www.vishay.com

Vishay Semiconductors

Ultrabright 0402 ChipLED

DESCRIPTION

The new ChipLED series have been designed in the smallest SMD package. This innovative ChipLED technology opens the way to

- smaller products of higher performance
- more design in flexibility
- enhanced applications

The 0402 LED is an obvious solution for small-scale, high brightness products that are expected to work reliable in an arduous environment.

PRODUCT GROUP AND PACKAGE DATA

Product group: LED

- Package: SMD 0402 ChipLED
- Product series: standard
- Angle of half intensity: ± 65°

FEATURES

- Super thin ChipLED with exceptional brightness 1.0 mm x 0.5 mm x 0.35 mm (L x W x H)
- High reliability PCB based
- Wavelength (470 to 475) nm (blue), typ. 571 nm (yellow green), (587 to 597) nm (yellow), typ. 605 nm (soft orange), typ. 631 nm (super red)

RoHS

COMPLIANT GREEN

(5-2008)

- AllnGaP and InGaN technology
- Viewing angle: extremely wide 130°
- Grouping parameter: luminous intensity, wavelength, VF
- Available in 8 mm tape on 7" diameter reel
- · Compatible to IR reflow soldering
- Preconditioning: according to JEDEC level 2a
- Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- Backlight keypads
- Navigation systems
- Cellular phone displays
- Displays for industrial control systems
- Miniaturized color effects
- Traffic displays

PARTS TABLE												
PART	COLOR	LUMINOUS INTENSITY (mcd) at I _F		WAVELENGTH (nm)		FORWARD VOLTAGE (V)			TECHNOLOGY			
		MIN.	TYP.	MAX.	(IIIA)	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
VLMS1500-GS08	Super red	18	54	-	20	-	631	-	I	2.0	2.4	AllnGaP
VLMO1500-GS08	Soft orange	45	90	-	20	-	605	-	-	2.0	2.4	AllnGaP
VLMY1500-GS08	Yellow	28	-	180	20	587	-	597	-	2.0	2.4	AllnGaP
VLMG1500-GS08	Yellow green	18	35	-	20	-	571	-	I	2.0	2.4	AllnGaP
VLMB1500-GS08	Blue	11.2	-	45	5	470	-	475	2.65	-	3.15	InGaN

ABSOLUTE MAXIMUM RATINGS (T_{amb} = 25 °C, unless otherwise specified) **VLMS1500, VLM01500, VLMY1500, VLMG1500** (AllnGaP technology)

PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
Reverse voltage ⁽¹⁾		V _R	5	V			
DC forward current		I _F	30	mA			
Surge forward current	1/10 duty cycle, 0.1 ms pulse width	I _{FSM}	80	mA			
Power dissipation	T _{amb} ≤ 25 °C	Pv	75	mW			
Operating temperature range		T _{amb}	- 30 to + 85	°C			
Storage temperature range		T _{stg}	- 40 to + 85	°C			
IRED solder conditions	according Vishay specifications	T _{st}	260	°C			

Note

⁽¹⁾ Driving the LED in reverse direction is suitable for short term application

Rev. 1.0, 21-May-12

1

www.vishay.com

VISHA

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified) VLMB1500 (InGaN technology)							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
DC forward current		I _F	20	mA			
Surge forward current	1/10 duty cycle, 0.1 ms pulse width	I _{FSM}	100	mA			
Power dissipation	T _{amb} ≤ 25 °C	Pv	76	mW			
Operating temperature range		T _{amb}	- 20 to + 80	°C			
Storage temperature range		T _{stg}	- 30 to + 100	°C			
IRED solder conditions	according Vishay specifications	T _{st}	260	°C			

OPTICAL AND ELECTRICAL CHARACTERISTICS ($T_{amb} = 25$ °C, unless otherwise specified) **VLMS1500, SUPER RED**

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity	I _F = 20 mA	I _V	18	54	-	mcd
Dominant wavelength	I _F = 20 mA	λ_d	-	631	-	nm
Peak wavelength	I _F = 20 mA	λ _p	-	639	-	nm
Angle of half intensity	I _F = 20 mA	φ	-	± 65	-	deg
Spectral line half width	I _F = 20 mA	Δλ	-	20	-	nm
Forward voltage	I _F = 20 mA	V _F	-	2.0	2.4	V
Reverse current	V _R = 5 V	I _R	-	-	10	μA

OPTICAL AND ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 \text{ °C}$, unless otherwise specified) **VLMO1500, SOFT ORANGE**

