VS-VSK.230..PbF Series

Vishay Semiconductors

SCR/SCR and SCR/Diode (MAGN-A-PAK Power Modules), 230 A

www.vishay.com

MAGN-A-PAK

PRODUCT SUMMARY						
I _{T(AV)}	230 A					
Туре	Modules - Thyristor, Standard					
Package	MAGN-A-PAK					
Circuit	Two SCRs doubler circuit					

FEATURES

- High voltage
- Electrically isolated base plate
- 3500 V_{RMS} isolating voltage
- Industrial standard package
- Simplified mechanical designs, rapid assembly
- High surge capability
- Large creepage distances
- UL approved file E78996
- Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION

This new VSK series of MAGN-A-PAK modules uses high voltage power thyristor/thyristor and thyristor/diode in seven basic configurations. The semiconductors are electrically isolated from the metal base, allowing common heatsinks and compact assemblies to be built. They can be interconnected to form single phase or three phase bridges or as AC-switches when modules are connected in anti-parallel mode. These modules are intended for general purpose applications such as battery chargers, welders, motor drives, UPS, etc.

MAJOR RATINGS AND CHARACTERISTICS						
SYMBOL	CHARACTERISTICS	VALUES	UNITS			
I _{T(AV)}	85 °C	230				
I _{T(RMS)}		510	A			
	50 Hz	7500	A			
I _{TSM}	60 Hz	7850				
l ² t	50 Hz	280	kA ² s			
1-1	60 Hz	260	KA-S			
l²√t		280	kA²√s			
V _{DRM} /V _{RRM}		800 to 2000	V			
TJ	Range	-40 to 130	°C			

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS						
TYPE NUMBER	VOLTAGE CODE	V _{RRM} /V _{DRM} , MAXIMUM REPETITIVE PEAK REVERSE AND OFF-STATE BLOCKING VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} /I _{DRM} AT 130 °C MAXIMUM mA		
	08	800	900			
	12	1200	1300			
VS-VSK.230-	16	1600	1700	50		
18		1800	1900			
	20	2000	2100			

VS-VSK.230..PbF Series

www.vishay.com

Vishay Semiconductors

ON-STATE CONDUCTION						
PARAMETER	SYMBOL		VALUES	UNITS		
Maximum average on-state current	I _{T(AV)}	190° conductio	n half aine wave		230	А
at case temperature	. ,	Too conduction	n, half sine wave		85	°C
Maximum RMS on-state current	I _{T(RMS)}	As AC switch			510	
		t = 10 ms	No voltage		7500	
Maximum peak, one-cycle on-state		t = 8.3 ms	reapplied		7850	А
non-repetitive, surge current	ITSM	t = 10 ms	100 % V _{RRM}	Sinusoidal	6300	
		t = 8.3 ms	reapplied	half wave,	6600	1
		t = 10 ms	No voltage	initial	280	
Movingung 12t for fusing	l ² t	t = 8.3 ms	reapplied	$T_J = T_J maximum$	256	kA ² s
Maximum I ² t for fusing		t = 10 ms	100 % V _{RRM}		198	
		t = 8.3 ms	reapplied		181	
Maximum I ² √t for fusing	l²√t	t = 0.1 ms to 10	ms, no voltage	reapplied	2800	kA²√s
Low level value or threshold voltage	V _{T(TO)1}	(16.7 % x π x I _T	$(AV) < I < \pi \times I_{T(AV)}$), T _J = T _J maximum	1.03	V
High level value of threshold voltage	V _{T(TO)2}	$(I > \pi \times I_{T(AV)}), T_{U}$	_J = T _J maximum		1.07	v
Low level value on-state slope resistance	r _{t1}	(16.7 % x π x I _T	$(AV) < I < \pi \times I_{T(AV)}$), T _J = T _J maximum	0.77	mΩ
High level value on-state slope resistance	r _{t2}	$(I > \pi \times I_{T(AV)}), T_{v}$	0.73	11152		
Maximum on atata valtaga dran	V	$I_{TM} = \pi \times I_{T(AV)},$	Γ _J = T _J maximum	, 180° conduction,	1.59	V
Maximum on-state voltage drop	V _{TM}	average power = $V_{T(TO)} \times I_{T(AV)} + r_f \times (I_{T(RMS)})^2$			1.59 V	
Maximum holding current	Ι _Η					
Maximum latching ourrent	I.	Anode supply = 12 V, resistive load = 1 Ω ,			1000	mA
Maximum latching current	١L	gate pulse: 10 V, 100 μ s, T _J = 25 °C			1000	

