

m **OELECTRONICS CORP.** Issued Date: May 26, 2009 Model No.: V546H1-LH4

Approval

TFT LCD Approval Specification

MODEL NO.: V546H1 – LH4

Customer:	
Approved by:	
Note:	

Approved By	TVHD	
Approved By	LY Chen	

Reviewed By	QA Dept.	Product Development Div.
Noviewed By	YT Chen	WT Lin

Droporod Dy	LCD TV Marketing and Product Management Div.			
Prepared By	CY Chang	WT Hsu		

Issued Date: May 26, 2009 Model No.: V546H1-LH4

CONTENTS -

REVISION HISTORY	4
1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 FEATURES	5
1.3 APPLICATION	5
1.4 GENERAL SPECIFICATIONS	5
1.5 MECHANICAL SPECIFICATIONS	
2. ABSOLUTE MAXIMUM RATINGS	
2.1 ABSOLUTE RATINGS OF ENVIRONMENT	6
2.2 ELECTRICAL ABSOLUTE RATINGS	
3. ELECTRICAL CHARACTERISTICS	
3.1 TFT LCD MODULE (Ta = 25 ± 2 °C)	8
3.2 BACKLIGHT UNIT.	10
4. BLOCK DIAGRAM OF INTERFACE	14
4.1 TFT LCD MODULE	
5 .INPUT TERMINAL PIN ASSIGNMENT	
5.1 TFT LCD Module	
5.2 BACKLIGHT UNIT	
5.3 INVERTER UNIT	19
5.4 BLOCK DIAGRAM OF INTERFACE	
5.5 LVDS INTERFACE	
5.6 COLOR DATA INPUT ASSIGNMENT	
6. INTERFACE TIMING	
6.1 INPUT SIGNAL TIMING SPECIFICATIONS	23
6.2 POWER ON/OFF SEQUENCE	24
7. OPTICAL CHARACTERISTICS	
7.1 TEST CONDITIONS	25
7.2 OPTICAL SPECIFICATIONS	
8. DEFINITION OF LABELS	29
8.1 CMO MODULE LABEL	29
9. PACKING	
9.1 PACKING SPECIFICATIONS	
9.2 PACKING METHOD	
10. PRECAUTIONS	32
10.1 ASSEMBLY AND HANDLING PRECAUTIONS	32
10.2 SAFETY PRECAUTIONS	32
10.3 SAFETY STANDARDS	32

Issued Date: May 26, 2009 Model No.: V546H1-LH4 Approval

Version	2.0
---------	-----

OPTOELECTRONICS CORP.

m

屏库:全球液晶屏交易中心

lssued Date: May 26, 2009 Model No<u>.: V546H1-LH4</u>

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver 1.0	Mar. 04, 09'	All		Preliminary Specification was first issued.
Ver 1.1	Mar. 31, 09'	5		Modify "color depth" spec
		5		Modify "color saturation" spec
		8		Modify "Power Supply Current" spec
		10		Modify "Lamp Input Voltage" spec
		10		Modify "Inverter Characteristics" spec
		13	3.2.3	Modify "Inverter Interface Characteristics" fig
	3	25-27	7.2	Modify "Optical Specifications" spec
Ver 2.0	June. 4 , 09'	15	5.1	Add two pin definition, CON_SCL and CON_SDA for MEMC I2C bus.

CHINEL OPTOELECTRONICS CORP.

Issued Date: May 26, 2009 Model No.: V546H1-LH4

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V546H1-LH4 is a 54.6" TFT Liquid Crystal Display module with 22-CCFL Backlight unit and 2ch-LVDS interface. This module supports 1920 x 1080 HDTV format and can display true 1.073G colors (8bit+FRC/color). The inverter module for backlight is built-in.

1.2 FEATURES

- High brightness (500nits)
- High contrast ratio (4000:1)
- Fast response time (Gray to Gray typical 4.5ms)
- High color saturation (86% NTSC)
- Full HDTV (1920 x 1080 pixels) resolution, true HDTV format
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Optimized response time for 120 Hz frame rate
- Ultra wide viewing angle: Super MVA technology

1.3 APPLICATION

- Standard Living Room TVs.
- Public Display Application.
- Home Theater Application.
- MFM Application.

1.4 GENERAL SPECIFICATIONS

Item	Unit	Note	
Active Area 1209.6(H) x 680.4(V) (54.6" diagonal)		mm	(1)
Bezel Opening Area	1267.6 (H) x 738.4 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920x R.G.B. x 1080	pixel	-
Pixel Pitch(Sub Pixel)	0.21(H) x 0.63(V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	1.073G	color	-
Display Operation Mode	Transmissive mode / Normally black	-	-
Surface Treatment	Anti-Glare coating (11% Low Haze) Hardness (3H)	-	(2)

Note (1) Please refer to the attached drawings in chapter 9 for more information about the front and back outlines.

Note (2) The spec of the surface treatment is temporarily for this phase. CMO reserves the rights to

change this feature.

1.5 MECHANICAL SPECIFICATIONS

	Item	Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	1266.1	1267.6	1269.1	mm	
Module Size	Vertical (V)	737.2	738.4	739.6	mm	(1), (2)
	Depth (D)	38.5	40	41.5	mm	
	Weight	-	20500	-	g	-

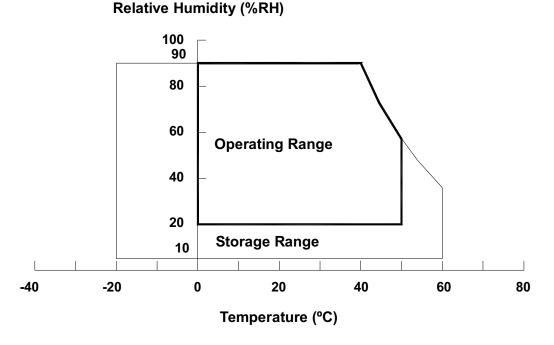
Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Module Depth does not include connectors.

CHINE OPTOELECTRONICS CORP.

Issued Date: May 26, 2009 Model No.: V546H1-LH4

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	V	alue	Unit	Note
litein	Symbol	Min.	Max.	Unit	NOLE
Storage Temperature	T _{ST}	-20	+60	°C	(1)
Operating Ambient Temperature	T _{OP}	0	50	°C	(1), (2)
Shock (Non-Operating)	±X, ±Y		30	G	(2) (5)
Shock (Non-Operating)	$S_{NOP} = \frac{\pm X, \pm 1}{\pm Z}$	-	30	G	(3), (5)
Vibration (Non-Operating)	V _{NOP}	-	1.0	G	(4), (5)

Note (1) Temperature and relative humidity range is shown in the figure below.