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity	I _F = 20 mA	Ι _V	45	90	-	mcd
Dominant wavelength	I _F = 20 mA	λ_d	-	605	-	nm
Peak wavelength	I _F = 20 mA	λρ	-	611	-	nm
Angle of half intensity	I _F = 20 mA	φ	-	± 65	-	deg
Spectral line half width	I _F = 20 mA	Δλ	-	17	-	nm
Forward voltage	I _F = 20 mA	V _F	-	2.0	2.4	V
Reverse current	V _R = 5 V	I _R	-	-	10	μA

OPTICAL AND ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 \text{ °C}$, unless otherwise specified) **VLMY1500, YELLOW**

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity	I _F = 20 mA	I _V	28	-	180	mcd
Dominant wavelength	I _F = 20 mA	λ_d	587	-	597	nm
Peak wavelength	I _F = 20 mA	λ _p	-	588	-	nm
Angle of half intensity	I _F = 20 mA	φ	-	± 65	-	deg
Spectral line half width	I _F = 20 mA	Δλ	-	15	-	nm
Forward voltage	I _F = 20 mA	V _F	-	2.0	2.4	V
Reverse current	$V_R = 5 V$	I _R	-	-	10	μA

For technical questions, contact: <u>LED@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

www.vishay.com

Vishay Semiconductors

OPTICAL AND ELECTRICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified) VLMG1500, YELLOW GREEN							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Luminous intensity	I _F = 20 mA	IV	18	35	-	mcd	
Dominant wavelength	I _F = 20 mA	λ_d	-	571	-	nm	
Peak wavelength	I _F = 20 mA	λ _p	-	574	-	nm	
Angle of half intensity	I _F = 20 mA	φ	-	± 65	-	deg	
Spectral line half width	I _F = 20 mA	Δλ	-	15	-	nm	
Forward voltage	I _F = 20 mA	V _F	-	2.0	2.4	V	
Junction capacitance	$V_R = 0 V$, f = 1 MHz	Cj	-	40	-	pF	
Reverse current	V _R = 5 V	I _R	-	-	10	μA	

OPTICAL AND ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 \text{ °C}$, unless otherwise specified) **VLMB1500, BLUE**

VEMID 1000, DECE						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity	$I_F = 5 \text{ mA}$	I _V	11.2	-	45	mcd
Dominant wavelength	$I_F = 5 \text{ mA}$	λ _d	470	-	475	nm
Peak wavelength	I _F = 5 mA	λ _p	-	468	-	nm
Angle of half intensity	$I_F = 5 \text{ mA}$	φ	-	± 65	-	deg
Spectral line half width	$I_F = 5 \text{ mA}$	Δλ	-	25	-	nm
Forward voltage	I _F = 5 mA	V _F	2.65	-	3.15	V
Reverse current	$V_{\rm R} = 5 \rm V$	I _R	-	-	10	μA

LUMINOUS INTENSITY CLASSIFICATION							
CROUR	LUMINOUS IN	TENSITY (mcd)					
GROUP	MIN.	MAX.					
L	11.2	18					
М	18	28					
N	28	45					
Р	45	71					
Q	71	112					
R	112	180					
S	180	280					
Т	280	450					

Note

Luminous intensity is tested at a current pulse duration of 25 ms and an accuracy of \pm 15 %.

The above type numbers represent the order groups which include only a few brightness groups. Only one group will be shipped on each reel (there will be no mixing of two groups on each reel).In order to ensure availability, single brightness groups will not be orderable.

In a similar manner for colors where wavelength groups are measured and binned, single wavelength groups will be shipped in any one reel.

In order to ensure availability, single wavelength groups will not be orderable.

COLOR CLASSIFICATION						
COLOR	GROUP	DOMINANT WAVELENGTH (nm)				
		MIN.	MAX.			
Yellow	J	587	589.5			
	К	589.5	592			
	L	592	594.5			
	М	594.5	597			
	С	567.5	570.5			
Yellow green	D	570.5	573.5			
	E	573.5	576.5			
Blue	AD	470	475			

Note

 Wavelengths are tested at a current pulse duration of 25 ms and an accuracy of ± 1 nm.

www.vishay.com

Vishay Semiconductors

FORWARD VOLTAGE CLASSIFICATION						
001.07	CROUR	FORWARD	VOLTAGE (V)			
COLOR	GROUP	MIN.	MAX.			
	D2	1.8	2.0			
Yellow	D3	2.0	2.2			
	D4	2.2	2.4			
	4	1.9	2			
	5	2	2.1			
Yellow green	6	2.1	2.2			
	7	2.2	2.3			
	8	2.3	2.4			
	1	2.65	2.75			
	2	2.75	2.85			
Blue	3	2.85	2.95			
	4	2.95	3.05			
	5	3.05	3.15			

Note

Forward voltage is measured with a tolerance of ± 0.1 V.

