO.: V460H1 – LE1

Approved By	TV Product Marketing & Management Div
	Chao-Chun Chung

Reviewed By	QRA Dept.	Product Development Div.		
	Hsin-Nan Chen	WT Lin		

Dropared By	LCD TV Marketing and Product Management Div			
Prepared By	Josh Chi	Steven Tu		

10. PACKAGING

10.1 PACKING SPECIFICATIONS

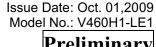
11. MECHANICAL CHARACTERISTICS

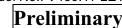
10.2 PACKING METHOD

Issue Date: Oct. 01,2009 Model No.: V460H1-LE1

Preliminary

	CONTENTS -	
R	EVISION HISTORY	3
1.	GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	4
	ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT CONVERTER UNIT	5
3.	ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT 3.2.1 CONVERTER (LED DRIVER BOARD) CHARACTERISTICS 3.2.2 CONVERTER (LED DRIVER BOARD) INTERFACE CHARACTERISTICS	7
4.	BLOCK DIAGRAM 4.1 TFT LCD MODULE	11
5.	INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 CONVERTER UNIT 5.4 BLOCK DIAGRAM OF INTERFACE 5.5 LVDS INTERFACE 5.6 COLOR DATA INPUT ASSIGNMENT	12
6.	INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	20
7.	OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	23
8.	PRECAUTIONS 8.1 ASSEMBLY AND HANDLING PRECAUTIONS 8.2 SAFETY PRECAUTIONS	27
9.	DEFINITION OF LABEL 9.1 CMO MODULE LABEL	28





REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver.1.0	Oct. 01,2009	All	All	Preliminary specification was first issued
			Q .	

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V460H1-LE1 is a 46" TFT Liquid Crystal Display module with LED Backlight unit and 2ch-LVDS interface. This module supports 1920 x 1080 HDTV format and can display true 16.7M colors (8-bit/color). The converter module for backlight is built-in.

1.2 FEATURES

- High brightness (450nits)
- High contrast ratio (3000:1)
- Fast response time (Gray to Gray average 6.5 ms)
- High color saturation (85% NTSC)
- Full HDTV (1920 x 1080 pixels) resolution, true HDTV format
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Optimized response time for 50/60 Hz frame rate
- Ultra wide viewing angle: Super MVA technology

1.3 APPLICATION

- Standard Living Room TVs.
- Public Display Application.
- Home Theater Application.
- MFM Application.

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	1018.08(H) x 572.67(V) (46" diagonal)	mm	(1)
Bezel Opening Area	1024.4(H) x 578.6(V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920x R.G.B. x 1080	pixel	-
Pixel Pitch(Sub Pixel)	0.17675(H) x 0.53025(V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7M	color	-
Display Operation Mode	Transmissive mode / Normally black	-	-
Surface Treatment	Anti-Glare coating (Haze 17%) Hardness (3H)	-	(2)

Note (1) Please refer to the attached drawings in chapter 9 for more information about the front and back outlines.

Note (2) The spec of the surface treatment is temporarily for this phase. CMO reserves the rights to change this feature.

1.5 MECHANICAL SPECIFICATIONS

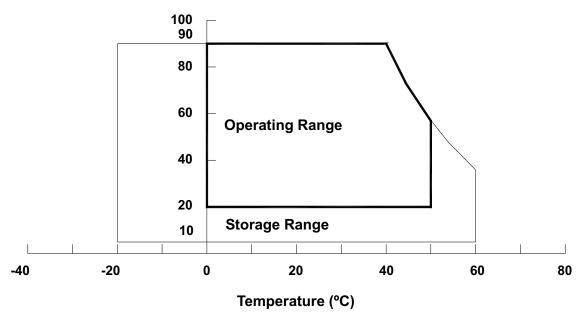
It	Item		Тур.	Max.	Unit	Note
	Horizontal(H)	1082	1083	1084	mm	(1)
Module Size	Vertical(V)	626	627	628	mm	(1)
Widdule Size	Depth(D)	63.5	64.5	65.5	mm	To PCB cover
	Depth(D)	68.6	69.6	70.6	mm	To converter cover
W	Weight		18100	19100	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions..

Issue Date: Oct. 01,2009 Model No.: V460H1-LE1

Preliminary

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Ullit	Note	
Storage Temperature	T _{ST}	-20	+60	°C	(1)	
Operating Ambient Temperature	T _{OP}	0	50	°C	(1), (2)	
Shock (Non-Operating)	x, Y axis	-	50	G	(3), (5)	
Shock (Non-Operating)	S _{NOP} Z axis	-	35	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	-	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in your product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in your product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, and $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture. The module would not be twisted or bent by the fixture.

Preliminary

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

ltem	Symbol	Value		Unit	Note	
	Symbol	Min.	Max.	Offic	Note	
Power Supply Voltage	V _{CC}	-0.3	13.5	V	(1)	
Logic Input Voltage	V _{IN}	-0.3	3.6	V	(1)	

2.2.2 BACKLIGHT UNIT

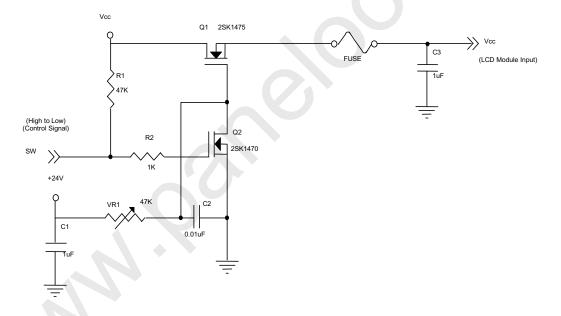
Item	Cumbal	Va	lue	Unit	Note	
	Symbol	Min.	Max.	Unit	Note	
Input Voltage-1	V _{in}	108	132	V	(1)	
Input Voltage-2	V_{dd}	10.8	13.2	V	(1)	
Control Signal Level	_	-	-	V	(1), (3)	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Functional operation should be restricted to the conditions described under normal operating conditions.

