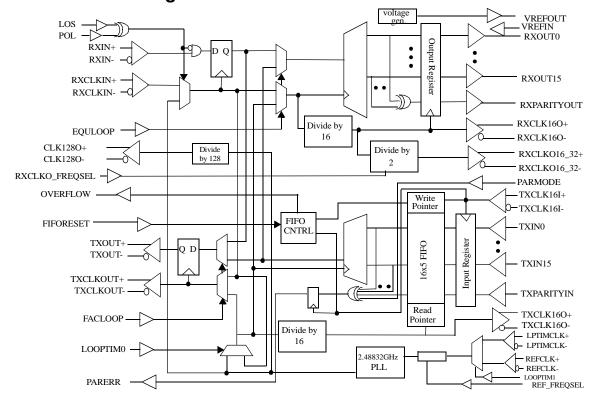


2.48832Gb/s 16:1 SONET/SDH Transceiver with Integrated Clock Generator

Features


- 2.48832Gb/s 16-Bit Transceiver
- Targeted for SONET OC-48 / SDH STM-16 Applications
- LVPECL Low-Speed Interface
- On-chip PLL-Based Clock Generator
- High-Speed Clock Output With Power-Down Option
- Supports Parity at the 16-Bit Parallel Transmit and Receive Interfaces

- Provides Equipment, Facilities and Split Loopback Modes as well as Loop Timing Modes
- Loss of Signal (LOS) Detect input
- Meets Bellcore Jitter Performance Specifications
- Single +3.3V Supply
- 2.25 Watts Typical Power Dissipation
- Packages: 128-pin PQFP or 208-pin TBGA

General Description

The VSC8140 is a SONET/SDH compatible transceiver with integrated clock generator for use in SONET/SDH systems operating at a 2.48832Gb/s data rate. The internal clock generator uses a Phase-Locked Loop (PLL) to multiply either a 77.76MHz or 155.52MHz reference clock in order to provide the 2.48832GHz clock for internal logic and output retiming. The 16-bit parallel interface incorporates an on-board FIFO eliminating loop timing design issues by providing a flexible parallel timing architecture. In addition, the device provides both facility and equipment loopback modes and two loop timing modes. The VSC8140 operates using a 3.3V power supply, and is available in either a thermally-enhanced 128-PQFP or a thermally-enhanced 208-pin TBGA package.

VSC8140 Block Diagram

Data Sheet VSC8140

Functional Description

Transmitter Low-Speed Interface

The Upstream Device should use the TXCLK16O as the timing source for its final output latch (see Figure 1). The Upstream Device should then generate a TXCLK16I that is phase-aligned with the data. The VSC8140 will latch TXIN[15:0]± on the rising edge of TXCLK16I+. The data must meet setup and hold times with respect to TXCLK16I (see Table 1).

A FIFO exists within the VSC8140 to eliminate difficult system loop timing issues. Once the PLL has locked to the reference clock, RESET must be held low for a minimum of five CLK16 cycles to initialize the FIFO, then RESET should be set high and held constant for continuous FIFO operation. For the transparent mode of operation (no FIFO), simply hold RESET at a constant low state (see Figure 2).

The use of a FIFO permits the system designer to tolerate an arbitrary amount of delay between TXCLK16O and TXCLK16I. Once RESET is asserted and the FIFO initialized, the delay between TXCLK16O and TXCLK16I can decrease or increase up to one period of the low-speed clock (6.4ns). Should this delay drift exceed one period, the write pointer and the read pointer could point to the same word in the FIFO, resulting in a loss of transmitted data (a FIFO overflow). In the event of a FIFO overflow, an active low OVERFLOW signal is asserted (for a minimum of five TXCLK16I cycles) which can be used to initiate a reset signal from an external controller.

The TXCLK16O \pm output driver is a LVPECL output driver designed to drive a 50Ω transmission line. The transmission line can be DC terminated with a split-end termination scheme (see Figure 3), or DC terminated by 50Ω to V_{CC} -2V on each line (see Figure 4). At any time, the equivalent split-end termination technique can be substituted for the traditional 50Ω to V_{CC} -2V on each line. AC-coupling can be achieved by a number of methods. Figure 5 illustrates an AC-coupling method for the occasion when the downstream device provides the bias point for AC-coupling.

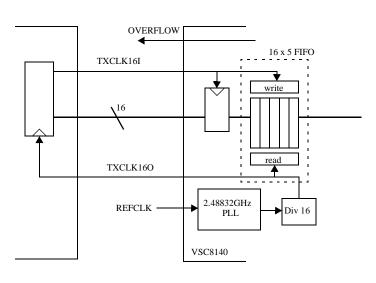


Figure 1: Low-Speed Systems Interface

2.48832Gb/s 16:1 SONET/SDH Transceiver with Integrated Clock Generator

Figure 2: Enabling FIFO Operation

PLL locked to reference clock.

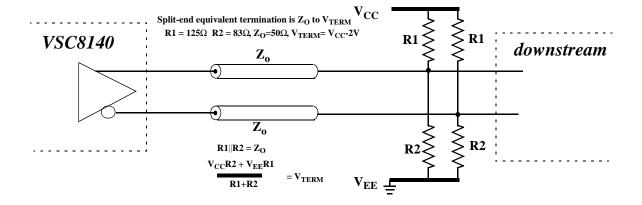
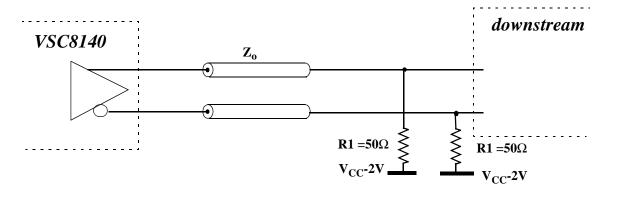
Minimum 5 CLK16 cycles

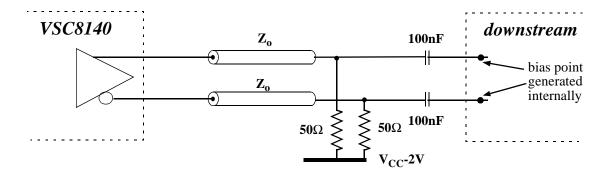
Transparent Mode Operation

Transparent Mode Operation

Holding RESET "low" for a minimum of 5 CLK16 cycles, then setting "high" enables FIFO operation. Holding RESET constantly "low" bypasses the FIFO for transparent mode operation.

Figure 3: DC Termination of Low-Speed LVPECL RXCLK16O, RXCLK16_32O, TXCLK16O Outputs

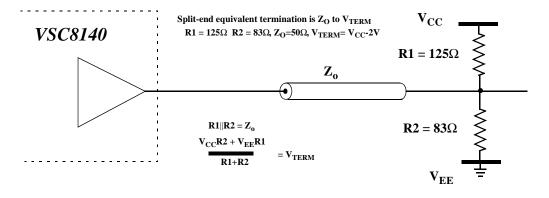




Figure 4: DC Termination of Low-Speed LVPECL RXCLK160, RXCLK16_320, TXCLK160 Outputs

Data Sheet VSC8140

Figure 5: AC Termination of Low-Speed LVPECL RXCLK160, RXCLK16_320, TXCLK160 Outputs

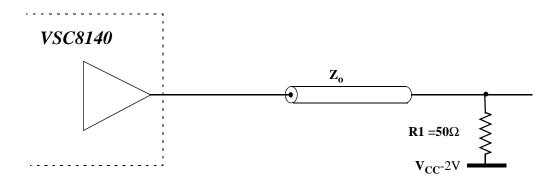
Receiver Low-Speed Interface


The demultiplexed serial stream is made available by a 16-bit single-ended LVPECL interface RXOUT[15:0] with accompanying differential LVPECL divide-by-16 clock RXCLK16O± and selectable LVPECL divide-by-16 or -32 clock RXCLK16_32O±.

RXCLKO_FREQSEL is used to select RXCLK16_32O±. RXCLKO_FREQSEL = "0" designates RXCLK16_32O± output as 77.76MHz, RXCLKO_FREQSEL = "1" designates RXCLK16_32O± output as 155.52MHz.

The RXCLK16O and RXCLK16_32O output drivers are designed to drive a 50Ω transmission line. The transmission line can be DC terminated with a split-end termination scheme (see Figure 3), or DC terminated by 50Ω to V_{CC} -2V on each line (see Figure 4). AC-coupling can be achieved by a number of methods. Figure 5 illustrates an AC-coupling method for the occasion when the downstream device provides the bias point for AC-coupling. The divide-by-16 output (RXCLK16O) or the divide-by-16 or -32 output (RXCLK16_32O) can be used to provide an external looptiming reference clock (after external filtering with a 1x REFCLK PLL) for the clock multiplication unit on the VSC8140.

