Innogration (Suzhou) Co., Ltd.

900W, 100V RF Power N-channel MOSFETs

Description

The VTSU01900 is a 900-watt, N-channel MOSFETs, designed for pulsed or CW applications at frequencies up to 200 MHz. It's suitable for use in industrial, scientific and medical applications.

 Typical Performance (In Demo Fixture): V_{DD} = 100 Volts, I_{DQ} = 500 mA, Pulse CW, Pulse Width=1ms, Duty cycle=10%

Frequency	Gp (dB)	P _{OUT} (W)	η (%)
120 MHz	20	900	65

•Typical Performance (In Demo Fixture): V_{DD} = 100 Volts, I_{DQ} = 500 mA, CW

Frequency	Gp (dB)	P _{OUT} (W)	η _D (%)
120 MHz	24	550	68

Features

- Common source configuration, push pull
- Excellent thermal stability, low HCI drift
- Low R_{DS(on)}
- Pb-free, RoHS-compliant

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{(BR)DSS}	250	V
Drain-Gate Voltage (RGS = $1M \Omega$)	V _{DGR}	250	V
Gate-Source Voltage	V _{gs}	-20 to +20	V
Drain Current	Ι _D	20	А
Power Dissipation	P _{DISS}	630	W
Storage Temperature Range	Tstg	-65 to 150	°C
Case Operating Temperature	Tc	150	°C
Operating Junction Temperature	TJ	200	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Junction-Case Thermal Resistance	R _{thJC}	0.30	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2

Table 4. Electrical Characteristics (T_{CASE} = 25 °C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit	Ī
----------------	--------	-----	-----	-----	------	---

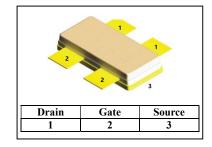


Figure 1. Pin Connection

Innogration (Suzhou) Co., Ltd.

DC Characteristics

Drain-Source Voltage	V _{(BR)DSS}	250			V
V _{GS} =0, I _{DS} =100mA	V (BR)DSS	200			v
Zero Gate Voltage Drain Leakage Current				1	mA
(V _{DS} = 100V, V _{GS} = 0 V)	DSS			I	ШA
Gate-Source Leakage Current				250	- 4
(V _{GS} = 20 V, V _{DS} = 0 V)	I _{GSS}			250	nA
Gate Threshold Voltage	V (#5)	2.0		4.0	V
(V _{DS} = 10V, I _D = 250 mA)	V _{GS} (th)	2.0		4.0	V
Drain-Source Voltage (On state)			25	2.0	V
(V _{GS} = 10V, I _D = 10 A)	V _{DS(ON)}		2.5	3.6	v
Forward Transconductance	_	2.0			S
$(V_{DS} = 10 \text{ V}, I_D = 2.5 \text{ A})$	g _{FS}	3.0			5
Common Source Input Capacitance	0		504		
(V _{GS} = 0V, V _{DS} =100 V, f = 1 MHz)	C _{ISS}		501		pF
Common Source Output Capacitance	0		100		- F
(V _{GS} = 0V, V _{DS} =100 V, f = 1 MHz)	C _{oss}		136		pF
Common Source Feedback Capacitance	0		FO		۳ ۲
(V _{GS} = 0V, V _{DS} =100 V, f = 1 MHz)	C _{RSS}		5.8		pF

Functional Tests (In Demo Test Fixture, 50 ohm system) V_{DD} = 100 Vdc, I_{DQ} = 2×250mA, f = 120 MHz, Pulse CW, Pulse Width=1ms, Duty cycle=10%.

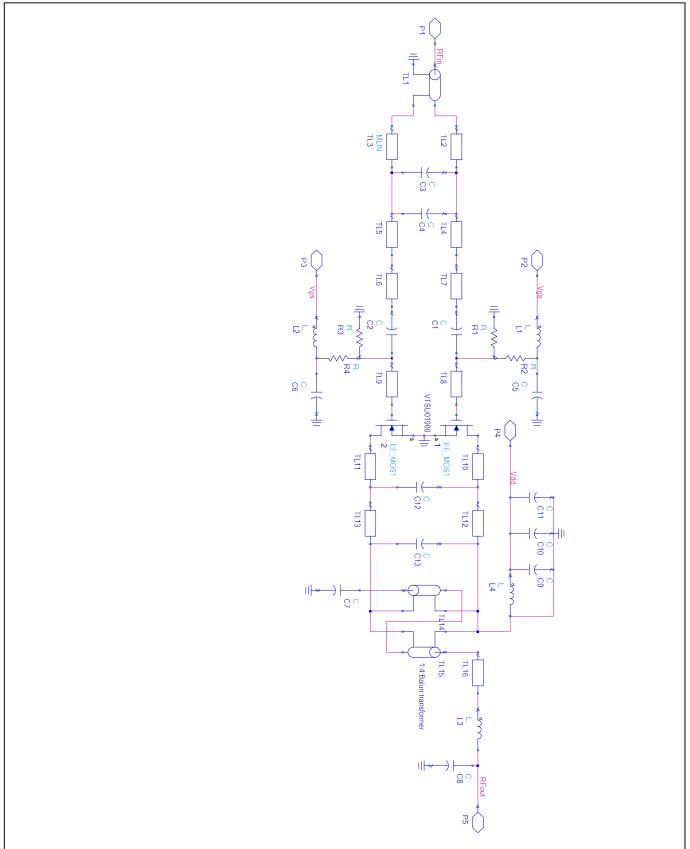
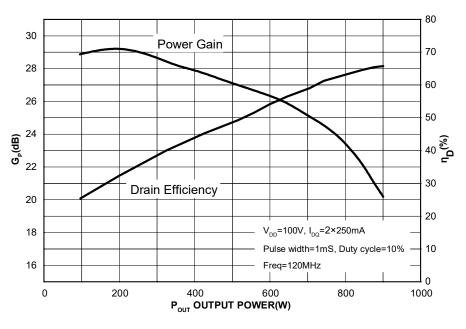
Output Power	Pout	900	W
Power Gain@ P _{OUT} =900W	Gp	20	dB
Drain Efficiency@ P _{OUT} =900W	η_{D}	65	%

