Vishay Semiconductors

www.vishay.com

High Performance Schottky Rectifier, 100 A

Anode

-0

PowerTab[®]

PRODUCT SUMMARY				
Package	PowerTab [®]			
I _{F(AV)}	100 A			
V _R	30 V			
V _F at I _F	0.56 V			
I _{RM}	460 mA at 125 °C			
T _J max.	150 °C			
Diode variation	Single die			
E _{AS}	9 mJ			

FEATURES

- 150 °C max. operating junction temperature
- High frequency operation
- Ultralow forward voltage drop
- Continuous high current operation
- Guard ring for enhanced ruggedness and long term reliability
 COMPLIANT
 COMPLIANT
- Screw mounting only
- Designed and qualified according to JEDEC®-JESD 47
- PowerTab[®] package
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION

The VS-100BGQ030 Schottky rectifier has been optimized for ultralow forward voltage drop specifically for low voltage output in high current AC/DC power supplies.

The proprietary barrier technology allows for reliable operation up to 150 °C junction temperature. Typical applications are in switching power supplies, converters, reverse battery protection, and redundant power subsystems.

MAJOR RATINGS AND CHARACTERISTICS					
SYMBOL	CHARACTERISTICS	VALUES	UNITS		
1	Rectangular waveform	100	А		
I _{F(AV)}	T _C	106	°C		
V _{RRM}		30	V		
I _{FSM}	t _p = 5 μs sine	4500	А		
V _F	100 A _{pk} (typical)	0.49	V		
vF	TJ	150	O°		
TJ	Range	-55 to +150	۵°		

VOLTAGE RATINGS				
PARAMETER	SYMBOL	100BGQ030	UNITS	
Maximum DC reverse voltage	V _R	30	V	
Maximum working peak reverse voltage	V _{RWM}	50	V	

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum average forward current	I _{F(AV)}	50 % duty cycle at T_C = 106 °C, rectangular waveform 100 A		А	
Maximum peak one cycle		5 µs sine or 3 µs rect. pulse	Following any rated load condition and with rated	4500	А
non-repetitive surge current	I _{FSM}	10 ms sine or 6 ms rect. pulse	V_{RRM} applied	850	~
Non-repetitive avalanche energy	E _{AS}	T _J = 25 °C, I _{AS} = 8 A, L = 1.12 mH 36 r		mJ	
Repetitive avalanche current	I _{AR}	Current decaying linearly to zero in 1 μ s8AFrequency limited by T _J maximum V _A = 1.5 x V _R typical8		А	

Revision: 12-Jun-15

Document Number: 94579

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

1

www.vishay.com

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS		TYP.	MAX.	UNITS
	V _{FM} ⁽¹⁾	50 A	• T _J = 25 °C	0.47	0.5	V
Forward valtage drep		100 A		0.56	0.63	
Forward voltage drop		50 A	- T _J = 150 °C	0.36	0.4	
		100 A		0.49	0.56	
Reverse leakage current	I _{RM} ⁽¹⁾	T _J = 125 °C, V _R = 15 V		80	160	mA
		$T_{J} = 150 \text{ °C}, V_{R} = 30 \text{ V}$		800	1100	
		T _J = 25 °C	V _R = Rated V _R	0.6	2.4	
		T _J = 125 °C		260	460	
Maximum junction capacitance	CT	$V_{R} = 5 V_{DC}$, (test signal range 100 kHz to 1 MHz) 25 °C		38	00	pF
Typical series inductance	L _S	Measured from tab to mounting plane 3.5		nH		
Maximum voltage rate of change	dV/dt	Rated V _R 10 000		V/µs		

Note

 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS					
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction and temperature range	storage	T _J , T _{Stg}		-55 to +150	°C
Maximum thermal resis junction to case	Maximum thermal resistance, junction to case RthJC DC operation		DC operation	0.50	°C/W
Typical thermal resistar case to heatsink	nce,	R _{thCS}	Mounting surface, smooth and greased	0.30	0/14
Approximate weight				5	g
				0.18	oz.
	minimum			1.2 (10)	N · m
Mounting torque -	maximum			2.4 (20)	(lbf \cdot in)
Marking device Case style PowerTab [®]		100BG	GQ030		

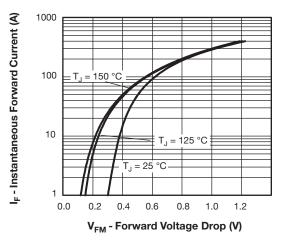
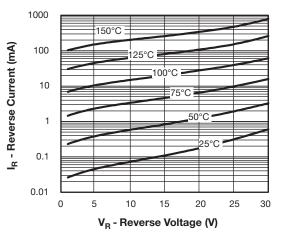
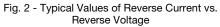




