



|        | <b>-</b>            | _   |       |           |
|--------|---------------------|-----|-------|-----------|
| $\neg$ | <b>Tentative</b>    | Sn  | eciti | cation    |
| _      | I C I I C G C I V C | ~ P | CCIII | CG (1.O.) |

■ Approval Specification

# MODEL NO.: V500DJ6 SUFFIX: QE1

| Revision : <u>T3</u><br>Customer :    |                                          |
|---------------------------------------|------------------------------------------|
| APPROVED BY                           | SIGNATURE                                |
| Name / Title<br>Note                  |                                          |
| Please return 1 copy for your confirm | nation with your signature and comments. |

| Approved By    | Checked By  | Prepared By |
|----------------|-------------|-------------|
| Roger HH Huang | WEITING.HSU | ERIS.KO     |

Version 2.0 Date :Oct 25 , 2016

<sup>□</sup> Preliminary Specification



# **CONTENTS**

| CONTENTS                        |                         | 2                 |
|---------------------------------|-------------------------|-------------------|
| 1. GENERAL DESCRIPTION          |                         | 5                 |
| 1.1 OVERVIEW                    |                         | 5                 |
| 1.2 FEATURES                    |                         | 5                 |
| 1.3 MECHANICAL SPECIFICA        | TIONS                   | 6                 |
| 2. ABSOLUTE MAXIMUM RATINC      | GS                      | 7                 |
| 2.1 ABSOLUTE RATINGS OF E       | NVIRONMENT              | 7                 |
| 2.2 ABSOLUTE RATINGS OF E       | ENVIRONMENT (OPEN CELL) | 8                 |
| 2.3 ELECTRICAL ABSOLUTE I       | RATINGS                 | 8                 |
| 2.3.1 TFT LCD MODULE            |                         | 8                 |
| 3. ELECTRICAL CHARACTERISTIC    | CS                      | 9                 |
| 3.1 TFT LCD OPEN CELL           |                         | 9                 |
| 4. INPUT TERMINAL PIN ASSIGN    | MENT                    | 9                 |
| 4.1 TFT LCD OPEN CELL INPU      | JT                      | 11                |
| 4.2 COLOR DATA INPUT ASSI       | IGNMENT                 | 14                |
| 4.3 FLICKER (Vcom) ADJUSTN      | MENT                    | 15                |
| 5. INTERFACE TIMING             |                         | 16                |
| 5.1 INPUT SIGNAL TIMING SI      | PECIFICATIONS           | 16                |
| 5.1.1 Timing spec for QFHI      | O Frame Rate = 50Hz     | 16                |
| 5.1.2 Timing spec for QFHI      | O Frame Rate = 60Hz     | 17                |
| 5.1.3 Input Timing spec for     | QFHD, Frame Rate = 24Hz | 17                |
| 5.1.4 Input Timing spec for     | QFHD, Frame Rate = 30Hz | 17                |
| 5.2 V by One Input Signal Timir | ng Diagram              | 20                |
| 5.2.2 CMPI Signal Timing Diagr  | ram                     | 21                |
| 5.3 Byte Length and Color map   | ping of V-by-One HS     | 22                |
| 5.4 POWER ON/OFF SEQUEN         | CE                      | 23                |
| 6. OPTICAL CHARACTERISTICS      |                         | 25                |
| 6.1 TEST CONDITIONS             |                         | 25                |
| 6.2 OPTICAL SPECIFICATION       | S                       | 26                |
| 7. PRECAUTIONS                  |                         | 26                |
| Version 2.0                     | 2                       | Date :Oct 25 2016 |



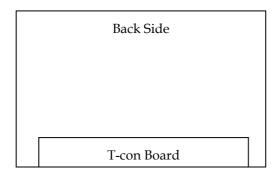
| 7.1 ASSEMBLY AND HANDLING PRECAUTIONS | 29 |
|---------------------------------------|----|
| 7.2 SAFETY PRECAUTIONS                | 31 |
|                                       |    |
| 8. DEFINITION OF LABELS               | 32 |
| 8.1 OPEN CELL LABEL                   | 32 |
|                                       |    |
| 9. PACKAGING                          | 34 |
| 9.1 PACKAGING SPECIFICATIONS          | 34 |
| 9.2 PACKAGING METHOD                  |    |
| 9.3 UN-PACKAGING METHOD               | 36 |
|                                       |    |
| 10. MECHANICAL CHARACTERISTIC         | 37 |

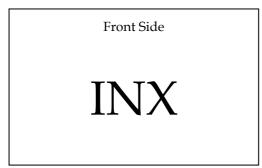


### **REVISION HISTORY**

| Version | Date       | Page(New) | Section | Description                        |
|---------|------------|-----------|---------|------------------------------------|
| 2.0     | 2016/10/25 | All       | All     | The Approval spec was first issued |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         |            |           |         |                                    |
|         | <u> </u>   | <u> </u>  |         |                                    |




### 1. GENERAL DESCRIPTION


### 1.1 OVERVIEW

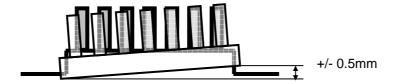
V500DJ6-QE1 is a 50" TFT Liquid Crystal Display product with driver ICs and 8Lanes V-by-One interface.. This product supports  $3840 \times 2160$  Quad Full HDTV format and can display 1.07G colors (8-bit+FRC). The backlight unit is not built in.

### **1.2 FEATURES**

| CHARACTERISTICS ITEMS             | SPECIFICATIONS                                                                                                                   |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Screen Diagonal [in]              | 50                                                                                                                               |
| Pixels [lines]                    | 3840 × 2160                                                                                                                      |
| Active Area [mm]                  | 1095.84(H) × 616.41(V) (50" diagonal)                                                                                            |
| Sub-Pixel Pitch [mm]              | $0.0951(H) \times 0.2854(V)$                                                                                                     |
| Pixel Arrangement                 | RGB Vertical Stripe                                                                                                              |
| Weight [g]                        | 2060 Typ. (g)                                                                                                                    |
| Physical Size [mm]                | 1106.84× 669.46× 1.319Typ.                                                                                                       |
| Display Mode                      | Transmissive Mode / Normallly Black                                                                                              |
| Contrast Ratio                    | Typ.5000:1<br>(Typical value measure by INX's Module)                                                                            |
| Glass thickness (Array / CF) [mm] | 0.5 / 0.5                                                                                                                        |
| Viewing Angle (CR>10)             | Typ. +89/-89(H), +89/-89(V) (CR≥10)<br>(Typical value measured by INX's module)                                                  |
| Color Chromaticity                | R = (0.661,0.328)<br>G = (0.283,0.586)<br>B = (0.138,0.102)<br>W= (0.316,0.350)<br>* Please refer to "color chromaticity" in 7.2 |
| Cell Transparency [%]             | 5.6% Typ. Please refer to "Transmittance" in 7.2                                                                                 |
| Polarizer Surface Treatment       | AG (Haze~1%) Hardness: 3H                                                                                                        |
| Rotation Function                 | Unachievable                                                                                                                     |
| Display Orientation               | Signal input with "INX"                                                                                                          |
| RoHs Compliance                   | •                                                                                                                                |








# 1.3 MECHANICAL SPECIFICATIONS

| Item                   | Min.               | Тур.                      | Max.        | Unit | Note |
|------------------------|--------------------|---------------------------|-------------|------|------|
| Weight                 | -                  | 2060                      | -           | g    | -    |
| I/F connector mounting | The mounting incl  |                           | (2)         |      |      |
| position               | screen center with | in $\pm$ 0.5mm as the $1$ | horizontal. |      | (2)  |