Note (2) No moisture condensation or freezing.

Note (3) The control signals includes Backlight On/Off Control, Vdd Control, PWM_D Control, ANA _D Control.

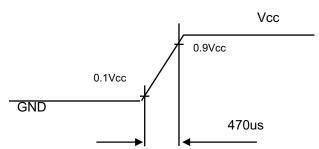
Preliminary

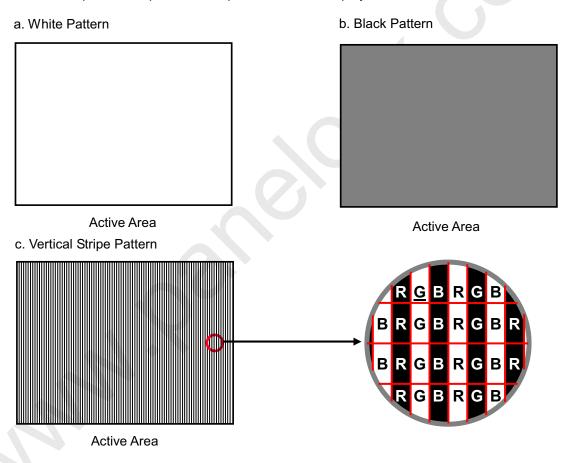

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE (Ta = 25 ± 2 °C)

Parameter		Cumbal	Value			Lloit	Note	
		Symbol	Min.	Тур.	Max.	Unit	ivote	
Power Supply Voltage		V _{cc}	10.8	12	13.2	V	(1)	
Rush Cur	rent		I _{RUSH}	-	-	4.5	Α	(2)
		White		-	1.3	2.0	Α	
Power Su	pply Current	Black	I _{cc}	-	0.6	-	Α	(3)
		Vertical Stripe		-	1.1	-	Α	
	Differential In	out High	W	-	ı	+100	mV	
LVDS	Threshold Vol	tage	V_{LVTH}					
Interface	Differential In		V_{LVTL}	-100			mV	
linteriace	Threshold Vol	Threshold Voltage		V _{LVTL} -100	-	-	IIIV	
	Common Inpu	ıt Voltage	V_{LVC}	1.125	1.25	1.375	V	
	Terminating R	tesistor	R_T	-	100	-	ohm	
CMOS	Input High Threshold Voltage		V _{IH}	2.7	-	3.3	V	
interface	Input Low Thr	eshold Voltage	V_{IL}	0	-	0.7	V	

Note (1) The module should be always operated within the above ranges.

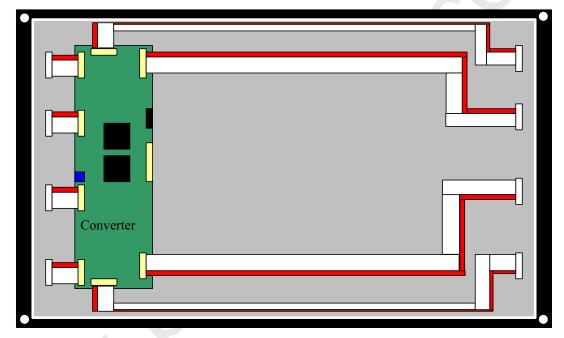

Note (2) Measurement condition:



Issue Date: Oct. 01,2009 Model No.: V460H1-LE1 Preliminary

Vcc rising time is 470us

Note (3) The specified power supply current is under the conditions at Vcc = 12V, Ta = 25 \pm 2 °C, f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

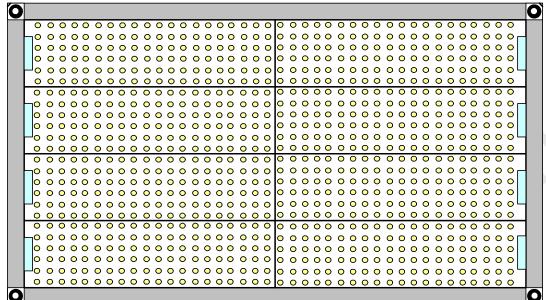

Preliminary

3.2 BACKLIGHT CONVERTER UNIT

3.2.1 Converter (LED Driver Board) CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol		Value	Unit	Note(1)~(5)		
Farameter	Symbol	Min.	Тур.	Max.	Offic	Note(1)~(5)	
Power Consumption	P _{in}	-	205	225	W	1min, 500 _± 5nits	
1 ower consumption	I in	-	TBD	-		3hr, TBD nits	
Input Voltage	V_{in}	114	120	126	V_{DC}		
Input Voltage	Vdd	11.4	12	12.6	V_{DC}		
Input Ripple Noise	-	-	-	4.56	mV _{P-P}	V _{BL} =114V	
LED Forward current	I _F	50	60	65	mA	Per string	

Note (1) LED backlight is shown as below, backside.