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

Fig. 1 - Forward Current vs. Ambient Temperature

Fig. 2 - Forward Current vs. Forward Voltage (super red)

 50
 40
 soft orange

 40
 30
 40

 20
 10
 10

 10
 1.2
 1.6
 2.0
 2.4
 2.8
 3.2

 VF - Forward Voltage (V)
 V
 V
 V
 V
 V

Fig. 3 - Forward Current vs. Forward Voltage (soft orange)

Fig. 4 - Forward Current vs. Forward Voltage (yellow)

Document Number: 82554

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Fig. 5 - Forward Current vs. Forward Voltage (yellow green)

Fig. 6 - Relative Luminous Intensity vs. Forward Current (super red)

Fig. 7 - Relative Luminous Intensity vs. Forward Current (soft orange)

Fig. 8 - Relative Luminous Intensity vs. Forward Current (yellow)

Fig. 9 - Relative Luminous Intensity vs. Forward Current (yellow green)

Fig. 10 - Relative Intensity vs. Wavelength (super red)

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Fig. 11 - Relative Intensity vs. Wavelength (soft orange)

Fig. 12 - Relative Intensity vs. Wavelength (yellow)

Fig. 13 - Relative Intensity vs. Wavelength (yellow green)

Fig. 14 - Forward Current vs. Forward Voltage (blue)

Fig. 15 - Relative Luminous Intensity vs. Forward Current (blue)

Fig. 16 - Relative Intensity vs. Wavelength (blue)

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Fig. 17 - Relative Luminous Intensity vs. Ambient Temperature

Fig. 18 - Relative Luminous Intensity vs. Angular Displacement

Ø 178 ± 2

technical drawings according to DIN specifications

Drawing-No.: 9.800-5122.01-4 Issue: 2; 03.11.11 22611

Rev. 1.0, 21-May-12

7 For technical questions, contact: LED@vishay.com Document Number: 82554

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

Vishay Semiconductors

TAPE DIMENSIONS in millimeters

VLMS1500, VLMO1500, VLMY1500, VLMG1500, VLMB1500

Technical drawings according to DIN specification.

Drawing-No.: 9.700-5388.01-4 Issue: 1; 20.03.12

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

Vishay Semiconductors

PACKAGE DIMENSIONS in millimeters

VLMS1500, VLMO1500, VLMY1500, VLMG1500, VLMB1500

Recommended solder pad footprint

Technical drawings according to DIN specification

0.7

Not indicated tolerances ± 0.2

Drawing-No.: 6.541-5096.01-4 Issue: 1; 20.03.12

SOLDERING PROFILE

BAR CODE PRODUCT LABEL (example only)

- L) Halogen-free symbol
- M) RoHS symbol

Rev. 1.0, 21-May-12

9
For technical questions, contact: LED@vishay.com

Document Number: 82554

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

www.vishay.com

Vishay Semiconductors

DRY PACKING

The reel is packed in an anti-humidity bag to protect the devices from absorbing moisture during transportation and storage.

FINAL PACKING

The sealed reel is packed into a cardboard box. A secondary cardboard box is used for shipping purposes.

RECOMMENDED METHOD OF STORAGE

Dry box storage is recommended as soon as the aluminum bag has been opened to prevent moisture absorption. The following conditions should be observed, if dry boxes are not available:

- Storage temperature 10 °C to 30 °C
- Storage humidity \leq 60 % RH max.

After more than 672 h under these conditions moisture content will be too high for reflow soldering.

In case of moisture absorption, the devices will recover to the former condition by drying under the following condition:

192 h at 40 °C + 5 °C/- 0 °C and < 5 % RH (dry air/nitrogen) or

96 h at 60 °C + 5 °C and < 5 % RH for all device containers or

24 h at 100 °C + 5 °C not suitable for reel or tubes.

An EIA JEDEC Standard JESD22-A112 Level 2a label is included on all dry bags.

Example of JESD22-A112 Level 2a Label

Rev. 1.0, 21-May-12

10

ESD PRECAUTION

Proper storage and handling procedures should be followed to prevent ESD damage to the devices especially when they are removed from the antistatic shielding bag. Electro-static sensitive devices warning labels are on the packaging.

VISHAY SEMICONDUCTORS STANDARD BAR CODE LABELS

The Vishay Semiconductors standard bar code labels are printed at final packing areas. The labels are on each packing unit and contain Vishay Semiconductors specific data.

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.