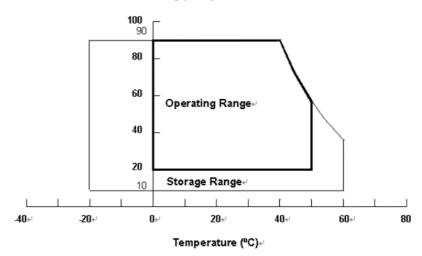
Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Connector mounting position





### 2. ABSOLUTE MAXIMUM RATINGS


### 2.1 ABSOLUTE RATINGS OF ENVIRONMENT

| Itom                          | Creekal | Va   | lue  | Unit  | Note          |  |
|-------------------------------|---------|------|------|-------|---------------|--|
| Item                          | Symbol  | Min. | Max. | Offit |               |  |
| Storage Temperature           | TST     | -20  | +60  | °C    | (1), (3)      |  |
| Operating Ambient Temperature | TOP     | 0    | 50   | °C    | (1), (2), (3) |  |

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta  $\leq 40$  °C).
- (b) Wet-bulb temperature should be 39 °C Max.
- (c) No condensation.
- Note (2) Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) The rating of environment is base on LCD module. Leave LCD cell alone, this environment condition can't be guaranteed. Except LCD cell, the customer has to consider the ability of other parts of LCD module and LCD module process.







### 2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)

Recommended Storage Condition: With shipping package.

Recommended Storage temperature range: 25 $\pm$ 5  $^{\circ}$ C Recommended Storage humidity range: 50 $\pm$ 10 $^{\circ}$ RH

Recommended Shelf life: a month

# 2.3 ELECTRICAL ABSOLUTE RATINGS 2.3.1 TFT LCD MODULE

| Itoma                 | Symbol Va |      | lue  | Unit                   | Nata |  |
|-----------------------|-----------|------|------|------------------------|------|--|
| Item                  | Symbol    | Min. | Max. | Onit                   | Note |  |
| Power Supply Voltage  | VCC       | -0.3 | 13.5 | V                      | (1)  |  |
| Logic Input Voltage   | VIN       | -0.3 | 3.6  | V                      | (1)  |  |
| Component Temperature |           |      | 100  | $^{\circ}\!\mathbb{C}$ | (2)  |  |

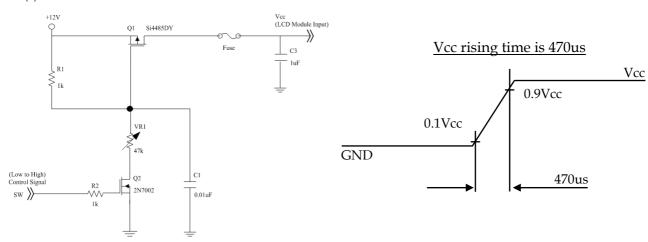
Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) The surface temperature of Source Driver and component on PCB should be controlled under 100°C, operating over thermal spec can cause the damage or decrease of lifetime.



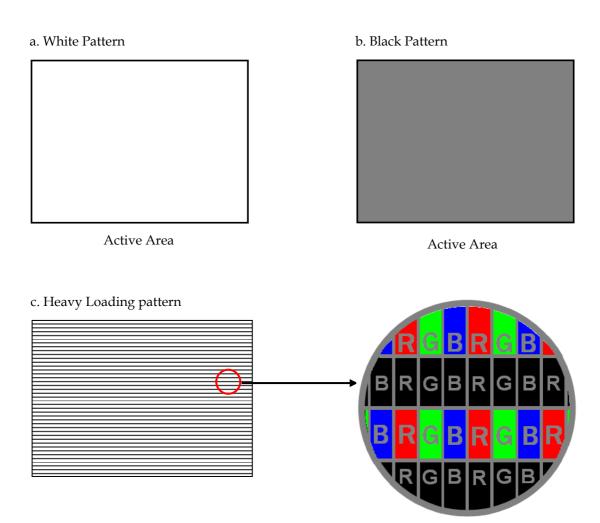
### 3. ELECTRICAL CHARACTERISTICS

### 3.1 TFT LCD OPEN CELL


 $(Ta = 25 \pm 2 \, ^{\circ}C)$ 

|                   | Parameter S                                  |                   | Value |       |       | Unit | Note |
|-------------------|----------------------------------------------|-------------------|-------|-------|-------|------|------|
| rarameter         |                                              | Symbol            | Min.  | Тур.  | Max.  | Unit | Note |
| Power Supply V    | Voltage                                      | $V_{CC}$          | 10.8  | 12    | 13.2  | V    | (1)  |
| Rush Current      |                                              | $I_{RUSH}$        | _     | _     | 2.94  | A    | (2)  |
|                   | White Pattern                                | Рт                | _     | 10.46 | 11.51 |      |      |
| Power consumption | Black Pattern                                | Рт                | _     | 9.12  | 10.03 | W    |      |
| To a constant     | Horizontal Stripe                            | Рт                | _     | 20.62 | 22.68 |      | (2)  |
| Power<br>Supply   | White Pattern                                | _                 | _     | 0.91  | 1.09  | A    | (3)  |
| Current           | Black Pattern                                | _                 | _     | 0.78  | 0.95  |      |      |
|                   | Horizontal Stripe                            | _                 | _     | 1.79  | 2.16  |      |      |
| V by Ope HS       | Differential Input High<br>Threshold Voltage | $V_{LVTH}$        |       | -     | +50   | mV   |      |
| V-by-One HS       | Differential Input Low<br>Threshold Voltage  | $V_{ m LVTL}$     | -50   |       | _     | mV   |      |
| CMOS interface    | Input High Threshold<br>Voltage              | $V_{\mathrm{IH}}$ | 2.7   | _     | 3.3   | V    |      |
| CWO5 Interface    | Input Low Threshold<br>Voltage               | V <sub>IL</sub>   | 0     |       | 0.7   | V    |      |

Note (1) The module should be always operated within the above ranges.


The ripple voltage should be controlled under 10% of Vcc (Typ.).

### Note (2) Measurement condition:





Note (3) The specified power supply current is under the conditions at Vcc = 12 V, Ta =  $25 \pm 2$  °C,  $f_v$  = 60 Hz, whereas a power dissipation check pattern below is displayed.





### 4. INPUT TERMINAL PIN ASSIGNMENT

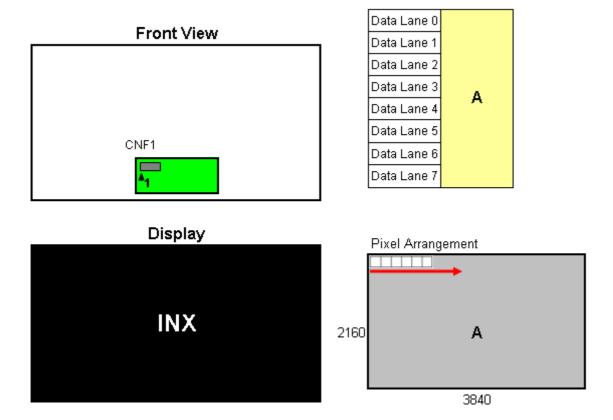
### 4.1 TFT LCD OPEN CELL INPUT

CNV1 Connector Pin Assignment [187059-51221(P-TWO), WF23-402-5133(FCN)]