Issue Date: Oct. 01,2009 Model No.: V460H1-LE1

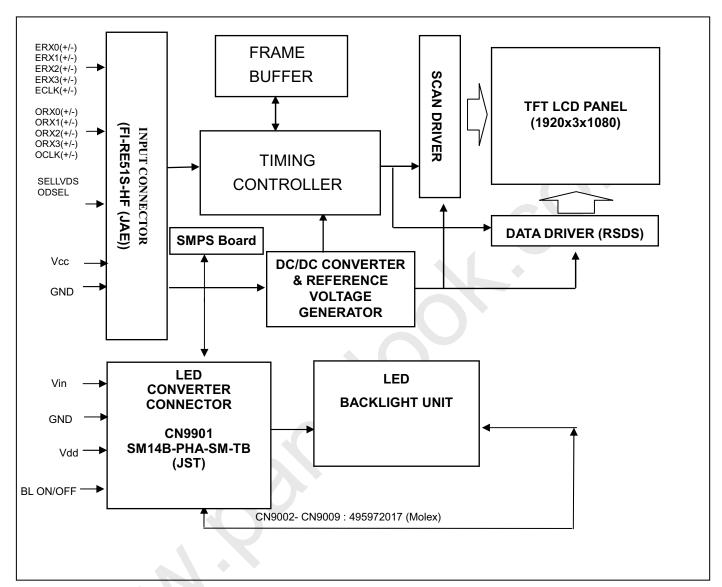
Preliminary

Note (2) LED backlight is shown as below, front side.

- Note (3) The power supply capacity should be higher than the total Converter power consumption P_{in}. Since the dimming mode was applied for LED backlight, the driving current changed as dimming duty on and off. The transient response of power supply should be considered for the changing loading when Converter dimming.
- Note (4) The measurement condition of Max. value is based on 46" backlight unit under input voltage 120V and lighting 1 minute/ 3 hours later.
- Note (5) Per string of block have 12pcs White LED which are series connection.

3.2.2 Converter (LED Driver Board) INTERFACE CHARACTERISTICS

Parameter	Cymbol	Test		Value		Unit	Note
Parameter	Symbol	Condition	Min.	Тур.	Max.	Offic	Note
Input voltage	V_{in}	1	108	120	130	V	
Input voltage Vdd	V_{dd}	_	10.8	12.0	13.0	V	
BL ON/OFF ON	ENA	_	3.0	5.0	5.5	V	
OFF OFF	LINA		0		8.0	V	
Input impedance	R_{IN}	_	1	-	_	$M\Omega$	
ANA_D	-		0		3.3	V	
PWM_D	-		0		3.3	V	



Preliminary

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

Model No.: V460H1-LE1 Preliminary

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD Module

2	VCC VCC VCC VCC GND GND GND GND	+12V power supply Ground Ground	
3 V 4 V 5 V 6 0 7 0 8 0 9 0	VCC VCC VCC GND GND	+12V power supply +12V power supply +12V power supply Ground	
4 \\ 5 \\ 6 \(0 \) 7 \(0 \) 8 \(0 \) 10 \(0 \)	VCC VCC GND GND GND	+12V power supply +12V power supply Ground	
5 N 6 G 7 G 8 G 9 G	VCC GND GND GND	+12V power supply Ground	
6 (7 (8 (9 (10 (10 (10 (10 (10 (10 (10 (10 (10 (10	GND GND GND	Ground	
7 (8 (9 (10 (10 (10 (10 (10 (10 (10 (10 (10 (10	GND GND		
8 (9 (10 (GND	Ground	
9 (
10 (GND	Ground	
		Ground	
11 (ORX0-	Odd pixel Negative LVDS differential data input. Channel 0	
11	ORX0+	Odd pixel Positive LVDS differential data input. Channel 0	7
12 (ORX1-	Odd pixel Negative LVDS differential data input. Channel 1	
13 (ORX1+	Odd pixel Positive LVDS differential data input. Channel 1	
14 (ORX2-	Odd pixel Negative LVDS differential data input. Channel 2	
	ORX2+	Odd pixel Positive LVDS differential data input. Channel 2	
	GND	Ground	
	OCLK-	Odd pixel Negative LVDS differential clock input.	
	OCLK+	Odd pixel Positive LVDS differential clock input.	
	GND	Ground	
	ORX3-	Odd pixel Negative LVDS differential data input. Channel 3	
	ORX3+	Odd pixel Positive LVDS differential data input. Channel 3	
	N.C.	No Connection	(4)
	N.C.	No Connection	(1)
	GND	Ground	
	ERX0-	Even pixel, Negative LVDS differential data input. Channel 0	
	ERX0+	Even pixel, Positive LVDS differential data input. Channel 0	
	ERX1-	Even pixel, Negative LVDS differential data input. Channel 1	
	ERX1+	Even pixel, Positive LVDS differential data input. Channel 1	
	ERX2-	Even pixel, Negative LVDS differential data input. Channel 2	
	ERX2+	Even pixel, Positive LVDS differential data input. Channel 2	
	GND	Ground	
	ECLK-	Even pixel, Negative LVDS differential clock input	
	ECLK+	Even pixel, Positive LVDS differential clock input.	
	GND	Ground	
	ERX3-	Even pixel, Negative LVDS differential data input. Channel 3	
	ERX3+	Even pixel, Positive LVDS differential data input. Channel 3	
	N.C.	No Connection	
	N.C.	No Connection	(1)
	GND	Ground	
	ODSEL	Overdrive Lookup Table Selection	(3)
	N.C.	No Connection	(1)
	N.C.	No Connection	(1)
	N.C.	No Connection	(1)
	N.C. N.C.	No Connection	/1\
			(1)
	SELLVDS	LVDS Data Format Selection	(2)
	N.C. N.C.	No Connection No Connection	(1)

