

Vishay Semiconductors

Schottky Rectifier, 2 x 30 A

PRODUCT SUMMARY							
Package	TO-247AC						
I _{F(AV)}	2 x 30 A						
V _R	100 V						
V _F at I _F	0.64 V						
I _{RM} max.	25 mA at 125 °C						
T _J max.	175 °C						
Diode variation	Common cathode						
E _{AS}	15 mJ						

FEATURES

- 175 °C T_J operation
- Low forward voltage drop
- High frequency operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance

- Guard ring for enhanced ruggedness and long term reliability
- Compliant to RoHS Directive 2002/95/EC
- · Designed and qualified according to JEDEC-JESD47
- Halogen-free according to IEC 61249-2-21 definition (-N3 only)

DESCRIPTION

The VS-63CPQ100... center tap Schottky rectifier series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 175 °C junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS										
SYMBOL	CHARACTERISTICS	VALUES	UNITS							
I _{F(AV)}	Rectangular waveform	60	А							
V _{RRM}		100	V							
I _{FSM}	t _p = 5 μs sine	2200	А							
V _F	30 Apk, T _J = 125 °C (per leg)	0.64	V							
TJ	Range	- 55 to 175	°C							

VOLTAGE RATINGS									
PARAMETER	SYMBOL	VS-63CPQ100PbF	VS-63CPQ100-N3	UNITS					
Maximum DC reverse voltage	V _R	100	100	V					
Maximum working peak reverse voltage	V _{RWM}	100	100	v					

ABSOLUTE MAXIMUM RATINGS									
PARAMETER	SYMBOL	TEST COND	ITIONS	VALUES	UNITS				
Maximum average per leg		50 % duty cycle at T _C = 153 °C, rectangular waveform		30					
See fig. 5 per device	I _{F(AV)}	30% duty cycle at $T_{\rm C} = 133$ C	, rectangular wavelonn	60	A				
Maximum peak one cycle non-repetitive surge current per leg	1	5 μs sine or 3 μs rect. pulse	Following any rated load condition and with rated	2200					
See fig. 7	I _{FSM}	10 ms sine or 6 ms rect. pulse	V _{RRM} applied	410					
Non-repetitive avalanche energy per leg	on-repetitive avalanche energy per leg E_{AS} $T_J = 25 \text{ °C}, I_{AS} = 1 \text{ A}, L = 30 \text{ mH}$		15	mJ					
Repetitive avalanche current per leg	I _{AR}	Current decaying linearly to zer Frequency limited by T _J maxim		1	А				

Revision: 31-Aug-11

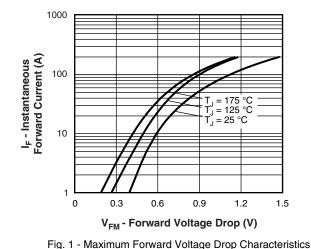
Document Number: 94244

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

1

Vishay Semiconductors

ELECTRICAL SPECIFICATIO	NS					
PARAMETER	SYMBOL	TEST CO	NDITIONS	VALUES	UNITS	
		30 A	T _{.1} = 25 °C	0.77		
Maximum forward voltage drop per leg	V _{FM} ⁽¹⁾	60 A	1j=25 C	0.92	V	
See fig. 1	VFM (")	30 A	T 105 %C	0.64		
		60 A	T _J = 125 °C	0.76		
Maximum reverse leakage current per leg	I _{BM} ⁽¹⁾	T _J = 25 °C	V - Poted V	0.3	mA	
See fig. 2	IRM (")	T _J = 125 °C	$V_R = Rated V_R$	25		
Threshold voltage	V _{F(TO)}	T T maximum	·	0.38	V	
Forward slope resistance	r _t	T _J = T _J maximum		5.75	mΩ	
Maximum junction capacitance per leg	CT	$V_{R} = 5 V_{DC}$ (test signal range	1300	pF		
Typical series inductance per leg	L _S	Measured lead to lead 5 m	Measured lead to lead 5 mm from package body			
Maximum voltage rate of change	dV/dt	Rated V _R		10 000	V/µs	


