

Spread Spectrum Desktop / Notebook System Frequency Generator

Features

- Maximized EMI suppression using IC WORKS' Spread Spectrum Technology
- · Reduces measured EMI by as much as 10dB
- I²C programmable to 133MHz
- Two skew-controlled copies of CPU output
- SEL100/66# selects CPU frequency (100 or 66.8MHz)
- Seven copies of PCI output (synchronous w/CPU output)
- One copy of 14.31818 MHz IOAPIC output
- One copy of 48MHz USB output
- Selectable 24/48MHz clock is determined by resistor straps on power up
- One high drive output buffer that produces a copy of the 14.318MHz reference
- · Isolated core VDD pin for noise reduction

Key Specifications

Supply Voltages:

 $VDDQ3 = 3.3V\pm5\%$

 $VDDQ2 = 2.5V \pm 5\%$

CPU Cycle to Cycle Jitter: 200ps

CPU, PCI Output Edge Rate: ≥1V/ns CPU0:1 Output Skew: 175ps

PCI_F, PCI1:6 Output Skew: 500ps

CPU to PCI Skew: 1.5 - 4.0ns (CPU Leads)

REF2X/SEL48#, SCLOCK, SDATA: 250KΩ pull-up

Note: Internal pull up resistors should not be relied upon for

setting I/O pins high.

Figure 1 Block Diagram

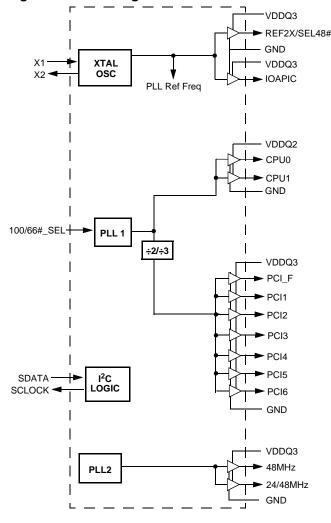


Table 1 Pin Selectable Frequency

SEL100/66#	CPU(0:1)	PCI		
1	100MHz	33.3MHz		
0	66.8MHz	33.4MHz		

Figure 2 Pin Diagram

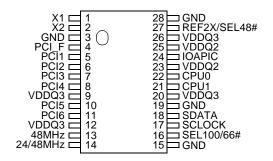


Table 2 Order Information

Part Number	Freq. Mask Code	Package		
W48S111	-14	G = SOIC (300 mils)		

Advance Information **W48S111-14**

Pin Definitions

Pin Name	Pin No.	Pin Type	Pin Description
CPU0:1	22, 21	0	CPU Clock Outputs 0 through 1: These two CPU clocks run at a frequency set by SEL100/66#. Output voltage swing is set by the voltage applied to VDDQ2.
PCI1:6 PCI_F	5, 6, 7, 8, 10, 11, 4	0	PCI Bus Clock Outputs 1 through 6 and PCI_F: These seven PCI clock outputs run synchronously to the CPU clock. Voltage swing is set by the power connection to VDDQ3.
IOAPIC	24	0	I/O APIC Clock Output: Provides 14.318MHz fixed frequency. The output voltage swing is set by the power connection to VDDQ2.
48MHz	13	0	48MHz Output: Fixed 48MHz USB clock. Output voltage swing is controlled by voltage applied to VDDQ3.
24/48MHz	14	0	24MHz or 48MHz Output: Frequency is set by the state of pin 27 on power up.
REF2X/ SEL48#	27	I/O	I/O Dual Function REF2X and SEL48# pin: Upon power-up, the state of SEL48# is latched. The initial state is set by either a 10K resistor to GND or to VDD. A 10K resistor to GND causes pin 14 to output 48MHz. If the pin is strapped to VDD, pin 14 will output 24MHz. After 2ms, the pin becomes a high drive output that produces a copy of 14.318MHz.
SEL100/66#	16	I	Frequency Selection Input: Selects CPU clock frequency as shown in Table 1 on page 1.
SDATA	18	I/O	<i>I</i> ² C Data Pin: Data should be presented to this input as described in the I ² C section of this data sheet. Internal 250K ohm pull-up resistor.
SCLOCK	17	I	PC clock Pin: The I ² C Data clock should be presented to this input as described in the I ² C section of this data sheet.
X1	1	I	Crystal Connection or External Reference Frequency Input: Connect to either a 14.318MHz crystal or other reference signal.
X2	2	I	Crystal Connection: An input connection for an external 14.318MHz crystal. If using an external reference, this pin must be left unconnected.
VDDQ3	9, 12, 20, 26	Р	Power Connection: Power supply for core logic and PLL circuitry, PCI, 48/24MHz, and Reference output buffers. Connect to 3.3V supply.
VDDQ2	23, 25	Р	Power Connection: Power supply for IOAPIC and CPU output buffers. Connect to 2.5V supply.
GND	3, 15, 19, 28	G	Ground Connections: Connect all ground pins to the common system ground plane.