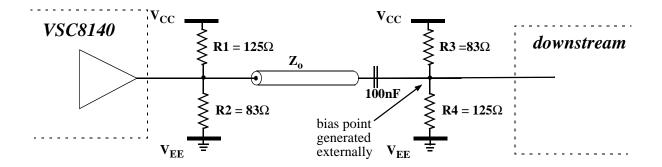
The RXOUT[15:0] output drivers are designed to drive a 50Ω transmission line which can be DC terminated with a split-end termination scheme (see Figure 6), or a traditional termination scheme (see Figure 7).


Figure 6: Split-end DC Termination of Low-Speed LVPECL RXOUT[15:0] Outputs

2.48832Gb/s 16:1 SONET/SDH Transceiver with Integrated Clock Generator

Figure 7: Traditional DC Termination of Low-Speed LVPECL RXOUT[15:0] Outputs

The RXOUT[15:0] output drivers can also be appropriately AC-coupled by a number of methods, however, DC-coupling is preferred since there is no guarantee of transition density for individual bits in the 16-bit word. Figure 8 illustrates an AC-coupling method for the occasion when the downstream device provides the bias point for AC-coupling. Figure 9 illustrates an AC-coupling method for the occasion when the bias point needs to be generated externally. The resistor values in Figure 9 were selected to generate a bias point of 1.98V, the mid-point for LVPECL V_{OH} and V_{OL} as specified for the VSC8140. Resistor values should be selected to generate the necessary bias point for the downstream device.


Figure 8: AC Termination of Low-Speed LVPECL RXOUT[15:0] Outputs

Data Sheet VSC8140

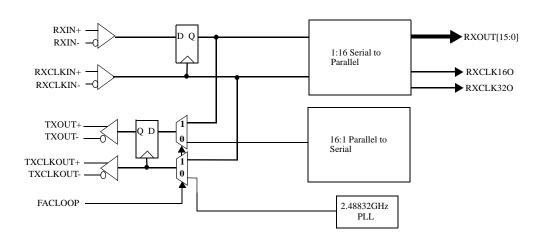
Figure 9: AC Termination of Low-Speed LVPECL RXOUT[15:0] Outputs

Parity

Systems employing internal parity are supported by the VSC8140. On the transmit side, a parity check is performed between the TXPARITYIN input and the 16 TXIN[15:0] bits.

PARMODE is used to select even or odd parity expected for these 17 bits. (TXIN[15:0] and TXPARITYIN). PARMODE = "0" selects odd, PARMODE = "1" selects even. The PARERR output (parity error output) is asserted active high when the parity of the 17 bits (TXIN[15:0] and TXPARITYIN) does not conform to the expected parity designated by PARMODE. PARERR becomes available $T_{\rm DV}$ after the rising edge of TXCLK16I. PARERR is a NRZ pulse that is updated every 6.4 ns, i.e., the period of TXCLK16I. The timing relationship of PARERR to TXCLK16I is shown in Figure 17. The PARERR pin may be left open if parity is unused.

On the receive side, the parity output (RXPARITYOUT) is simply the XOR of all 16 outputs.


Loss of Signal

The VSC8140 has a TTL input LOS to force the part into a Loss of Signal (LOS) state. Most optics have a TTL output usually called Signal Detect (SD), based on the optical power of the incoming light stream. Depending on the optics manufacturer, this signal is either active high or low. To accommodate polarity differences, the internal Loss of Signal is generated when the POL and LOS inputs are of opposite states. Once active, all zeroes "0" will be propagated downstream using the transmit clock until the optical signal is regained and LOS and POL are in the same logic state.

2.48832Gb/s 16:1 SONET/SDH Transceiver with Integrated Clock Generator

Figure 10: Facility Loopback Data Path

Facility Loopback

The facility loopback function is controlled by the FACLOOP signal. When the FACLOOP signal is set high, the Facility Loopback mode is activated and the high-speed serial receive data (RXIN) is presented at the high-speed transmit output (TXOUT), as depicted in Figure 10. In addition, the high-speed receive clock input (RXCLKI) is selected and presented at the high-speed transmit clock output (TXCLKOUT). In Facility Loopback mode, the high-speed receive data (RXIN) is also converted to parallel data and presented at the low-speed receive output pins (RXOUT[15:0]). The receive clock (RXCLKIN) is also divided down and presented at the low-speed clock output (RXCLK16O).

Equipment Loopback Data Path

The Equipment Loopback function is controlled by the EQULOOP signal, which is active high. When the Equipment Loopback mode is activated, the high-speed transmit data generated from the parallel to serial conversion of the low-speed data (TXIN[15:0]) is selected and converted back to parallel data in the receiver section and presented at the low-speed parallel data outputs (RXOUT[15:0]), as shown in Figure 11. The internally generated OC-48 clock is used to generate the low-speed receive output clocks (RXCLK16O and RXCLK16_32O). In Equipment Loopback mode, the transmit data (TXIN[15:0]) is serialized and presented at the high-speed output (TXOUT) along with the high-speed transmit clock (TXCLKOUT) which is generated by the on-chip PLL.

Data Sheet VSC8140

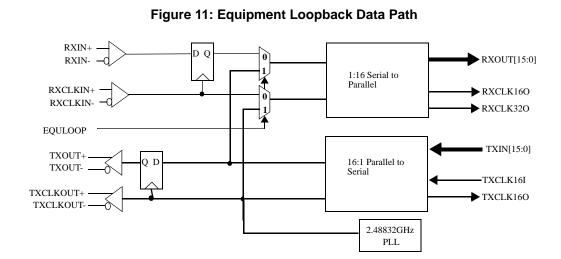
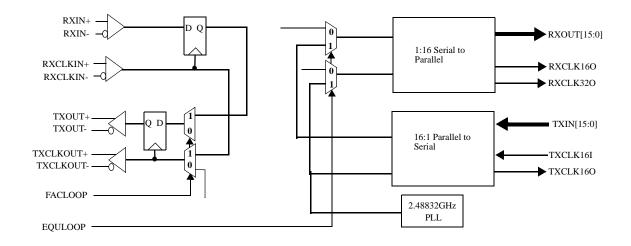



Figure 12: Split Loopback Datapaths

Split Loopback

Equipment and Facility Loopback modes can be enabled simultaneously. In this case, high-speed serial data received (RXIN) and clock (RXCLKIN) are muxed through to the high-speed serial outputs (TXOUT and TXCLKOUT). The low-speed 16-bit transmit stream (TXIN[15:0]) is muxed into the low-speed 16-bit receive output stream (RXOUT[15:0]). See Figure 12.

Looptiming

LOOPTIM0 mode bypasses the PLL when LOOPTIM0 is asserted high. In this mode, the PLL is bypassed using the receive high-speed clock (RXCLKIN), and the entire part is synchronously clocked from a single external source.

2.48832Gb/s 16:1 SONET/SDH Transceiver with Integrated Clock Generator

When LOOPTIM1 is asserted high, the RXCLK16_32O or RXCLK16O output can be tied to the LPTIM-CLK input. In order to meet jitter transfer, the RXCLK16_32O or RXCLOCK16O needs to be filtered by a 1X PLL circuit with a narrow pass characteristic. The part is forced out of this mode in Equipment Loopback to prevent the PLL from feeding its own clock back.

Clock Generator

An on-chip PLL generates the 2.48832GHz transmit clock from the externally provided REFCLK input. The on-chip PLL uses a low phase noise reactance-based Voltage Controlled Oscillator (VCO) with an on-chip loop filter (with two external $0.1\mu F$ peaking capacitors). The loop bandwidth of the PLL is within the SONET specified limit of 2MHz.

The customer can select to provide either a 77.76MHz reference, or 2x of that reference, 155.52MHz. REF_FREQSEL is used to select the desired reference frequency. REF_FREQSEL = "0" designates REFCLK input as 77.76MHz, REF_FREQSEL = "1" designates REFCLK input as 155.52MHz.

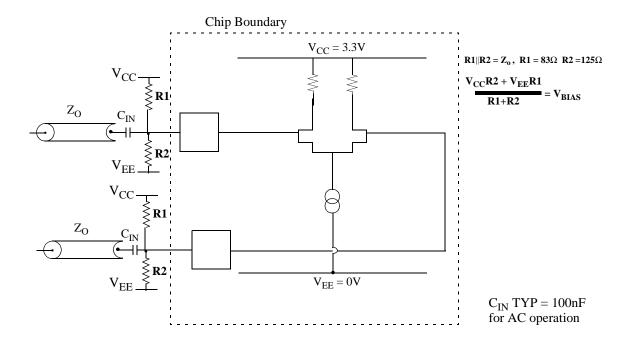
The REFCLK should be of high quality since noise on the REFCLK below the loop bandwidth of the PLL will pass through the PLL and appear as jitter on the output. Preconditioning of the REFCLK signal with a VCXO may be required to avoid passing REFCLK noise with greater than 2ps RMS of jitter to the output. The VSC8140 will output the REFCLK noise in addition to the intrinsic jitter from the VSC8140 itself during such conditions.

