VITELIC ### PRELIMINARY # V53C404 HIGH PERFORMANCE, LOW POWER 1M X 4 BIT FAST PAGE MODE CMOS DYNAMIC RAM | HIGH PERFORMANCE V53C404 | 70/70L | 80/80L | 10/10L | |--|--------|--------|--------| | Max. RAS Access Time, (t _{RAC}) | 70 ns | 80 ns | 100 ns | | Max. Column Address Access Time, (t _{CAA}) | 35 ns | 40 ns | 50 ns | | Min. Fast Page Mode Cycle Time, (t _{PC}) | 50 ns | 55 ns | 65 ns | | Min. Read/Write Cycle Time, (t _{RC}) | 130 ns | 150 ns | 180 ns | | | | | | | LOW POWER V53C404L | 70L | 80L | 10L | | Max. CMOS Standby Current, (I _{DD6}) | 0.4 mA | 0.4 mA | 0.4 mA | ### Features- - 1M x 4-bit organization - RAS access time: 70,80,100 ns - Low power dissipation - V53C404-10 - Operating Current 70 mA max. - TTL Standby Current 2.0 mA max. - Low CMOS Standby Current - V53C404 1.0 mA max. - V53C404L 0.4 mA max. - Battery Back-up Mode (V53C404L Only) - Read-Modify-Write, RAS-Only Refresh, CAS-Before-RAS Refresh capability - Refresh Interval - V53C404 1024 cycles/16ms - V53C404L 1024 cycles/64ms - On-chip substrate bias generator - Fast Page Mode for a sustained data rate greater than 20 MHz - Available in 26/20 pin SOJ package (300 mil) ### Description The Vitelic V53C404 is a high speed 1,048,576x4 bit CMOS dynamic random access memory. Fabri- cated with Vitelic's VICMOS V technology, the V53C404 offers a combination of features: Fast Page Mode for high data bandwidth, fast usable speed, CMOS standby current and, on request, extended refresh for very low data retention power (V53C404L). All inputs and outputs are TTL compatible. Input and output capacitances are significantly lowered to allow increased system performance. Fast Page Mode operation allows random access of up to 1024 (x4) bits within a row with cycle times as short as 50 ns. Because of static circuitry, the CAS clock is not in the critical timing path. The flow-through column address latches allow address pipelining while relaxing many critical system timing requirements for fast usable speed. These features make the V53C404 ideally suited for graphics, digital signal processing and high performance computing systems. The V53C404L offers a maximum data retention power of 3.3 mW when operating in CMOS standby mode and performing RAS-only or CAS-before-RAS refresh cycles. ### Device Usage Chart | Operating | Package Outline | Access Time (ns) | | | Pov | ver | CI | |----------------------|-----------------|------------------|---|-----|-----|-----|---------------------| | Temperature
Range | К | 70 80 100 | | 100 | | | Temperature
Mark | | 0°C to 70 °C | • | • | • | • | • | ~? | Blank | V53C404 Rev. 01 September 1991 | Description | Pkg. | Pin Count | |-------------|------|-----------| | SOJ | K | 26/20 | ### 26/20 Lead SOJ Package PIN CONFIGURATION Top View ### Pin Names | A ₀ A ₉ | Address Inputs | |------------------------------------|-----------------------| | RAS | Row Address Strobe | | CAS | Column Address Strobe | | WE | Write Enable | | ŌĒ | Output Enable | | I/O ₁ -I/O ₄ | Data Input, Output | | V _{DD} | +5V Supply | | V _{ss} | 0V Supply | | NC | No Connect | ### Absolute Maximum Ratings* ### **Ambient Temperature** ### Capacitance* $T_A = 25$ °C, $V_{DD} = 5 \text{ V} \pm 10\%$, $V_{SS} = 0 \text{ V}$ | Symbol | Parameter | Тур. | Max. | Unit | |------------------|-------------------|------|------|------| | C _{IN1} | Address Input | - | 6 | pF | | C _{IN2} | RAS, CAS, WE, OE | | 7 | pF | | C _{OUT} | Data