Functional Description

I/O Pin Operation

Pin 27 is a dual purpose I/O pin. Upon power up this pin acts as a logic input, allowing the determination of assigned device functions. A short time after power up, the logic state of the pin is latched and the pin becomes a clock output. This feature reduces device pin count by combining clock outputs with input select pins.

An external 10 kohm "strapping" resistor is connected between the I/O pin and ground or VDD. Connection to ground sets a "0" bit, connection to VDD sets a "1" bit. Figure 3 and Figure 4 show two suggested methods for strapping resistor connections.

Upon W48S111-14 power up, the first 2ms of operation is used for input logic selection. During this period, the REF2X clock output buffer is tristated, allowing the output strapping resistor on the I/O pin to pull the pin and its associated capacitive clock load to either a logic high or low state. At the end of the 2ms period, the established logic "0" or "1" condition of the I/O pin is then latched. Next the output buffer is enabled which converts the I/O pin into an operating clock output. The

2ms timer is started when VDD reaches 2.0V. The input bits can only be re-set by turning VDD off and then back on again.

It should be noted that the strapping resistors have no significant effect on clock output signal integrity. The drive impedance of the clock output is 20 ohms (nominal) which is minimally affected by the 10 kohm strap to ground or VDD. As with the series termination resistor, the output strapping resistor should be placed as close to the I/O pin as possible in order to keep the interconnecting trace short. The trace from the resistor to ground or VDD should be kept less than two inches in length to prevent system noise coupling during input logic sampling.

When the clock output is enabled following the 2ms input period, a 14.318MHz output frequency is delivered on the pin, assuming that VDD has stabilized. If VDD has not yet reached full value, output frequency initially may be below target but will increase to target once VDD voltage has stabilized. In either case, a short output clock cycle may be produced from the CPU clock outputs when the outputs are enabled.

Figure 3 Input Logic Selection Through Resistor Load Option

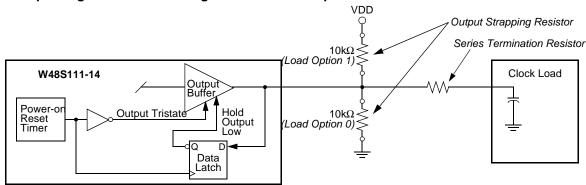
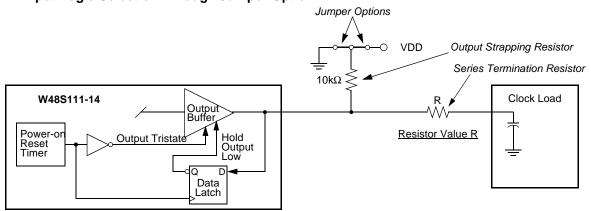



Figure 4 Input Logic Selection Through Jumper Option

Advance Information W48S111-14

Serial Data Interface

The W48S111-14 features a two-pin, serial data interface that can be used to configure internal register settings that control particular device functions. Upon power-up, the W48S111-14 initializes with default register settings. Therefore, the use of this serial data interface is optional. The serial interface is write-only (to the clock chip) and is the dedicated function of device pins SDATA and SCLOCK. In motherboard

applications, SDATA and SCLOCK are typically driven by two logic outputs of the chipset. Clock device register changes are normally made upon system initialization, if any are required. The interface can also be used during system operation for power management functions. Table 3 summarizes the control functions of the serial data interface.