Loop Filter

The PLL on the VSC8140 employs an internal loop filter with off-chip peaking capacitors. The PLL design is fully differential, therefore the loop filter must also be fully differential. One capacitor should be connected between FILTAO and FILTAI, with the other connected between FILTAON and FILTAIN. Recommended capacitors are low-inductance $0.1\mu F$ 0603 ceramic SMT X7R devices with a voltage rating equal to or greater than 10V.

 V_{CC} 50Ω $Z_0 = 50\Omega$ V_{EE}

Figure 13: High-Speed Output Termination


Data Sheet VSC8140

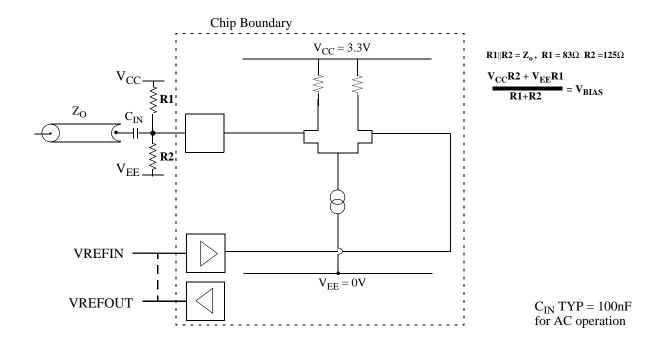
Transmitter High-Speed Data and Clock Outputs

The high-speed data and clock output drivers (TXOUT and TXCLKOUT) consist of a differential pair designed to drive a 50Ω transmission line. The transmission line should be terminated with a 100Ω resistor at the load between true and complement outputs (see Figure 13). No connection to a termination voltage is required. The output driver is back terminated to 50Ω on-chip, providing a snubbing of any reflections. If used single-ended, the high-speed output driver must still be terminated differentially at the load with a 100Ω resistor between true and complement outputs.

In order to save power, the high-speed transmit clock output (TXCLKOUT) can be powered down by connecting the power pins VEEP_CLK and VEE_PWRDN to the V_{CC} supply instead of to V_{EE} .

Figure 14: AC Termination of Low-Speed LVPECL REFCLK and LPTIMCLK Inputs

Reference Clock Inputs

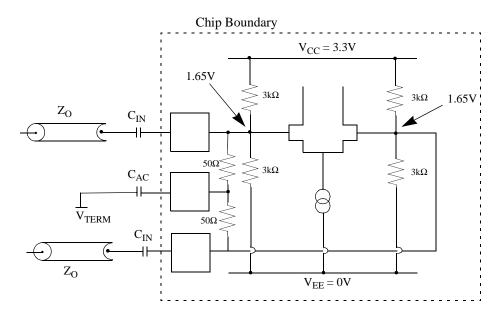

The incoming low-speed reference clock inputs are received by differential LVPECL inputs REFCLK \pm . Off-chip termination of these inputs is required (see Figure 14).

In most situations these inputs will have high transition density and little DC offset. However, in cases where this does not hold, direct DC connection is possible. All serial clock inputs have the same circuit topology, as shown in Figure 14. If the input signal is driven differentially and DC-coupled to the part, the mid-point of the input signal swing should be centered about the input common-mode voltage V_{CM} and not exceed the maximum allowable amplitude. For single-ended, DC-coupling operations, it is recommended that the user provides an external reference voltage. The external reference should have a nominal value equivalent to the common-mode switch point of the DC-coupled signal, and can be connected to either side of the differential gate.

2.48832Gb/s 16:1 SONET/SDH Transceiver with Integrated Clock Generator

Figure 15: Termination of Low-Speed LVPECL TXIN[15:0] Inputs

Low-Speed Inputs


The incoming low-speed inputs are received by single-ended LVPECL inputs TXIN[15:0]. A reference voltage is necessary to provide for optimal switching of the inputs. The user can either provide an input voltage reference from the upstream device (VREFIN), or can use the reference voltage provided from the VSC8140 (VREFOUT). Side-by-side placement of the VREFIN and VREFOUT pins facilitates easy implementation.

For DC or AC operation, the external reference should have a nominal value equivalent to the common-mode switch point of an LVPECL DC-coupled signal, and adhere to the DC characteristics as specified by the Table 3 DC characteristics (V_{CM}).

Data Sheet VSC8140

Figure 16: High-Speed Clock and High-Speed Data Inputs

 $C_{IN} TYP = 100nF$

 $C_{AC} TYP = 100nF$

High-Speed Clock and High-Speed Data Inputs

The incoming high-speed data and high-speed clock are received by high-speed inputs RXIN and RXCLKIN. The inputs are internally biased to accommodate AC-coupling.

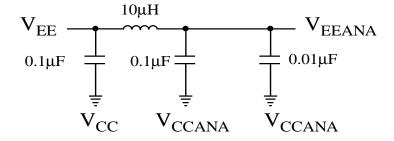
The data input receiver is internally terminated by a center-tapped resistor network. For differential input DC-coupling, the network is terminated to the appropriate termination voltage V_{TERM} providing a 50Ω to V_{TERM} termination for both true and complement inputs. For differential input AC-coupling, the network is terminated to V_{TERM} via a blocking capacitor.

In most situations, these inputs will have high transition density and little DC offset. However, in cases where this does not hold, direct DC connection is possible. All serial data and clock inputs have the same circuit topology, as shown in Figure 16. The reference voltage is created by a resistor divider as shown. If the input signal is driven differentially and DC-coupled to the part, the mid-point of the input signal swing should be centered about this reference voltage and not exceed the maximum allowable amplitude. For single-ended, DC-coupling operations, it is recommended that the user provides an external reference voltage which has better temperature and power supply noise rejection than the on-chip resistor divider. The external reference should have a nominal value equivalent to the common-mode switch point of the DC-coupled signal, and can be connected to either side of the differential gate.

2.48832Gb/s 16:1 SONET/SDH Transceiver with Integrated Clock Generator

Supplies

The VSC8140 is specified as a PECL device with a single positive 3.3V supply. Should the user desire to use the device in an ECL environment with a negative 3.3V supply, then V_{CC} will be ground and V_{EE} will be - 3.3V. If used with V_{EE} tied to -3.3V, the TTL control signals are still referenced to V_{EE} .


Decoupling of the power supplies is a critical element in maintaining the proper operation of the part. It is recommended that the V_{CC} power supply be decoupled using a $0.1\mu F$ and $0.01\mu F$ capacitor placed in parallel on each V_{CC} power supply pin as close to the package as possible. If room permits, a $0.001\mu F$ capacitor should also be placed in parallel with the $0.1\mu F$ and $0.01\mu F$ capacitors mentioned above. Recommended capacitors are low-inductance ceramic SMT X7R devices. For the $0.1\mu F$ capacitor, a 0603 package should be used. The $0.01\mu F$ and $0.001\mu F$ capacitors can be either 0603 or 0403 packages.

Extra care needs to be taken when decoupling the analog power supply pins (labeled V_{CCANA}). In order to maintain the optimal jitter and loop bandwidth characteristics of the PLL contained in the VSC8140, the analog power supply pins should be filtered from the main power supply with a $10\mu H$ C-L-C pi filter. If preferred, a ferrite bead may be used to provide the isolation. The $0.1\mu F$ and $0.01\mu F$ decoupling capacitors are still required and must be connected to the supply pins between the device and the C-L-C pi filter (or ferrite bead).

For low frequency decoupling, $47\mu F$ tantalum low-inductance SMT caps are sprinkled over the board's main +3.3V power supply and placed close to the C-L-C pi filter.

If the device is being used in an ECL environment with a -3.3V supply, then all references to decoupling V_{CC} must be changed to V_{EE} , and all references to decoupling 3.3V must be changed to -3.3V.

Figure 17: PLL Power Supply Decoupling Scheme

Note: V_{CC} can be tied to V_{CCANA}

Data Sheet VSC8140

AC Characteristics

Figure 18: Transmitter Parallel Data Timing Waveforms

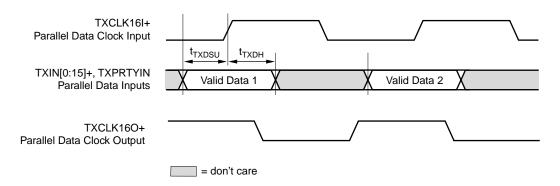
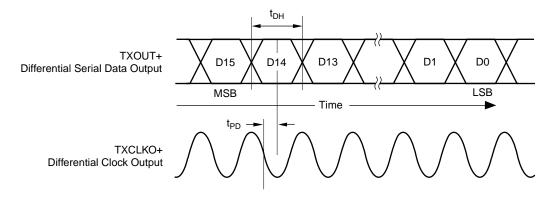
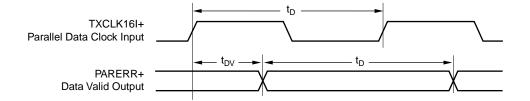
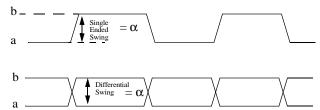




Figure 19: Transmitter Serial Data and Clock Phase Timing

NOTE: Bit 15 (MSB) is transmitted first, Bit 0 (LSB) is transmitted last.