SWITCHING						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Typical delay time	t _d	T _J = 25 °C, gate current = 1 A dl _g /dt = 1 A/μs	1.0			
Typical rise time	t _r	$V_{d} = 0.67 \% V_{DRM}$	2.0	110		
Typical turn-off time	t _q	I_{TM} = 300 A; dl/dt = 15 A/μs; T _J = T _J maximum; V _R = 50 V; dV/dt = 20 V/μs; gate 0 V, 100 Ω	50 to 150	μs		

BLOCKING							
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Maximum peak reverse and off-state leakage current	$\begin{bmatrix} I_{RRM,} \\ I_{DRM} \end{bmatrix} T_{J} = T_{J} maximum$		50	mA			
RMS insulation voltage	V _{INS}	50 Hz, circuit to base, all terminals shorted, 25 $^\circ$ C, 1 s	3000	V			
Critical rate of rise of off-state voltage	dV/dt	T_J = T_J maximum, exponential to 67 % rated V_{DRM}	1000	V/µs			

TRIGGERING					
PARAMETER	SYMBOL	TEST	CONDITIONS	VALUES	UNITS
Maximum peak gate power	P _{GM}	$t_p \le 5 \text{ ms}, T_J = T_J \text{ maxi}$	mum	10.0	W
Maximum average gate power	P _{G(AV)}	$f = 50 Hz, T_J = T_J maxi$	mum	2.0	vv
Maximum peak gate current	+ I _{GM}	$t_p \le 5 \text{ ms}, T_J = T_J \text{ maxi}$	mum	3.0	А
Maximum peak negative gate voltage	- V _{GT}	$t_p \le 5 \text{ ms}, T_J = T_J \text{ maxi}$	mum	5.0	
		T _J = - 40 °C	Anode supply = 12 V,	4.0	v
Maximum required DC gate voltage to trigger	V_{GT}	T _J = 25 °C	resistive load; Ra = 1 Ω	3.0	
		$T_J = T_J$ maximum	Tesistive load, $na = 1.22$	2.0	
		T _J = - 40 °C	Anodo $aupply = 12 $	350	
Maximum required DC gate current to trigger	I _{GT}	$T_J = 25 \degree C$ Anode supply = 12 V,	resistive load; Ra = 1 Ω	200	mA
		$T_J = T_J$ maximum	Tesistive load, $na = 1.22$	100	
Maximum gate voltage that will not trigger	V _{GD}	$T_J = T_J$ maximum, rated V_{DRM} applied		0.25	V
Maximum gate current that willnot trigger	I _{GD}	$T_J = T_J$ maximum, rated V_{DRM} applied		10.0	mA
Maximum rate of rise of turned-on current	dl/dt	$T_J = T_J maximum, I_{TM}$	= 400 A, rated V _{DRM} applied	500	A/µs

Revision: 17-Jul-14

2

Document Number: 93053

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Junction operating temperating	ature range	TJ		-40 to 130	°C	
Storage temperature range)	T _{Stg}		-40 to 150	C	
Maximum thermal resistance, junction to case per junction		R _{thJC}	DC operation	0.125	K/W	
Typical thermal resistance, case to heatsink per module		R _{thCS}	Mounting surface flat, smooth and greased	0.02	rv vv	
	MAP to heatsink		A mounting compound is recommended and the			
Mounting torque ± 10 % busbar to MAP			torque should be rechecked after a period of about 3 h to allow for the spread of the compound.	4 to 6	Nm	
Approximate weight				500	g	
Approximate weight				17.8	oz.	
Case style				MAGN	A-PAK	