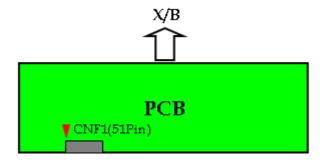
Matting connector : [FI-RE51HL (JAE)]

| Pin | Name  | Description                                                            | Note |
|-----|-------|------------------------------------------------------------------------|------|
| 1   | Vin   | Power input (+12V)                                                     |      |
| 2   | Vin   | Power input (+12V)                                                     |      |
| 3   | Vin   | Power input (+12V)                                                     |      |
| 4   | Vin   | Power input (+12V)                                                     |      |
| 5   | Vin   | Power input (+12V)                                                     |      |
| 6   | Vin   | Power input (+12V)                                                     |      |
| 7   | Vin   | Power input (+12V)                                                     |      |
| 8   | Vin   | Power input (+12V)                                                     |      |
| 9   | N.C.  | No Connection                                                          | (4)  |
| 10  | GND   | Ground                                                                 |      |
| 11  | GND   | Ground                                                                 |      |
| 12  | GND   | Ground                                                                 |      |
| 13  | GND   | Ground                                                                 |      |
| 14  | GND   | Ground                                                                 |      |
| 15  | N.C.  | No Connection                                                          | (4)  |
| 16  | N.C.  | No Connection                                                          | (4)  |
| 17  | N.C   | No Connection                                                          | (4)  |
| 18  | SDA   | I2C Data signal                                                        | (5)  |
| 19  | SCL   | I2C Clock signal                                                       | (5)  |
| 20  | WP    | Write Protection (0V~0.7V/Open→Disable,                                |      |
| 20  |       | 2.7V~3.3V→Enable) (for Auto-Vcom)                                      |      |
| 21  | VSYNC | VSYNC output (for Local Dimming)                                       |      |
| 22  | N.C.  | No Connection                                                          | (4)  |
| 23  | N.C.  | No Connection                                                          | (4)  |
| 24  | N.C.  | No Connection                                                          | (4)  |
| 25  | HTPDN | Hot plug detect output, Open drain.                                    |      |
| 26  | LOCKN | Lock detect output, Open drain.                                        |      |
| 27  | GND   | Ground                                                                 |      |
| 28  | RX0N  | 1ST Pixel Negative V-by-One differential data input in area A.  Lane 0 | (1)  |
|     | RX0P  | 1ST Pixel Positive V-by-One differential data input in area A.         |      |
| 29  |       | Lane 0                                                                 |      |
| 30  | GND   | Ground                                                                 |      |
|     | RX1N  | 2ND Pixel Negative V-by-One differential data input in area A.         | (4)  |
| 31  |       | Lane 1                                                                 | (1)  |
|     | RX1P  | 2ND Pixel Positive V-by-One differential data input in area A.         |      |
| 32  |       | Lane 1                                                                 |      |
| 33  | GND   | Ground                                                                 |      |

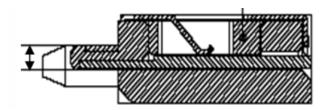



| 2.4 | RX2N | 3RD Pixel Negative V-by-One differential data input in area A. |     |
|-----|------|----------------------------------------------------------------|-----|
| 34  |      | Lane 2                                                         | (1) |
| 25  | RX2P | 3RD Pixel Positive V-by-One differential data input in area A. |     |
| 35  |      | Lane 2                                                         |     |
| 36  | GND  | Ground                                                         |     |
| 27  | RX3N | 4TH Pixel Negative V-by-One differential data input in area A. | (1) |
| 37  |      | Lane 3                                                         | (1) |
| 20  | RX3P | 4TH Pixel Positive V-by-One differential data input in area A. |     |
| 38  |      | Lane 3                                                         |     |
| 39  | GND  | Ground                                                         |     |
| 40  | RX4N | 5TH Pixel Negative V-by-One differential data input in area A. | (1) |
| 40  |      | Lane 4                                                         | (1) |
| 4.1 | RX4P | 5TH Pixel Positive V-by-One differential data input in area A. |     |
| 41  |      | Lane 4                                                         |     |
| 42  | GND  | Ground                                                         |     |
| 40  | RX5N | 6TH Pixel Negative V-by-One differential data input in area A. | (1) |
| 43  |      | Lane 5                                                         | (1) |
| 4.4 | RX5P | 6TH Pixel Positive V-by-One differential data input in area A. |     |
| 44  |      | Lane 5                                                         |     |
| 45  | GND  | Ground                                                         |     |
| 16  | RX6N | 7TH Pixel Negative V-by-One differential data input in area A. | (1) |
| 46  |      | Lane 6                                                         | (1) |
| 477 | RX6P | 7TH Pixel Positive V-by-One differential data input in area A. |     |
| 47  |      | Lane 6                                                         |     |
| 48  | GND  | Ground                                                         |     |
| 40  | RX7N | 8TH Pixel Negative V-by-One differential data input in area A. | (1) |
| 49  |      | Lane 7                                                         | (1) |
| F0  | RX7P | 8TH Pixel Positive V-by-One differential data input in area A. |     |
| 50  |      | Lane 7                                                         |     |
| 51  | GND  | Ground                                                         |     |
|     |      |                                                                |     |

Note (1) V-by-One<sup>R</sup> HS Data Mapping


| Area | Lane   | Data Stream            |
|------|--------|------------------------|
|      | Lane 0 | 1, 9, 17,, 3825, 3833  |
|      | Lane 1 | 2, 10, 18,, 3826, 3834 |
|      | Lane 2 | 3, 11, 19,, 3827, 3835 |
| ^    | Lane 3 | 4, 12, 20,, 3828, 3836 |
| A    | Lane 4 | 5, 13, 21,,3829, 3837  |
|      | Lane 5 | 6, 14, 22,, 3830, 3838 |
|      | Lane 6 | 7, 15, 23,, 3831, 3839 |
|      | Lane7  | 8, 16, 24,, 3832, 3840 |

Version 2.0 Date :Oct 25 , 2016






Note (2) V-by-One HS connector pin order defined as follows



Note (3) V-by-One connector mating dimension range request is 0.93mm~1.0mm as below



Note (4) Reserved for internal use. Please leave it open.

Note (5) The detail setting such as I2C command or timing requirement in QFHD is specified in INX application note. It's important and necessary to follow the specification either in product SPEC or application note, otherwise it may lead to abnormal or no display. INX application note would be provided by INX in the design-in stage.

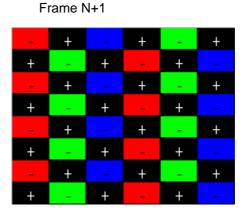
Note (6) Side-view enhanced (ELCS) function is controlled by I2C command in INX application note



### **4.2 COLOR DATA INPUT ASSIGNMENT**

The brightness of each primary color (red, green and blue) is based on the 10-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

|               |                  |    |    |    |    |    |    |    |    |    |    |    |    |    | D  | ata S | Sign | al |    |    |    |    |    |    |    |    |    |    |    |    |    |
|---------------|------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-------|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|               | Color            |    |    |    |    | Re | ed |    |    |    |    |    |    |    |    | Gre   | een  |    |    |    |    |    |    |    |    | Bl | ue |    |    |    |    |
|               |                  | R9 | R8 | R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | G9 | G8 | G7 | G6 | G5    | G4   | G3 | G2 | G1 | G0 | В9 | В8 | В7 | В6 | В5 | B4 | В3 | В2 | B1 | В0 |
|               | Black            | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|               | Red              | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0     | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|               | Green            | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1     | 1    | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Basic         | Blue             | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0    | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
| Colors        | Cyan             | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1     | 1    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
|               | Magenta          | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0     | 0    | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
|               | Yellow           | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1     | 1    | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|               | White            | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1     | 1    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
|               | Red (0) / Dark   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|               | Red (1)          | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0     | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| C             | Red (2)          | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0     | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Gray          | :                |    |    | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :     | :    | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  |
| Scale<br>Of   | :                |    |    | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :     | :    | :  | :  | :  | :  | ;  | :  | :  | :  | :  | :  | :  | :  | :  | :  |
| Red           | Red (1021)       | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0     | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Rea           | Red (1022)       | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0     | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|               | Red (1023)       | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0     | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|               | Green (0) / Dark | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|               | Green (1)        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0    | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| C             | Green (2)        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0    | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Gray<br>Scale | :                | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :     | :    | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  |
| Of            | :                | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :     | :    | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  |
| Green         | Green (1021)     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1     | 1    | 1  | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Green         | Green (1022)     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1     | 1    | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|               | Green (1023)     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1     | 1    | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|               | Blue (0) / Dark  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|               | Blue (1)         | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  |
| Gray          | Blue (2)         | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  |
| Scale         | :                | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :     | :    | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  |
| Of            | :                | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :     | :    | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  |
| Blue          | Blue (1021)      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0    | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  |
| Diue          | Blue (1022)      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0    | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  |
|               | Blue (1023)      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0    | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |


Note (1) 0: Low Level Voltage , 1: High Level Voltage



### 4.3 FLICKER (Vcom) ADJUSTMENT

# (1) Adjustment Pattern:

Column-inversion pattern was shown as below. If customer need below pattern, please directly contact with Account FAE.