Figure 20: Transmitter Parity Timing

2.48832Gb/s 16:1 SONET/SDH Transceiver with Integrated Clock Generator

Figure 21: Differential and Single-Ended Input / Output Voltage Measurement

^{*} Differential swing (α) is specified as |b-a| (or |a-b|), as is the single-ended swing. Differential swing is specified as equal in magnitude to single-ended swing.

Table 1: Transmitter AC Characteristics

Parameters	Description	Min	Тур	Max	Units	Conditions
T_{D}	TXCLK16I/TXCLK16O period		6.4		ns	
T _{TXDSU}	Data setup time to the rising edge of TXCLK16I+	0.75			ns	
T_{TXDH}	Data hold time after the rising edge of TXCLK16I+	1.0			ns	
T_{TXDOR} , T_{TXDOF}	TXOUT± rise and fall time			120	ps	20% to 80% into 100 Ω load. See Figure 13.
TXCLK _D	Transmit clock duty cycle	40		60	%	
t _{TXCLK16R} , t _{TXCLK16F}	TXCLK16O± rise and fall times		300		ps	See Figure 24
TXCLK16O _D	TXCLK16O± duty cycle	42		58	%	
TXCLK16I _D	TXCLK16I± duty cycle	40		60	%	Assuming 10% distortion of TXCLK16O.
RCK _D	Reference clock duty cycle	40		60	%	
T_{DV}	Parallel data to DINVALID		$3 t_D + 0.3$		ns	
t_{DH}	TXCLKO period		401.9		ps	
t _{PD}	Center of output data eye from falling edge of TXCLKO	-75		+75	ps	See Figure 19
Clock Multiplie	r Performance					
T_{DJ}	Output data jitter			4	ps	Tested to SONET specification (12kHz to 20MHz) with 2ps rms jitter on REFCLK. Normal mode operation, 500mV maximum per side on RXCLKIN.
T_{CJ}	Output clock jitter			4	ps	Tested to SONET specification (12kHz to 20MHz) with 2ps rms jitter on REFCLK. Normal mode operation, 500mV maximum per side on RXCLKIN
	Tuning Range	-100		+100	ppm	

Data Sheet VSC8140

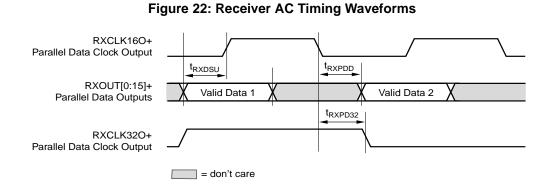
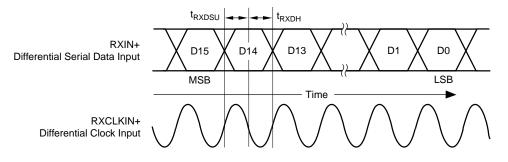



Figure 23: Receiver Setup and Hold Time Requirements

NOTE: Bit 15 (MSB) is received first, Bit 0 (LSB) is received last.

Table 2: Receiver AC Characteristics

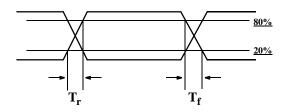
Parameters	Description	Min	Тур	Max	Units	Conditions
t _{RXPDD}	Data valid from falling edge of RXCLK16O+	0		800	ps	
t _{RXPD32}	RXCLK32O transition from falling edge of RXCLK16O+	0		1.0	ns	
t _{RXDR} , t _{RXDF}	RXOUT[15:0]+/- rise and fall times		300		ps	20% to 80% into DC termination. See Figure 24.
t _{RXCLKR} , t _{RXCLKF}	RXCLK16O+/- rise and fall times		300		ps	20% to 80% into 100Ω load. See Figure 24.
RXCLK16O _D	RXCLK16O+/- duty cycle distortion	45		55	% of clock cycle	High-speed clock input at 2.48832GHz.
t _{RXDSU}	RXIN+ setup time with respect to falling edge of RXCLKIN+	100			ps	
t _{RXDH}	RXIN+ hold time with respect to falling edge of RXCLKIN+	75			ps	
RXCLKIN _D	RXCLKIN+/- duty cycle distortion	40		60	% of clock cycle	

2.48832Gb/s 16:1 SONET/SDH Transceiver with Integrated Clock Generator

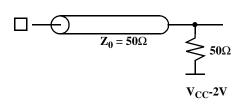
DC Characteristics

Table 3: DC Characteristics (Over recommended operating conditions)

Parameter	Description	Min	Тур	Max	Units	Conditions
V _{OHHSO}	Output HIGH voltage (TXOUT, TXCLKOUT)	V _{CC} -0.40		V _{CC} ⁽¹⁾	V	50Ω termination to V_{CC}
V _{OLHSO}	Output LOW voltage (TXOUT, TXCLKOUT)	V _{CC} -1.20 ⁽¹⁾		V _{CC} -0.50	V	50Ω termination to V_{CC}
$\Delta V_{ m ODHSO}$	Output differential voltage (TXCLKOUT)	450	600	1000	mV	100Ω termination between ± output at load. See Figure 13.
	Output differential voltage (TXOUT)	500	600	1000		output at load. See Figure 13.
V _{CMHSO}	Output common-mode voltage	V _{CC} -1.20		V _{CC} -0.300	V	100Ω termination between ± output at load. See Figure 13.
R _{HSO}	Back termination impedance	40		60	Ω	See Note 1
ΔV_{IHS}	Serial input differential voltage (RXIN, RXCLKIN)	200		500	mV	AC-coupled, internally biased to (V _{CC} +V _{EE})/2.
V _{OHL}	Output HIGH voltage (LVPECL)	V _{CC} -1.020		V _{CC} -0.700 ⁽¹⁾	V	See Figure 24
V _{OL}	Output LOW voltage (LVPECL)	V _{CC} -2.000 ⁽¹⁾		V _{CC} -1.620	V	See Figure 24
$\Delta V_{\rm O}$	Low-speed output voltage single- ended, peak-to-peak swing (LVPECL)	600		1300 ⁽¹⁾	mV	See Figure 24
V _{IH}	Input HIGH voltage (LVPECL)	V _{CC} -1.100		V_{CC} -0.700 ⁽¹⁾	V	
V _{IL}	Input LOW voltage(LVPECL)	V_{CC} -2.0 ⁽¹⁾		V _{CC} -1.540	V	
I _{IH}	Input HIGH current (LVPECL)			200	μΑ	V _{IN} =V _{IH} (max)
I_{IL}	Input LOW current (LVPECL)	-100			μΑ	V _{IN} =V _{IL} (min)
R _i	Input Resistance (LVPECL)		10		kΩ	
$\Delta V_{\rm I}$	Input differential voltage (LVPECL)	200			mV	
V _{CM}	Input common-mode voltage (LVPECL)	V _{CC} -1.5		V _{CC} -0.5	V	
V _{OH}	Output HIGH voltage (TTL)	2.4			V	$I_{OH} = -1.0 \text{mA}$
V _{OL}	Output LOW voltage (TTL)			0.5	V	$I_{OL} = +1.0$ mA
V _{IH}	Input HIGH voltage (TTL)	2.0		5.5 ⁽¹⁾	V	
V _{IL}	Input LOW voltage (TTL)	$0.0^{(1)}$		0.8	V	
I _{IH}	Input HIGH Current (TTL)			500	μΑ	$V_{IN} = 2.4V$
I_{IL}	Input LOW current (TTL)			-500	μΑ	$V_{IN} = 0.5V$
V _{CC}	Supply voltage	3.14		3.47	V	3.3V± 5%
P_{D}	Power dissipation		2.25	2.75	W	Outputs open, TXCLKOUT powered down
I _{CC}	Supply current			850	mA	Outputs open


NOTE: (1) Guaranteed but not tested to cover these conditions.

Data Sheet VSC8140


Figure 24: Parametric Measurement Information

PECL Rise and Fall Time

Parametric Test Load Circuit

Serial Output Load

Absolute Maximum Ratings (1)

Power Supply Voltage (V _{CC})	0.5V to +3.8V
DC Input Voltage (differential inputs)	
DC Input Voltage (TTL inputs)	0.5V to +5.5V
DC Output Voltage (TTL outputs)	0.5V to $V_{CC} + 0.5V$
Output Current (TTL outputs)	+/-50mA
Output Current (differential outputs)	+/-50mA
Case Temperature Under Bias	55°C to +125°C

Recommended Operating Conditions

Power Supply Voltage (V _{CC})	+3.3V <u>+</u> 5%
Operating Temperature Range	

NOTE: (1) CAUTION: Stresses listed under "Absolute Maximum Ratings" may be applied to devices one at a time without causing permanent damage. Functionality at or above the values listed is not implied. Exposure to these values for extended periods may affect device reliability.