Table 3 Serial Data Interface Control Functions Summary

Control Function	Description	Common Application		
Clock Output Disable	Any individual clock output(s) can be disabled. Disabled outputs are actively held low.	Unused outputs are disabled to reduce EMI and system power. Examples are clock outputs to unused PCI slots.		
CPU Clock Frequency Selection	Provides CPU/PCI frequency selections beyond the 100 and 66.8MHz selections that are provided by the SEL100/66# pin. Frequency is changed in a smooth and controlled fashion.	For alternate microprocessors and power management options. Smooth frequency transition allows CPU frequency change under normal system operation.		
Output Tristate	Puts all clock outputs into a high impedance state.	Production PCB testing.		
Test Mode	All clock outputs toggle in relation to X1 input, internal PLL is bypassed. Refer to Table 5.	Production PCB testing.		
(Reserved)	Reserved function for future device revision or production device testing.	No user application. Register bit must be written as 0.		

Operation

Data is written to the W48S111-14 in ten bytes of eight bits each. Bytes are written in the order shown in Table 4.

Table 4 Byte Writing Sequence

Byte Sequence	Byte Name	Bit Sequence	Byte Description
1	Slave Address	11010010	Commands the W48S111-14 to accept the bits in Data Bytes 3-6 for internal register configuration. Since other devices may exist on the same common serial data bus, it is necessary to have a specific slave address for each potential receiver. The slave receiver address for the W48S111-14 is 11010010. Register setting will not be made if the Slave Address is not correct (or is for an alternate slave receiver).
2	Command Code	Don't Care	Unused by the W48S111-14, therefore bit values are ignored (don't care). This byte must be included in the data write sequence to maintain proper byte allocation. The Command Code Byte is part of the standard serial communication protocol and may be used when writing to another addressed slave receiver on the serial data bus.
3	Byte Count	Don't Care	Unused by the W48S111-14, therefore bit values are ignored (don't care). This byte must be included in the data write sequence to maintain proper byte allocation. The Byte Count Byte is part of the standard serial communication protocol and may be used when writing to another addressed slave receiver on the serial data bus.
4	Data Byte 0	Don't Care	Refer to IC WORKS SDRAM drivers.
5	Data Byte 1		
6	Data Byte 2		
7	Data Byte 3	Refer to Table 5	The data bits in these bytes set internal W48S111-14 registers that control
8	Data Byte 4		device operation. The data bits are only accepted when the Address Byte bit sequence is 11010010, as noted above. For description of bit control func-
9	Data Byte 5		tions, refer to Table 5, Data Byte Serial Configuration Map.
10	Data Byte 6		

Advance Information **W48S111-14**

Writing Data Bytes

Each bit in the data bytes control a particular device function except for the "reserved" bits which must be writing as a logic 0. Bits are written MSB (most significant bit) first, which is bit 7. Table 5 gives the bit formats for registers located in Data Bytes 3-6.

Table 6 details additional frequency selections that are available through the serial data interface.

Table 7 details the select functions for Byte 3, bits 1 and 0.

