

Date: - 18 May, 2007

Data Sheet Issue:- 3

Provisional Data

Rectifier Diode

Types W2899MC320 to W2899MC480

Absolute Maximum Ratings

	VOLTAGE RATINGS) [MAXIMUM LIMITS	UNITS
V_{RRM}	Repetitive peak reverse voltage, (note 1)		3200-4800	V
V_{RSM}	Non-repetitive peak reverse voltage, (note 1)	1	3300-4900	V

	OTHER RATINGS	MAXIMUM LIMITS	UNITS
I _{F(AV)M}	Maximum average forward current, T _{sink} =55°C, (note 2)	2899	Α
$I_{F(AV)M}$	Maximum average forward current. T _{sink} =100°C, (note 2)	2030	Α
$I_{F(AV)M}$	Maximum average forward current. T _{sink} =100°C, (note 3)	1214	Α
I _{F(RMS)M}	Nominal RMS forward current, T _{sink} =25°C (note 2)	5312	Α
I _{F(d.c.)}	D.C. forward current, T _{sink} =25°C, (note 4)	4719	Α
I _{FSM}	Peak non-repetitive surge t _p =10ms, V _{rm} =60%V _{RRM} , (note 5)	25.4	kA
I _{FSM2}	Peak non-repetitive surge t _p ≠10ms, V _{rm} ≤10V, (note 5)	28.0	kA
I ² t	I ² t capacity for fusing t _p =10ms, V _m =60%V _{RRM} , (note 5)	3.23×10 ⁶	A ² s
I ² t	I ² t capacity for fusing t₀=10ms, V _m ≤10V, (note 5)	3.92×10 ⁶	A ² s
T _{j op}	Operating temperature range	-40 to +160	°C
T_{stg}	Storage temperature range	-55 to +160	°C

Notes:-

- 1) De-rating factor of 0.13% per °C is applicable for T_j below 25°C.
- 2) Double side cooled, single phase, 50Hz, 180° half-sinewave.
- 3) Cathode side cooled, single phase; 50Hz, 180° half-sinewave.
- 4) Double side cooled
- 5) Half-sinewaye, 160°C I initial.

Characteristics

	PARAMETER	MIN.	TYP.	MAX.	TEST CONDITIONS (Note 1)	UNITS
V_{FM}	Maximum peak forward voltage	-	-	1.90	I _{FM} =4000A	V
V_{FM}	Maximum peak forward voltage	-	-	2.90	I _{FM} =8600A	V
V_{T0}	Threshold voltage	-	-	0.996		V
r _T	Slope resistance	-	-	0.222		mΩ
I _{RRM}	Peak reverse current	-	-	50	Rated V _{RRM}	mA
Q _{rr}	Recovered charge	-	7700	-		μC
Q _{ra}	Recovered charge, 50% Chord	-	4900	5200	I _{TM} =1000A, t _p =1000μs, di/dt=10A/μs,	μC
I _{rm}	Reverse recovery current	-	205	/	V _r =100V	Α
t _{rr}	Reverse recovery time, 50% chord	-	48	(- <		μs
		-	-	0.0140	Double side cooled	K/W
R_{thJK}	Thermal resistance, junction to heatsink	-	-	0.0265	Anode side cooled	K/W
		-	-	0.0297	Cathode side cooled	K/W
F	Mounting force	25	- /	_31_	Note 2	kN
W_t	Weight		530			g

Notes:-

- 1) Unless otherwise indicated T_i=160°C.
- 2) For other clamp forces, please consult factory.

Notes on Ratings and Characteristics

1.0 Voltage Grade Table

Voltage Grade	V _{RRM} V	V _{RSM}	V _R DC V
32	3200	3300	1660
36	3600	3700	1870
40	4000	4100	2080
44	4400	4500	2290/
48	4800	4900	2500

2.0 Extension of Voltage Grades

This report is applicable to other voltage grades when supply has been agreed by Sales Production.

3.0 De-rating Factor

A blocking voltage de-rating factor of 0.13%/°C is applicable to this device for T_i below 25°C.

4.0 Snubber Components

When selecting snubber components, care must be taken not to use excessively large values of snubber capacitor or excessively small values of snubber resistor. Such excessive component values may lead to device damage due to the large resultant values of snubber discharge current. If required, please consult the factory for assistance.