Functional Tests (In Demo Test Fixture, 50 ohm system) V_{DD} = 100 Vdc, I_{DQ} = 2×250mA, f = 120 MHz, CW,.

Output Power	Pout	450	550	W
Power Gain@ P _{out} =550W	Gp		24	dB
Drain Efficiency@ P _{OUT} =550W	η_{D}		68	%

Innogration (Suzhou) Co., Ltd.

Reference Circuit of Test Fixture Schematic

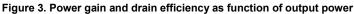

Figure 2. 120 MHz Test Circuit Schematic Reference

Table 5. Test Circuit Component Designations and Values

Component	Description
TL1	25Ω 0.25λ
TL2,TL3	Length18.5mm * width5 mm
TL4,TL5	Length 9.5mm * width5 mm
TL6,TL7	Length 12mm * width9 mm
TL8,TL9	Length 5.5mm * width9 mm
TL10,TL11	Length 9mm * width16.5 mm
TL12,TL13	Length 9mm * width1 mm
TL14,TL15	1: 4 Balun transformer, copper tubes 46X38mm
C1,C2,C5,C6	1000 pF ATC 800B ceramic chip capacitor
C3	220 pF ATC 800B ceramic chip capacitor
C4	240 pF ATC 800B ceramic chip capacitor
C7	43 pF ATC 800B ceramic chip capacitor
C8	5.6 pF ATC 800B ceramic chip capacitor
C9	470 pF ATC 800B ceramic chip capacitor
C12	43 pF ATC 800B ceramic chip capacitor
C13	20 pF ATC 800B ceramic chip capacitor
C10	2200 pF ATC 100C ceramic chip capacitor
C11	100 μF / 200 V aluminum electrolytic capacitor
R1,R3	15 Ω 1/4 W, surface mount chip resistor
R2,R4	$30 \ \Omega \ 1/4 \ W$, surface mount chip resistor
L1,L2	470 nH chip Inductor
L3	78 nH chip Inductor
L4	390 nH chip Inductor
РСВ	1.58mm thickness, FR4, 1 oz. copper both sides

TYPICAL CHARACTERISTICS

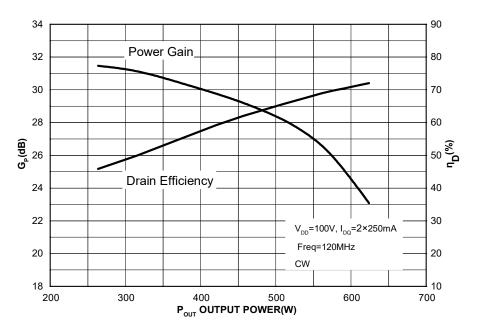
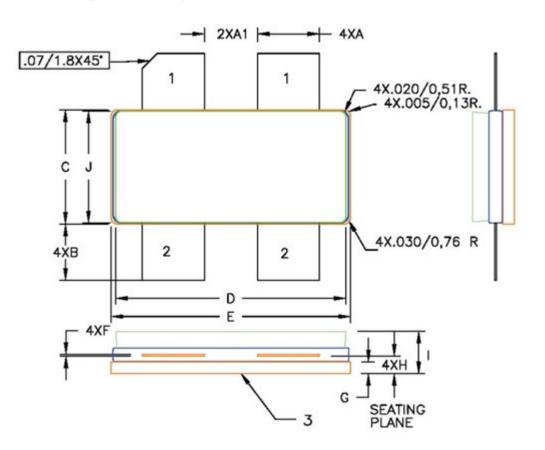



Figure 4. Power gain and drain efficiency as function of output power(CW)

Package Outline

Flanged ceramic package; 2 mounting holes; 4 leads(1—Drain,2—Gate,3—Source)

	UNIT	A	A1	В	С	D	E	F	G	Н	I	J
	mm	5.59	4.83	5.33	9.91	20.02	20.70	1.15	1.14	1.7	4.32	9.53
		5.10	4.32	4.32	9.65	19.61	20.45	0.08	0.89	1.45	3.18	9.27

OUTLINE		REFERENCE		EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ICCCL DATE
PKG-VD3					28/11/2016

Revision history

Table 6. Document revision history

Date	Revision	Datasheet Status
2016/11/28	Rev 1.0	Create Production Datasheet

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.