Table 5 Data Bytes 3-6 Serial Configuration Map

Affected Pin			Bit C	ontrol		
Bit(s)	Pin No.	Pin Name	Control Function	0	1	Default
Data Byte	3	•				
7			(Reserved)			0
6			SEL_2	Refer to	Table 6	0
5			SEL_1	Refer to	Table 6	0
4			SEL_0	Refer to	Table 6	0
3			Frequency Table Selection	Frequency Controlled by external SEL100/ 66# pin (Table1)	Frequency Controlled by BYT3 SEL_(2:0) (Table 6)	0
2			(Reserved)			0
1-0			0 0 Nor 0 1 Tes 1 0 Spro	nction (See Table 7 for fund mal Operation t Mode ead Spectrum on Outputs Tristated	ction details)	00
Data Byte	4				·	
7			(Reserved)			0
6	14	24/48MHz	Clock output disable	Low	Active	1
5			(Reserved)			0
4			(Reserved)			0
3			(Reserved)			0
2	21	CPU1	Clock Output Disable	Low	Active	1
1			(Reserved)			0
0	22	CPU0	Clock Output Disable	Low	Active	1
Data Byte	5					
7	4	PCI_F	Clock Output Disable	Low	Active	1
6	11	PCI6	Clock Output Disable	Low	Active	1
5	10	PCI5	Clock Output Disable	Low	Active	1
4	-		(Reserved)			0
3	8	PCI4	Clock Output Disable	Low	Active	1
2	7	PCI3	Clock Output Disable	Low	Active	1
1	6	PCI2	Clock Output Disable	Low	Active	1
0	5	PCI1	Clock Output Disable	Low	Active	1
Data Byte	6					
7			(Reserved)			0
6			(Reserved)			0
5	24	IOAPIC	Clock Output Disable	Low	Active	1
4			(Reserved)			0
3			(Reserved)			0
2			(Reserved)			0

Table 5 Data Bytes 3-6 Serial Configuration Map (cont.)

	Affected Pin		Affected Pin			Bit Co	ontrol	
Bit(s)	Bit(s) Pin No. Pin Name		Control Function	0	1	Default		
1	27	REF2X	Clock Output Disable	Low	Active	1		
0	27	REF2X	Clock Output Disable	Low	Active	1		

Table 6 Additional Frequency Selections through Serial Data Interface Data Bytes

	Input Conditions		Output Fi	If Spread Is On		
	Data Byte 3, Bit 3 = 1					
Bit 6 SEL_2	Bit 5 SEL_1	Bit 4 SEL_0	CPU, SDRAM Clocks (MHz)	PCI Clocks (MHz)	Spread Percentage	
0	0	0	68.5	34.25	±0.5% Center	
0	0	1	75	37.5	±0.5% Center	
0	1	0	83.3	41.6	±0.5% Center	
0	1	1	66.8	33.4	±0.5% Center	
1	0	0	103	34.25	±0.5% Center	
1	0	1	112	37.3	±0.5% Center	
1	1	0	133.3	44.43	±0.5% Center	
1	1	1	100	33.3	±0.5% Center	

Table 7 Select Function for Data Byte 3, Bits 0:1

	Input Co	onditions	Output Conditions					
	Data Byte 3			DCL E	DECOV			
Function	Bit 1	Bit 0	CPU0:1	PCI_F, PCI1:6	REF2X, IOAPIC	48MHZ	24MHZ	
Normal Operation	0	0	Note 1	Note 1	14.318MHz	48MHz	24MHz	
Test Mode	0	1	X1/2	CPU/2 or 3	X1	X1/2	X1/4	
Spread Spectrum	1	0	±0.5%	±0.5%	14.318MHz	48MHz	24MHz	
Tristate	1	1	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	

Notes: 1. CPU and PCI frequency selections are listed in Table 1 and Table 6.

2. Bits 0 and 1 of Data byte 6 in Table 5 MUST be programmed as the same value.

Absolute Maximum Ratings

Stresses greater than those listed in this table may cause permanent damage to the device. These represent a stress rating only. Operation of the device at these or any other conditions above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect reliability.