(a) 90 %RH Max. (Ta \leq 40 °C).

- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Issued Date: May 26, 2009 Model No.: V546H1-LH4

Approva

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

ltem	Symbol	Value		Unit	Note
		Min.	Max.		
Power Supply Voltage	V _{cc}	-0.3	13.5	V	(1)
Logic Input Voltage	V _{IN}	-0.3	3.6	V	(1)

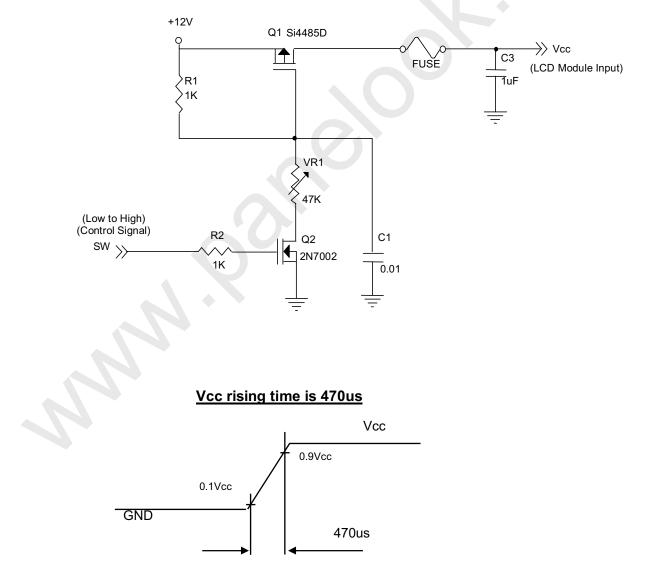
2.2.2 BACKLIGHT INVERTER UNIT

Item	Symbol	Value		Unit	Note
	Symbol	Min.	Max.		NOLE
Lamp Voltage	Vw	_	3000	V _{RMS}	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

CHINEL OPTOELECTRONICS CORP.

Issued Date: May 26, 2009 Model No.: V546H1-LH4


3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE (Ta = 25 ± 2 °C)

	Parameter		Symbol		Value	Unit	Note	
			Symbol	Min.	Тур.	Max.	Unit	Note
Power Su	oply Voltage		V _{cc}	10.8	12	13.2	V	(1)
Rush Curr	ent		I _{RUSH}	-	-	4.8	A	(2)
		White		-	1.5	-	A	
Power Su	Power Supply Current Black Vertical Stripe		I _{cc}	-	1.6	-	А	(3)
				-	3	3.7	Α	
LVDS Interface	Common Inpu	Common Input Voltage		1.125	1.25	1.375	V	
interface	Terminating R	minating Resistor		-	100	-	ohm	
CMOS	Input High Threshold Voltage		V _{IH}	2.7	-	3.3	V	
interface	Input Low Thr	eshold Voltage	V _{IL}	0	-	0.7	V	

Note (1) The module should be always operated within the above ranges.

Note (2) Measurement condition:

Note (3) The specified power supply current is under the conditions at Vcc = 12V, Ta = 25 \pm 2 °C, f_v = 60 Hz,

www.panelook.com

屏库:全球液晶屏交易中心

CHIME OPTOELECTRONICS CORP.

Issued Date: May 26, 2009 Model No.: V546H1-LH4

whereas a power dissipation check pattern below is displayed.

b. Black Pattern a. White Pattern Active Area Active Area c. Vertical Stripe Pattern G В G G В В R G G В R В R GΒ G В R G Active Area

Issued Date: May 26, 2009 Model No.: V546H1-LH4

3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

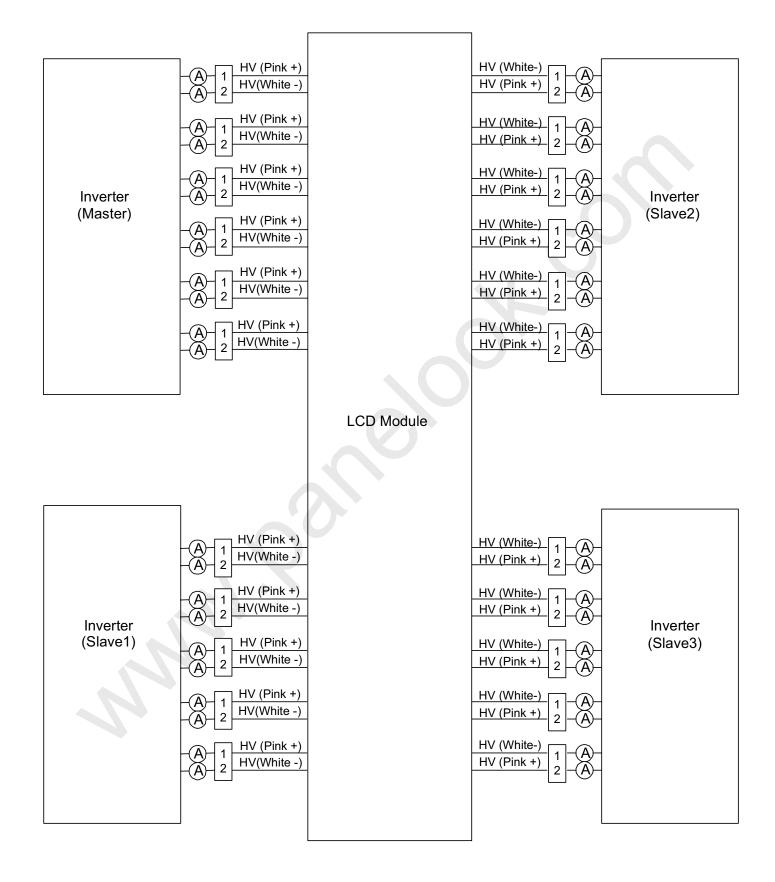
Parameter	Symbol		Value	Unit	Note	
Farameter	Symbol	Min.	Тур.	Max.	Unit	Note
Lamp Input Voltage	VL	-	1410	-	V _{RMS}	-
Lamp Current	١L	5.5	6.0	6.5	mA _{RMS}	(1)
Lamp Turn On Voltage	Vs	-	-	3155	V _{RMS}	(2), Ta = 0 °C
Lamp Turn On Voltage		-	-	2425	V _{RMS}	(2), Ta = 25 ℃
Operating Frequency	FL	30	55	80	KHz	(3)
Lamp Life Time	L _{BL}	50,000	-	-	Hrs 💊	(4)