(2) Adjustment method: (Digital V-com)

Programmable memory IC is used for Digital V-com adjustment in this model. INX provide Auto Vcom tools to adjust Digital V-com. The detail connection and setting instruction, please directly contact with Account FAE or refer INX Auto V-com adjustment OI. Below items is suggested to be ready before Digital V-com adjustment in customer LCM line.

- a. USB Sensor Board.
- b. Programmable software



### 5. INTERFACE TIMING

# **5.1 INPUT SIGNAL TIMING SPECIFICATIONS**

The input signal timing specifications are shown as the following table and timing diagram. (Ta =  $25 \pm 2$  °C)

|                      | <i>J</i> 1                           |                  |           |       |           |      |      |
|----------------------|--------------------------------------|------------------|-----------|-------|-----------|------|------|
| Signal               | Item                                 | Symbol           | Min.      | Тур.  | Max.      | Unit | Note |
| Frequency            | Data Clock                           | 1/Tc             | 69        | 74.25 | 79        | MHZ  | (1)  |
|                      | Intra-Pair skew                      |                  | -0.3      | -     | 0.3       | UI   | (2)  |
|                      | Inter-pair skew                      |                  | -5        | -     | 5         | UI   | (3)  |
| V-by-One<br>Receiver | Spread spectrum modulation range     | Fclkin_mod       | 1/Tc-0.5% |       | 1/Tc+0.5% | MHz  | (4)  |
|                      | Spread spectrum modulation frequency | F <sub>SSM</sub> | _         | 1     | 30        | KHz  | (4)  |

# 5.1.1 Timing spec for QFHD Frame Rate = 50Hz

| Signal                            | It€     | em      | Symbol | Min. | Тур. | Max. | Unit | Note       |
|-----------------------------------|---------|---------|--------|------|------|------|------|------------|
| Frame rate                        | 2D n    | node    | Fr     | 49   | 50   | 51   | Hz   | (5),(6)    |
| Vertical Active                   |         | Total   | Tv     | 2200 | 2700 | 2790 | Th   | Tv=Tvd+Tvb |
| Display Term<br>(8 Lane,3840X2160 | 2D Mode | Display | Tvd    |      | 2160 |      | Th   |            |
| Active Area)                      |         | Blank   | Tvb    | 40   | 540  | 630  | Th   |            |
| Horizontal Active                 |         | Total   | Th     | 530  | 550  | 590  | Tc   | Th=Thd+Thb |
| Display Term<br>(8 Lane,3840X2160 | 2D Mode | Display | Thd    |      | 480  |      | Тс   |            |
| Active Area)                      |         | Blank   | Thb    | 50   | 70   | 110  | Тс   |            |



# 5.1.2 Timing spec for QFHD Frame Rate = 60Hz

| Signal                         |            | Item    | Symbol         | Min. | Тур. | Max. | Unit | Note       |
|--------------------------------|------------|---------|----------------|------|------|------|------|------------|
| Frame Rate                     | 21         | ) Mode  | F <sub>r</sub> | 59   | 60   | 61   | Hz   | (5),(6)    |
| Vertical Active                |            | Total   | Tv             | 2230 | 2250 | 2350 | Th   | Tv=Tvd+Tvb |
| Display Term (8 Lane,3840X2160 | 2D<br>Mode | Display | Tvd            |      | 2160 |      | Th   |            |
| Active Area)                   |            | Blank   | Tvb            | 70   | 90   | 190  | Th   |            |
| Horizontal Active              |            | Total   | Th             | 530  | 550  | 600  | Тс   | Th=Thd+Thb |
| Display Term (8 Lane,3840X2160 | 2D<br>Mode | Display | Thd            |      | 480  |      | Тс   |            |
| Active Area)                   |            |         | Thb            | 50   | 70   | 120  | Тс   |            |

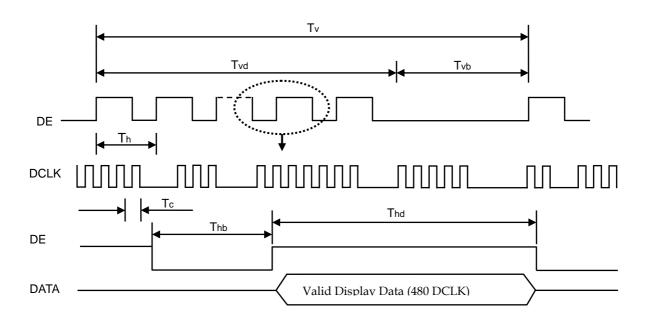
# 5.1.3 Input Timing spec for QFHD, Frame Rate = 24Hz

| Signal                          |      | Item    | Symbol         | Min. | Тур. | Max. | Unit | Note       |
|---------------------------------|------|---------|----------------|------|------|------|------|------------|
| Frame Rate                      | 2Γ   | ) Mode  | F <sub>r</sub> | 23.7 | 24   | 24.3 | Hz   | (5),(6)    |
| Vertical Active<br>Display Term |      | Total   | Tv             | 2208 | 2750 | 3200 | Th   | Tv=Tvd+Tvb |
| (4 Lane, 3840X2160              |      | Display | Tvd            |      | 2160 |      | Th   |            |
| Active Area)                    | 2D   | Blank   | Tvb            | 48   | 590  | 1040 | Th   |            |
| Horizontal Active               | Mode | Total   | Th             | 1060 | 1125 | 1180 | Тс   | Th=Thd+Thb |
| Display Term (4 Lane, 3840X2160 |      | Display | Thd            |      | 960  |      | Тс   |            |
| Active Area)                    |      | Blank   | Thb            | 100  | 165  | 220  | Тс   |            |

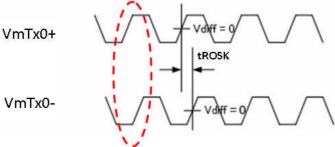
# 5.1.4 Input Timing spec for QFHD, Frame Rate = 30Hz

| Signal                            |              | Item    | Symbol | Min. | Тур. | Max. | Unit | Note       |
|-----------------------------------|--------------|---------|--------|------|------|------|------|------------|
| Frame Rate                        | 21           | ) Mode  | Fr     | 29.5 | 30   | 30.5 | Hz   | (5),(6)    |
| Vertical Active                   |              | Total   | Tv     | 2208 | 2250 | 2450 | Th   | Tv=Tvd+Tvb |
| Display Term (4 Lane, 3840X2160   | 2D<br>Mode   | Display | Tvd    |      | 2160 |      | Th   |            |
| Active Area)                      |              | Blank   | Tvb    | 48   | 90   | 290  | Th   |            |
| Horizontal Active                 |              | Total   | Th     | 1060 | 1100 | 1180 | Тс   | Th=Thd+Thb |
| Display Term<br>(4 Lane,3840X2160 | 2D<br>Mode   | Display | Thd    |      | 960  |      | Тс   |            |
| Active Area)                      | Active Area) |         | Thb    | 100  | 140  | 220  | Тс   |            |