Symbol	Parameter	Rating	Unit
V _{DD} , V _{IN}	Voltage on any pin with respect to GND	-0.5 to +7.0	V
T _{STG}	Storage Temperature	-65 to +150	°C
T _B	Ambient Temperature under Bias	-55 to +125	°C
T _A	Operating Temperature	0 to +70	°C
ESD _{PROT}	Input ESD Protection	2 (min)	kV

DC Electrical Characteristics:

 $T_A = 0$ °C to +70°C; VDDQ3 = 3.3V±5%; VDDQ2 = 2.5V±5%

Symbol	Parameter		Min	Тур	Max	Unit	Test Condition
Supply Cu	rrent						
I _{DDQ3}	Combined 3.3V Supply C	Current		85		mA	CPUCLK = 100MHz Outputs Loaded (Note 1)
I _{DDQ2}	Combined 2.5V Supply C	Current		30		mA	CPUCLK = 100MHz Outputs Loaded (Note 1)
Logic Inpu	ts				•		
V _{IL}	Input Low Voltage		GND3		0.8	V	
V _{IH}	Input High Voltage		2.0		VDD +.3	V	
I _{IL}	Input Low Current (Note:	2)			-25	μA	
I _{IH}	Input High Current (Note	2)			10	μA	
I _{IL}	Input Low Current (SEL1	00/66#)			-5	μA	
I _{IH}	Input High Current (SEL1	00/66#)			+5	μΑ	
Clock Outp	outs						
V _{OL}	Output Low Voltage				50	mV	I _{OL} = 1mA
V _{OH}	Output High Voltage		3.1			V	I _{OH} = -1mA
V _{OH}	Output High Voltage	CPU0:1, IOAPIC	2.2			V	I _{OH} = -1mA
I _{OL}	Output Low Current:	CPU0:1	50	70	100	mA	V _{OL} = 1.25V
		PCI_F, PCI1:6	60	80	120	mA	V _{OL} = 1.5V
		IOAPIC	40	85	140	mA	V _{OL} = 1.25V
		REF2X	100	130	152	mA	V _{OL} = 1.5V
		48MHz, 24MHz	40	50	76	mA	V _{OL} = 1.5V

DC Electrical Characteristics: (cont.)

 $T_A = 0$ °C to +70°C; VDDQ3 = 3.3V±5%; VDDQ2 = 2.5V±5%

Symbol	Parameter	Min	Тур	Max	Unit	Test Condition	
I _{OH}	Output High Current	CPU0:1	50	70	100	mA	V _{OH} = 1.25V
		PCI_F, PCI1:6	60	70	120	mA	V _{OH} = 1.5V
		IOAPIC	40	87	155	mA	V _{OH} = 1.25V
		REF2X	100	130	150	mA	V _{OH} = 1.5V
		48MHz, 24MHz	40	50	94	mA	V _{OH} = 1.5V
Crystal Os	cillator	•					
V _{TH}	X1 Input threshold Voltage	ge (Note 3)		1.65		V	VDDQ3 = 3.3V
C _{LOAD}	Load Capacitance, As se External Crystal (Note 4)	•		14		pF	
C _{IN,X1}	X1 Input Capacitance (N	ote 5)		28		pF	Pin X2 unconnected
Pin Capac	itance/Inductance						
C _{IN}	Input Pin Capacitance				5	pF	Except X1 and X2
C _{OUT}	Output Pin Capacitance				6	pF	
L _{IN}	Input Pin Inductance				7	nH	

- Notes: 1. All clock outputs loaded with maximum lump capacitance test load specified in AC Electrical Characteristics section.
 - 2. W48S111-14 logic inputs have internal pull-up resistors, except SEL100/66# (pull ups not full CMOS level).
 - 3. X1 input threshold voltage (typical) is VDD/2.
 - 4. The W48S111-14 contains an internal crystal load capacitor between pin X1 and ground and another between pin X2 and ground. Total load placed on crystal is 14pF; this includes typical stray capacitance of short PCB traces to crystal.
 - 5. X1 input capacitance is applicable when driving X1 with an external clock source (X2 is left unconnected).