3.2.2 INVERTER CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol		Value	Unit	Note	
Farameter	Symbol	Min.	Тур.	Max.	Unit	Note
Total Power Consumption	P ₂₅₅	-	191	201	W	(5), (6), I _L =6.0mA
Power Supply Voltage	V _{BL}	22.8	24	25.2	V _{DC}	
Supply Voltage Difference	VD	-	-	1	V _{DC}	(7)
Power Supply Current	I _{BL}	-	8.0	8.4	А	Non Dimming
Input Ripple Noise	-	-	-	912	mV _{P-P}	V _{BL} =22.8V
Oscillating Frequency	Fw	52	55	58	kHz	(3)
Dimming frequency	F _Β	150	160	170	Hz	
Minimum Duty Ratio	D _{MIN}	-	20	-	%	

Note (1) Lamp current is measured by utilizing AC current probe and its value is average by measuring master and slave board.

- Note (2) The lamp starting voltage V_s should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency of the display input signals, and it may result in line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point of lamp.) as the time in which it continues to operate under the condition at Ta = 25 $\pm 2^{\circ}$ C and I_L = 5.5~ 6.5mArms.
- Note (5) The power supply capacity should be higher than the total inverter power consumption P_{BL}. Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when inverter dimming.
- Note (6) The measurement condition of Max. value is based on 54.6" backlight unit under input voltage 24V, average lamp current 6.3mA and lighting 30 minutes later.
- Note (7) The voltage difference of power supply voltage (V_{BL}) between Master and Slave board could not



Issued Date: May 26, 2009 Model No.: V546H1-LH4

Approval

over 1V.

肩厚:全球液晶屏 中心

Issued Date: May 26, 2009 Model No.: V546H1-LH4

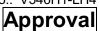
Approva

3.2.3 INVERTER INTERFACE CHARACTERISTICS

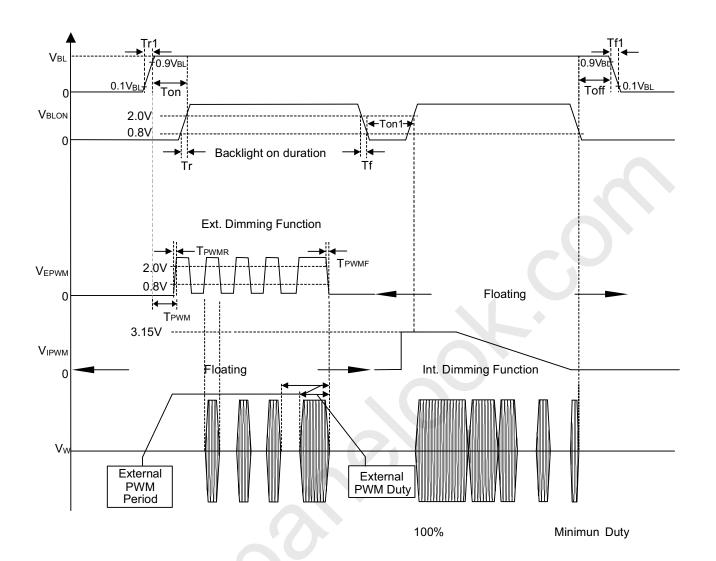
			Test		Value			
Parameter		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
On/Off Control Voltage	ON	V _{BLON}		2.0		5.0	V	
Chi Chi Control Voltage	OFF	✓ BLON	_	0	_	0.8	V	
Internal PWM Control	MAX	V		2.85	3.0	3.15	V	Maximum duty ratio
Voltage	MIN	VIPWM			0		V	Minimum duty ratio
External PWM Control	HI	V _{EPWM}		2.0		5.0	V	Duty on
Voltage	LO	V EPWM		0		0.8	V	Duty off
Status Signal	HI	Status	—	3.0	3.3	3.6	V	Normal
Status Signal	LO			0		0.8	V	Abnormal
VBL Rising Time		Tr1	_	30	_	_	ms	10%-90%V _{BL}
VBL Falling Time		Tf1		30			ms	
Control Signal Rising Tin	ne	Tr				100	ms	
Control Signal Falling Tir	ne	Tf				100	ms	
PWM Signal Rising Time	;	T _{PWMR}			-	50	us	
PWM Signal Falling Time	e	T _{PWMF}	-	_	-	50	us	
Input impedance		R _{IN}	-	1			MΩ	
PWM Delay Time		T _{PWM}	_	100		-	ms	
BLON Delay Time		T _{on}	_	300		_	ms	
		T _{on1}	-	300			ms	
BLON Off Time		T _{off}	-	300	_	—	ms	

Note (1) The Dimming signal should be valid before backlight turns on by BLON signal. It is inhibited to change the internal/external PWM signal during backlight turn on period.

Note (2) The power sequence and control signal timing are shown in the following figure. For a certain reason, the inverter has a possibility to be damaged with wrong power sequence and control signal timing.

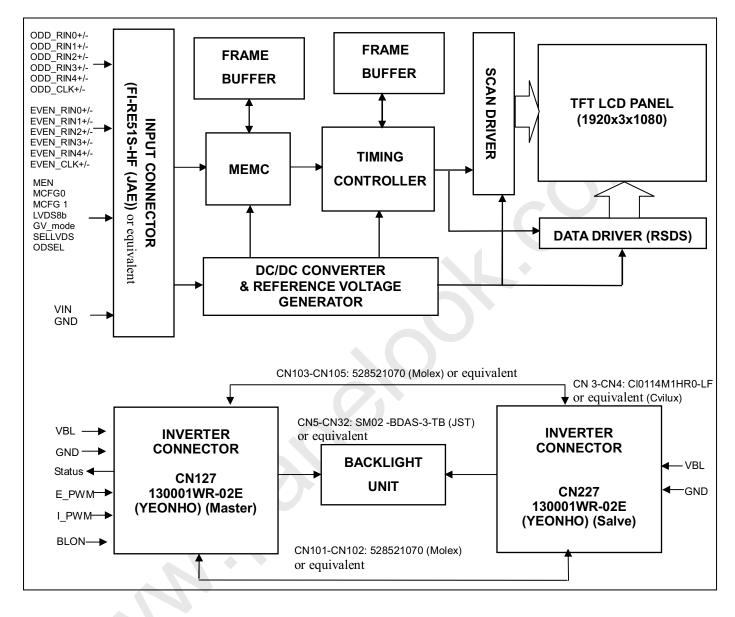

Note (3) While system is turned ON or OFF, the power sequences must follow as below descriptions:

Turn ON sequence: VBL \rightarrow PWM signal \rightarrow BLON


Turn OFF sequence: BLOFF \rightarrow PWM signal \rightarrow VBL

Issued Date: May 26, 2009 Model No.: V546H1-LH4

 \oslash


CHINEL OPTOELECTRONICS CORP.