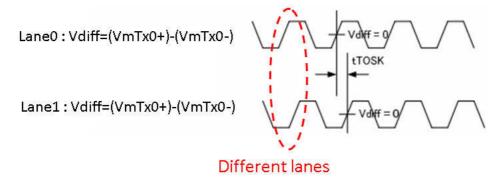



Note (1) Please make sure the range of pixel clock has follow the below equation:


 $\text{Fclkin(max)} \geq \text{Fr} \times \text{Tv} \times \text{Th}$ 

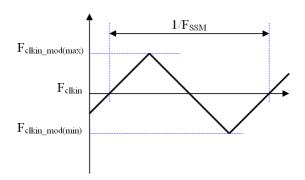
 $Fr \times Tv \times Th \ge Fclkin (min)$ 

### INPUT SIGNAL TIMING DIAGRAM



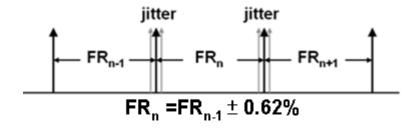

Note (2) Intra-pair Data skew




The same pair signal

Note (3) V-by-One HS Inter-pair skew.




Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.





Note (5) The frame-to-frame jitter of the input frame rate is defined as the above figures. FRn = FRn-1  $\pm$  0.62%.

Note (6) The setup of the frame rate jitter > 0.62% may result in incorrect timing mode and panel cosmetic symptom..





# 5.2 V by One Input Signal Timing Diagram

The eye diagram is measured by the oscilloscope and receiver CDR characteristic must be emulated.

PLL bandwidth: 8M Damping factor: 0.707

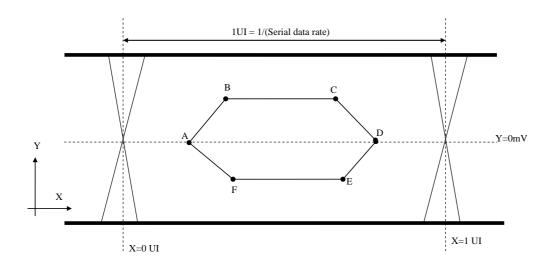


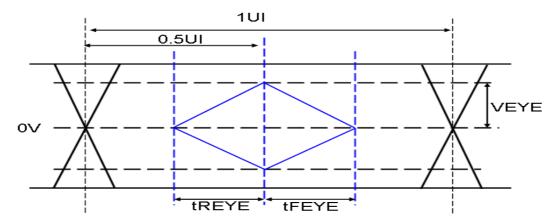

Table 1 Eye Mask Specification₽

| ₽  | א [עו]י        | Y [mV]₽ | Note₽ |
|----|----------------|---------|-------|
| A⇔ | 0.25₽          | 0₽      | (1)₽  |
| B⊎ | 0.3₽           | 50₽     | (1)₽  |
| C₽ | 0.7₽           | 50₽     | (1)₽  |
| D₽ | 0. <b>75</b> ₽ | 0₽      | (1)₽  |
| E⊎ | 0. <b>7</b> ₽  | -50₽    | (1)₽  |
| F⇔ | 0.3₽           | -50₽    | (1)₽  |

Note (1) Input levels of V-by-One HS signals are comes from "V-by-One HS Stander Ver.1.4"






# 5.2.2 CMPI Signal Timing Diagram

### 1. CMPI AC Electrical Characteristics

| Parameter                      | Symbol | Min. | Тур.  | Max. | Unit | Condition |
|--------------------------------|--------|------|-------|------|------|-----------|
| Effective Veye Rising<br>Time  | tREYE  | 0.2  | 1     | 1    | UI   |           |
| Effective Veye Falling<br>Time | tFEYE  | 0.2  | 1     | -    | UI   |           |
| Effective Veye Level           | VEYE   | 80   | -     | -    | mV   |           |
| CMPI Clock                     | 1UI    |      | 0.703 |      | ns   |           |

Note (1) CMPI EYE diagram must be in above spec. If your application is not in our spec., INX can not guarantee Display and function normal.

# Note (2) Eye timing diagram



Note (3) Measure point: Please directly contact with Account FAE for Measure CMPI signal method

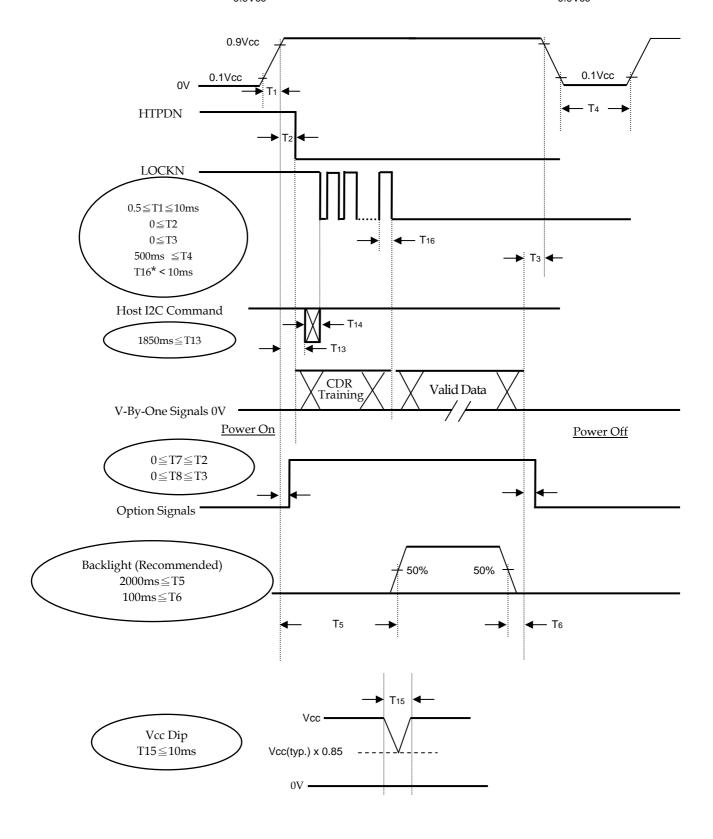




# 5.3 Byte Length and Color mapping of V-by-One HS

|         | & Unpacker | 30bpp RGB (10bit) |
|---------|------------|-------------------|
| output  |            | Joopp RGD (1001t) |
|         | D[0]       | R[2]              |
|         | D[1]       | R[3]              |
|         | D[2]       | R[4]              |
| Buto 0  | D[3]       | R[5]              |
| Byte 0  | D[4]       | R[6]              |
|         | D[5]       | R[7]              |
|         | D[6]       | R[8]              |
|         | D[7]       | R[9]              |
|         | D[8]       | G[2]              |
|         | D[9]       | G[3]              |
|         | D[10]      | G[4]              |
| Derto 1 | D[11]      | G[5]              |
| Byte 1  | D[12]      | G[6]              |
|         | D[13]      | G[7]              |
|         | D[14]      | G[8]              |
|         | D[15]      | G[9]              |
|         | D[16]      | B[2]              |
|         | D[17]      | B[3]              |
|         | D[18]      | B[4]              |
| Duto 2  | D[19]      | B[5]              |
| Byte 2  | D[20]      | B[6]              |
|         | D[21]      | B[7]              |
|         | D[22]      | B[8]              |
|         | D[23]      | B[9]              |
|         | D[24]      | X                 |
|         | D[25]      | X                 |
| Byte 3  | D[26]      | B[0]              |
|         | D[27]      | B[1]              |
|         | D[28]      | G[0]              |
|         | D[29]      | G[1]              |
|         | D[30]      | R[0]              |
|         | D[31]      | R[1]              |