AC Electrical Characteristics:

 $T_A = 0$ °C to +70°C; VDDQ3 = 3.3V±5%; VDDQ2 = 2.5V±5%; $f_{XTL} = 14.31818MHz$

AC clock parameters are tested and guaranteed over stated operating conditions using the stated lump capacitive load at the clock output; Spread Spectrum clocking is disabled.

CPU Clock Outputs, CPU0:1 (Lump Capacitance Test Load = 20pF)

		СР	J = 66.8	MHz	CPU = 100MHz					
Symbol	Parameter	Min	Тур	Max	Min	Тур	Max	Unit	Test Condition/Comments	
t _P	Period	15		15.5	10		10.5	ns	Measured on rising edge at 1.25.	
t _H	High Time	5.2			3.0			ns	Duration of clock cycle above 2.0V.	
t _L	Low Time	5.0			2.8			ns	Duration of clock cycle below 0.4V.	
t _R	Output Rise Edge Rate	1		4	1		4	ns	Measured from 0.4V to 2.0V.	
t _F	Output Fall Edge Rate	1		4	1		4	ns	Measured from 2.0V to 0.4V.	
t _D	Duty Cycle	45		55	45		55	%	Measured on rising and falling edge at 1.25\	
t _{JC}	Jitter, Cycle-to-Cycle			200			200	ps	Measured on rising edge at 1.25V. Maximum difference of cycle time between two adjacer cycles.	
t _{SK}	Output Skew			175			175	ps	Measured on rising edge at 1.25V.	
f _{ST}	Frequency Stabilization from Power-up (cold start)			3			3	ms	Assumes full supply voltage reached within 1ms from power-up. Short cycles exist prior to frequency stabilization.	
Z _o	AC Output Impedance		20			20		ohm	Average value during switching transition. Used for determining series termination value.	

PCI Clock Outputs, PCI1:6 and PCI_F(Lump Capacitance Test Load = 30pF)

		CPU = 66.8/100MHz Min Typ Max			Test Condition/Comments		
Symbol	Parameter			Unit			
t _P	Period	30			ns	Measured on rising edge at 1.5V.	
t _H	High Time	12.0			ns	Duration of clock cycle above 2.4V.	
t_	Low Time	12.0			ns	Duration of clock cycle below 0.4V.	
t _R	Output Rise Edge Rate	1		4	V/ns	Measured from 0.4V to 2.4V.	
t _F	Output Fall Edge Rate	1		4	V/ns	Measured from 2.4V to 0.4V.	
t _D	Duty Cycle	45		55	%	Measured on rising and falling edge at 1.5V.	
t _{JC}	Jitter, Cycle-to-Cycle			250	ps	Measured on rising edge at 1.5V. Maximum difference of cycle time between two adjacent cycles.	
t _{SK}	Output Skew			500	ps	Measured on rising edge at 1.5V.	
t _O	CPU to PCI Clock Offset	1.5		4.0	ns	Covers all CPU/PCI outputs. Measured on rising edge at 1.5V. CPU leads PCI output.	
f _{ST}	Frequency Stabilization from Power-up (cold start)			3	ms	Assumes full supply voltage reached within 1ms from power-up. Short cycles exist prior to frequency stabilization.	
Z _o	AC Output Impedance	20		ohm	Average value during switching transition. Used for determining series termination value.		