Issued Date: May 26, 2009 Model No.: V546H1-LH4

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

CHIME OPTOELECTRONICS CORP.

Issued Date: May 26, 2009 Model No.: V546H1-LH4

5 .INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD Module

CNF1 Connector Part No.: JAE Taiwan (台 航空電子) FI-RE51S-HF or equivalent.

Pin	Name	Description	Note
	GND	Ground	
	MEN	MEMC function selection	4
	MCFG0	MEMC function selection	4
4	MCFG1	MEMC function selection	4
	LVDS8b	8bit/10bit LVDS input selection	5
6	GV mode	Graphic / Video mode selection	6
7	 SELLVDS	LVDS data format Selection	2
8	CON_SCL	MEMC I2C bus	
9	CON_SDA	MEMC I2C bus	
10	ODSEL	Overdrive Lookup Table Selection	3
11	GND	Ground	
12	ERX0-	2nd pixel Negative LVDS differential data input. Channel 0	
13	ERX0+	2nd pixel Positive LVDS differential data input. Channel 0	
14	ERX1-	2nd pixel Negative LVDS differential data input. Channel 1	
15	ERX1+	2nd pixel Positive LVDS differential data input. Channel 1	
16	ERX2-	2nd pixel Negative LVDS differential data input. Channel 2	
17	ERX2+	2nd pixel Positive LVDS differential data input. Channel 2	
18	GND	Ground	
19	ECLK-	2nd pixel Negative LVDS differential clock input.	
20	ECLK+	2nd pixel Positive LVDS differential clock input.	
21	GND	Ground	
22	ERX3-	2nd pixel Negative LVDS differential data input. Channel 3	
23	ERX3+	2nd pixel Positive LVDS differential data input. Channel 3	
24	ERX4-	2nd pixel Negative LVDS differential data input. Channel 4	
25	ERX4+	2nd pixel Positive LVDS differential data input. Channel 4	
26	N.C.	No Connection	1
27	N.C.	No Connection	1
28	ORX0-	1st pixel Negative LVDS differential data input. Channel 0	
29	ORX0+	1st pixel Positive LVDS differential data input. Channel 0	
30	ORX1-	1st pixel Negative LVDS differential data input. Channel 1	
31	ORX1+	1st pixel Positive LVDS differential data input. Channel 1	
32	ORX2-	1st pixel Negative LVDS differential data input. Channel 2	
33	ORX2+	1st pixel Positive LVDS differential data input. Channel 2	
34	GND	Ground	
35	OCLK-	1st pixel Negative LVDS differential clock input.	
36	OCLK+	1st pixel Positive LVDS differential clock input.	
37	GND	Ground	
38	ORX3-	1st pixel Negative LVDS differential data input. Channel 3	
39	ORX3+	1st pixel Positive LVDS differential data input. Channel 3	
40	ORX4-	1st pixel Negative LVDS differential data input. Channel 4	

Issued Date: May 26, 2009 Model No.: V546H1-LH4

41	ORX4+	1st pixel Positive LVDS differential data input. Channel 4	
42	N.C.	No Connection	1
43	DEMO	Demo window enable	7
44	GND	Ground	
45	GND	Ground	
46	GND	Ground	
47	N.C.	No Connection	
48	VCC	+12V power supply	
49	VCC	+12V power supply	
50	VCC	+12V power supply	
51	VCC	+12V power supply	

Note (1) Reserved for internal use. Please leave it open.

Note (2)

SELLVDS	Mode
L(default)	VESA
Н	JEIDA

L: Connect to GND, H: Connect to +3.3V

Note (3) Overdrive lookup table selection. The overdrive lookup table should be selected in accordance with the frame rate to optimize image quality.

ODSEL	Description
L(default)	Lookup table was optimized for 60 Hz frame rate input.
Н	Lookup table was optimized for 50 Hz frame rate input.

L: Connect to GND, H: Connect to +3.3V

Note (4) Motion Engine (ME) Level & Demo Function Table

Motion engine level must be adjusted after video mode is selected (or entered).

Adjusting the motion engine level in graphic mode has no effect

		MEN	MCFG1	MCFG0		Notes	
	Blanking disable	0	0	0	(a)		
Blanking	Auto blanking	0	0	1		(b)	
	Blanking enable	0	1	0	(c)		
	*		Effec	t of ME \rightarrow	De blur	De judder	Halo
Demo n	node (d)	0	1	1	Demo Window		
	Strong	1	0	0	Enable	Strong	Strong
	Medium(Default)	1	0	1	Enable	Normal	Normal
ME Level	Weak	1	1	0	Enable	×	×
	OFF	1	1	1	×	×	×
			(e) (f) (g)			· ·	

(a) Module re-starts processing video signals from Frontend scaler control board.

(b) During sync unstable period such as format change, 60Hz <-> 50Hz .

www.panelook.com

屏库:全球液晶屏交易中心

CHINE OPTOELECTRONICS CORP.

Issued Date: May 26, 2009 Model No.: V546H1-LH4

MCFG0 can be used to insert blanking of 500ms. This signal is toggled.

- (c) Module continues to insert blanking until blanking disable signal is received from frontend scaler board.
- (d) Demo window mode: Demo Window appears to the left half of display area. Left side with frame is 120Hz with MEMC, and right side is 120Hz w/o motion compensation.
- (e) GPIO (General Purpose I/O) sequence of ME Level: (1) MEN; (2) MCFG1; (3) MCFG0.
 - GPIO sequence of Blanking Enable, Blanking Disable and Demo window: (1) MCFG1; (2) MCFG0; (3) MEN.
- (f) Each scaler command must be maintained the same voltage level at least 100ms.
- (g) 0 : Connect to GND, 1 : +3.3V

Note (5) 8bit/10bit LVDS input selection

LVDS8b	Bit depth
H(default)	8bit
L	10bit

L : Connect to GND, H : Connect to +3.3V

Note (6) Graphic / Video mode selection

There is no prohibited time period for switching between Graphic mode and Video mode.