5.0 Computer Modelling Parameters

5.1 Device Dissipation Calculations

$$I_{AV} = \frac{-V_{T0} + \sqrt{{V_{T0}}^2 + 4 \cdot f f^2} r_T \cdot W_{AV}}{2 \cdot f f^2 \cdot r_T} \qquad \text{and:}$$

$$W_{AV} = \frac{\Delta T}{R_{th}}$$
$$\Delta T = T_{t \max} - T_{K}$$

Where V_{T0} =0.996V, r_T =0.222m Ω ,

 $R_{\it th}$ = Supplementary thermal impedance, see table below and

ff = Form factor, see table below.

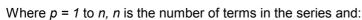
	Supplementary Th	ermal Impedance		
	supplementary in	cimai impedance		
Conduction Angle	6 phase (60°)	3 phase (120°)	½ wave (180°)	d.c.
Square wave Double Side Cooled	0.01665	0.01581	0.01516	0.0140
Square wave Cathode Side Cooled	0.03217	0.03147	0.03090	0.0297
Sine wave Double Side Cooled	0.01612	0.01531	0.01436	
Sine wave Cathode Side Cooled	0.03174	0.03105	0.03022	

Form Factors				
Conduction Angle	6 phase (60°)	3 phase (120°)	½ wave (180°)	d.c.
Square wave	2.449	1.732	1.414	1
Sine wave	2.778	1.879	1.57	

5.2 Calculating V_F using ABCD Coefficients

The on-state characteristic I_F vs. V_F, on page 6 is represented in two ways;

- (i) the well established V_{T0} and r_T tangent used for rating purposes and
- (ii) a set of constants A, B, C, D, forming the coefficients of the representative equation for V_F/ii terms of I_F given below:


$$V_F = A + B \cdot \ln(I_F) + C \cdot I_F + D \cdot \sqrt{I_F}$$

The constants, derived by curve fitting software, are given below for both hot and cold characteristics. The resulting values for V_F agree with the true device characteristic over a current range, which is limited to that plotted.

		_ <		
25°C Coefficients		160°C Coefficients		
Α	0.827663843	Α	0.426801943	
В	0.01267808	В	0.05611887	
С	1.039088×10 ⁻⁴	/ C_	1.811695×10 ⁻⁴	
D	5.603232×10 ⁻³	D	4.475688×10 ⁻³	

5.3 D.C. Thermal Impedance Calculation

$$r_t = \sum_{p=1}^{p=n} r_p \cdot \left(1 - e^{\frac{-t}{\tau_p}}\right)$$

t = Duration of heating pulse in seconds.

r₊ = Thermal resistance at time t.

 r_p = Amplitude of p_{th} term.

 τ_p = Time Constant of r_{th} term.

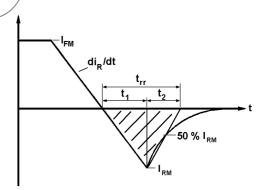
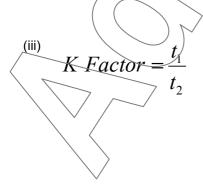
The coefficients for this device are shown in the tables below:

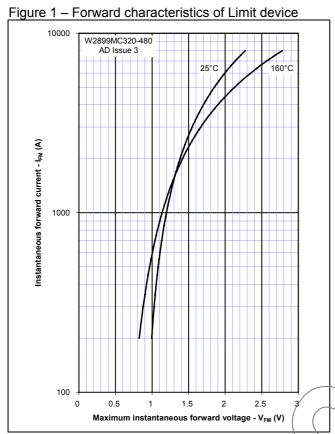
		D.C. Double Side	e Cooled	
Term	1	2	3	4
r_p	8.594785×10 ⁻³	3.308247×10 ⁻³	1.039072×10 ⁻³	7.916582×10 ⁻⁴
$ au_{\!p}$	0.7185764	0.09970181	0.02165834	5.266433×10 ⁻³

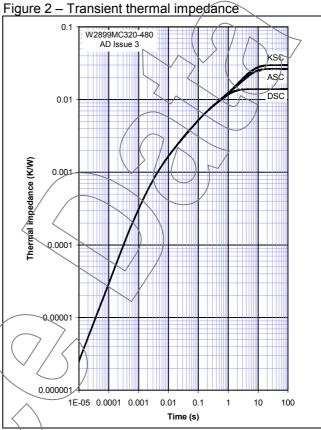
Term	1	2//	3
r_p	0.02196926	5.845724×10 ³	1.904897×10 ⁻³
$ au_{p}$	4.127141	0.1629998	8.832583×10 ⁻³