Input/Output | T - | 7 | pF | ^{*} Note: Capacitance is sampled and not 100% tested ^{*}Note: Operation above Absolute Maximum Ratings can adversely affect device reliability. ### **Block Diagram** 1M x 4 DC and Operating Characteristics (1-2) $T_A = 0^{\circ}C$ to 70°C, $V_{DD} = 5 \text{ V} \pm 10\%$, $V_{SS} = 0 \text{ V}$, unless otherwise specified. | | | | V53 | C404 | V530 | C404L | | | | |------------------|--|----------------|------|--------------------|------|--------------------|------|---|-------| | Symbol | Parameter | Access
Time | Min. | Max. | Min. | Max. | Unit | Test Conditions | Notes | | I _{LI} | Input Leakage Current
(any input pin) | | -10 | 10 | -10 | 10 | μА | $V_{SS} \leq V_{IN} \leq V_{DD}$ | | | I _{LO} | Output Leakage Current
(for High-Z State) | | -10 | 10 | -10 | 10 | μА | $\frac{V_{SS}^{\leq}}{RAS, CAS} \frac{V_{OUT}^{} \leq V_{DD}^{}}{CAS \text{ at } V_{IH}^{}}$ | | | | | 70 | | 90 | | 90 | | | | | I _{DD1} | V _{DD} Supply Current, | 80 | | 80 |] | 80 | mA | t _{RC} = t _{RC} (min.) | 1, 2 | | | Operating | 100 | • | 70 | | 70 | 1 | | | | , DD5 | V _{DD} Supply Current,
TTL Standby | | | 2.0 | | 2.0 | mA | RAS, CAS at V _{IH} other inputs ≥ V _{SS} | | | | | 70 | | 90 | | 90 | | | | | I _{DD3} | V _{DD} Supply Current,
RAS-Only Refresh | 80 | | 80 | | 80 | mA | t _{RC} = t _{RC} (min.) | 2 | | | HAS-Only Reliesh | 100 | | 70 | | 70 | 1 | | | | 1 _{DD4} | V _{DD} Supply Current, | 70 | | 80 | | 80 | | | | | | Fast Page Mode | 80 | | 70 | | 70 | mA | Minimum Cycle | 1, 2 | | | Operation | 100 | | 60 | | 60 | | | | | 1 _{DD5} | V _{DD} Supply Current,
Standby, Output Enabled | | | 5 | | 4 | mA | RAS=V _{IH} , CAS=V _{IL} other inputs ≥ V _{SS} | | | l _{DD6} | V _{DD} Supply Current,
CMOS Standby | | | 1 | | 0.4 | mA | $\overline{RAS} \ge V_{DD} - 0.2 \text{ V}$ $\overline{CAS} \ge V_{DD} - 0.2 \text{ V}$ other inputs $\ge V_{SS}$ | | | l _{DD7} | Battery Back-up Data Retention Current (V53C404L Only) | | | N.A. | | 0.6 | mA | CAS-Before-RAS Refresh cycle t _{RC} = 62.5 μs CMOS clock levels | 18 | | V _{IL} | Input Low Voltage | | -1.0 | 0.8 | -1.0 | 0.8 | V | | 3 | | V _{IH} | Input High Voltage | | 2.4 | V _{DD} +1 | 2.4 | V _{DD} +1 | V | | 3 | | V _{OL} | Output Low Voltage | | | 0.4 | | 0.4 | V | I _{OL} = 4.2 mA | | | V _{OH} | Output High Voltage | | 2.4 | | 2.4 | | | l _{OH} = -5 mA | | AC Characteristics $T_{A}=0 ^{\circ}\text{C to } 70 ^{\circ}\text{C}, \ V_{DD}=5 \text{ V} \pm 10 ^{\circ}\text{M}, \ V_{SS}=0 \text{V} \text{ unless otherwise noted}$ AC Test conditions, input pulse levels 0 to 3V | | JEDEC | | | 70 | /L | 80 | D/L | 10 |)/L | i | | |----|------------------------|----------------------|---|------|------|------|------|------|------|------|------------| | # | Symbol | Symbol | Parameter | Min. | Max. | Min. | Max. | Min. | Max. | Unit | Notes | | 1 | t _{RL1RH1} | t _{RAS} | RAS Pulse Width | 70 | 75K | 80 | 75K | 100 | 75K | ns | | | 2 | t _{RL2RL2} | t _{RC} | Read or Write Cycle Time | 130 | | 150 | | 180 | | ns | | | 3 | t _{RH2RL2} | t _{RP} | RAS Precharge Time | 50 | | 60 | | 70 | | ns | | | 4 | t _{RL1CH1} | t _{CSH} | CAS Hold Time | 70 | | 80 | | 100 | | ns | | | 5 | t _{CL1CH1} | t _{CAS} | CAS Pulse Width | 20 | | 20 | | 25 | | ns | | | 6 | t _{RL1CL1} | t _{RCD} | RAS to CAS Delay | 20 | 50 | 20 | 60 | 25 | 75 | ns | 4 | | 7 | t _{WH2CL2} | t _{RCS} | Read Command Setup Time | 0 | | 0 | | 0 | | ns | | | 8 | t _{AVRL2} | t _{ASR} | Row Address Setup Time | 0 | | 0 | | 0 | | ns | | | 9 | t _{RL1AX} | t _{RAH} | Row Address Hold Time | 10 | | 10 | | 15 | | ns | | | 10 | t _{AVCL2} | t _{ASC} | Column Address Setup Time | 0 | | 0 | | 0 | | ns | | | 11 | t _{CL1AX} | t _{CAH} | Column Address Hold Time | 15 | | 15 | | 20 | | ns | | | 12 | t _{CL1RH1(R)} | t _{RSH (R)} | RAS Hold Time (Read Cycle) | 20 | | 20 | | 25 | | ns | | | 13 | t _{CH2RL2} | t _{CRP} | CAS to RAS Precharge Time | 5 | | 5 | | 10 | | ns | | | 14 | t _{CH2WX} | t _{RCH} | Read Command Hold Time
Referenced to CAS | 0 | | 0 | | 0 | | ns | 5 | | 15 | t _{RH2WX} | t _{RRH} | Read Command Hold Time
Referenced to RAS | 0 | | 0 | | 0 | | ns | 5 | | 16 | t _{OEL1RH2} | t _{ROH} | RAS Hold Time
Referenced to OE | 20 | | 20 | | 25 | | ns | | | 17 | t _{GL1QV} | toac | Access Time from OE | | 20 | | 20 | | 25 | ns | | | 18 | t _{CL1QV} | tcac | Access Time from CAS | | 20 | | 20 | | 25 | ns | 6,7 | | 19 | t _{RL1QV} | t _{RAC} | Access Time from RAS | | 70 | | 80 | | 100 | ns | 6,8,9 | | 20 | t _{AVQV} | t _{CAA} | Access Time from Column
Address | | 35 | | 40 | | 50 | ns | 6,7,
10 | # AC Characteristics (Cont'd.) | | JEDEC | | _ | 70 | /L | 80 |)/L | 10/L | | 1164 | | |----|------------------------------|----------------------|---|------|------|------|------|------|------|------|-------| | # | Symbol | Symbol | Parameter | Min. | Max. | Min. | Max. | Min. | Max. | Unit | Notes | | 21 | t _{CL1QX} | t _{iz} | OE or CAS to Low-Z Output | 0 | | 0 | | 0 | | ns | 16 | | 22 | t _{CH2QZ} | t _{HZ} | OE or CAS to High-Z Output | 0 | 20 | 0 | 25 | 0 | 25 | ns | 16 | | 23 | t _{RL1AX} | t _{AR} | Column Address Hold Time from RAS | 55 | | 60 | | 75 | | ns | | | 24 | t _{RL1AV} | t _{RAD} | RAS to Column Address Delay Time | 15 | 35 | 15 | 40 | 20 | 50 | ns | 11 | | 25 | t _{CL1RH1(W)} | t _{RSH} (W) | RAS or CAS Hold Time in Write Cycle | 20 | | 20 | | 25 | | ns | | | 26 | twL1CH1 | t _{CWL} | Write Command to CAS Lead Time | 20 | | 20 | | 25 | | ns | | | 27 | twl1CL2 | twcs | Write Command Setup Time | 0 | | 0 | | 0 | | ns | 12,13 | | 28 | t _{CL1WH1} | ^t wch | Write Command Hold Time | 10 | | 15 | | 20 | | ns | | | 29 | t _{WL1WH1} | t _{we} | Write Pulse Width | 10 | | 15 | | 20 | | ns | | | 30 | t _{RL1WH1} | t _{wcr} | Write Command Hold Time from RAS | 55 | | 60 | | 75 | | ns | | | 31 | t _{WL1RH1} | t _{RWL} | Write Command to RAS
Lead Time | 20 | | 20 | | 25 | | ns | | | 32 | t _{DVWL2} | t _{DS} | Data in Setup Time | 0 | | 0 | | 0 | | ns | 14 | | 33 | t _{WL1DX} | t _{DH} | Data in Hold Time | 15 | | 15 | | 20 | | ns | 14 | | 34 | t _{WL1GL2} | ^t woH | Write to OE Hold Time | 20 | | 20 | | 25 | | ns | 14 | | 35 | t _{GH2DX} | t _{OED} | OE to Data Delay Time | 20 | | 20 | | 25 | | ns | 14 | | 36 | t _{RL2RL2}
(RMW) | t _{RWC} | Read-Modify-Write Cycle Time | 185 | | 205 | | 245 | | ns | | | 37 | t _{RL1RH1}
(RMW) | t _{RRW} | Read-Modify-Write Cycle RAS Pulse Width | 125 | | 135 | | 165 | | ns | | | 38 | t _{CL1WL2} | tcwD | CAS to WE Delay | 50 | | 50 | | 60 | | ns | 12 | | 39 | t _{RL1WL2} | t _{RWD} | RAS to WE Delay in
Read-Modify-Write Cycle | 100 | | 110 | | 135 | | ns | 12 | | 40 | t _{CL1CH1} | t _{CRW} | CAS Pulse Width (RMW) | 75 | | 75 | | 90 | | ns | | # AC Characteristics (Cont'd.) | | JEDEC | | | 7 | 0/L | 80 |)/L | 10/L | | | l | | |----|---------------------|-------------------|---|------|------|------|------|------|------|------|----------|--| | # | Symbol | Symbol | Parameter | Min. | Max. | Min. | Max. | Min. | Max. | Unit | Notes | | | 41 | t _{AVWL2} | t _{AWD} | Col. Address to WE Delay | 65 | | 70 | | 80 | | ns | 12 | | | 42 | t _{CL2CL2} | t _{PC} | Fast Page Mode