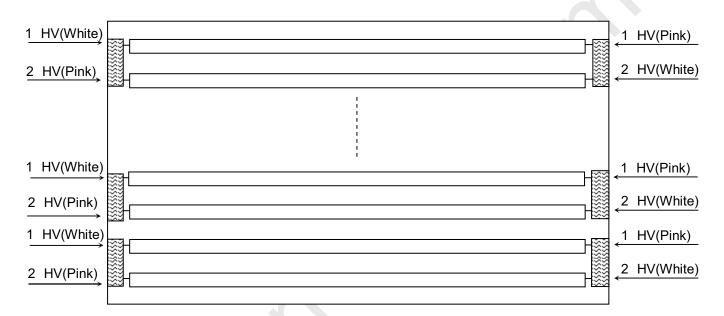
When this switching signal is input, LCD will be reset and will re-start selected mode.

GV_mode	Mode select	MEMC ON/OFF
H(default)	Graphic mode	MEMC OFF
L	Video mode	MEMC ON

L : Connect to GND, H : Connect to +3.3V

CHIMEI OPTOELECTRONICS CORP. Issued Date: May 26, 2009 Model No.: V546H1-LH4

5.2 BACKLIGHT UNIT


The pin configuration for the housing and the leader wire is shown in the table below.

CN101-CN108: CP042ESFA00 (Cvilux)

Pin	Name	Description	Wire Color
1	HV	High Voltage	Pink
2	HV	High Voltage	White

Note (1) The backlight interface housing for high voltage side is a model CP042ESFA00, manufactured by

Cvilux. The mating header on inverter part number is CP042EP1MFB-LF (Cvilux)

Issued Date: May 26, 2009 Model No.: V546H1-LH4

Approval

5.3 INVERTER UNIT

CN1: CI0114M1HR0-LF (Cvilux)

. ,	
Symbol	Feature
VBL	+24V
GND	GND
Status	Normal (3.3V)
(Signal Output Pin)	Abnormal (GND)
E_PWM	External PWM Control Signal
I_PWM	Internal PWM Control Signal
BLON	BL ON/OFF
	GND Status (Signal Output Pin) E_PWM I_PWM

Note (1) PIN 12:External PWM Control (Use Pin 12): Pin 13 must open. Note (2) PIN 13:Intermal PWM Control (Use Pin 13): Pin 12 must open. Note (3) Pin 12(E_PWM) and Pin 13(I_PWM) can't open in same period.

CN2-CN4: CI0112M1HR0-LF (Cvilux)

Pin №	Symbol	Feature
1		
2		
3	VBL	+24V
4]	
5		
6		
7		
8	GND	GND
9		
10		
11	NC	NC
12	NC	NC

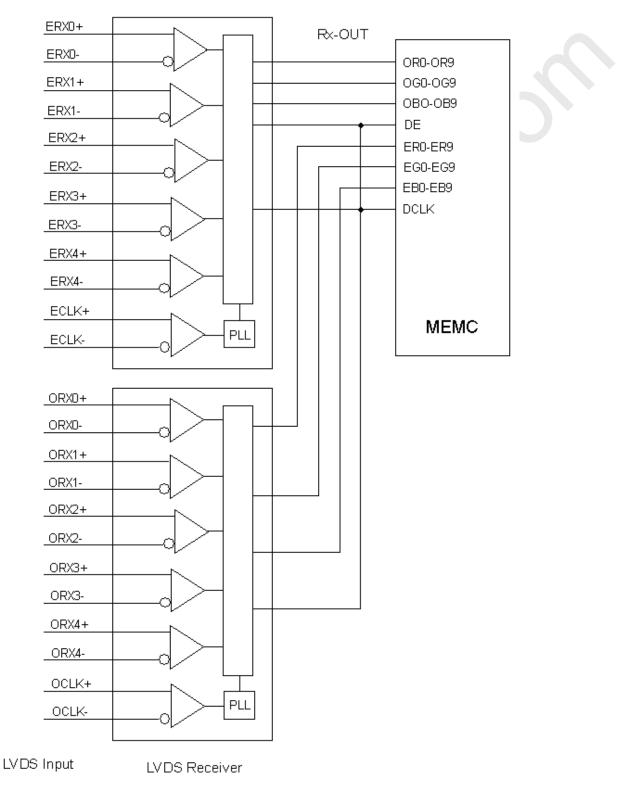
CN5-CN32: SM02 -BDAS-3-TB (JST)

Pin No.	Symbol	Description
1	CCFL	CCFL high voltage
2	CCFL	CCFL high voltage

CN103-CN105: 528521070 (Molex)

Pin No.	Symbol	Description
1	Control	Board to Board
2	Signal	Board to Board
3		Board to Board
4		Board to Board
5		Board to Board
6		Board to Board
7		Board to Board
8		Board to Board
9		Board to Board

Issued Date: May 26, 2009 Model No.: V546H1-LH4


 \Diamond

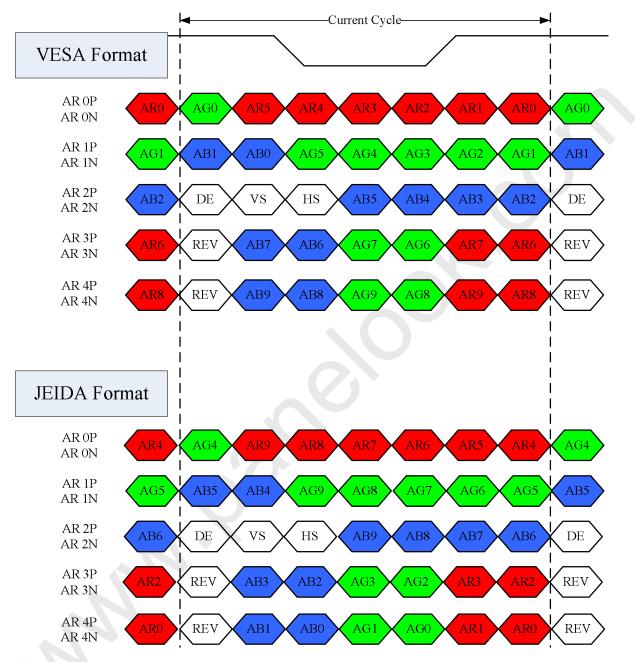
10	Board	to	Board
10	Doard	ιU	Doard

OELECTRONICS CORP.