Preliminary

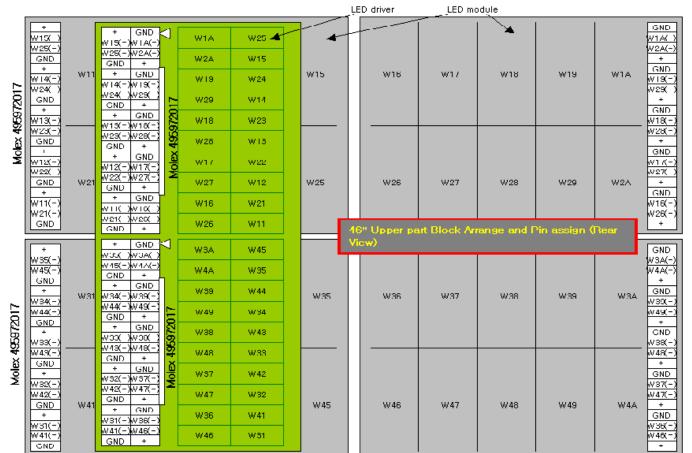
48	N.C.	No Connection	
49	N.C.	No Connection	
50	N.C.	No Connection	(1)
51	N.C.	No Connection	

Note (1) Reserved for internal use. Please leave it open.

Note (2) Low: JEIDA LVDS Format (default), High: VESA Format.

Note (3) Overdrive lookup table selection. The overdrive lookup table should be selected in accordance with the frame rate to optimize image quality.

ODSEL	Note
L	Lookup table was optimized for 60 Hz frame rate
Н	Lookup table was optimized for 50 Hz frame rate.


Note (4) Low = Open or Connect to GND, High = Connect to +3.3V

Preliminary

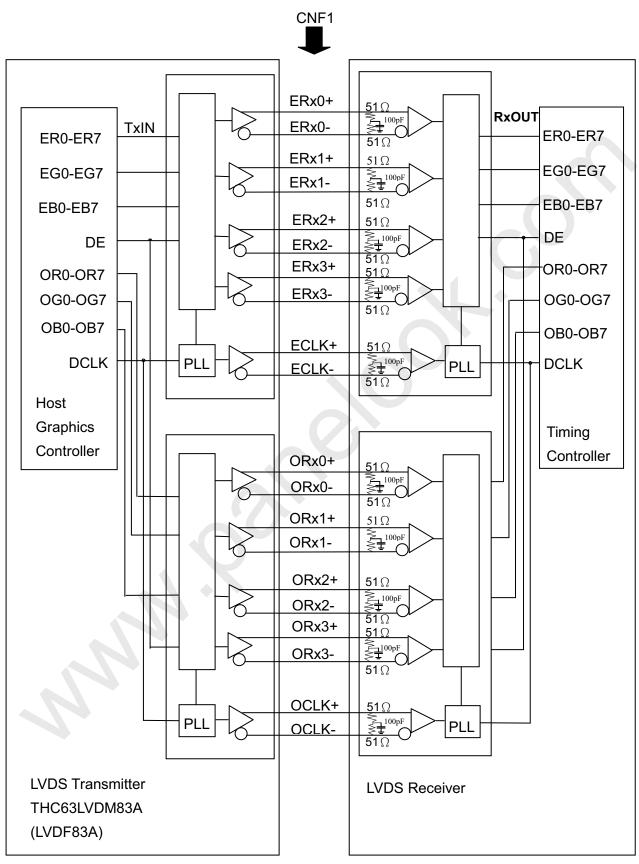
5.2 BACKLIGHT UNIT

The pin configuration for the housing and leader wire is shown as below.

Preliminary

5.3 CONVERTER UNIT

CN19901(Header): S14B-PHA-SM-TB (JST) or equivalent.


Pin No.	Symbol	Description
1		
2	Vin	+120V Power input
3	VIII	+120V Fower Input
4		
5	NC	NC
6		
7	GND	GND
8		
9	Vdd	+12V
10	GND	GND
11	NC	NC
12	BL ON/OFF	Backlight on/off control
13	ANA_D	
14	PWM D	

CN9902~CN9909 (Header): 495972017 (Molex)or equivalent.

D: N	0 1 1	D
Pin No.	Symbol	Description
1	+xxxx	VOLTAGE:120V
2	Wxx(-)	CURRENT/ VOLTAGE
3	Wxx(-)	CURRENT/ VOLTAGE
4	GND	GND
5	+xxxx	VOLTAGE:120V
6	Wxx(-)	CURRENT/ VOLTAGE
7	Wxx(-)	CURRENT/ VOLTAGE
8	GND	GND
9	+xxxx	VOLTAGE:120V
10	Wxx(-)	CURRENT/ VOLTAGE
11	Wxx(-)	CURRENT/ VOLTAGE
12	GND	GND
13	+xxxx	VOLTAGE:120V
14	Wxx(-)	CURRENT/ VOLTAGE
15	Wxx(-)	CURRENT/ VOLTAGE
16	GND	GND
17	+xxxx	VOLTAGE:120V
18	Wxx(-)	CURRENT/ VOLTAGE
19	Wxx(-)	CURRENT/ VOLTAGE
20	GND	GND

5.4 BLOCK DIAGRAM OF INTERFACE

ER0~ER7: Even pixel R data
EG0~EG7: Even pixel G data
EB0~EB7: Even pixel B data
OR0~OR7: Odd pixel R data
OG0~OG7: Odd pixel G data
OB0~OB7: Odd pixel B data
DE: Data enable signal
DCLK: Data clock signal

Notes: (1) The system must have the transmitter to drive the module.

- (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.
- (3) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel.