ESD Ratings

Proper ESD procedures should be used when handling this product. The VSC8140 is rated to the following ESD voltages based on the human body model:

1. All pins are rated at or above 1500V.

2.48832Gb/s 16:1 SONET/SDH Transceiver with Integrated Clock Generator

Package Pin Descriptions

Table 4: Package Pin Identification - 128 PQFP

Pin#	Name	I/O	Level	Description
1	OVERFLOW	О	TTL	FIFO overflow indication
2	VEET	Pwr	GND typ.	TTL V _{EE} power supply
3	VCCT	Pwr	+3.3V typ.	TTL V _{CC} power supply
4	VEE	Pwr	GND typ.	Negative power supply
5	HSDREF	I	0V->3.3V	High-speed data input termination voltage reference
6	VEE	Pwr	GND typ.	Negative power supply
7	RXIN+	I	HS	High-speed data input, true
8	RXIN-	I	HS	High-speed data input, complement
9	VCC	Pwr	3.3V typ.	Positive power supply
10	VEE	Pwr	GND typ.	Negative power supply
11	VEE	Pwr	GND typ.	Negative power supply
12	VCC	Pwr	3.3V typ.	Positive power supply
13	RXCLKIN-	I	HS	High-speed clock input, complement
14	HSCLKREF	I	0V->3.3V	High-speed clock input termination voltage reference
15	RXCLKIN+	I	HS	High-speed clock Input, true
16	VCC	Pwr	3.3V typ.	Positive power supply
17	NC			No connect, leave unconnected ⁽¹⁾
18	VCC	Pwr	3.3V typ.	Positive power supply
19	VCC	Pwr	3.3V typ.	Positive power supply
20	TXOUT+	О	HS	High-speed data output, true
21	TXOUT-	О	HS	High-speed data output, complement
22	VCC	Pwr	3.3V typ.	Positive power supply
23	VEE	Pwr	GND typ.	Negative power supply
24	VEE	Pwr	GND typ.	Negative power supply
25	VEE	Pwr	GND typ.	Negative power supply
26	VCC	Pwr	3.3V typ.	Positive power supply
27	VCC	Pwr	3.3V typ.	Positive power supply
28	TXCLKOUT+	О	HS	High-speed clock output, true
29	TXCLKOUT-	О	HS	High-speed clock output, complement
30	VCC	Pwr	3.3V typ.	Positive power supply
31	VEEP_CLK	Pwr	GND typ.	HS clock V_{EE} power supply (tie to V_{CC} for power down)
32	VEEP_CLK	Pwr	GND typ.	HS clock V_{EE} power supply (tie to V_{CC} for power down)
33	VEE_PWRDN	Pwr	GND typ.	HS clock V_{EE} power supply (tie to V_{CC} for power down)
34	VCC	Pwr	3.3V typ.	Positive power supply
35	VCC	Pwr	3.3V typ.	Positive power supply
36	VCC	Pwr	3.3V typ.	Positive power supply

Data Sheet VSC8140

Table 4: Package Pin Identification - 128 PQFP

Pin #	Name	I/O	Level	Description
37	VEE	Pwr	GND typ.	Negative power supply
38	FACLOOP	I	TTL	Facility loopback, active high
39	LOOPTIM0	I	TTL	Enable internal looptiming operation, active high
40	PARMODE	I	TTL	Parity mode select
41	FIFORESET	I	TTL	Reset to align FIFO write and read pointers
42	LOOPTIM1	I	TTL	Enable external loop timing operation, active high
43	REF_FREQSEL	I	TTL	Reference clock input select
44	LPTIMCLK+	I	LVPECL	External loop timing clock, true
45	LPTIMCLK-	I	LVPECL	External loop timing clock, complement
46	VCC_ANA	Pwr	+3.3V typ.	Positive power supplys for analog parts of CMU
47	VEE_ANA	Pwr	GND typ.	Negative power supplys for analog parts of CMU
48	REFCLK+	I	LVPECL	Reference clock input, true
49	REFCLK-	I	LVPECL	Reference clock input, complement
50	VEE	Pwr	GND typ.	Negative power supply
51	FILTAO			Loop filter pin - connect via capacitor to FILTAI (pin 53)
52	FILTAON			Loop filter pin - connect via capacitor to FILTAIN (pin 54)
53	FILTAI			Loop filter pin - connect via capacitor to FILTAO (pin 51)
54	FILTAIN			Loop filter pin - connect via capacitor to FILTAON (pin 52)
55	VCC	Pwr	3.3V typ.	Positive power supply
56	TXCLK16O+	О	LVPECL	Low-speed clock output, true. A divide-by-16 version of the PLL clock.
57	TXCLK16O-	О	LVPECL	Low-speed clock output, complement. A divide-by-16 version of the PLL clock.
58	VEE	Pwr	GND typ.	Negative power supply
59	TXCLK16I-	I	LVPECL	Low-speed clock input for latching low-speed data, complement
60	TXCLK16I+	I	LVPECL	Low-speed clock input for latching low-speed data, true
61	VCC	Pwr	3.3V typ.	Positive power supply
62	TXPARITYIN	I	LVPECL	Transmitter parity bit input
63	TXIN15	I	LVPECL	Low-speed single-ended data (MSB) ⁽²⁾
64	TXIN14	I	LVPECL	Low-speed single-ended data
65	VEE	Pwr	GND typ.	Negative power supply
66	VCC	Pwr	3.3V typ.	Positive power supply
67	TXIN13	I	LVPECL	Low-speed single-ended data
68	TXIN12	I	LVPECL	Low-speed single-ended data
69	TXIN11	I	LVPECL	Low-speed single-ended data
70	TXIN10	I	LVPECL	Low-speed single-ended data
71	TXIN9	I	LVPECL	Low-speed single-ended data

2.48832Gb/s 16:1 SONET/SDH Transceiver with Integrated Clock Generator

Table 4: Package Pin Identification - 128 PQFP

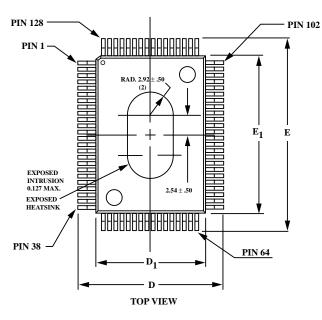
Pin#	Name	I/O	Level	Description
72	VEE	Pwr	GND typ.	Negative power supply
73	TXIN8	I	LVPECL	Low-speed single-ended data
74	TXIN7	I	LVPECL	Low-speed single-ended data
75	TXIN6	I	LVPECL	Low-speed single-ended data
76	TXIN5	I	LVPECL	Low-speed single-ended data
77	TXIN4	I	LVPECL	Low-speed single-ended data
78	VCC	Pwr	3.3V typ.	Positive power supply
79	TXIN3	I	LVPECL	Low-speed single-ended data
80	TXIN2	I	LVPECL	Low-speed single-ended data
81	VEE	Pwr	GND typ.	Negative power supply
82	TXIN1	I	LVPECL	Low-speed single-ended data
83	TXIN0	I	LVPECL	Low-speed single-ended data (LSB) ⁽²⁾
84	VCC	Pwr	3.3V typ.	Positive power supply
85	VREFIN	I	Voltage	Voltage reference for single-ended TXIN V _{CM} or VREFOUT
86	VREFOUT	О	Voltage	Voltage reference for single-ended RXOUT (V _{OH} +V _{OL})/2.
87	VCC	Pwr	3.3V typ.	Positive power supply
88	RXOUT0	О	LVPECL	Low-speed single-ended data (LSB) ⁽²⁾
89	RXOUT1	О	LVPECL	Low-speed single-ended data
90	VEE	Pwr	GND typ.	Negative power supply
91	RXOUT2	О	LVPECL	Low-speed single-ended data
92	RXOUT3	О	LVPECL	Low-speed single-ended data
93	VCC	Pwr	3.3V typ.	Positive power supply
94	RXOUT4	О	LVPECL	Low-speed single-ended data
95	RXOUT5	О	LVPECL	Low-speed single-ended data
96	VCC	Pwr	3.3V typ.	Positive power supply
97	RXOUT6	О	LVPECL	Low-speed single-ended data
98	RXOUT7	О	LVPECL	Low-speed single-ended data
99	VEE	Pwr	GND typ.	Negative power supply
100	RXOUT8	О	LVPECL	Low-speed single-ended data
101	RXOUT9	О	LVPECL	Low-speed single-ended data
102	VCC	Pwr	3.3V typ.	Positive power supply
103	VCC	Pwr	3.3V typ.	Positive power supply
104	RXOUT10	0	LVPECL	Low-speed single-ended data
105	RXOUT11	0	LVPECL	Low-speed single-ended data
106	RXOUT12	0	LVPECL	Low-speed single-ended data
107	VCC	Pwr	3.3V typ.	Positive power supply
108	RXOUT13	0	LVPECL	Low-speed single-ended data

