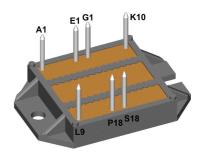
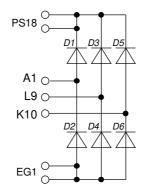


Standard Rectifier Module

PHASE OUT


3~ Rectifier Bridge

Phase out


3∼ Rectifier				
V_{RRM}	=	1400 V		
I_{DAV}	=	125 A		
\mathbf{I}_{FSM}	=	1000 A		

Part number

VUO122-14NO7

Features / Advantages:

- Package with DCB ceramic
- Improved temperature and power cycling
- Planar passivated chips
- Very low forward voltage drop
- Very low leakage current

Applications:

- Diode for main rectification
- For three phase bridge configurations
- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

Package: ECO-PAC2

- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Height: 9 mm
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Recommended replacement: VUO122-16NO7

Terms and Conditions of Usage

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales office.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office.

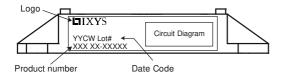
Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend

to perform joint risk and quality assessments;
the conclusion of quality agreements;

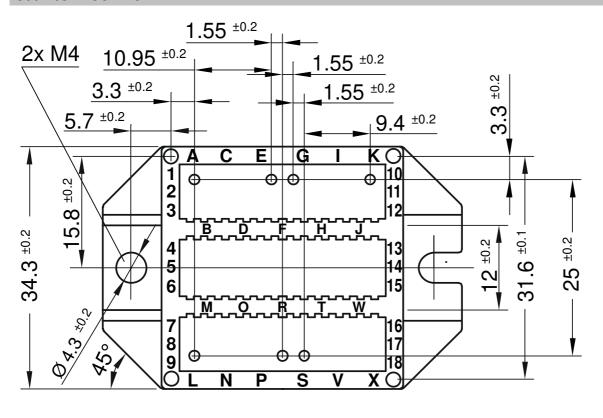
- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

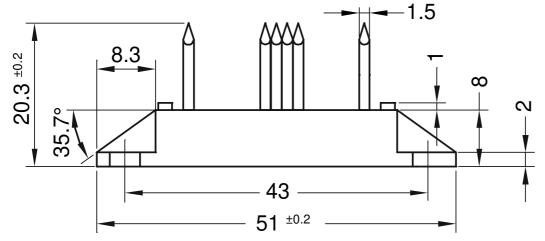
IXYS reserves the right to change limits, conditions and dimensions.

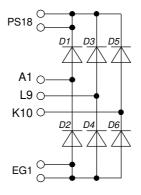
Data according to IEC 60747 and per semiconductor unless otherwise specified


Rectifier				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse bloc	cking voltage	$T_{VJ} = 25^{\circ}C$			1500	٧
V _{RRM}	max. repetitive reverse blocking	voltage	$T_{VJ} = 25^{\circ}C$			1400	٧
I _R	reverse current	V _R = 1400 V	$T_{VJ} = 25^{\circ}C$			100	μΑ
		$V_R = 1400 \text{ V}$	$T_{VJ} = 150$ °C			2	mΑ
V _F	forward voltage drop	I _F = 50 A	$T_{VJ} = 25^{\circ}C$			1.13	٧
		$I_F = 150 A$				1.47	٧
		$I_F = 50 \text{ A}$	T _{VJ} = 125°C			1.05	V
		$I_F = 150 \text{ A}$				1.49	V
I _{DAV}	bridge output current	T _c = 115°C	T _{vJ} = 150°C			125	Α
		rectangular d = ⅓					
V _{F0}	threshold voltage		T _{vJ} = 150°C			0.80	V
r _F	slope resistance } for power	loss calculation only				4.6	mΩ
R _{thJC}	thermal resistance junction to ca	ase				0.6	K/W
R _{thCH}	thermal resistance case to heats	sink			0.3		K/W
P _{tot}	total power dissipation		$T_{\text{C}} = 25^{\circ}\text{C}$			205	W
I _{FSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			1.00	kA
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			1.08	kA
		t = 10 ms; (50 Hz), sine	T _{vJ} = 150°C			850	Α
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			920	Α
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			5.00	kA2s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			4.85	kA2s
		t = 10 ms; (50 Hz), sine	T _{vJ} = 150°C			3.62	kA2s
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			3.52	kA2s
CJ	junction capacitance	$V_{R} = 400 \text{ V}; f = 1 \text{ MHz}$	$T_{VJ} = 25^{\circ}C$		35		pF