Note

 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS									
PARAMETER		SYMBOL	BOL TEST CONDITIONS		UNITS				
Maximum junction and storage temperature range	1	T _J , T _{Stg}		- 55 to 175	°C				
Maximum thermal resistance, junction to case per leg		Р	DC operation See fig. 4	0.8					
Maximum thermal resistance, junction to case per package		R _{thJC}	DC operation		°C/W				
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased	0.25					
				6	g				
Approximate weight				0.21	oz.				
Mounting torque	minimum			6 (5)	kgf ⋅ cm				
Mounting torque —	maximum			12 (10)	(lbf · in)				
Marking device			Case style TO-247AC (JEDEC)	63CP	Q100				

Vishay Semiconductors

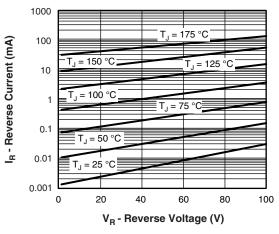


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

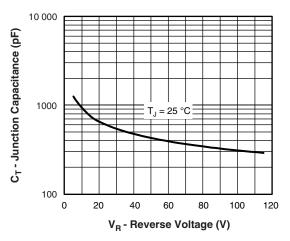
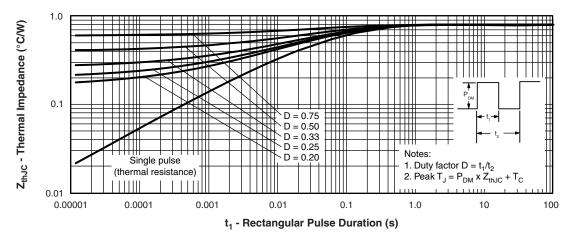
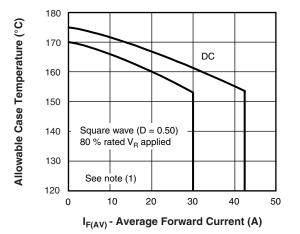
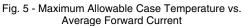
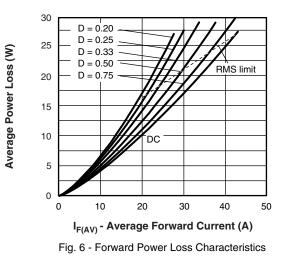


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

Vishay Semiconductors

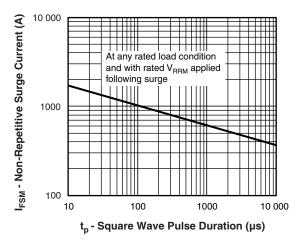


Fig. 7 - Maximum Non-Repetitive Surge Current

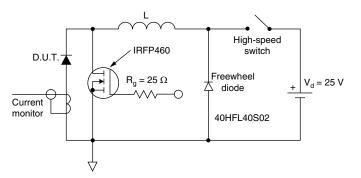


Fig. 8 - Unclamped Inductive Test Circuit

Note

⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$;

 $\begin{array}{l} \mathsf{Pd} = \mathsf{Forward} \ \mathsf{power} \ \mathsf{loss} = \mathsf{I}_{\mathsf{F}(\mathsf{AV})} \times \mathsf{V}_{\mathsf{FM}} \ \mathsf{at} \ (\mathsf{I}_{\mathsf{F}(\mathsf{AV})}/\mathsf{D}) \ (\mathsf{see} \ \mathsf{fig.} \ \mathsf{6}); \\ \mathsf{Pd}_{\mathsf{REV}} = \mathsf{Inverse} \ \mathsf{power} \ \mathsf{loss} = \mathsf{V}_{\mathsf{R1}} \times \mathsf{I}_{\mathsf{R}} \ (\mathsf{1} - \mathsf{D}); \ \mathsf{I}_{\mathsf{R}} \ \mathsf{at} \ \mathsf{V}_{\mathsf{R1}} = \mathsf{80} \ \% \ \mathsf{rated} \ \mathsf{V}_{\mathsf{R}} \end{array}$