Read or Write Cycle Time | 50 | | 55 | | 65 | | ns | | | | 43 | t _{CH2CL2} | t _{CP} | CAS Precharge Time | 10 | | 10 | | 10 | | ns | | | | 44 | t _{AVRH1} | t _{CAR} | Column Address to RAS Setup Time | 35 | | 40 | | 50 | | ns | | | | 45 | t _{CH2QV} | t _{CAP} | Access Time from
Column Precharge | | 40 | | 45 | | 55 | ns | 7 | | | 46 | t _{RL1DX} | t _{DHR} | Data in Hold Time
Referenced to RAS | 55 | | 60 | | 75 | | ns | | | | 47 | t _{CL1RL2} | t _{CSR} | CAS Setup Time
CAS-before-RAS Refresh | 5 | | 5 | | 5 | | ns | | | | 48 | t _{RH2CL2} | t _{RPC} | RAS to CAS Precharge Time | 5 | | 5 | | 5 | | ns | | | | 49 | t _{RL1CH1} | t _{CHR} | CAS Hold Time
CAS-before-RAS Refresh | 15 | | 15 | | 15 | | ns | | | | 50 | CL2CL2
(RMW) | t _{PCM} | Fast Page Mode Read-
Modify-Write Cycle Time | 105 | | 110 | | 130 | | ns | | | | 51 | t _{WH2RL2} | t _{WRP} | WE to RAS precharge time
(CAS-Before-RAS Refresh cycle) | 10 | | 10 | | 10 | | ns | | | | 52 | t _{RL1WL2} | t _{wr} H | WE Hold Time from RAS (CAS-Before-RAS Refresh Cycle) | 10 | | 10 | | 10 | | ns | | | | 53 | t _{WL1RL2} | twsR | RAS to WE set-up Time
(Test Mode) | 10 | | 10 | | 10 | | ns | 19
20 | | | 54 | t _{RL1WH1} | t _{WHR} | RAS to WE hold Time
(Test Mode) | 10 | | 10 | | 10 | | ns | | | | 55 | t _T | t _T | Transition Time
(Rise and Fall) | 3 | 50 | 3 | 50 | 3 | 50 | ns | 15 | | | 56 | | t _{REF} | Refresh Interval
(1024 Refresh Cycles) | | 16 | | 16 | | 16 | ms | 17 | | | 57 | | t _{REF} | Refresh Interval
V53C404L Only
(1024 Refresh Cycles, t _{RC} = 62.5 μs) | | 64 | | 64 | | 64 | ms | 17,18 | | ### Notes: - I_{DD} is dependent on output loading when the device output is selected. Specified I_{DD} (max.) is measured with the output open. - I_{DD} is dependent upon the number of address transitions. Specified I_{DD} (max.) is measured with a maximum of two transitions per address cycle in Fast Page Mode. - Specified V_{IL} (min.) is steady state operating. During transitions, V_{IL} (min.) may undershoot to −1.0 V for a period not to exceed 20 ns. All AC parameters are measured with V_{IL} (min.) ≥ V_{SS} and V_{IH} (max.) ≤ V_{DD}. - 4. t_{RCD} (max.) is specified for reference only. Operation within t_{RCD} (max.) limits insures that t_{RAC} (max.) and t_{CAA} (max.) can be met. If t_{RCD} is greater than the specified t_{RCD} (max.), the access time is controlled by t_{CAA} and t_{CAC}. - 5. Either t_{RBH} or t_{RCH} must be satisified for a Read Cycle to occur. - 6. Measured with a load equivalent to two TTL inputs and 100 pF. - 7. Access time is determined by the longest of t_{CAA} , t_{CAC} and t_{CAP} - 8. Assumes that t_{RAD} ≤ t_{RAD} (max.). If t_{RAD} is greater than t_{RAD} (max.), t_{RAC} will increase by the amount that t_{RAD} exceeds t_{RAD} (max.). - Assumes that t_{RCD} ≤t_{RCD} (max.). If t_{RCD} is greater than t_{RCD} (max.), t_{RAC} will increase by the amount that t_{RCD} exceeds t_{RCD} (max.). - 10. Assumes that $t_{RAD} \ge t_{RAD}$ (max.). - 11. Operation within the t_{RAD} (max.) limit ensures that t_{RAC} (max.) can be met. t_{RAD} (max.) is specified as a reference point only. If t_{RAD} is greater than the specified t_{RAD} (max.) limit, the access