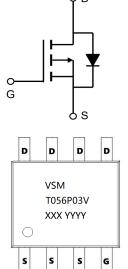
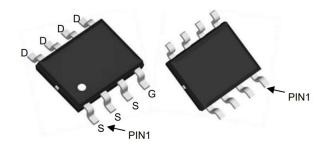


General Features


V _{DS}	ΙD	R _{DS(ON)} Type @ V _{GS} = -10V	R _{DS(ON)} Type @ V _{GS} = -4.5V
- 30V	- 20A	5.6 mΩ	8.0 mΩ


Description

The VSMT056P03VA1 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

Application

Lithium battery protection
Wireless impact
Mobile phone fast charging

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)	
VSMT056P03VA1	SOP-8L	VSM T056P03V XXX YYYY	3000	

Absolute Maximum Ratings (TC=25℃unless otherwise noted)

Symbol	Parameter	Rating	Units	
VDS	Drain-Source Voltage	-30	V	
VGS	Gate-Source Voltage	±20	V	
ID@TC=25℃	Continuous Drain Current, VGS @ -10V1	-20	А	
ID@TC=100°C	Continuous Drain Current, VGS @ -10V1	-16.8	А	
IDM	Pulsed Drain Current2	-60	А	
EAS	Single Pulse Avalanche Energy3	125	mJ	
PD@TC=25℃	Total Power Dissipation4	69	W	
TSTG	Storage Temperature Range	-55 to 150	$^{\circ}$ C	
TJ	Operating Junction Temperature Range	-55 to 150	$^{\circ}$ C	
RθJA	Thermal Resistance Junction-Ambient 1 85		°C/W	
RθJC	Thermal Resistance Junction-Case1	1.6	°C/W	

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =-250uA	-30	-34		V
△BVdss/△TJ	BVDSS Temperature Coefficient	Reference to 25°C , I _D =-1mA		-0.0232		V/°C
	Static Drain-Source On-Resistance	V _{GS} =-10V , I _D =-20A		5.6	7.2	mΩ
RDS(ON)		V _{GS} =-4.5V , I _D =-15A		8.0	11	
VGS(th)	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =-250uA	-1.2	-1.6	-2.5	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	20047		4.6		mV/°C
lano	Drain-Source Leakage Current	V _{DS} =-24V , V _{GS} =0V , T _J =25°C			-1	uA
IDSS		V _{DS} =-24V , V _{GS} =0V , T _J =55°C			-5	
Igss	Gate-Source Leakage Current	V_{GS} =±20 V , V_{DS} =0 V			±100	nA
gfs	Forward Transconductance	V _{DS} =-5V , I _D =-30A		30		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		9.8		Ω
Qg	Total Gate Charge (-4.5V)			35		
Qgs	Gate-Source Charge	V _{DS} =-15V , V _{GS} =-4.5V I _D =-20A		9.9		nC
Qgd	Gate-Drain Charge	10-20/		10.5		
T _{d(on)}	Turn-On Delay Time	\/ 45\/ \/ 40\/		10.8		
Tr	Rise Time	V _{DD} =-15V , V _{GS} =-10V ,		13.2		
Td(off)	Turn-Off Delay Time	$R_G=3.0\Omega$ $I_D=-20A$		73		ns
T _f	Fall Time	ID20A		35		
Ciss	Input Capacitance			3520		
Coss	Output Capacitance	V _{DS} =-15V , V _{GS} =0V , f=1MHz		465		pF
Crss	Reverse Transfer Capacitance			370		
ls	Continuous Source Current	\/ -\/ -0\/ Fares Current			-70	Α
lsм	Pulsed Source Current	V _G =V _D =0V , Force Current			-130	Α
VsD	Diode Forward Voltage	V _{GS} =0V , I _S =-1A , T _J =25°C			-1.3	V
trr	Reverse Recovery Time	IF=-20A , dI/dt=100A/μs ,		25		nS
Qrr	Reverse Recovery Charge	T _J =25°C		10		nC

Note:

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- $2 \sqrt{100} \, \mathrm{The} \, \mathrm{data} \, \mathrm{tested} \, \mathrm{by} \, \mathrm{pulsed}$, pulse width .The EAS data shows Max. rating .
- 3. The power dissipation is limited by 175°C junction temperature
- 4 \times EAS condition: TJ=25°C, VDD= -24V, VG= -10V, RG=7 Ω , L=0.1mH, IAS= -40A
- 5. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