Note (1) Floating of any control signal is not allowed.

5.4 BLOCK DIAGRAM OF INTERFACE

OPTOELECTRONICS CORP.


Issued Date: May 26, 2009 Model No.: V546H1-LH4

5.5 LVDS INTERFACE

VESA Format : SELLVDS = L or Open

JEIDA Format : SELLVDS = H

AR0~AR9: First Pixel R Data (9; MSB, 0; LSB) AG0~AG9: First Pixel G Data (9; MSB, 0; LSB) AB0~AB9: First Pixel B Data (9; MSB, 0; LSB) DE : Data enable signal DCLK : Data clock signal RSVD : Reserved

OP TOELECTRONICS CORP. Issued Date: May 26, 2009 Model No.: V546H1-LH4

Approval

5.6 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 10-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

															С)ata		nal													
	Color					R										Gre								_			ue				
		R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red (2)	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	1.4	:	:	:	:	:	:	:	:
Of	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	;	:	:	:	:	:	:	:	:	:
Red	Red (1021)	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red (1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Carrie	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	-0	:	:	:	1	:	:	:	:	:	:	:	:	:	:	:
Scale Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	1	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green (1021)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0
Green	Green (1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	Green (1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	>:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue (1021)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1
Diue	Blue (1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
	Blue (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Issued Date: May 26, 2009 Model No.: V546H1-LH4

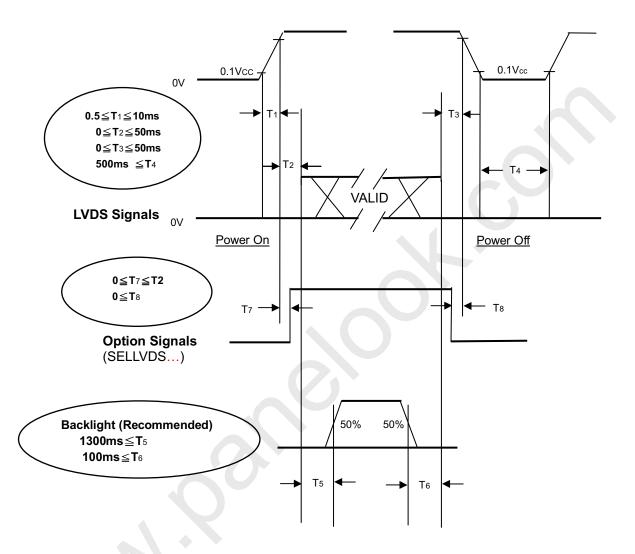
Approval

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	1/Tc	60	74.25	78	MHz	-
LVDS Receiver Clock	Input cycle to cycle jitter	Trcl	-	-	200	ps	-
LVDS Receiver Data	Setup Time	Tlvsu	600	-	-	ps	-
LVDS Receiver Data	Hold Time	Tlvhd	600	-	-	ps	-
	Frame Rate		57	60	61	Hz	-
	Fiame Rate		47	50	53	ПZ	
Vertical Active Display Term	Total	Tv	1115	1125	1135	Th	Tv=Tvd+Tvb
	Display	Tvd	1080	1080	1080	Th	-
	Blank	Tvb	35	45	55	Th	-
	Total	Th	1050	1100	1150	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	960	960	960	Tc	-
	Blank	Thb	90	140	190	Tc	-


CHINE OPTOELECTRONICS CORP.

Issued Date: May 26, 2009 Model No.: V546H1-LH4

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the diagram below.

Power ON/OFF Sequence

Note:

- (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- (3) In case of VCC is in off level, please keep the level of input signals on the low or high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

Issued Date: May 26, 2009 Model No.: V546H1-LH4

Approva

7. OPTICAL CHARACTERISTICS

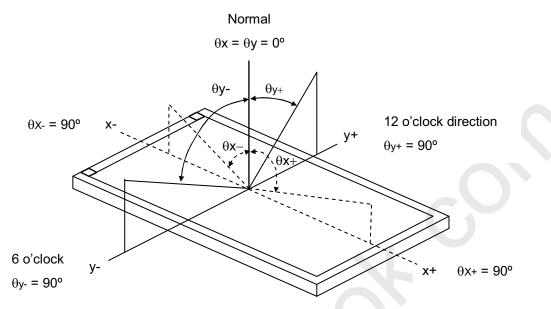
7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Ta	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	V _{CC}	12V	V
Input Signal	According to typical va	alue in "3. ELECTRICAL (CHARACTERISTICS"
Lamp Current	ΙL	6.0±0.5	mA
Oscillating Frequency (Inverter)	Fw	55±3	KHz
Vertical Frame Rate	Fr	120	Hz

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Ite	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
Contrast Ratio)	CR		3000	4000	-	-	Note (2)	
Response Tim	e	Gray to gray		-	4.5	9	ms	Note (3)	
Center Lumina	ance of White	L _c		400	500	-	cd/ m ²	Note (4)	
White Variatio	n	δW		-	-	1.3	-	Note (7)	
Cross Talk		СТ	θ _x =0°, θ _Y =0°	-	-	4	%	Note (5)	
	Red	Rx	$\theta_x = 0$, $\theta_y = 0$ Viewing angle at		0.650		-		
	Neu	Ry	normal direction		0.322		-	Note (6)	
	Green	Gx			0.228		-		
Color	Green	Gy		Тур	0.664	Typ.+	-		
Chromaticity	Blue	Bx		0.03	0.152	0.03	-		
Chiomaticity	Dide	By			0.055		-		
	White	Wx			0.280		-		
	VVIILE	Wy			0.290		-		
	Color Gamut				86	-	%	NTSC	
	Harizantal	θ_{x} +		80	88	-			
Viewing	Horizontal	θ _x -		80	88	-	Dea	Note (1)	
Angle	Vertical	θ γ +	CR≥20	80	88	-	Deg.	Note (1)	
	Vertical	θγ-		80	88	-	1		


CHIME OPTOELECTRONICS CORP.

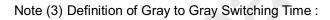
Issued Date: May 26, 2009 Model No.: V546H1-LH4

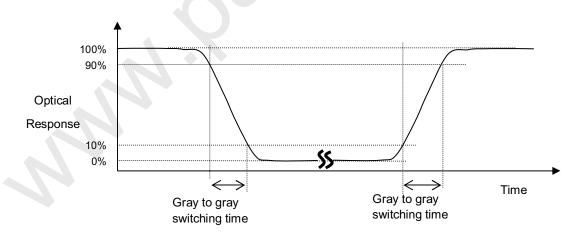
Approval

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Eldim EZ-Contrast 160R

Note (2) Definition of Contrast Ratio (CR):


The contrast ratio can be calculated by the following expression.