# 5.4 POWER ON/OFF SEQUENCE

 $(Ta = 25 \pm 2 \, ^{\circ}C)$ 

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

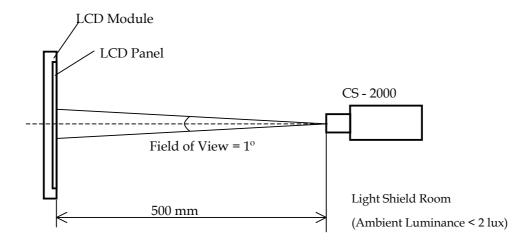
0.9Vcc

0.9Vcc





- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the LED voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0, that maybe cause electrical overstress failure
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.
- Note (6) Vcc must decay smoothly when power-off.
- Note (7) T5 > (T13 + T14)
- Note (8) T16, V-by-One signals shall be stabilized and follows timing specification which defined by section 6.1 & 6.2.




### 6. OPTICAL CHARACTERISTICS

# **6.1 TEST CONDITIONS**

| Item                | Symbol                                                        | Value     | Unit |  |  |  |  |  |
|---------------------|---------------------------------------------------------------|-----------|------|--|--|--|--|--|
| Ambient Temperature | Та                                                            | 25 ±2     | °C   |  |  |  |  |  |
| Ambient Humidity    | На                                                            | 50 ±10    | %RH  |  |  |  |  |  |
| Vertical Frame Rate | Fr                                                            | 60        | Hz   |  |  |  |  |  |
| Supply Voltage      | $V_{CC}$                                                      | 12.0 ±1.2 | V    |  |  |  |  |  |
| Input Signal        | According to typical value in "3. ELECTRICAL CHARACTERISTICS" |           |      |  |  |  |  |  |

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring in a windless room.





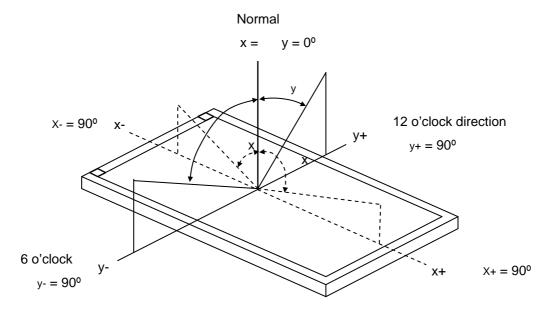
### **6.2 OPTICAL SPECIFICATIONS**

The relative measurement methods of optical characteristics are shown as below. The following items should be measured under the test conditions described in 7.1 and stable environment shown in 7.1.

| Item                    |            | Symbol         | Condition                                                                                          | Min.  | Тур.  | Max.  | Unit   | Note    |
|-------------------------|------------|----------------|----------------------------------------------------------------------------------------------------|-------|-------|-------|--------|---------|
| Color<br>Chromaticity   | Red        | Rcx            | θ <sub>x</sub> =0°, θ <sub>Y</sub> =0° Viewing Angle at Normal Direction Standard light source "C" | -0.03 | 0.661 | +0.03 | -      | (0)     |
|                         | Red        | Rcy            |                                                                                                    |       | 0.328 |       | -      |         |
|                         | Cusan      | Gcx            |                                                                                                    |       | 0.283 |       | _      |         |
|                         | Green      | Gcy            |                                                                                                    |       | 0.586 |       | -      |         |
|                         |            | Всх            |                                                                                                    |       | 0.138 |       | -      |         |
|                         | Blue       | Всу            |                                                                                                    |       | 0.102 |       | _      |         |
|                         | White      | Wcx            |                                                                                                    |       | 0.316 |       | -      |         |
|                         |            | Wcy            |                                                                                                    |       | 0.350 |       | -      |         |
| Transmittance           |            | Т%             |                                                                                                    |       | 5.6   | -     | %      | (5)     |
| Transmittance Variation |            | δΤ             | $\theta_x$ =0°, $\theta_Y$ =0°<br>With INX Module@60Hz                                             |       |       | 1.3   |        | (6)     |
| Contrast Ratio          |            | CR             |                                                                                                    | 3500  | 5000  | -     | -      | (1),(3) |
| Response Time           |            | Gray to gray   | $\theta_x$ =0°, $\theta_Y$ =0°<br>With INX Module@60Hz                                             | -     | 9.5   | 19    | ms     | (1),(4) |
| Viewing<br>Angle        | Horizontal | $\theta_x$ +   | CR≥10<br>With INX Module                                                                           | 80    | 89    | -     | — Deg. | (1),(2) |
|                         |            | $\theta_x$ -   |                                                                                                    | 80    | 89    | -     |        |         |
|                         | Vertical   | $\theta_{Y}$ + |                                                                                                    | 80    | 89    | -     |        |         |
|                         | vertical   | θү-            | , , int ii ve module                                                                               | 80    | 89    | -     |        |         |

Note (0) Light source is the standard light source "C" which is defined by CIE and driving voltage are based on suitable gamma voltages. The calculating method is as following:

- 1.Measure Module's and BLU's spectrum at center point. W, R,G, B are with signal input. BLU (V500DK4-KS7) is supplied by INX.
- $2. Calculate\ cell's\ spectrum.$
- 3. Calculate cell's chromaticity by using the spectrum of standard light source "C".


Note (1) Light source is the BLU which supplied by INX (V500DK4-KS7) and the cell driving voltage are based on suitable gamma voltages.

Version 2.0 26 Date :Oct 25 , 2016

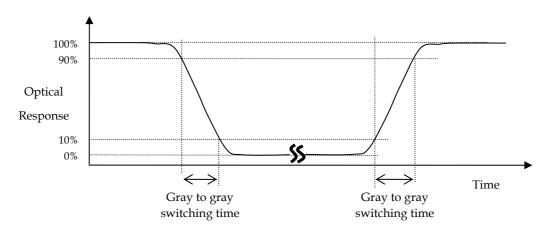


Note (2) Definition of Viewing Angle ( $\theta x$ ,  $\theta y$ ):

Viewing angles are measured by Autronic Conoscope Cono-80 (or Eldim EZ-Contrast 160R)



### Note (3) Definition of Contrast Ratio (CR):


The contrast ratio can be calculated by the following expression.

L255: Luminance of gray level 1023

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6).

Note (4) Definition of Gray-to-Gray Switching Time



The driving signal means the signal of gray level 0, 124, 252, 380, 508, 636, 764, 892 and 1023. Gray to gray average time means the average switching time of gray level 0, 124, 252, 380, 508, 636, 764, 892 and 1023 to each other.



Note (5) Definition of Transmittance (T%):

Measure the transmittance at 5 points.

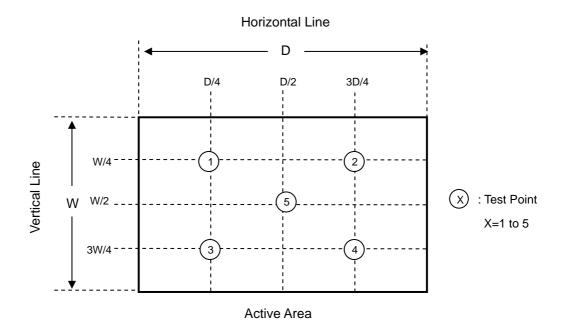
Light source is the BLU which contains three diffuser sheets and the cell driving voltage are based on suitable gamma voltages.