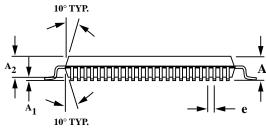
Data Sheet VSC8140

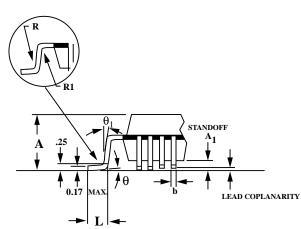
Table 4: Package Pin Identification - 128 PQFP

Pin #	Name	I/O	Level	Description
109	RXOUT14	О	LVPECL	Low-speed single-ended data
110	VEE	Pwr	GND typ.	Negative power supply
111	RXOUT15	О	LVPECL	Low-speed single-ended data (MSB) ⁽²⁾
112	RXPARITYOUT	О	LVPECL	Receiver parity bit output
113	VCC	Pwr	3.3V typ.	Positive power supply
114	RXCLK16O-	О	LVPECL	Parallel clock output (155.52MHz), complement
115	RXCLK16O+	О	LVPECL	Parallel clock output (155.52MHz), true
116	VEE	Pwr	GND typ.	Negative power supply
117	VCC	Pwr	3.3V typ.	Positive power supply
118	RXCLK16_32O-	О	LVPECL	Divide-by-16 or -32 clock output, complement
119	RXCLK16_32O+	О	LVPECL	Divide-by-16 or -32 clock output, true
120	CLK128O-	О	LVPECL	Divide-by-128 clock output, complement
121	CLK128O+	О	LVPECL	Divide-by-128 clock output, true
122	VCC	Pwr	3.3V typ.	Positive power supply
123	RXCLKO_FREQSEL	I	TTL	RXCLKO16_32 frequency select
124	LOS	I	TTL	Loss of Signal control
125	POL	I	TTL	Polarity Signal Control
126	EQULOOP	I	TTL	Equipment loopback, active high
127	VCC	Pwr	3.3V typ.	Positive power supply
128	PARERR	0	TTL	Parity error output

NOTES: (1) No connect (NC) pin must be left unconnected. Connecting this pin to either the positive or negative power supply rails may cause improper operation or failure of the device; or in extreme cases, cause permanent damage to the device.


⁽²⁾ There has been a change in the naming of the pins of the Low-Speed Parallel Receive and Transmit pins of the VSC8140. RXOUT0; pin 88 (MSB) has been changed to RXOUT15; pin 111 (MSB) and TXIN15; pin 63 (LSB) has been changed to TXIN0; pin 83 (LSB).


2.48832Gb/s 16:1 SONET/SDH Transceiver with Integrated Clock Generator


Package Information

128 PQFP Package Drawings

Key	mm	Tolerance
A	2.35	MAX
A1	0.25	MAX
A2	2.00	+.10
D	17.20	±.20
D1	14.00	±.10
Е	23.20	±.20
E1	20.00	±.10
L	.88	+.15/10
e	.50	BASIC
b	.22	±.05
q	0°-7°	
R	.30	TYP
R1	.20	TYP

Drawing is not to scale All dimensions in mm

Package represented is also used for the 64, 80, & 100 PQFP packages. not reflect the 128 Package.

NOTES:

Package #: 101-322-5 Issue #: 2

Data Sheet VSC8140

Package Pin Descriptions

Table 5: Package Pin Identification - 208 BGA

Pin #	Name	I/O	Level	Description
B17	OVERFLOW	О	TTL	FIFO overflow indication
B16	VEET	Pwr	GND typ.	TTL V _{EE} power supply
B15	VCCT	Pwr	+3.3V typ.	TTL V _{CC} power supply
C14	VEE	Pwr	GND typ.	Negative power supply
D13	HSDREF	I	0V->3.3V	High-speed data input termination voltage reference
A16	VEE	Pwr	GND typ.	Negative power supply
B14	RXIN+	I	HS	High-speed data input, true
B13	RXIN-	I	HS	High-speed data input, complement
A14	VCC	Pwr	3.3V typ.	Positive power supply
A13	VEE	Pwr	GND typ.	Negative power supply
D11	VEE	Pwr	GND typ.	Negative power supply
C11	VCC	Pwr	3.3V typ.	Positive power supply
B11	RXCLKIN-	I	HS	High-speed clock input, complement
D10	HSCLKREF	I	0V->3.3V	High-speed clock input termination voltage reference
B10	RXCLKIN+	I	HS	High-speed clock input, true
A10	VCC	Pwr	3.3V typ.	Positive power supply
В9	VCC	Pwr	3.3V typ.	Positive power supply
D9	VCC	Pwr	3.3V typ.	Positive power supply
A9	TXOUT+	О	HS	High-speed data output, true
A8	TXOUT-	О	HS	High-speed data output, complement
C8	VCC	Pwr	3.3V typ.	Positive power supply
D8	VEE	Pwr	GND typ.	Negative power supply
A7	VEE	Pwr	GND typ.	Negative power supply
A6	VEE	Pwr	GND typ.	Negative power supply
D7	VCC	Pwr	3.3V typ.	Positive power supply
A5	VCC	Pwr	3.3V typ.	Positive power supply
A4	TXCLKOUT+	О	HS	High-speed clock output, true
A3	TXCLKOUT-	О	HS	High-speed clock output, complement
B4	VCC	Pwr	3.3V typ.	Positive power supply
D5	VEEP_CLK	Pwr	GND typ.	HS clock V _{EE} power supply (tie to V _{CC} for power down)
A2	VEEP_CLK	Pwr	GND typ.	HS clock V _{EE} power supply (tie to V _{CC} for power down)
A1	VEE_PWRDN	Pwr	GND typ.	HS clock V _{EE} power supply (tie to V _{CC} for power down)
C4	VCC	Pwr	3.3V typ.	Positive power supply

2.48832Gb/s 16:1 SONET/SDH Transceiver with Integrated Clock Generator

Table 5: Package Pin Identification - 208 BGA

Pin #	Name	I/O	Level	Description
В3	VCC	Pwr	3.3V typ.	Positive power supply
D4	VCC	Pwr	3.3V typ.	Positive power supply
C3	VEE	Pwr	GND typ.	Negative power supply
C1	FACLOOP	I	TTL	Facility loopback, active high
F4	LOOPTIM0	I	TTL	Enable internal looptiming operation, active high
F3	PARMODE	I	TTL	Parity mode select
D1	FIFORESET	I	TTL	Reset to align FIFO write and read pointers
E1	LOOPTIM1	I	TTL	Enable external loop timing operation, active high
G4	REF_FREQSEL	I	TTL	Reference clock input select
G3	VEE	Pwr	GND typ.	Negative power supply
F2	LPTIMCLK+	I	LVPECL	External loop timing clock, true
G2	LPTIMCLK-	I	LVPECL	External loop timing clock, complement
F1	VCC_ANA	Pwr	+3.3V typ.	Positive power supplies for analog parts of CMU
НЗ	VEE_ANA	Pwr	GND typ.	Negative power supplies for analog parts of CMU
H2	REFCLK+	I	LVPECL	Reference clock input, true
G1	REFCLK-	I	LVPECL	Reference clock input,complement
H1	VEE	Pwr	GND typ.	Negative power supply
J2	VCC	Pwr	3.3V typ.	Positive power supply
J4	FILTAO			Loop filter pin - connect via capacitor to FILTAI (pin 53)
J3	FILTAON			Loop filter pin - connect via capacitor to FILTAIN (pin 54)
K1	FILTAI			Loop filter pin - connect via capacitor to FILTAO (pin 51)
K2	FILTAIN			Loop filter pin - connect via capacitor to FILTAON (pin 52)
К3	VCC	Pwr	3.3V typ.	Positive power supply
K4	TXCLK16O+	О	LVPECL	Low-speed clock output, true. A divide-by-16 version of the PLL clock.
L1	TXCLK16O-	О	LVPECL	Low-speed clock output, complement. A divide-by-16 version of the PLL clock.
M1	VEE	Pwr	GND typ.	Negative power supply
L2	TXCLK16I-	I	LVPECL	Low-speed clock input for latching low-speed data, complement
L3	TXCLK16I+	I	LVPECL	Low-speed clock input for latching low-speed data, true
L4	VCC	Pwr	3.3V typ.	Positive power supply
M2	TXPARITYIN	I	LVPECL	Transmitter parity bit input
M3	TXIN15	I	LVPECL	Low-speed single-ended data (MSB) ⁽¹⁾
M4	TXIN14	I	LVPECL	Low-speed single-ended data
P1	VEE	Pwr	GND typ.	Negative power supply