PHASE OUT


Package ECO-PAC2			Ratings				
Symbol	Definition	Conditions		min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal				100	Α
T _{VJ}	virtual junction temperature	,		-40		150	°C
T _{op}	operation temperature			-40		125	°C
T _{stg}	storage temperature			-40		125	°C
Weight					24		g
M _D	mounting torque			1.4		2	Nm
d _{Spp/App}	creepage distance on surface striking distance through air		terminal to terminal	6.0			mm
$d_{Spb/Apb}$			terminal to backside	10.0			mm
V _{ISOL}	isolation voltage	t = 1 second	50/00 II D140 I	3000			٧
		t = 1 minute	50/60 Hz, RMS; lisoL ≤ 1 mA 2500			٧	




Orderii	g Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standa	d VUO122-14NO7	VUO122-14NO7	Box	25	494445

Equivalent Circuits for Simulation		* on die level	$T_{VJ} = 150 ^{\circ}\text{C}$	
$I \rightarrow V_0$	R_0	Rectifier		
V _{0 max}	threshold voltage	8.0		V
$R_{0 \; \text{max}}$	slope resistance *	3.4		$m\Omega$

Outlines ECO-PAC2

Rectifier

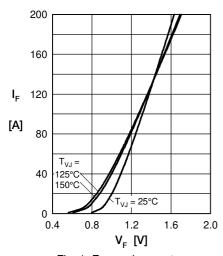


Fig. 1 Forward current vs. voltage drop per diode

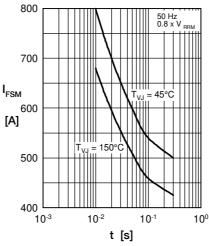


Fig. 2 Surge overload current vs. time per diode

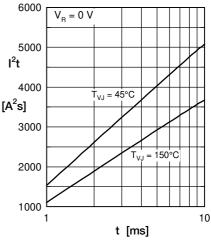


Fig. 3 I²t vs. time per diode

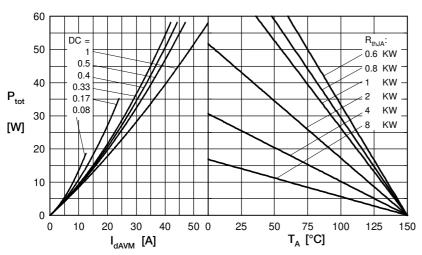


Fig. 4 Power dissipation vs. forward current and ambient temperature per diode

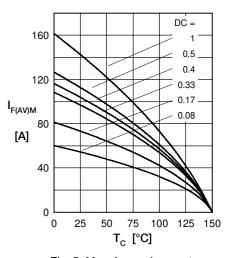


Fig. 5 Max. forward current vs. case temperature per diode

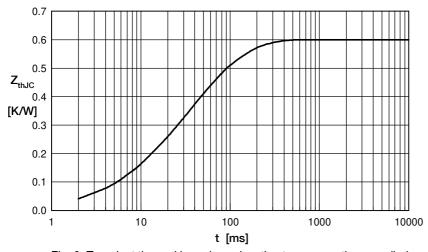


Fig. 6 Transient thermal impedance junction to case vs. time per diode

Constants for Z_{thJC} calculation:

i	$R_{th} (K/W)$	t _i (s)
1	0.08	0.012
2	0.04	0.007
3	0.29	0.036
4	0.19	0.102