Contrast Ratio (CR) = L1023 / L0

L1023: Luminance of gray level 1023

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7)

The driving signal means the signal of gray level 0, 255,511,767,and 1023.

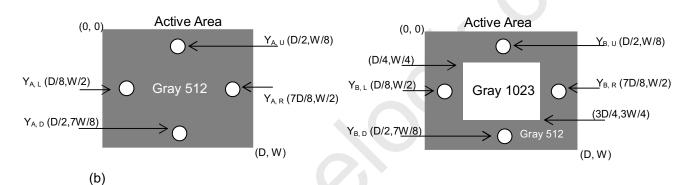
Gray to gray average time means the average switching time of gray level 0, 255, 511, 767, 1023 to each other .

CHIMEI OPTOELECTRONICS CORP. Issued Date: May 26, 2009 Model No.: V546H1-LH4

Note (4) Definition of Luminance of White (L_c):

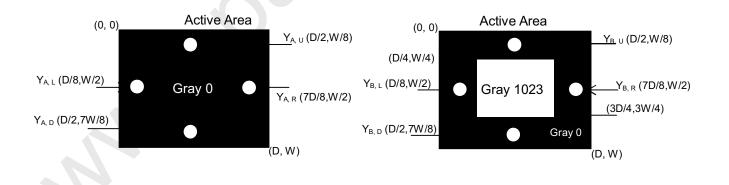
Measure the luminance of gray level 1023 at center point.

 $L_c = L$ (5), where L (x) is corresponding to the luminance of the point X at the figure in Note (7). Note (5) Definition of Cross Talk (CT):


 $CT = |Y_B - Y_A| / Y_A \times 100$ (%)

Where:

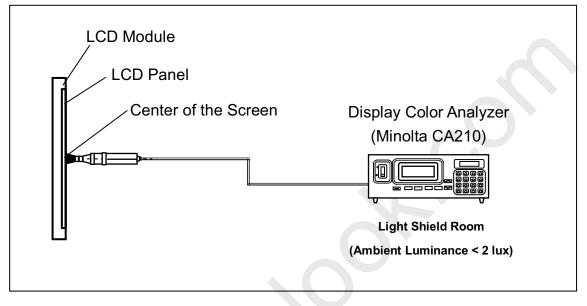
(a)


Y_A = Luminance of measured location without gray level 1023 pattern (cd/m²)

 Y_B = Luminance of measured location with gray level 1023 pattern (cd/m²)

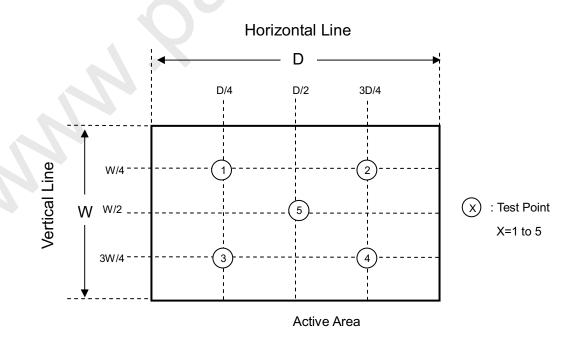
 Y_A = Luminance of measured location without gray level 1023 pattern (cd/m²)

 Y_B = Luminance of measured location with gray level 1023 pattern (cd/m²)



Issued Date: May 26, 2009 Model No.: V546H1-LH4

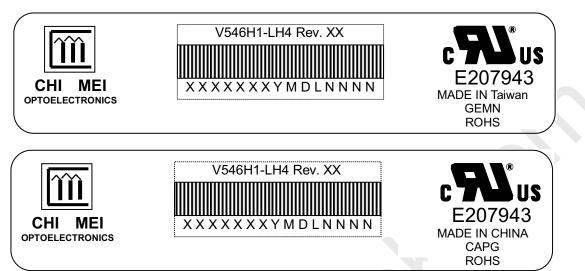
Note (6) Measurement Setup:


The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 1023 at 5 points

δW = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]


CHINEL OPTOELECTRONICS CORP.

Issued Date: May 26, 2009 Model No.: V546H1-LH4

8.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: V546H1-LH4
- (b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.
- (c) CMO barcode definition:

Serial ID: XX-XX-X-XX-YMD-L-NNNN

Code	Meaning	Description
XX	CMO internal use	-
XX	Revision	Cover all the change
X-XX	CMO internal use	
YMD	Year, month, day	Year: 2001=1, 2002=2, 2003=3, 2004=4… Month: Jan. ~ Dec.=1, 2, 3, ~, 9, A, B, C Day: 1 st to 31 st =1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U
L	Product line #	Line 1=1, Line 2=2, Line 3=3,
NNNN	Serial number	Manufacturing sequence of product

CHIME OPTOELECTRONICS CORP.

Issued Date: May 26, 2009 Model No.: V546H1-LH4

9. PACKING

9.1 PACKING SPECIFICATIONS

- (1) 2 LCD TV modules / 1 Box
- (2) Box dimensions: 1334(L) X 284 (W) X 856 (H)
- (3) Weight: approximately 46 Kg (2 modules per box)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method