Revision: 31-Aug-11

4

Document Number: 94244

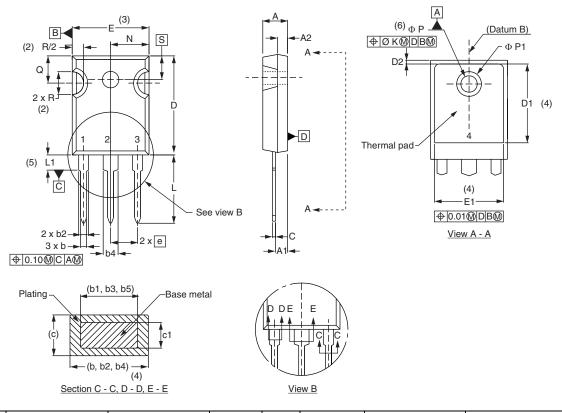
For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code	vs-	63	С	Р	Q	100	PbF
		2	3	4	5	6	7
	1 - 2 - 3 - 4 - 5 - 6 - 7 -	Cur Circ C = Pac P = Sch Volt Env • F	rent ratii uit confi Commo kage: TO-247 ottky "Q age coo ironmer bF = Le	" series le ntal digit ead (Pb)	.) i: de -free and	d RoHS	•
		• -	N3 = Ha	logen-fr	ee, RoH	IS comp	oliant, a

ORDERING INFORMATION (Example)									
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION						
VS-63CPQ100PbF	25	500	Antistatic plastic tube						
VS-63CPQ100-N3	25	500	Antistatic plastic tube						


LINKS TO RELATED DOCUMENTS								
Dimensions		www.vishay.com/doc?95223						
Port marking information	TO-247AC PbF	www.vishay.com/doc?95226						
Part marking information	TO-247AC -N3	www.vishay.com/doc?95007						

Vishay Semiconductors

TO-247

DIMENSIONS in millimeters and inches

SYMBOL	MILLIN	IETERS	INCHES		NOTES	NOTES		MILLIN	IETERS	INC	HES	NOTES
STINIBUL	MIN.	MAX.	MIN.	MAX.	NOTES		SYMBOL	MIN.	MAX.	MIN.	MAX.	NOTES
А	4.65	5.31	0.183	0.209			D2	0.51	1.30	0.020	0.051	
A1	2.21	2.59	0.087	0.102			E	15.29	15.87	0.602	0.625	3
A2	1.50	2.49	0.059	0.098			E1	13.72	-	0.540	-	
b	0.99	1.40	0.039	0.055			е	5.46	BSC	0.215	5 BSC	
b1	0.99	1.35	0.039	0.053			ØК	2.	54	0.0	010	
b2	1.65	2.39	0.065	0.094			L	14.20	16.10	0.559	0.634	
b3	1.65	2.34	0.065	0.092			L1	3.71	4.29	0.146	0.169	
b4	2.59	3.43	0.102	0.135			N	7.62	BSC	0	.3	
b5	2.59	3.38	0.102	0.133			ØР	3.56	3.66	0.14	0.144	
С	0.38	0.89	0.015	0.035			Ø P1	-	6.98	-	0.275	
c1	0.38	0.84	0.015	0.033			Q	5.31	5.69	0.209	0.224	
D	19.71	20.70	0.776	0.815	3		R	4.52	5.49	0.178	0.216	
D1	13.08	-	0.515	-	4		S	5.51	BSC	0.217	' BSC	

Notes

⁽¹⁾ Dimensioning and tolerancing per ASME Y14.5M-1994

(2) Contour of slot optional

(3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body

(4) Thermal pad contour optional with dimensions D1 and E1

⁽⁵⁾ Lead finish uncontrolled in L1

⁽⁶⁾ Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")

⁽⁷⁾ Outline conforms to JEDEC[®] outline TO-247 with exception of dimension c

Revision: 07-Apr-15

1

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.