time is controlled by t_{CAA} and t_{CAC}. - 12. t_{WCS} , t_{RWD} , t_{AWD} and t_{CWD} are not restrictive operating parameters. - 13. twcs (min.) must be satisfied in an Early Write Cycle. - 14. t_{DS} and t_{DH} are referenced to the latter occurrence of CAS or WE. - 15. t_T is measured between V_{IH} (min.) and V_{II} (max.). AC-measurements assume $t_T = 5$ ns. - 16. Assumes a three-state test load (5 pF and a 380 Ohm Thevenin equivalent). - 17. An initial 200 μs pause and 8 RAS-containing cycles are required when exiting an extended period of bias without clocks. An extended period of time without clocks is defined as one that exceeds the specified Refresh Interval. - 18. This is battery backup data retention mode under CAS-before-RAS refresh cycles. $$\begin{array}{c} t_{RC} = 62.5~\mu s~(62.5~\mu s~x~1024 = 64~ms) \\ t_{RAS} = t_{RAS}~(min)~to~1~\mu s \\ \text{Input voltages}: \overline{RAS}~\text{and}~\overline{CAS} & V_{IH} > V_{DD} - 0.2~V \\ \hline WE~\text{and}~\overline{OE} & V_{IN} > V_{DD} - 0.2~V \\ \hline All~other~inputs~at~stable~V_{IH}~or~V_{IL} \end{array}$$ 19. The test mode is initiated by performing a WE and CAS-before-RAS cycle. This mode is latched and remains in effect until the exit cycle is generated. The test mode specified in this data sheet is 8-bits parallel testing function. CA0 is not used. In the read cycle, if two internal bits on one I/O pin are equal, the I/O pin will indicate a high level. If internal bits on one I/O are not equal, then the I/O pin will indicate a low level. The test mode is cleared and the memory device returned to its normal operational state by performing a RAS-only refresh cycle or a CAS-before-RAS refresh cycle. 20. In a test mode read cycle, the value of access time parameters is delayed by 5 ns for the specified value. These parameters should be specified in test mode cycles by adding the above value (5 ns) to the specified value in this data sheet. ### Waveforms of Read Cycle ### Waveforms of Early Write Cycle ### Waveforms of OE-Controlled Write Cycle ### Waveforms of Read-Modify-Write Cycle 676 05 #### Waveforms of Fast Page Mode Read Cycle - ^tras (1) -- ^tAR (23) RAS - ¹RCD (6)t RSH (R)(12) PC (42) ¹ CRP (13) t_{CRP (13)} t CP (43) - tCAS (5)-CAS (5) tCAS (5)4 CAS t CAR (44) CSH (4) + ^tRAH (9) tASC (10) ^tASC (10) ¹CAH (11) TASR (8) CAH (11) COLUMN ADDRESS COLUMN ADDRESS COLUMN **ADDRESS** ADDRESS 1 RCS (7) t RCH (14) ^t RCH (14) - t CAH (11) 1 RCS (7) t_{RCS (7)}— ^tCAA (20) ⁻ CAA (20) . ^t RRH (15) ► ¹CAP (45) LOAC (17) tOAC (17) 1OAC (17)-^lHZ (22) ¹ CAC (18) t RAC (19) - ^t HZ (22) t CAC (18) -^TCAC (18) t HZ (22) 1 LZ (21) - ^t HZ (22) tLZ (21) -^{- t} HZ (22) VALID DATA OUT. VO ### Waveforms of Fast Page Mode Write Cycle # Waveforms of Fast Page Mode Read-Write Cycle # Waveforms of RAS-Only Refresh Cycle NOTE: WE, OE = Don't care # Waveforms of CAS-before-RAS Refresh Cycle # Waveforms of Hidden Refresh Cycle (Read) ## Waveforms of Hidden Refresh Cycle (Write) ### Test Mode Initiation Cycle # Waveforms of CAS-before-RAS Refresh Counter Test Cycle ### Functional Description The V53C404 is a CMOS dynamic RAM optimized for high data bandwidth, low power applications. It is functionally similar to a traditional dynamic RAM. The V53C404 reads and writes data by multiplexing an 20-bit address into a 10-bit row and a 10-bit column address. The row address is latched by the Row Address Strobe (RAS). The column address "flows through" an internal address buffer and is latched by the Column Address Strobe (CAS). Because access time is primarily dependent on a valid column address rather than the precise time that the CAS edge occurs, the delay time from RAS to CAS has little effect on the access time. ### Memory Cycle A memory cycle is initiated by bringing \overline{RAS} low. Any memory cycle, once initiated, must not be ended or aborted before the minimum t_{RAS} time has expired. This ensures proper device operation and data integrity. A new cycle must not be initiated until the minimum precharge time t_{RP}/t_{CP} has elapsed. ### Read Cycle A Read cycle is performed by holding the Write Enable (WE) signal High during a RAS/CAS operation. The column address must be held for a minimum specified by $t_{\rm AR}$. Data Out becomes valid only when $t_{\rm OAC}$, $t_{\rm RAC}$, $t_{\rm CAA}$ and $t_{\rm CAC}$ are all satisifed. As a result, the access time is dependent on the timing relationships between these parameters. For example, the access time is limited by $t_{\rm CAA}$ when $t_{\rm RAC}$, $t_{\rm CAC}$ and $t_{\rm OAC}$ are all satisfied. ### Write Cycle A Write Cycle is performed by taking WE and CAS low during a RAS operation. The column address is latched by CAS. The Write Cycle can be WE controlled or CAS controlled depending on whether WE or CAS falls later. Consequently, the input data must be valid at or before the falling edge of WE or CAS, whichever occurs last. In the CAS-controlled Write Cycle, when the leading edge of WE occurs prior to the CAS low transition, the I/O data pins will be in the High-Z state at the beginning of the Write function. Ending the Write with RAS or CAS will maintain the output in the High-Z state. In the $\overline{\text{WE}}$ controlled Write Cycle, $\overline{\text{OE}}$ must be in the high state and t_{OED} must be satisfied. ### Refresh Cycle To retain data, 1024 Refresh Cycles are required in each 16 ms period. There are two ways to refresh the memory: - By clocking each of the 1024 row addresses (A₀ through A₉) with RAS at least once every 16 ms. Any Read, Write, Read-Modify-Write or RAS-only cycle refreshes the addressed row. - 2. Using a CAS-before-RAS Refresh Cycle. If CAS makes a transition from low to high to low after the previous cycle and before RAS falls, CAS-before-RAS refresh is activated. The V53C404 uses the output of an internal 10-bit counter as the source of row addresses and ignore external address inputs. CAS-before-RAS is a "refresh-only" mode and no data access or device selection is allowed. Thus, the output remains in the High-Z state during the cycle. A CAS-before-RAS counter test mode is provided to ensure reliable operation of the internal refresh counter. #### Data Retention Mode The V53C404 offers a CMOS standby mode that is entered by causing the \overline{RAS} clock to swing between a valid V_{IL} and an "extra high" V_{IH} within 0.2 V of V_{DD} . While the \overline{RAS} clock is at the "extra high" level, the V53C404 power consumption is reduced to the low I_{DD6} level. Overall I_{DD} consumption when operating in this mode can be calculated as follows: $$I = \frac{(t_{RC}) \times (I_{DD1}) + (t_{RX} - t_{RC}) \times (I_{DD6})}{t_{RX}}$$ Where: $t_{RC} = \text{Refresh Cycle Time}$ $t_{RY} = \text{Refresh Interval / 1024}$ ### Fast Page Mode Operation Fast Page Mode operation permits all 1024 columns within a selected