Preliminary

5.5 LVDS INTERFACE

5 LVL	S INTERF	ACE			T		ı					
	SIG	GNAL		NSMITTER 63LVDM83A	INTERI CONNE			ECEIVER 63LVDF84A	TFT CONTROL INPUT			
	LVDS_SEL =H	LVDS_SEL = L or OPEN	PIN	INPUT	Host	TFT-LCD	PIN	OUTPUT	LVDS_SEL =H	LVDS_SEL =		
	R0	R2	51	TxIN0			27	Rx OUT0	R0	R2		
	R1	R3	52	TxIN1			29	Rx OUT1	R1	R3		
	R2	R4	54	TxIN2	TA OUT0+	Rx 0+	30	Rx OUT2	R2	R4		
	R3	R5	55	TxIN3			32	Rx OUT3	R3	R5		
	R4	R6	56	TxIN4			33	Rx OUT4	R4	R6		
	R5	R7	3	TxIN6	TA OUT0-	Rx 0-	35	Rx OUT6	R5	R7		
	G0	G2	4	TxIN7			37	Rx OUT7	G0	G2		
	G1	G3	6	TxIN8			38	Rx OUT8	G1	G3		
	G2	G4	7	TxIN9			39	Rx OUT9	G2	G4		
	G3	G5	11	TxIN12	TA OUT1+	Rx 1+	43	Rx OUT12	G3	G5		
	G4	G6	12	TxIN13			45	Rx OUT13	G4	G6		
	G5	G7	14	TxIN14			46	Rx OUT14	G5	G7		
	В0	B2	15	TxIN15	TA OUT1-	Rx 1-	47	Rx OUT15	В0	B2		
	B1	В3	19	TxIN18			51	Rx OUT18	B1	В3		
	B2	B4	20	TxIN19			53	Rx OUT19	B2	B4		
0.4 14	В3	B5	22	TxIN20			54	Rx OUT20	В3	B5		
24bit	B4	В6	23	TxIN21	TA OUT2+	Rx 2+	55	Rx OUT21	B4	В6		
	B5	В7	24	TxIN22			1	Rx OUT22	B5	В7		
	DE	DE	30	TxIN26			6	Rx OUT26	DE	DE		
	R6	R0	50	TxIN27	TA OUT2-	Rx 2-	7	Rx OUT27	R6	R0		
	R7	R1	2	TxIN5			34	Rx OUT5	R7	R1		
	G6	G0	8	TxIN10			41	Rx OUT10	G6	G0		
	G7	G1	10	TxIN11			42	Rx OUT11	G7	G1		
	В6	В0	16	TxIN16	TA OUT3+	Rx 3+	49	Rx OUT16	В6	В0		
	В7	B1	18	TxIN17			50	Rx OUT17	В7	B1		
	RSVD 1	RSVD 1	25	TxIN23			2	Rx OUT23	NC	NC		
	RSVD 2	RSVD 2	27	TxIN24	TA OUT3-	Rx 3-	3	Rx OUT24	NC	NC		
	RSVD 3	RSVD 3	28	TxIN25			5	Rx OUT25	NC	NC		
	DO	CLK	31	TxCLK IN	TxCLK	RxCLK	26	RxCLK	D	CLK		
					OUT+	IN+		OUT				
					TxCLK	RxCLK						
					OUT-	IN-						

Issue Date: Oct. 01,2009 Model No.: V460H1-LE1

Preliminary

R0~R7: Pixel R Data (7; MSB, 0; LSB) G0~G7: Pixel G Data (7; MSB, 0; LSB) B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE : Data enable signal DCLK: Data clock signal

Notes: (1) RSVD (reserved) pins on the transmitter shall be "H" or "L".

5.6 COLOR DATA INPUT ASSIGNMENT

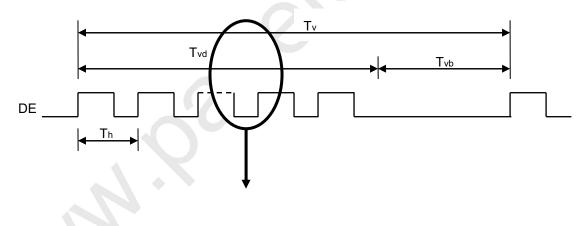
The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

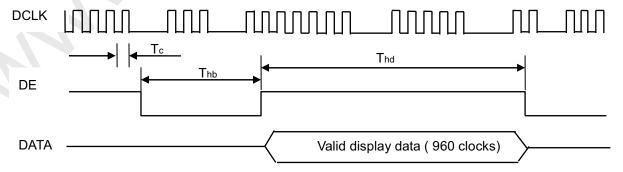
color ve	ersus data input.																								
												Da	ata	Sigr	nal										
	Color				Re									reer							Blu				
		R7	R6	R5	R4	R3	R2	R1	R0	G7		G5	G4	G3		G1	G0	B7		B5	B4		B2		B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red (2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:		A	\	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red (253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale			:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	: (050)	:	:	:	:	:	:	:	:	:	:	: 1	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green (253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green (254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green (255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale							-			:		•	•				•	:				:			
Of	Plue (252)			:	•	:	: 0		0	:	:	:	:	:	:	:	:		1	1	•		:		
Blue	Blue (253)	0	0	0	0	0		0		0	0	0	0	0	0	0	0	1			1	1	1	0	1
	Blue (254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue (255)	0	0	0	U	0	U	٥	0	0	U	U	0	0	U	0	U					1			I

0: Low Level Voltage, 1: High Level Voltage Note (1)

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

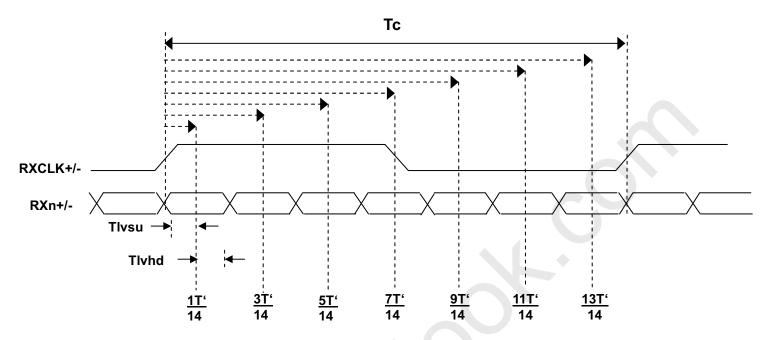

The input signal timing specifications are shown as the following table and timing diagram.


Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	1/Tc	(60)	74	(80)	MHz	-
LVDS Receiver Clock	Input cycle to cycle jitter	Trcl	-	1	200	ps	-
LVDS Receiver Data	Setup Time	Tlvsu	600	•	-	ps	-
LVD3 Receiver Data	Hold Time	Tlvhd	600	-	-	ps	-
Vertical Active Display Term	Frame Rate	Fr5	47	50	53	Hz	(1)
	Frame Nate	Fr6	57	60	63	Hz	(1)
	Total	Tv	(1115)	1125	(1135)	Th	Tv=Tvd+Tvb
	Display	Tvd	1080	1080	1080	Th	-
	Blank	Tvb	(35)	45	(55)	Th	-
	Total	Th	(2100)	2200	(2300)	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	1920	1920	1920	Tc	-
	Blank	Thb	(180)	280	(380)	Tc	-

Note (1) (ODSEL) = (H), (L). Please refer to 5.1 for detail information.

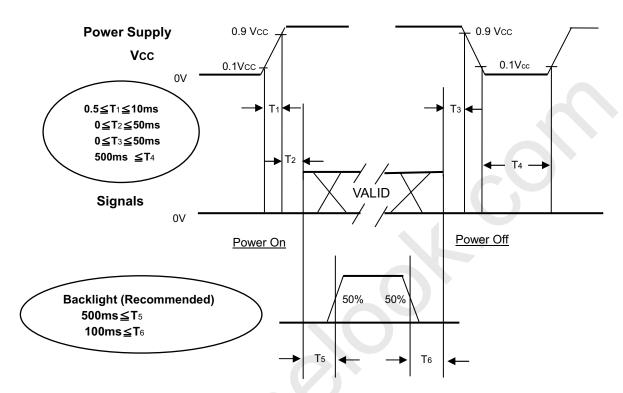
Note (2) Since the module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM



Preliminary

LVDS INPUT INTERFACE TIMING DIAGRAM



Issue Date: Oct. 01,2009 Model No.: V460H1-LE1 Preliminary

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the diagram below.

Power ON/OFF Sequence

Note:

- (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- (3) In case of VCC is in off level, please keep the level of input signals on the low or high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

Preliminary

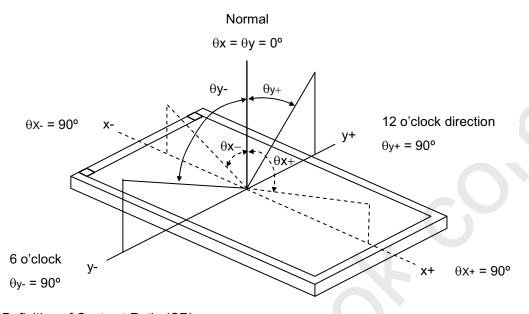
7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit				
Ambient Temperature	Та	25±2	°C				
Ambient Humidity	На	50±10	%RH				
Supply Voltage	V_{cc}	12V	V				
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"						
Lamp Current	Iμ	6.0±0.2	mA				
Oscillating Frequency (Converter)	F _W	TBD±3	KHz				
Vertical Frame Rate	Fr	60	Hz				

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).


Ite	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
Contrast Ratio		CR		2400	3000	-	-	Note (2)	
Response Time	e	Gray to gray		-	6.5	12	ms	Note (3)	
Center Lumina	nce of White	L _C		300	370	1	cd/ m ²	Note (4)	
White Variation	า	δW		_	-	1.3	-	Note (7)	
Cross Talk		CT	$\theta_x = 0^\circ$, $\theta_Y = 0^\circ$	-	-	4	%	Note (5)	
	Dod	Rx	Viewing angle at		(0.661)		-		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0.321)		-	,				
Color Chromaticity Blue White	Gx			0.256		-	,		
Color	See Time Gray to gray	-	Note (6)						
	Rlup	Bx		0.03	0.152	0.03	Note 12 ms Note - cd/ m² Note 1.3 - Note 4 % Note	Note (0)	
Officiations	Dide	Ву			-		-		
	White	Wx			,		-		
	VVIIIC	Wy			0.285)				
	Color Gamut			(82)	(85)	-	- N ms N cd/ m² N - N % N	NTSC	
	Horizontal	θ_{x} +		80	88	-			
Viewing	rionzontai	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Dog	Note (1)				
Angle	Vortical	θ _Y +	UK≥ZU	80	88	-	Deg.	Note (1)	
	vertical	θ _Y -		80	88	-			

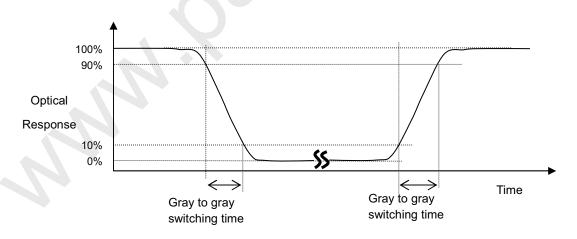
Issue Date: Oct. 01,2009 Model No.: V460H1-LE1 Preliminary

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Autronic Conoscope Cono-80"

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.


Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7)

Note (3) Definition of Gray to Gray Switching Time:

The driving signal means the signal of gray level 0, 63, 127, 191, and 255.

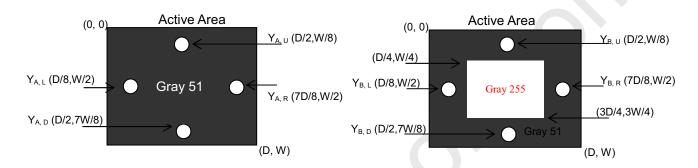
Gray to gray average time means the average switching time of gray level 0,63,127,191,255 to each other.

Issue Date: Oct. 01,2009 Model No.: V460H1-LE1 Preliminary

Note (4) Definition of Luminance of White (L_C):

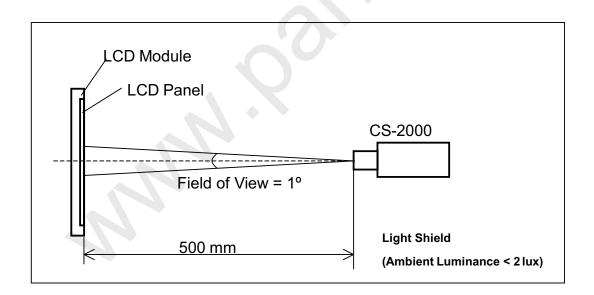
Measure the luminance of gray level 255 at center point.

 $L_C = L(5)$, where L(x) is corresponding to the luminance of the point X at the figure in Note (7).


Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

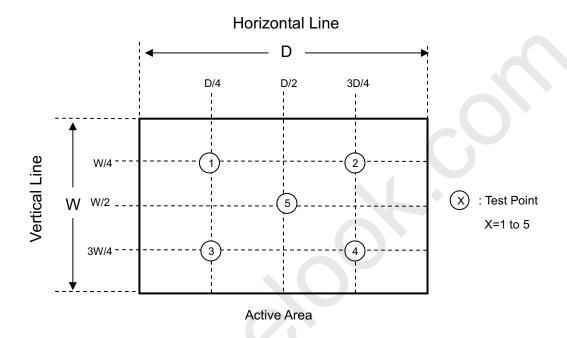
Where:


Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.



Issue Date: Oct. 01,2009 Model No.: V460H1-LE1 **Preliminary**

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

Issue Date: Oct. 01,2009 Model No.: V460H1-LE1 Preliminary

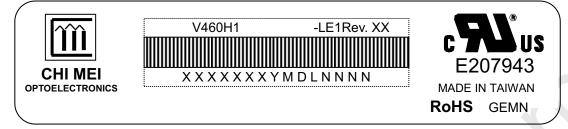
8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

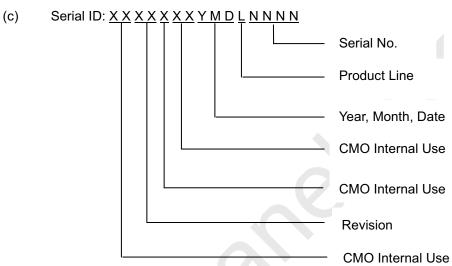
- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

8.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the converter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.


Issue Date: Oct. 01,2009 Model No.: V460H1-LE1

Preliminary


9. DEFINITION OF LABELS

9.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: V460H1-LE1
- (b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

- (a) Manufactured Date: Year: 0~9, for 2000~2009
 - Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

- (b) Revision Code: Cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

10. PACKAGING

10.1 PACKING SPECIFICATIONS

(1) 2 LCD TV modules / 1 Box

(2) Box dimensions : 1185(L)x227(W)x722(H)mm

(3) Weight : approximately 41Kg

10.2 PACKING METHOD

Figures 10-1 and 10-2 are the packing method

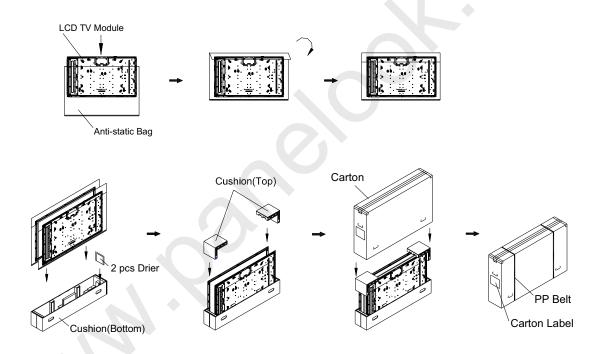
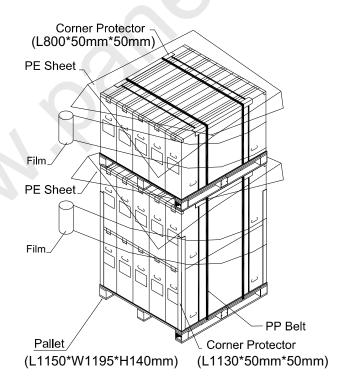
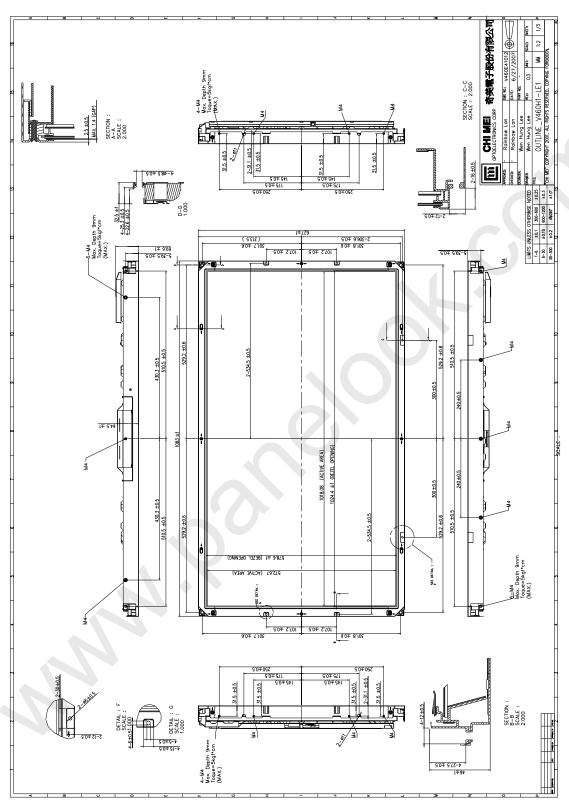