Fig. 1 - Maximum Forward Voltage Drop Characteristics

Revision: 12-Jun-15

2

Document Number: 94579

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VS-100BGQ030

Vishay Semiconductors

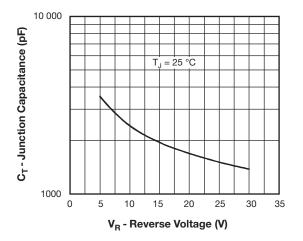


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

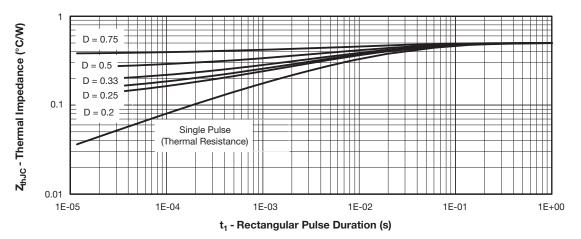
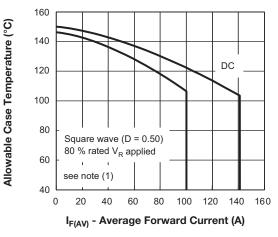
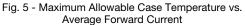




Fig. 4 - Maximum Thermal Impedance ZthJC Characteristics

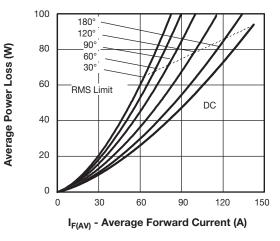
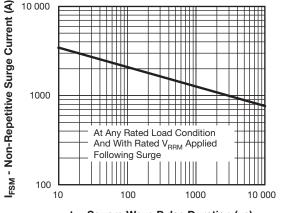


Fig. 6 - Forward Power Loss Characteristics

Revision: 12-Jun-15

3


Document Number: 94579

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VS-100BGQ030

Vishay Semiconductors

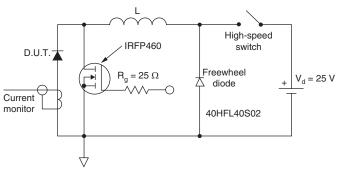
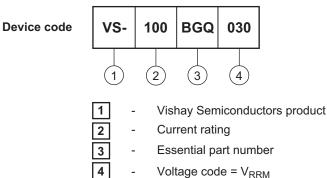



Fig. 8 - Unclamped Inductive Test Circuit

Note

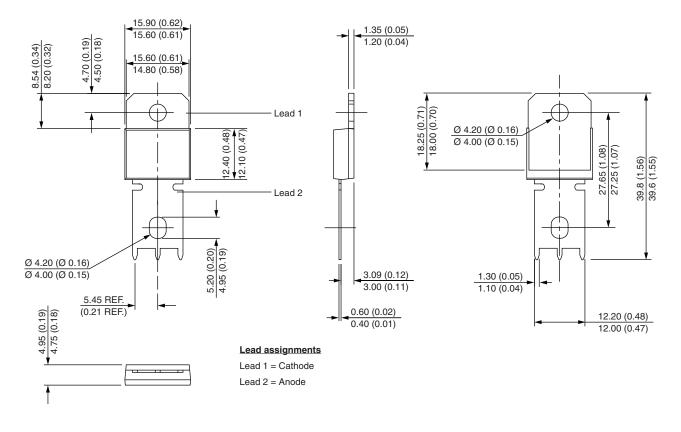
⁽²⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $\begin{array}{l} \mathsf{Pd} = \mathsf{Forward power loss} = \mathsf{I}_{\mathsf{F}(\mathsf{AV})} \times \mathsf{V}_{\mathsf{FM}} \; \mathsf{at} \; (\mathsf{I}_{\mathsf{F}(\mathsf{AV})}/\mathsf{D}) \; (\mathsf{see fig. 6}); \\ \mathsf{Pd}_{\mathsf{REV}} = \mathsf{Inverse power loss} = \mathsf{V}_{\mathsf{R1}} \times \mathsf{I}_{\mathsf{R}} \; (\mathsf{1} - \mathsf{D}); \; \mathsf{I}_{\mathsf{R}} \; \mathsf{at} \; \mathsf{V}_{\mathsf{R1}} = \mathsf{80} \; \% \; \mathsf{rated} \; \mathsf{V}_{\mathsf{R}} \\ \end{array}$

ORDERING INFORMATION TABLE

LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95240			
Part marking information	www.vishay.com/doc?95370			
Application note	www.vishay.com/doc?95179			

Revision: 12-Jun-15

4


For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

Vishay Semiconductors

PowerTab[®]

DIMENSIONS in millimeters (inches)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.