DEVICES	SINUS	DIDAL COM	DUCTION	AT T _J MA	XIMUM	RECTANGULAR CONDUCTION AT T _J MAXIMUM				UNITS	
DEVICES	180°	120°	90 °	60°	30°	180°	120°	90 °	60 °	30°	UNITS
VSK.230-	0.009	0.010	0.010	0.020	0.032	0.007	0.011	0.015	0.020	0.033	K/W

Note

Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC ٠

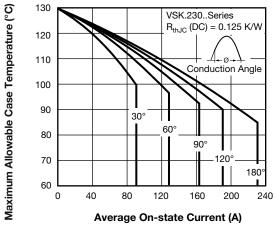


Fig. 1 - Current Ratings Characteristics

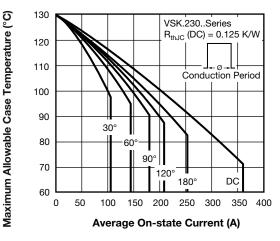


Fig. 2 - Current Ratings Characteristics

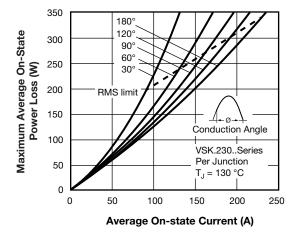


Fig. 3 - On-State Power Loss Characteristics

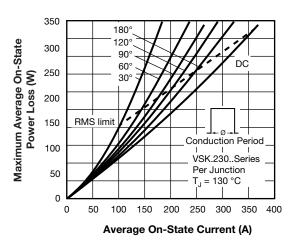


Fig. 4 - On-State Power Loss Characteristics

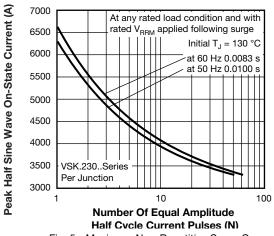


Fig. 5 - Maximum Non-Repetitive Surge Current

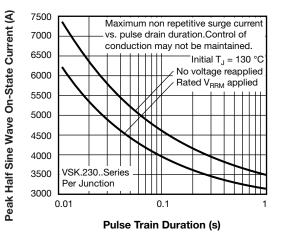


Fig. 6 - Maximum Non-Repetitive Surge Current

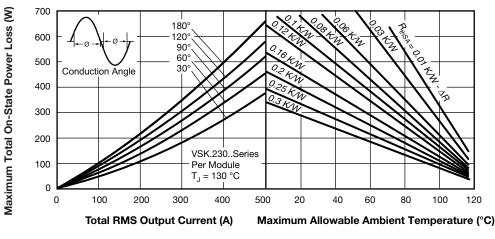


Fig. 7 - On-State Power Loss Characteristics

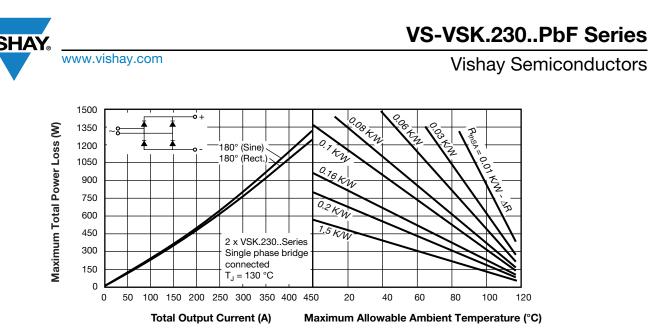


Fig. 8 - On-State Power Loss Characteristics

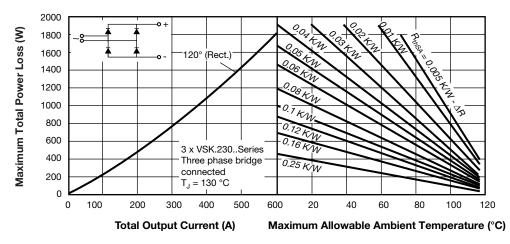
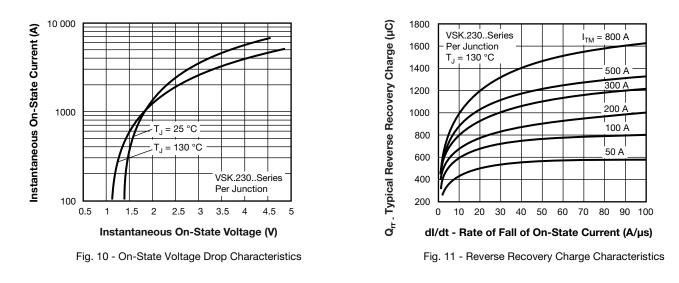



Fig. 9 - On-State Power Loss Characteristics

Revision: 17-Jul-14

5

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

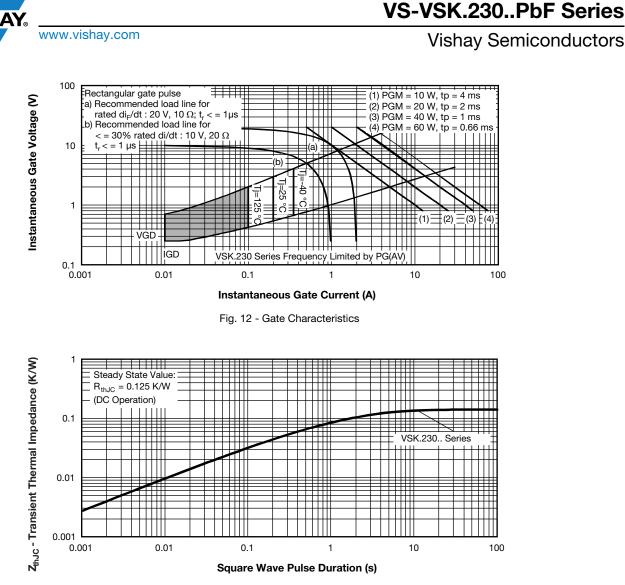


Fig. 13 - Thermal Impedance Z_{thJC} Characteristics