Figure.10-1 packing method

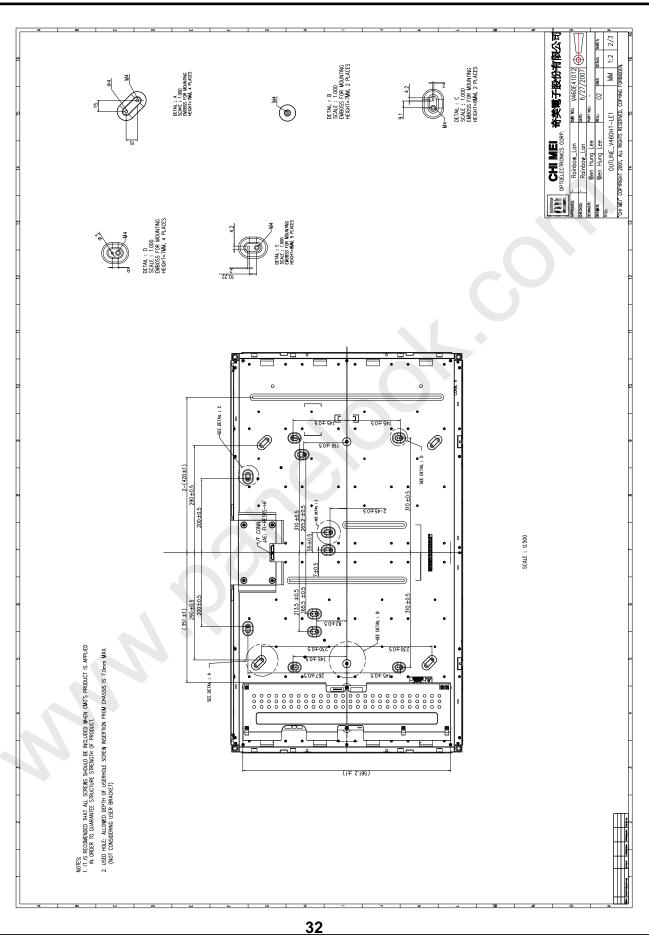
Air Transportation & Sea / Land Transportation (40ft Container)

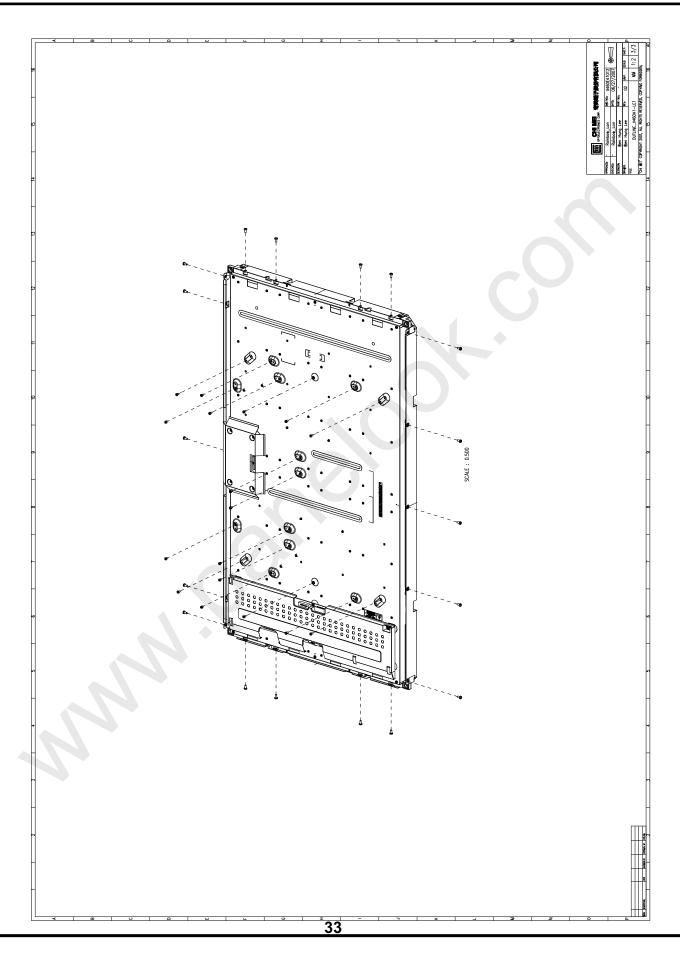
Sea / Land Transportation (40ft HQ Container)




Figure.10-2 packing method

Preliminary


11. MECHANICAL CHARACTERISTIC


Preliminary

Preliminary