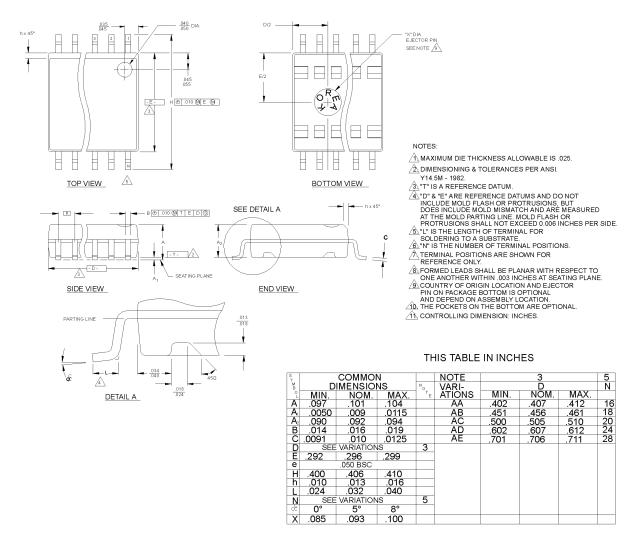
AC Electrical Characteristics -cont.

IOAPIC Clock Output (Lump Capacitance Test Load = 20pF)

		CPU = 66.8/100MHz				
Symbol	Parameter	Min Typ Max		Unit	Test Condition/Comments	
f	Frequency, Actual	14.31818		MHz	Frequency generated by crystal oscillator.	
t _R	Output Rise Edge Rate	1		4	V/ns	Measured from 0.4V to 2.0V.
t _F	Output Fall Edge Rate	1		4	V/ns	Measured from 2.0V to 0.4V.
t _D	Duty Cycle	45 55		55	%	Measured on rising and falling edge at 1.25V.
f _{ST}	Frequency Stabilization from Power-up (cold start)	1.5		1.5	ms	Assumes full supply voltage reached within 1ms from power-up. Short cycles exist prior to frequency stabilization.
Z _o	AC Output Impedance	15			ohm	Average value during switching transition. Used for determining series termination value.

REF2X Clock Output (Lump Capacitance Test Load = 20pF)

		CPU =66.8/100MHz					
Symbol	Parameter	Min Typ Max		Unit	Test Condition/Comments		
f	Frequency, Actual	14.318		MHz	Frequency generated by crystal oscillator		
t _R	Output Rise Edge Rate	0.5 2		V/ns	Measured from 0.4V to 2.4V.		
t _F	Output Fall Edge Rate	0.5 2		V/ns	Measured from 2.4V to 0.4V.		
t _D	Duty Cycle	45 55		%	Measured on rising and falling edge at 1.5V.		
f _{ST}	Frequency Stabilization from Power-up (cold start)	3		ms	Assumes full supply voltage reached within 1ms from power-up. Short cycles exist prior to frequency stabilization.		
Z _o	AC Output Impedance	20		ohm	Average value during switching transition. Used for determining series termination value.		


48MHz and 24MHz Clock Output (Lump Capacitance Test Load = 20pF)

		CPU	J = 66.8/100	MHz			
Symbol	Parameter	Min Typ Max		Unit	Test Condition/Comments		
f	Frequency, Actual	48.008 24.004		MHz	Determined by PLL divider ratio (see m/n below).		
f _D	Deviation from 48MHz	+167		ppm	(48.008 – 48)/48		
m/n	PLL Ratio	57/17, 57/34				(14.31818MHz x 57/17 = 48.008MHz)	
t _R	Output Rise Edge Rate	0.5		2	V/ns	Measured from 0.4V to 2.4V.	
t _F	Output Fall Edge Rate	0.5		2	V/ns	Measured from 2.4V to 0.4V.	
t _D	Duty Cycle	45 55		55	%	Measured on rising and falling edge at 1.5V.	
f _{ST}	Frequency Stabilization from Power-up (cold start)	3		ms	Assumes full supply voltage reached within 1ms from power-up. Short cycles exist prior to frequency stabilization.		
Z _o	AC Output Impedance	25		ohm	Average value during switching transition. Used for determining series termination value.		