ORDERING INFORMATION TABLE

Device code	vs-	vs	кт	230	-	20	PbF	
)	2	3		4	5	
	1	-	Vishay	Semicor	nductors	product		
	2	-	Circuit	configura	ation (see	e dimensi	ons - link	at the end of datasheet)
	3	-	Curren	it rating				
	4	-	Voltage	e code x	100 = V _F	RRM (see	voltage ra	atings table)
	5	-		 None = standard production PbF = lead (Pb)-free 				

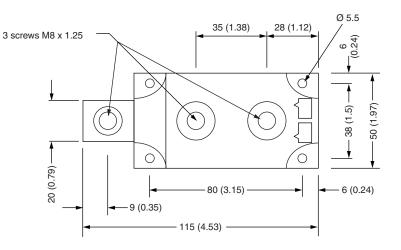
Note

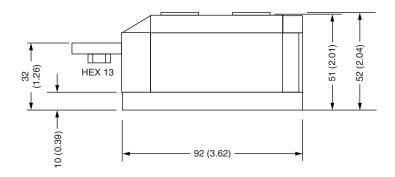
To order the optional hardware go to <u>www.vishay.com/doc?95172</u>

 Revision: 17-Jul-14
 6
 Document Number: 93053

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

CIRCUIT CONFIGURATION							
CIRCUIT DESCRIPTION	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING					
Two SCRs doubler circuit	КТ	VSKT					
SCR/diode doubler circuit, positive control	КН	VSKH					
SCR/diode doubler circuit, negative control	KL	VSKL					
Two SCRs common cathodes	кк	VSKK					
Two SCRs common anodes	KV	VSKV					


LINKS TO RELA	TED DOCUMENTS
Dimensions	www.vishay.com/doc?95086



MAGN-A-PAK

DIMENSIONS in millimeters (inches)

Notes

- Dimensions are nominal
- Full engineering drawings are available on request
- UL identification number for gate and cathode wire: UL 1385
- UL identification number for package: UL 94 V-0

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.