Typical Characteristics

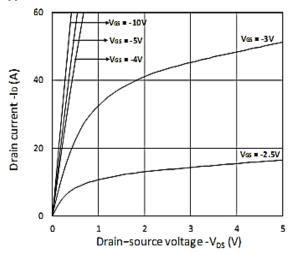


Figure 1. Output Characteristics

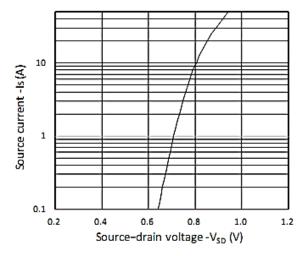


Figure 3. Forward Characteristics of Reverse

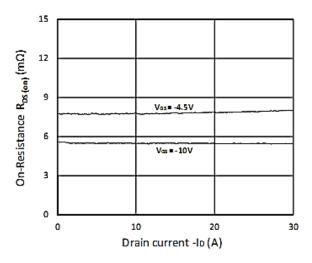


Figure 5. R_{DS(ON)} vs. I_D

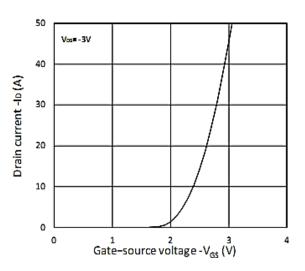


Figure 2. Transfer Characteristics

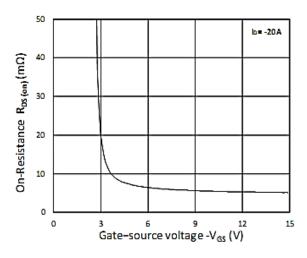


Figure 4. R_{DS(ON)} vs. V_{GS}

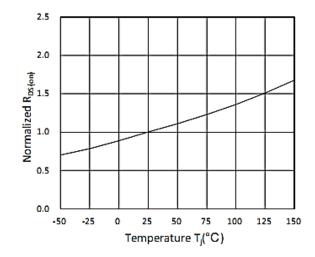


Figure 6. Normalized $R_{DS(\alpha n)}$ vs. Temperature

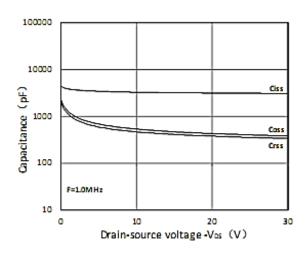


Figure 7. Capacitance Characteristics

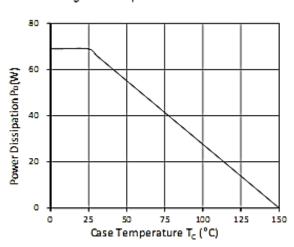


Figure 9. Power Dissipation

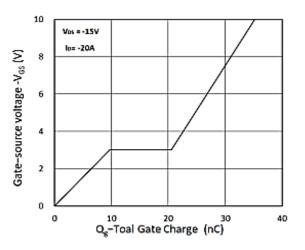


Figure 8. Gate Charge Characteristics

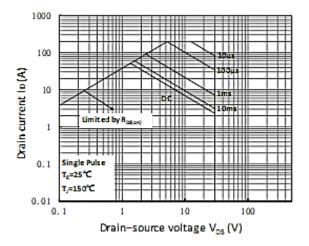
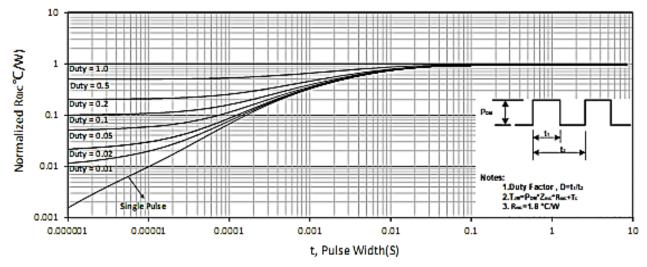
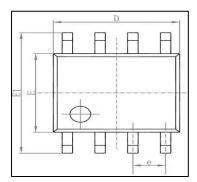
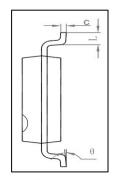
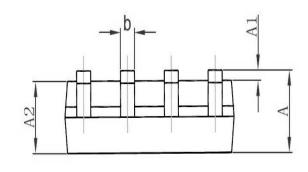
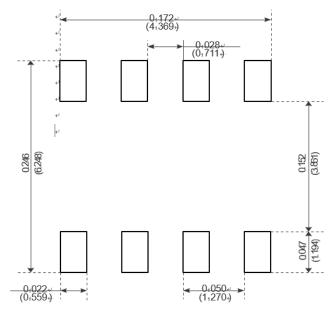


Figure 10. Safe Operating Area


Figure 11. Normalized Maximum Transient Thermal Impedance




Package Mechanical Data-SOP-8L

Cl 1	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1. 350	1. 750	0. 053	0.069	
A1	0. 100	0. 250	0. 004	0. 010	
A2	1. 350	1. 550	0. 053	0. 061	
b	0. 330	0. 510	0. 013	0. 020	
С	0. 170	0. 250	0.006	0. 010	
D	4. 700	5. 100	0. 185	0. 200	
E	3. 800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
е	1. 270 (BSC)		0. 050 (BSC)		
L	0. 400	1. 270	0. 016	0.050	
θ	0°	8°	0°	8°	

Recommended Minimum Pads-