Data Sheet VSC8140

Table 5: Package Pin Identification - 208 BGA

Pin #	Name	I/O	Level	Description	
Т3	VCC	Pwr	3.3V typ.	Positive power supply	
P5	TXIN13	I	LVPECL	Low-speed single-ended data	
R5	TXIN12	I	LVPECL	Low-speed single-ended data	
T4	TXIN11	I	LVPECL	Low-speed single-ended data	
P6	TXIN10	I	LVPECL	Low-speed single-ended data	
T5	TXIN9	I	LVPECL	Low-speed single-ended data	
R6	VEE	Pwr	GND typ.	Negative power supply	
U5	TXIN8	I	LVPECL	Low-speed single-ended data	
R7	TXIN7	I	LVPECL	Low-speed single-ended data	
Т6	TXIN6	I	LVPECL	Low-speed single-ended data	
U6	TXIN5	I	LVPECL	Low-speed single-ended data	
P8	TXIN4	I	LVPECL	Low-speed single-ended data	
R8	VCC	Pwr	3.3V typ.	Positive power supply	
Т8	TXIN3	I	LVPECL	Low-speed single-ended data	
U7	TXIN2	I	LVPECL	Low-speed single-ended data	
U8	VEE	Pwr	GND typ.	Negative power supply	
Т9	TXIN1	I	LVPECL	Low-speed single-ended data	
P9	TXIN0	I	LVPECL	Low-speed single-ended data (LSB) ⁽¹⁾	
R9	VCC	Pwr	3.3V typ.	Positive power supply	
U9	VREFIN	I	Voltage	Voltage reference for single-ended TXIN V _{CM} or VREFOUT	
U10	VREFOUT	О	Voltage	Voltage reference for single-ended RXOUT (V _{OH} +V _{OL})/2	
T10	VCC	Pwr	3.3V typ.	Positive power supply	
R10	RXOUT0	О	LVPECL	Low-speed single-ended data (LSB) ⁽¹⁾	
P10	RXOUT1	О	LVPECL	Low-speed single-ended data	
U11	VEE	Pwr	GND typ.	Negative power supply	
U12	RXOUT2	О	LVPECL	Low-speed single-ended data	
T11	RXOUT3	О	LVPECL	Low-speed single-ended data	
R11	VCC	Pwr	3.3V typ.	Positive power supply	
P11	RXOUT4	О	LVPECL	Low-speed single-ended data	
U13	RXOUT5	О	LVPECL	Low-speed single-ended data	
T12	VCC	Pwr	3.3V typ.	Positive power supply	
T13	RXOUT6	О	LVPECL	Low-speed single-ended data	
R12	RXOUT7	О	LVPECL	Low-speed single-ended data	
P12	VEE	Pwr	GND typ.	Negative power supply	

2.48832Gb/s 16:1 SONET/SDH Transceiver with Integrated Clock Generator

Table 5: Package Pin Identification - 208 BGA

Pin #	Name	I/O	Level	Description
U14	RXOUT8	0	LVPECL	Low-speed single-ended data
U15	RXOUT9	О	LVPECL	Low-speed single-ended data
R13	VCC	Pwr	3.3V typ.	Positive power supply
N16	VCC	Pwr	3.3V typ.	Positive power supply
P17	RXOUT10	О	LVPECL	Low-speed single-ended data
L14	RXOUT11	О	LVPECL	Low-speed single-ended data
L15	RXOUT12	О	LVPECL	Low-speed single-ended data
M16	VCC	Pwr	3.3V typ.	Positive power supply
L16	RXOUT13	О	LVPECL	Low-speed single-ended data
M17	RXOUT14	О	LVPECL	Low-speed single-ended data
K14	VEE	Pwr	GND typ.	Negative power supply
K15	RXOUT15	0	LVPECL	Low-speed single-ended data (MSB) ⁽¹⁾
K16	RXPARITYOUT	О	LVPECL	Receiver Parity bit output
L17	VCC	Pwr	3.3V typ.	Positive power supply
J17	RXCLK16O-	О	LVPECL	Parallel clock output (155.52MHz), complement
H17	RXCLK16O+	О	LVPECL	Parallel clock output (155.52MHz), true
H16	VEE	Pwr	GND typ.	Negative power supply
H15	VCC	Pwr	3.3V typ.	Positive power supply
H14	RXCLK16_32O-	О	LVPECL	Divide-by-16 or -32 clock output, complement
G17	RXCLK16_32O+	О	LVPECL	Divide-by-16 or -32 clock output, true
F17	CLK128O-	0	LVPECL	Divide-by-128 clock output, complement
G16	CLK128O+	0	LVPECL	Divide-by-128 clock output, true
G15	VCC	Pwr	3.3V typ.	Positive power supply
G14	RXCLKO_FREQSEL	I	TTL	RXCLKO16_32 frequency select
D17	LOS	I	TTL	Loss of Signal control
C17	POL	I	TTL	Polarity Signal Control
E15	EQULOOP	I	TTL	Equipment loopback, active high
D16	VCC	Pwr	3.3V typ.	Positive power supply
E14	PARERR	O	TTL	Parity error output
A17	NC			No connect, leave unconnected ⁽²⁾
A15	NC			No connect, leave unconnected ⁽²⁾
A12	NC			No connect, leave unconnected ⁽²⁾
A11	NC			No connect, leave unconnected ⁽²⁾
B12	NC			No connect, leave unconnected ⁽²⁾
В8	NC			No connect, leave unconnected ⁽²⁾

Data Sheet VSC8140

Table 5: Package Pin Identification - 208 BGA

Pin #	Name	I/O	Level	Description
B7	NC			No connect, leave unconnected ⁽²⁾
В6	NC			No connect, leave unconnected ⁽²⁾
B5	NC			No connect, leave unconnected ⁽²⁾
B2	NC			No connect, leave unconnected ⁽²⁾
B1	NC			No connect, leave unconnected ⁽²⁾
C16	NC			No connect, leave unconnected ⁽²⁾
C15	NC			No connect, leave unconnected ⁽²⁾
C13	NC			No connect, leave unconnected ⁽²⁾
C12	NC			No connect, leave unconnected ⁽²⁾
C10	NC			No connect, leave unconnected ⁽²⁾
C9	NC			No connect, leave unconnected ⁽²⁾
C7	NC			No connect, leave unconnected ⁽²⁾
C6	NC			No connect, leave unconnected ⁽²⁾
C5	NC			No connect, leave unconnected ⁽²⁾
C2	NC			No connect, leave unconnected ⁽²⁾
D15	NC			No connect, leave unconnected ⁽²⁾
D14	NC			No connect, leave unconnected ⁽²⁾
D12	NC			No connect, leave unconnected ⁽²⁾
D6	NC			No connect, leave unconnected ⁽²⁾
D3	NC			No connect, leave unconnected ⁽²⁾
D2	NC			No connect, leave unconnected ⁽²⁾
E17	NC			No connect, leave unconnected ⁽²⁾
E16	NC			No connect, leave unconnected ⁽²⁾
E4	NC			No connect, leave unconnected ⁽²⁾
E3	NC			No connect, leave unconnected ⁽²⁾
E2	NC			No connect, leave unconnected ⁽²⁾
F16	NC			No connect, leave unconnected ⁽²⁾
F15	NC			No connect, leave unconnected ⁽²⁾
F14	NC			No connect, leave unconnected ⁽²⁾
H4	NC			No connect, leave unconnected ⁽²⁾
J16	NC			No connect, leave unconnected ⁽²⁾
J15	NC			No connect, leave unconnected ⁽²⁾
J14	NC			No connect, leave unconnected ⁽²⁾
J1	NC			No connect, leave unconnected ⁽²⁾
K17	NC			No connect, leave unconnected ⁽²⁾