row of the device to be randomly accessed at a high data rate. Maintaining RAS low while performing successive CAS cycles retains the row address internally and eliminates the need to reapply it for each cycle. The column address buffer acts as a transparent or flow-through latch while CAS is high. Thus, access begins from the occurrence of a valid column address rather than from the falling edge of \overline{CAS} , eliminating t_{ASC} and t_{T} from the critical timing path. CAS latches the address into the column address buffer and acts as an output enable. During Fast Page Mode operation, Read, Write, Read-Modify-Write or Read-Write-Read cycles are possible at random addresses within a row. Following the initial entry cycle into Fast Page Mode, access is t_{CAA} or t_{CAP} controlled. If the column address is valid prior to the rising edge of \overline{CAS} , the access time is referenced to the CAS rising edge and is specified by t_{CAP} . If the column address is valid after the rising CAS edge, access is timed from the occurrence of a valid address and is specified by t_{CAA} . In both cases, the falling edge of \overline{CAS} latches the address and enables the output. Fast Page Mode provides a sustained data rate of 20 MHz for applications that require high data rates such as bit-mapped graphics or high-speed signal processing. The following equation can be used to calculate the maximum data rate: Data Rate = $$\frac{1024}{t_{RC} + 1023 \times t_{PC}}$$ ### **Data Output Operation** The V53C404 Input/Output is controlled by \overline{OE} , \overline{CAS} , \overline{WE} and \overline{RAS} . A \overline{RAS} low transition enables the transfer of data to and from the selected row address in the Memory Array. A \overline{RAS} high transition disables data transfer and latches the output data if the output is enabled. After a memory cycle is initiated with a \overline{RAS} low transition, a \overline{CAS} low transition or \overline{CAS} low level enables the internal I/O path. A \overline{CAS} high transition or a \overline{CAS} high level disables the I/O path and the output driver if it is enabled. A \overline{CAS} low transition while \overline{RAS} is high has no effect on the I/O data path or on the output drivers. The output drivers, when otherwise enabled, can be disabled by holding \overline{OE} high. The \overline{OE} signal has no effect on any data stored in the output latches. A \overline{WE} low level can also disable the output drivers when \overline{CAS} is low. During a Write cycle, if \overline{WE} goes low at a time in relationship to \overline{CAS} that would normally cause the outputs to be active, it is necessary to use \overline{OE} to disable the output drivers prior to the \overline{WE} low transition to allow Data In Setup Time (t_{DS}) to be satisfied. ### Power-On After application of the V_{DD} supply, an initial pause of 200 μs is required followed by a minimum of 8 initialization cycles (any combination of cycles containing a \overline{RAS} clock). Eight initialization cycles are required after extended periods of bias without clocks (greater than the Refresh Interval). During Power-On, the V_{DD} current requirement of the V53C404 is dependent on the input levels of \overline{RAS} and \overline{CAS} . If \overline{RAS} is low during Power-On, the device will go into an active cycle and I_{DD} will exhibit current transients. It is recommended that \overline{RAS} and \overline{CAS} track with V_{DD} or be held at a valid V_{IH} during Power-On to avoid current surges. Table 1. Vitelic V53C404 Data Output Operation for Various Cycle Types | Cycle Type | I/O State | |---|---| | Read Cycles | Data from Addressed