Mechanical Package Outline

Figure 5 28-Pin Small Outline Integrated Circuit (SOIC, 300 mils)

THIS TABLE IN MILLIMETERS

COMMON				NOTE		5 N		
DIMENSIONS			N _O	VARI-				
MIN.	NOM.	MAX.	T _E		MIN.	NOM.	MAX.	
2.46	2.56	2.64		AA	10.21	10.34	10.46	16
0.127	0.22	0.29		AB	11.46	11.58	11.71	18
2.29	2.34	2.39		AC		12.83	12.95	20
0.35	0.41	0.48		AD		15.42	15.54	24
0.23	0.25	0.32		AE	17.81	17.93	18.06	28
SEE VARIATIONS		3						
7.42	7.52	7.59						
e 1.27 BSC								
10.16	10.31	10.41						
0.25	0.33	0.41						
0.61	0.81	1.02						
SEE VARIATIONS 0° 5° 8°		5						
0°	5°	8°						
2.16	2.36	2.54						
	MIN. 2.46 0.127 2.29 0.35 0.23 SEE 7.42 10.16 0.25 0.61 SEE 0°	DIMENSION MIN. NOM. 2.46 2.56 0.127 0.22 2.29 2.34 0.35 0.41 0.23 0.25 SEE VARIATION 7.42 7.52 1.27 BSC 10.16 10.31 0.25 0.33 0.61 0.81 SEE VARIATION 0° 5°	DIMENSIONS MIN. NOM. MAX. 2.46 2.56 2.64 0.127 0.22 0.29 2.29 2.34 2.39 0.35 0.41 0.48 0.23 0.25 0.32 SEE VARIATIONS 7.42 7.52 7.59 1.27 BSC 10.16 10.31 10.41 0.25 0.33 0.41 0.61 0.81 1.02 SEE VARIATIONS 0° 5° 8°	DIMENSIONS MAX.	DIMENSIONS NOM. MAX. VARI-ATIONS MIN. NOM. MAX. VARI-ATIONS 2.46 2.56 2.64 AA 0.127 0.22 0.29 AB 2.29 2.34 2.39 AC 0.35 0.41 0.48 AD 0.23 0.25 0.32 AE SEE VARIATIONS 3 7.52 7.59 1.27 BSC 10.16 10.31 10.41 0.25 0.33 0.41 0.61 0.61 0.81 1.02 SEE VARIATIONS 5 0° 5° 8°	DIMENSIONS Nom. MAX. VARI-ATIONS MIN. MIN. NOM. MAX. VARI-ATIONS MIN. 0.127 0.22 0.29 AB 11.46 0.29 2.34 2.39 AC 12.70 0.35 0.41 0.48 AD 15.29 0.23 0.25 0.32 AE 17.81 SEE VARIATIONS 3 7.52 7.59 127 BSC 10.16 10.31 10.41 0.25 0.33 0.41 0.61 0.81 1.02 5 SEE VARIATIONS 5 0° 5° 8° 8° 8°	DIMENSIONS No. VARI- ATIONS NOM. NOM. NOM. ATIONS NOM. NOM.	DIMENSIONS NOM. MAX. NOM. MAX. ATIONS MIN. NOM. MAX. ATIONS MIN. NOM. MAX. NOM. MAX. NOM. MAX. NOM. NOM. MAX. NOM. NOM.

IC WORKS, Inc. reserves the right to amend or discontinue this product without notice. Circuit and timing diagrams used the describe IC WORKS product operations and applications are included as a means of illustrating a typical product application. Complete information for design purposes is not necessarily given. This information has been carefully checked and is believed to be entirely reliable. IC WORKS, however, will not assume any responsibility for inaccuracies.

Life Support Applications:

IC WORKS products are not designed for use in life support applications, devices, or systems where malfunctions of the IC WORKS product can reasonably be expected to result in personal injury. IC WORKS customers using or selling IC WORKS products for use in such applications do so at their own risk and agree to fully indemnify IC WORKS for any damages resulting in such improper use or sale.