Transmittance (T%) = Average [T(1), T(2), T(3), T(4), T(5)]

The transmittance of each point can be calculated by the following expression.

$$T(X) = \frac{L1023(X) \text{ of LCD module}}{Luminance(X) \text{ of BLU}} \times 100\%$$

L1023: Luminance of gray level 1023


T(X) is corresponding to the point  $X1\sim X5$  at the figure in Note (6).

Note (6) Definition of Transmittance Variation (δT)

Measure the transmittance at 5 points.

Transmittance Variation (
$$\delta T$$
) = 
$$\frac{\text{Maximum}[T(1), T(2), T(3), T(4), T(5)]}{\text{Minimum}[T(1), T(2), T(3), T(4), T(5)]}$$

T(X) is calculated as Note(5).



# INNOLUX 群創光電股份有限公司

# PRODUCT SPECIFICATION

### 7. PRECAUTIONS

### 7.1 ASSEMBLY AND HANDLING PRECAUTIONS

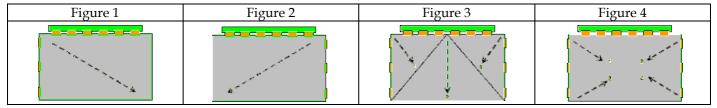
- [1] Do not apply improper or unbalanced force such as bending or twisting to open cells during assembly.
- [2] It is recommended to assemble or to install an open cell into a customer's product in clean working areas. The dust and oil may cause electrical short to an open cell or worsen polarizers on an open cell.
- [3] Do not apply pressure or impulse to an open cell to prevent the damage.
- [4] Always follow the correct power-on sequence when an open cell is assembled and turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- [5] Do not design sharp-pointed structure / parting line / tooling gate on the plastic part of a COF (Chip on film), because the burr will scrape the COF.
- [6] If COF would be bended in assemble process, do not place IC on the bending corner.
- [7] The gap between COF IC and any structure of BLU must be bigger than 2 mm. This can prevent the damage of COF IC.
- [8] The bezel opening must have no burr and be smooth to prevent the surface of an open cell scraped.
- [9] The bezel of a module or a TV set can not contact with force on the surface of an open cell. It might cause light leakage or scrape.
- [ 10 ] In the case of no FFC or FPC attached with open cells, customers can refer the FFC / FPC drawing and buy them by self.
- [11] It is important to keep enough clearance between customers' front bezel/backlight and an open cell.

  Without enough clearance, the unexpected force during module assembly procedure may damage an open cell
- [12] Do not plug in or unplug an I/F (interface) connector while an assembled open cell is in operation.
- [13] Use a soft dry cloth without chemicals for cleaning, because the surface of the polarizer is very soft and easily scratched.
- [14] Moisture can easily penetrate into an open cell and may cause the damage during operation.
- [15] When storing open cells as spares for a long time, the following precaution is necessary.
  - [ 15.1 ] Do not leave open cells in high temperature and high humidity for a long time. It is highly recommended to store open cells in the temperature range from 0 to  $35^{\circ}$ C at normal humidity without condensation.
  - [15.2] Open cells shall be stored in dark place. Do not store open cells in direct sunlight or fluorescent light environment.
- [16] When ambient temperature is lower than 10°C, the display quality might be reduced.
- [17] Unpacking (Cartons/Tray plates) in order to prevent open cells broken:
  - [ 17.1 ] Moving tray plates by one operator may cause tray plates bent which may induce open cells broken. Two operators carry one carton with their two hands. Do not throw cartons/tray plates, avoid any impact on cartons/tray plates, and put down & pile cartons/tray plates gently.
  - [ 17.2 ] A tray plate handled with unbalanced force may cause an open cell damaged. Trays should be completely put on a flat platform.
  - [ 17.3 ] To prevent open cells broken, tray plates should be moved one by one from a plastic bag.



- [ 17.4 ] Please follow the packing design instruction, such as the maximum number of tray stacking to prevent the deformation of tray plates which may cause open cells broken.
- [ 17.5 ] To prevent an open cell broken or a COF damaged on a tray, please follow the instructions below:
  - [17.5.1] Do not peel a polarizer protection film of an open cell off on a tray
  - [17.5.2] Do not install FFC or LVDS cables of an open cell on a tray
  - [17.5.3] Do not press the surface of an open cell on a tray.
  - [17.5.4] Do not pull X-board when an open cell placed on a tray.
- [18] Unpacking (Hard Box) in order to prevent open cells broken:
  - [ 18.1 ] Moving hard boxes by one operator may cause hard boxes fell down and open cells broken by abnormal methods. Two operators carry one hard box with their two hands. Do handle hard boxes carefully, such as avoiding impact, putting down, and piling up gently.
  - [ 18.2 ] To prevent hard boxes sliding from carts and falling down, hard boxes should be placed on a surface with resistance.
  - [ 18.3 ] To prevent an open cell broken or a COF damaged in a hard box, please follow the instructions below:
    - [18.3.1] Do not peel a polarizer protection film of an open cell off in a hard box.
    - [18.3.2] Do not install FFC or LVDS cables of an open cell in a hard box.
    - [18.3.3] Do not press the surface of an open cell in a hard box.
    - [18.3.4] Do not pull X-board when an open cell placed in a hard box.
- [19] Handling In order to prevent open cells, COFs, and components damaged:
  - [ 19.1 ] The forced displacement between open cells and X-board may cause a COF damaged. Use a fixture tool for handling an open cell to avoid X-board vibrating and interfering with other components on a PCBA & a COF.
  - [ 19.2 ] To prevent open cells and COFs damaged by taking out from hard boxes, using vacuum jigs to take out open cells horizontally is recommended.
  - [ 19.3 ] Improper installation procedure may cause COFs of an open cell over bent which causes damages. As installing an open cell on a backlight or a test jig, place the bottom side of the open cell first on the backlight or the test jig and make sure no interference before fitting the open cell into the backlight/the test jig.
  - [19.4] Handle open cells one by one.
- [20] Avoid any metal or conductive material to contact PCB components, because it could cause electrical damage or defect.
- [21] The suggestion of removing polarizer-protection film is illustrated as following
  - [ 21.1 ] Scan COF on the left side (Figure 1)

    Remove slowly and follow the direction : from left-up to right-down
  - [ 21.2 ] Scan COF on the right side (Figure 2)


    Remove slowly and follow the direction: from right-up to left-down
  - [ 21.3 ] Scan COF on the left and right side (Figure 3)

    Remove slowly and follow the direction as marked by 1 and 2.



[21.4] Scan COF on the left and right side (Figure 4)

Remove slowly and follow the direction as marked by 1, 2, 3 and 4.



### **7.2 SAFETY PRECAUTIONS**

- [1] If the liquid crystal material leaks from the open cell, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- [2] After the end of life, open cells are not harmful in case of normal operation and storage.



### 8. DEFINITION OF LABELS

### **8.1 OPEN CELL LABEL**

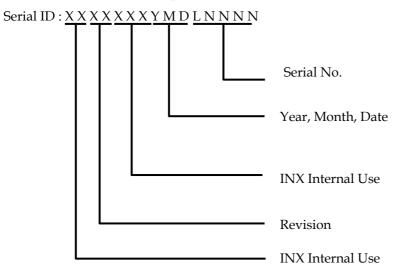

The barcode nameplate is pasted on each open cell as illustration for INX internal control.



Figure.9-1 Serial No. Label on SPWB and Cell

Model Name: V500DJ6-QE1

Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.



Serial ID includes the information as below:

Manufactured Date:

Year: 2010=0, 2011=1,2012=2...etc.