Memory Cell | | CAS-Controlled Write
Cycle (Early Write) | High-Z | | WE-Controlled Write
Cycle (Late Write) | OE Controlled. High
OE = High-Z I/Os | | Read-Modify-Write
Cycles | Data from Addressed
Memory Cell | | Fast Page Mode
Read | Data from Addressed
Memory Cell | | Fast Page Mode Write
Cycle (Early Write) | High-Z | | Fast Page Mode Read-
Modify-Write Cycle | Data from Addressed
Memory Cell | | RAS-only Refresh | High-Z | | CAS-before-RAS
Refresh Cycle | Data remains as in previous cycle | | CAS-only Cycles | High-Z | # 26/20-pin SOJ | Dimension | inches | Millimeters | |-----------|-------------|---------------| | A | 0.672/0.684 | 17.069/17.374 | | В | 0.125/0.135 | 3.175/3.429 | | С | 0.082/0.093 | 2.083/2.362 | | D | 0.332/0.342 | 8.433/8.687 | | E | 0.296/0.304 | 7.518/7.722 | | F | 0.255/0.275 | 6.477/6.985 | | G | 0.018 Typ. | 0.457 Typ. | | Н | 0.05 Тур. | 1.270 Typ. | | J | 0.026 Min. | 0.660 Min. | | K | 0.028 Typ. | 0.711 Typ. | ### WORLDWIDE VITELIC OFFICES V53C404 #### U.S.A. VITELIC SEMICONDUCTOR 3910 NORTH FIRST STREET SAN JOSE, CA 95134 PHONE: 408-433-6000 FAX: 408-433-0185 #### **TAIWAN** VITELIC CORP. 133, MINSHENG E. RD., SECTION III, 7B TAIPEI, TAIWAN, R.O.C. PHONE: 011-886-2-718-1369 VITELIC TAIWAN CORP. 1 R&D ROAD I SCIENCE BASED IND. PARK FAX: 011-886-2-718-1362 HSIN CHU, TAIWAN, R.O.C. PHONE: 011-886-35-770055 FAX: 011-886-35-776520 #### **JAPAN** VITELIC JAPAN CORP. NIHON SEIMEI KAWASAKI BLDG., 8TH FL. 1-1 MINAMI-CHO KAWASAKI-KU KAWASAKI-SHI KANAGAWA 210 JAPAN PHONE: 011-04-4-246-3021 FAX: 011-04-4-246-3029 ### **HONG KONG** VITELIC (HONG KONG) LIMITED 19 DAI FU STREET TAIPO INDUSTRIAL ESTATE TAIPO, NT, HONG KONG PHONE: 011-852-665-4883 FAX: 011-852-664-7535 #### KOREA VITELIC CORP. RM. 309, BEUK-EUN BLDG. 1339-1 SEOCHO-DONG, SEOCHO-KU SEOUL, KOREA PHONE: 011-82-2-553-3385 FAX: 011-82-2-553-3675 ### VITELIC U.S. SALES OFFICES #### **NORTHWESTERN** VITELIC SEMICONDUCTOR 3910 NORTH FIRST STREET SAN JOSE, CA 95134 PHONE: 408-433-6000 FAX: 408-433-0185 #### SOUTHWESTERN VITELIC SEMICONDUCTOR SUITE 200 5150 E. PACIFIC COAST HWY. LONG BEACH, CA 90804 PHONE: 213-498-3314 FAX: 213-597-2174 #### **EASTERN/MIDWESTERN** VITELIC SEMICONDUCTOR SUITE 203 619 SEVERN AVENUE ANNAPOLIS, MD 21403 PHONE: 301-267-9616 FAX: 301-267-7411 or: 301-268-9081 VICMOS is a trademark of VITELIC © Copyright 1991, Vitelic Corporation 9/91 Printed in U.S.A. The information in this document is subject to change without notice VITELIC makes no commitment to update or keep current the information contained in this document. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of VITELIC. VITELIC subjects its products to normal quality control sampling techniques which are intended to provide an assurance of high quality products suitable for usual commercial applications. VITELIC does not do testing appropriate to provide 100% product quality assurance and does not assume any liability for consequential or incidental arising from any use of its products. If such products are to be used in applications in which personal injury might occur from failure, purchaser must do its own quality assurance testing appropriate to such applications.