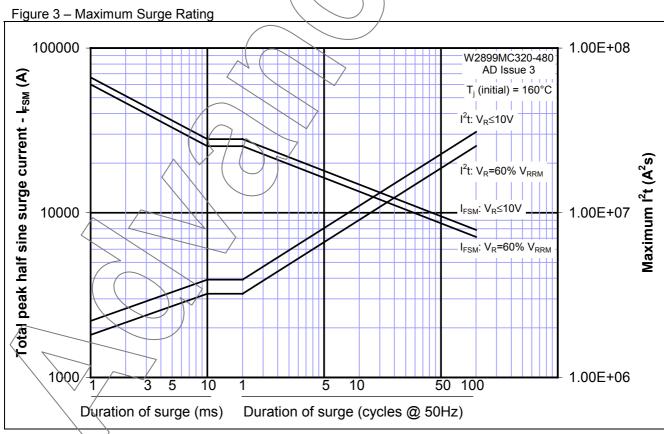
6.0 Reverse recovery ratings

(i) Q_{ra} is based on 50% I_{rm} chord as shown in Fig. 1


Fig. 1


(ii)
$$Q_{rr}$$
 is based on a 150 μ s integration time i.e.



$$Q_{rr} = \int_{0}^{150 \,\mu s} i_{rr}.dt$$

Curves

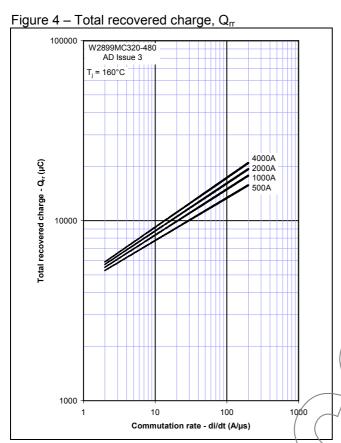
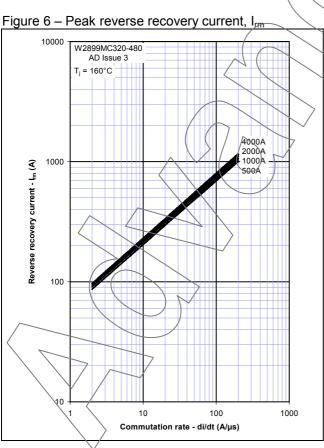


Figure 5 – Recovered charge, Q_{ra} (50% chord)

10000


W2899MC320-480
AD Issue 3
T_j = 160°C

10000

Tool 1000

Tool 1000

Commutation rate - di/dt (A/µs)