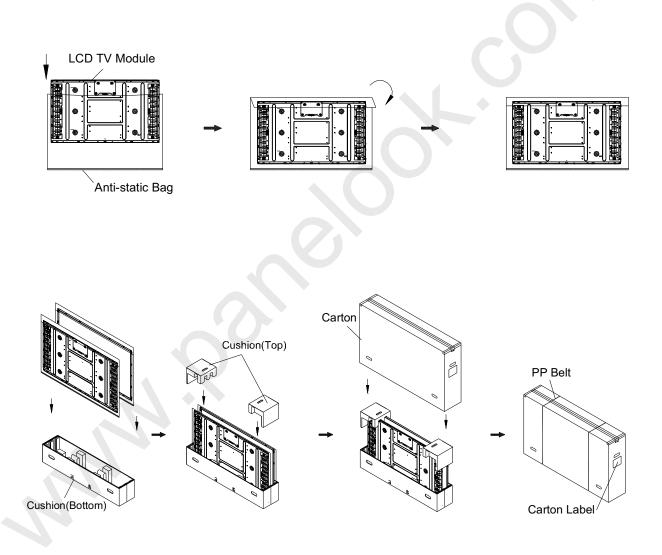


Figure.9-1 packing method

www.panelook.com

屏库:全球液晶屏交易中心

Issued Date: May 26, 2009 Model No.: V546H1-LH4 Approval \Diamond

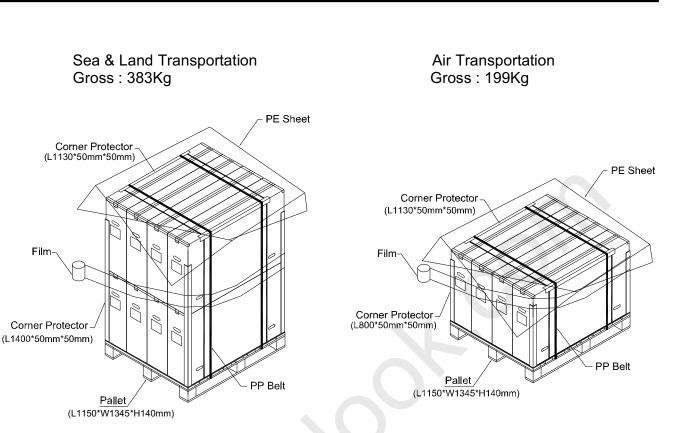


Figure. 9-2 Packing method

Version 2.0

Issued Date: May 26, 2009 Model No.: V546H1-LH4

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

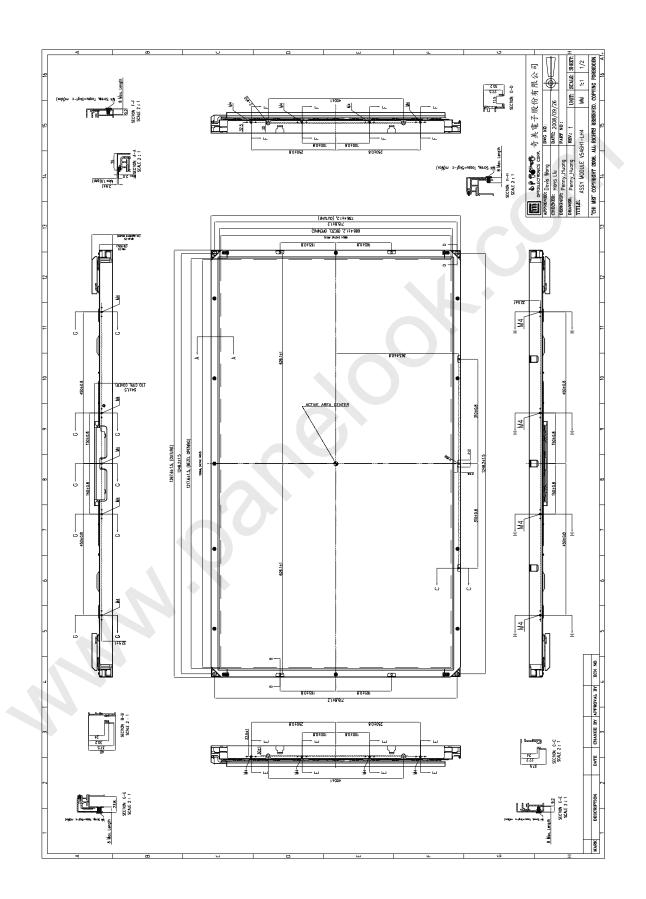
10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

10.3 SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

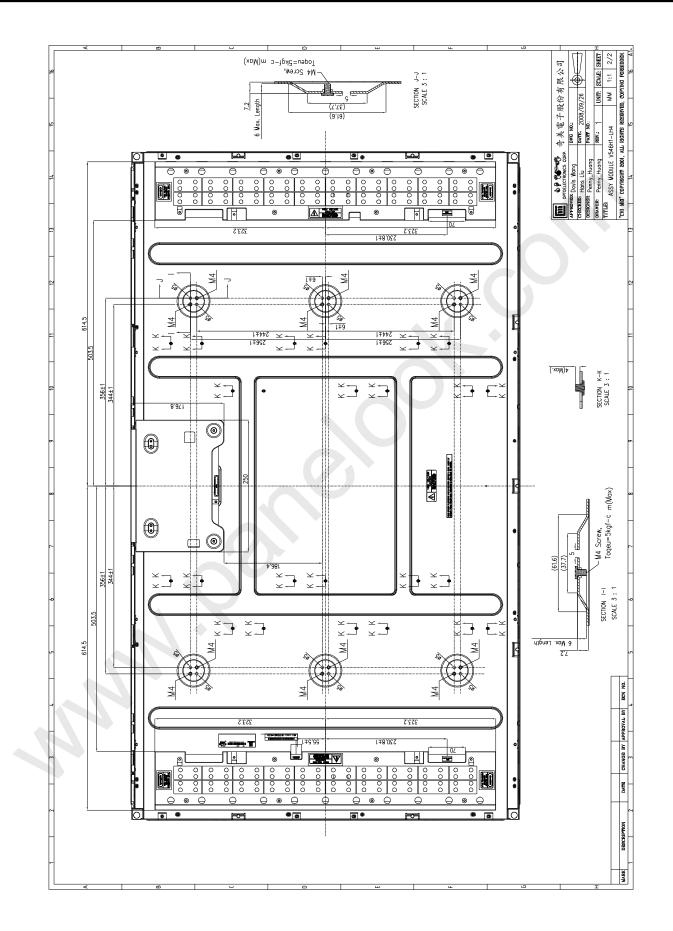
Regulatory	Item	Standard
	UL	UL 60950-1: 2003
Information Technology equipment	cUL	CAN/CSA C22.2 No.60950-1-03
	СВ	IEC 60950-1:2001
	UL	UL 60065: 2003
Audio/Video Apparatus	cUL	CAN/CSA C22.2 No.60065-03
	СВ	IEC 60065:2001


If the module displays the same pattern for a long period of time, the phenomenon of image sticking may be occurred.

CHINE OPTOELECTRONICS CORP.

Issued Date: May 26, 2009 Model No.: V546H1-LH4 Approval

11. MECHANICAL CHARACTERISTIC



Issued Date: May 26, 2009 Model No.: V546H1-LH4

Approval

Issued Date: May 26, 2009 Model No.: V546H1-LH4