Month:  $1\sim9$ ,  $A\sim C$ , for Jan.  $\sim$  Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

Revision Code: Cover all the change

Serial No.: Manufacturing sequence of product



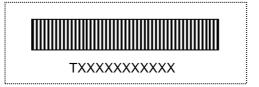
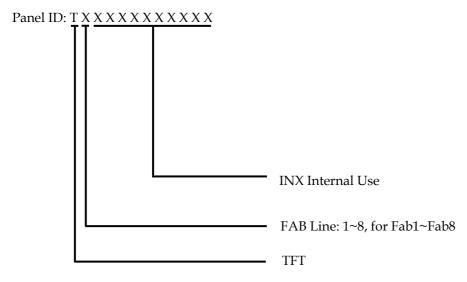




Figure.9-2 Panel ID Label on Cell

Panel ID Label includes the information as below:

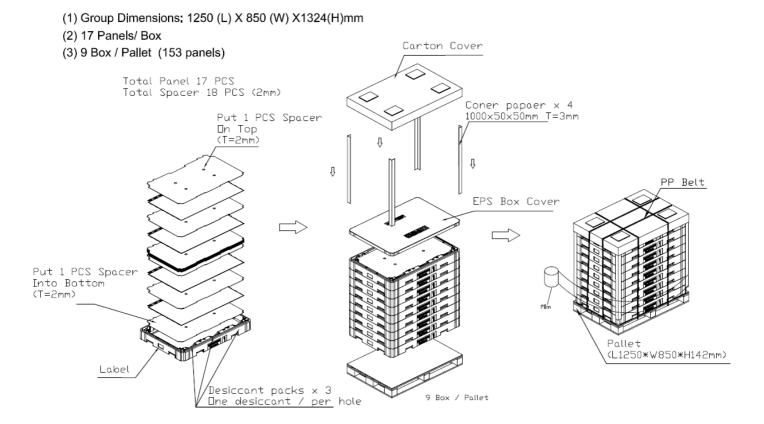




### 9. PACKAGING

### 9.1 PACKAGING SPECIFICATIONS

### EPS Box:


- (1) 17 LCD TV Panels / 1 Box
- (2) Box dimensions: 1235 (L) X835 (W) X139 (H)mm
- (3) Weight: approximately 40 Kg (17 panels per box)
- (4) 153 LCD TV Panels / 1 Group
- (5) Group dimensions: 1250 (L) X 850 (W) X1324 (H)mm
- (6) Weight: approximately 380 Kg / 1 Group
- (7) Please fill up the container to avoid any cargo be damaged.
- (8) When transferring in warehouse or factory, the arm length of electric forklift or hand pallet truck must be longer than the pallet. INX recommend the length of arm should be  $\geq$  120 cm (for TV 50").
- (9) After un-packing, one box is needed to be carried by four persons which is to prevent box bent or fell down.
- (10) The surface area of the worktable or carts should be greater than box size. INX recommend the dimensions of tabletop be  $\geq 140 \times 90$  cm (for TV 50")

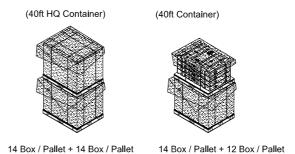
### 9.2 PACKAGING METHOD

Packaging method is shown in following figures.

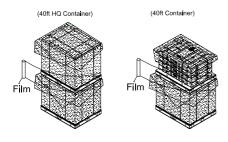
EPS Box:

### (1) Packing Method






### (2) Shipping Mode


# A TYPE (Air Transportation)

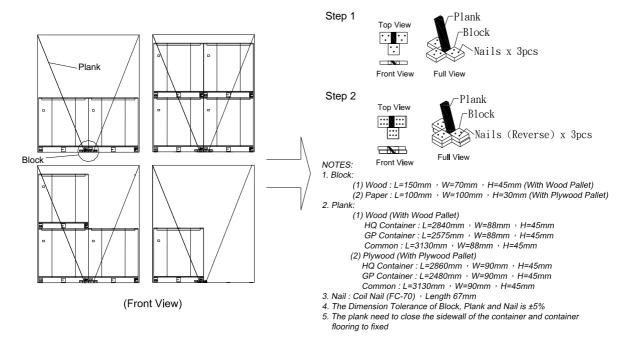
# Full Stack Non-full stack Film PE Sheet Film Film Film PE Sheet Comer Protector Protector

### B TYPE (Sea&Land Transportation)



# C TYPE (Sea&Land Transportation)

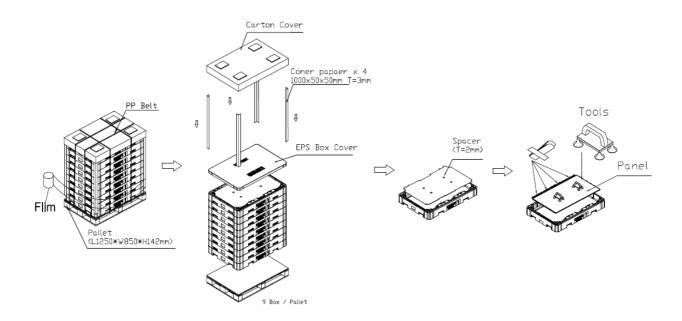



14 Box / Pallet + 14 Box / Pallet 14 Box / Pallet + 12 Box / Pallet

### 40ft HQ Container & 40ft Container

| Container Hea | d | Container Tail |  |  |
|---------------|---|----------------|--|--|
| В             | В | C              |  |  |
| В             | В | C              |  |  |

# (3) The Fixed Way of Block and Plank in the Container Tail

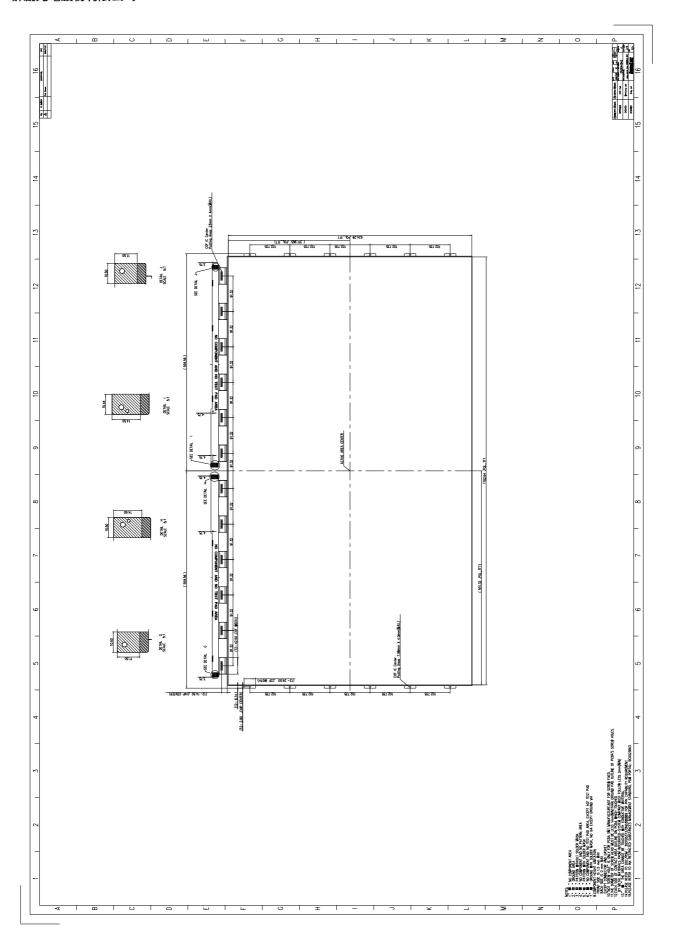

# The Fixed Way of Block and Plank in the Container Tail





# 9.3 UN-PACKAGING METHOD

Un-packaging method is shown as following figures EPS Box :






# 10. MECHANICAL CHARACTERISTIC