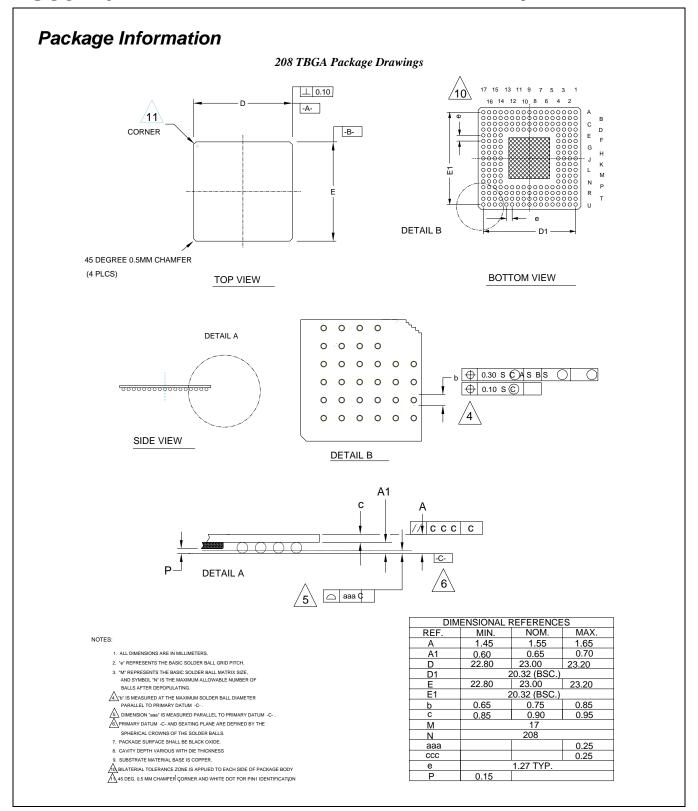
2.48832Gb/s 16:1 SONET/SDH Transceiver with Integrated Clock Generator

Table 5: Package Pin Identification - 208 BGA

Pin #	Name	I/O	Level	Description
M15	NC			No connect, leave unconnected ⁽²⁾
M14	NC			No connect, leave unconnected ⁽²⁾
N17	NC			No connect, leave unconnected ⁽²⁾
N15	NC			No connect, leave unconnected ⁽²⁾
N14	NC			No connect, leave unconnected ⁽²⁾
N4	NC			No connect, leave unconnected ⁽²⁾
N3	NC			No connect, leave unconnected ⁽²⁾
N2	NC			No connect, leave unconnected ⁽²⁾
N1	NC			No connect, leave unconnected ⁽²⁾
P16	NC			No connect, leave unconnected ⁽²⁾
P15	NC			No connect, leave unconnected ⁽²⁾
P14	NC			No connect, leave unconnected ⁽²⁾
P13	NC			No connect, leave unconnected ⁽²⁾
P7	NC			No connect, leave unconnected ⁽²⁾
P4	NC			No connect, leave unconnected ⁽²⁾
Р3	NC			No connect, leave unconnected ⁽²⁾
P2	NC			No connect, leave unconnected ⁽²⁾
R17	NC			No connect, leave unconnected ⁽²⁾
R16	NC			No connect, leave unconnected ⁽²⁾
R15	NC			No connect, leave unconnected ⁽²⁾
R14	NC			No connect, leave unconnected ⁽²⁾
R4	NC			No connect, leave unconnected ⁽²⁾
R3	NC			No connect, leave unconnected ⁽²⁾
R2	NC			No connect, leave unconnected ⁽²⁾
R1	NC			No connect, leave unconnected ⁽²⁾
T17	NC			No connect, leave unconnected ⁽²⁾
T16	NC			No connect, leave unconnected ⁽²⁾
T15	NC			No connect, leave unconnected ⁽²⁾
T14	NC			No connect, leave unconnected ⁽²⁾
Т7	NC			No connect, leave unconnected ⁽²⁾
T2	NC			No connect, leave unconnected ⁽²⁾
T1	NC			No connect, leave unconnected ⁽²⁾
U17	NC			No connect, leave unconnected ⁽²⁾
U16	NC			No connect, leave unconnected ⁽²⁾
U4	NC			No connect, leave unconnected ⁽²⁾

Data Sheet VSC8140

Table 5: Package Pin Identification - 208 BGA


Pin #	Name	I/O	Level	Description
U3	NC			No connect, leave unconnected ⁽²⁾
U2	NC			No connect, leave unconnected ⁽²⁾
U1	NC			No connect, leave unconnected ⁽²⁾

NOTES: (1) There has been a change in the naming of the pins of the Low-Speed Parallel Receive and Transmit pins of the VSC8140. RXOUT0; pin R10 (MSB) has been changed to RXOUT15; pin K15 (MSB) and TXIN15; pin M3 (LSB) has been changed to TXIN0; pin P9 (LSB).

(2) No connect (NC) pins must be left unconnected. Connecting any of these pins to either the positive or negative power supply rails may cause improper operation or failure of the device; or in extreme cases, cause permanent damage to the device.

2.48832Gb/s 16:1 SONET/SDH Transceiver with Integrated Clock Generator

Data Sheet VSC8140

Package Thermal Considerations

This package has been enhanced with a copper heat slug to provide a low thermal resistance path from the die to the exposed surface of the heat spreader. The thermal resistance is shown in the following table:

Table 6: Thermal Resistance

Symbol	Description	°C/W - (BGA)	°C/W (PQFP)
$\theta_{ m jc}$	Thermal resistance from junction to case.	2.2	1.34
θ_{ca}	Thermal resistance from case to ambient with no airflow, including conduction through the leads.	18.5	25.0

Thermal Resistance with Airflow

Shown in the table below is the thermal resistance with airflow. This thermal resistance value reflects all the thermal paths including through the leads in an environment where the leads are exposed. The temperature difference between the ambient airflow temperature and the case temperature should be the worst case power of the device multiplied by the thermal resistance.

Table 7: Thermal Resistance with Airflow

Airflow	θ _{ca} (°C/W) (BGA)	θ _{ca} (°C/W) (<i>PQFP</i>)
100 lfpm	18	21
200 lfpm	17	18
400 lfpm	16	16

Maximum Ambient Temperature without Heatsink

The worst case ambient temperature without use of a heatsink is given by the equation:

$$T_{A(MAX)} = T_{C(MAX)} - P_{(MAX)} \theta_{CA}$$

where:

 $\boldsymbol{\theta}_{CA}$ Theta case to ambient at appropriate airflow

 $T_{A(MAX)}$ Ambient Air temperature $T_{C(MAX)}$ Case temperature (110°C for VSC8140)

 $P_{(MAX)}$ Power (2.75 W for VSC8140)

2.48832Gb/s 16:1 SONET/SDH Transceiver with Integrated Clock Generator

The results of this calculation are listed below:

Table 8: Maximum Ambient Air Temperature without Heatsink

Airflow	°C (TBGA)	°C (PQFP)
None	59	41
100 lfpm	60	52
200 lfpm	63	60
400 lfpm	66	66

Note that ambient air temperature varies throughout the system based on the positioning and magnitude of heat sources and the direction of air flow.

Surface Mount Solderability

The make-up of each lead on the PQFP and TBGA package is 85% Tin and 15% Lead. The solderability requirements for the various methods is described below.

Reflow Soldering

This is the suitable method of soldering for these components. When using reflow soldering to mount the IC package, solder paste (a suspension of fine solder particles, flux, and binding agent) is required to be applied to the printed-circuit board by screen printing, stenciling, or pressure-syringe dispensing before package placement.

Throughput times (this includes preheating, soldering, and cooling) are shown in Table 9.

Table 9: Reflow Running Profile

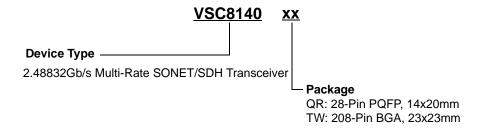
Condition	TBGA	PQFP
Average ramp up (from 183°C to peak temperature)	1.553°C/sec	1.5432°C/sec
Average ramp down (from peak to 183°C)	-1.152°C/sec	-1.085°C/sec
Preheat Temperature (125°C)	77 sec	79 sec
Temperature maintained above 183°C	80 sec	80 sec
Time within 5°C of actual peak temperature	19 sec	19 sec
Peak Temperature Range	220-225°C	220-225°C
Peak Temperature	224°C	224°C
Time 25°C to Peak Temperature	233 sec	228 sec

Wave Soldering

Conventional single wave soldering is not recommended for surface mount devices or printed circuit boards with high component density, as solder bridging and non-wetting can present problems. Double-wave soldering can be used, only if the method comprises a turbulent wave with high upward pressure followed by a smooth laminar wave and the footprint must incorporate solder thieves at the downstream end. The package must be fixed with a droplet of adhesive during placement before soldering. After the adhesive is cured, the package can be soldered.

Data Sheet VSC8140

Manual Soldering


When manually soldering the device to the printed circuit board, contact time should be limited to 10 seconds at up to 240° C.

Layout Considerations

Refer to Application Note, AN56 "High-Speed Design Guidelines."

Ordering Information

The order number for this product is formed by a combination of the device type and package type.

Notice

Vitesse Semiconductor Corporation ("Vitesse") provides this document for informational purposes only. All information in this document, including descriptions of features, functions, performance, technical specifications and availability, is subject to change without notice at any time. Nothing contained in this document shall be construed as extending any warranty or promise, express or implied, that any Vitesse product will be available as described or will be suitable for or will accomplish any particular task.

Vitesse products are not intended for use in life support appliances, devices or systems. Use of a Vitesse product in such applications without written consent is prohibited.