

Innogration (Suzhou) Co., Ltd.

1200W, 100V RF Power N-channel MOSFETs

Description

The VTSU011K2 is a 1200-watt, N-channel MOSFETs, designed for pulsed applications at frequencies up to 200 MHz. It's suitable for use in industrial, scientific and medical applications.

Typical Performance (In Demo Fixture): V_{DD} = 100 Volts, I_{DQ} = 500 mA,
Pulse CW, Pulse Width=1ms, Duty cycle=10%

Frequency	Gp (dB)	P _{OUT} (W)	η₀ (%)
120 MHz	26	1200	60

Features

- Common source configuration, push pull
- Excellent thermal stability, low HCI drift
- Low R_{DS(on)}
- Pb-free, RoHS-compliant

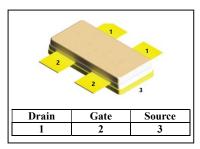


Figure 1. Pin Connection

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	$V_{(BR)DSS}$	200	V
Drain-Gate Voltage (RGS = 1M Ω)	V_{DGR}	200	V
Gate-Source Voltage	V _{GS}	-20 to +20	V
Storage Temperature Range	Tstg	-65 to 150	°C
Case Operating Temperature	T _c	150	°C
Operating Junction Temperature	TJ	200	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Junction-Case Thermal Resistance	R _{thJC}	0.078	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2

Table 4. Electrical Characteristics (T_{CASE} = 25 °C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
DC Characteristics					
Drain-Source Voltage	V	200	250		V
V _{GS} =0, I _{DS} =100mA	$V_{(BR)DSS}$	200	230		V
Zero Gate Voltage Drain Leakage Current				1	mA
$(V_{DS} = 100V, V_{GS} = 0 V)$	I _{DSS}			'	IIIA

Innogration (Suzhou) Co., Ltd.

Document Number: VTSU011K2 Production Datasheet V1.0

Gate-Source Leakage Current	GSS			250	nA
$(V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V})$					
Gate Threshold Voltage	V _{GS} (th)	2.0		4.0	V
$(V_{DS} = 10V, I_D = 250 \text{ mA})$	V _{GS} (In)	2.0		4.0	V
Drain-Source Voltage (On state)	\ \ \\			3.7	V
$(V_{GS} = 10V, I_D = 10 A)$	V _{DS(ON)}			3.7	V
Forward Transconductance		6			S
$(V_{DS} = 10 \text{ V}, I_D = 2.5 \text{ A})$	g FS	U			3
Common Source Input Capacitance			568		,r
$(V_{GS} = 0V, V_{DS} = 100 V, f = 1 MHz)$	C _{ISS}		300		pF
Common Source Output Capacitance			125		,,r
(V _{GS} = 0V, V _{DS} =100 V, f = 1 MHz)	Coss		135		pF
Common Source Feedback Capacitance			0		nE
$(V_{GS} = 0V, V_{DS} = 100 V, f = 1 MHz)$	C _{RSS}		9		pF

Functional Tests (In Demo Test Fixture, 50 ohm system) V_{DD} = 100 Vdc, I_{DQ} = 2×250mA, f = 120 MHz, Pulse CW, Pulse Width=1ms, Duty cycle=10%.

Output Power	P _{OUT}	1000	1200	W
Power Gain@ Pout=1000W	Gp		26	dB
Drain Efficiency@ P _{OUT} =1000W	η _D		60	%

TYPICAL CHARACTERISTICS

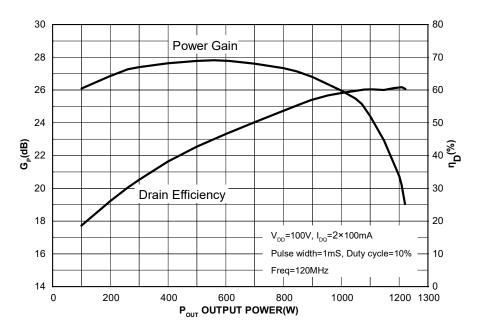
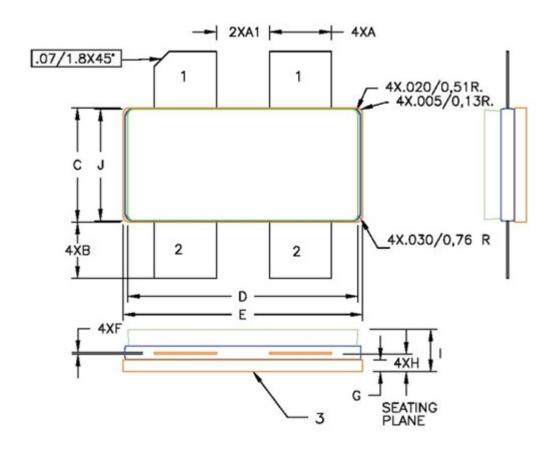



Figure 2. Power gain and drain efficiency as function of output power

Innogration (Suzhou) Co., Ltd.

Package Outline

Flanged ceramic package; 2 mounting holes; 4 leads(1—Drain,2—Gate,3—Source)

UNIT	A	A1	В	С	D	E	F	G	Н	ı	J
	5.59	4.83	5.33	9.91	20.02	20.70	1.15	1.14	1.7	4.32	9.53
mm	5.10	4.32	4.32	9.65	19.61	20.45	0.08	0.89	1.45	3.18	9.27

OUTLINE	REFERENCE			EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	1000E BATE
PKG-VD3					28/11/2016

Document Number: VTSU011K2 Production Datasheet V1.0

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2016/11/28	Rev 1.0	Create Production Datasheet

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.