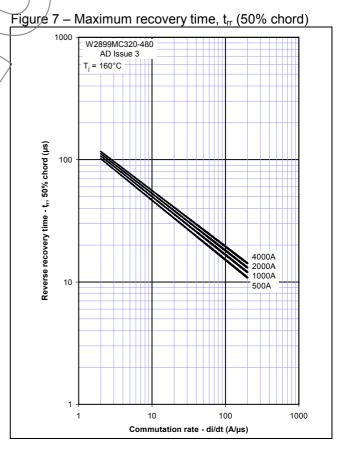


Figure 8 – Forward current vs. Power dissipation – Double Side Cooled

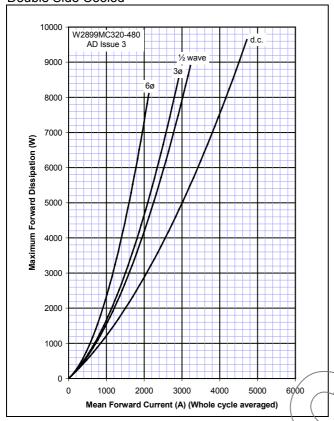
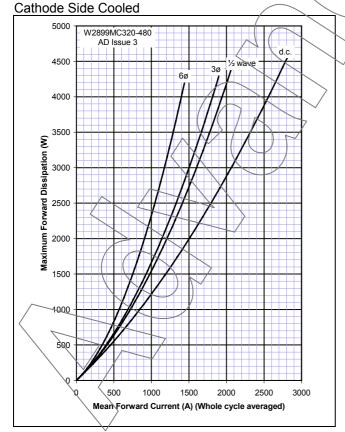
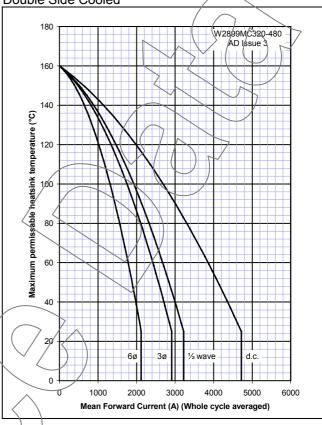
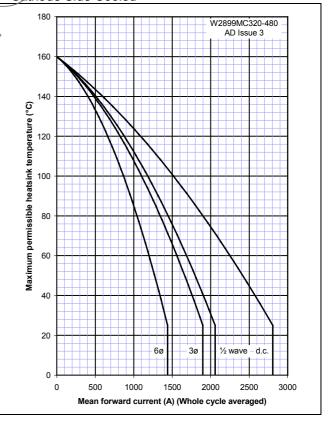
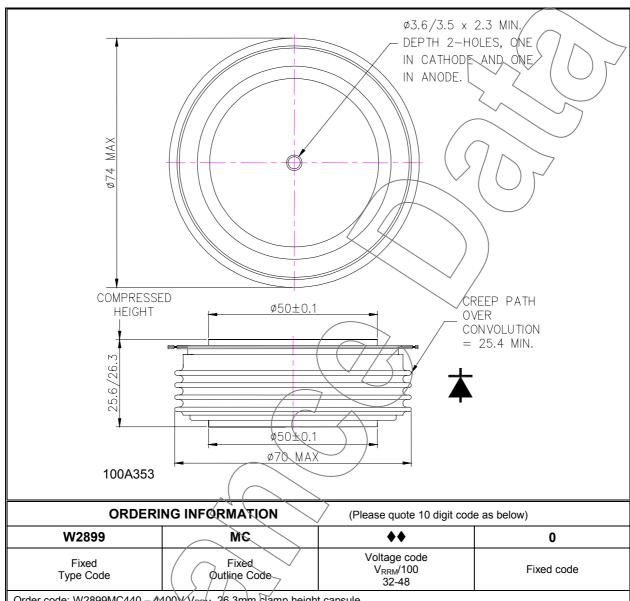


Figure 10 – Forward current vs. Power dissipation –


Figure 9 – Forward current vs. Heatsink temperature – Double Side Cooled

Eigure 11 – Forward current vs. Heatsink temperature – Cathode Side Cooled

Outline Drawing & Ordering Information

Order code: W2899MC440 - 4400V V_{RRM}, 26.3mm clamp height capsule.

IXYS Semiconductor GmbH

Edisonstraße 15 D-68623 Lampertheim Tel: +49 6206 503-0 Fax: +49 6206 503-627

E-mail: marcom@ixys.de

IXYS Corporation 3540 Bassett Street

Santa Clara CA 95054 USA Tel: +1 (408) 982 0700 Fax: +1 (408) 496 0670

E-mail: sales@ixys.net

An IXYS Company

www.westcode.com

www.ixys.net

Westcode Semiconductors Ltd

Langley Park Way, Langley Park, Chippenham, Wiltshire, SN15 1GE. Tel: +44 (0)1249 444524

Fax: +44 (0)1249 659448

E-mail: WSL.sales@westcode.com

Westcode Semiconductors Inc

3270 Cherry Avenue Long Beach CA 90807 USA Tel: +1 (562) 595 6971 Fax: +1 (562) 595 8182

E-mail: WSI.sales@westcode.com

The information contained herein is confidential and is protected by Copyright. The information may not be used or disclosed except with the written permission of and in the manner permitted by the proprietors Westcode Semiconductors Ltd.

In the interest of product improvement, Westcode reserves the right to change specifications at any time without prior notice.

Devices with a suffix code (2-letter, 3-letter or letter/digit/letter combination) added to their generic code are not necessarily subject to the conditions and limits contained in this report.

© Westcode Semiconductors Ltd.