ADVANCED^{*}

64Mx32 Flash Multi-Chip Package 3.0V Page Mode Flash Memory

FEATURES

- Single power supply operation
 - · 3 volt read, erase, and program operations
- I/O Control
 - All input levels (address, control, and DQ input levels) and outputs are determined by voltage on Vio input. Vio range is 1.65 to Vcc
- Secured Silicon Sector region
 - 128-word/256-byte sector for permanent, secure identification through an 8-word/16-byte random Electronic Serial Number, accessible through a command sequence
 - May be programmed and locked at the factory or by the customer
- Flexible sector architecture
 - Five hundred twelve 64 Kword (128 Kbyte) sectors
 - Two hundred fifty-six 64 Kword (128 Kbyte) sectors
 - One hundred twenty-eight 64 Kword (128 Kbyte) sectors
- Compatibility with JEDEC standard
 - Provides software compatibility for single-power supply flash, and superior inadvertent write protection
- 100,000 erase cycles per sector typical
- 20-year data retention typical

PERFORMANCE CHARACTERISTICS

- High Performance
 - 100, 120 ns
 - 8-word/16-byte page read buffer
 - · 25 ns page read times
 - 16-word/32-byte write buffer reduces overall programming time for multiple-word updates
- Package option
 - 107 BGA, 14mm x 17mm
 - 1.0mm pitch

Software features

- Program Suspend and Resume: read other sectors before programming operation is completed
- Erase Suspend and Resume: read/program other sectors before an erase operation is completed
- Data# polling and toggle bits provide status
- Unlock Bypass Program command reduces overall multiple-word programming time
- CFI (Common Flash Interface) compliant: allows host system to identify and accommodate multiple flash devices
- Hardware features
 - Advanced Sector Protection
 - WP#/ACC input accelerates programming time (when high voltage is applied) for greater throughput during system production. Protects first or last sector regardless of sector protection settings
 - · Hardware reset input (RESET#) resets device
 - Ready/Busy# output (RY/BY#) detects program or erase cycle completion

^{*} This product is under development, is not qualified or characterized and is subject to change or cancellation without notice.

ADVANCED[®]

GENERAL DESCRIPTION

The W764MB2V-XSBX device is a 3.0V single power flash memory. The device utilizes four organized as 33,554,432 words or 67, 108,864 bytes. The device has 64 -bit wide data bus that can also function as an 32-bit wide data bus by using the BYTE# input. The device can be programmed either in the host system or in standard EPROM programmers.

Each device requires a single 3.0 volt power supply for both read and write functions. In addition to a Vcc input, an high-voltage accelerated program (WP/ACC) input provides shorter programming times through increased current. This feature is intended to facilitate factory throughput during system production, but may also be used in the field if desired.

The devices are entirely command set compatible with the JEDEC single power-supply Flash standard. Commands are written to the device using standard microprocessor write timing. Write cycles also internally latch addresses and data needed for the programming and erase operations.

The sector erase architecture allows memory sectors to be erased and reprogrammed without affecting the data contents of other sectors. The device is fully erased when shipped from the factory.

Device programming and erasure are initiated through command sequences. Once a program or erase operation has begun, the host system need only poll the DQ7 (Data# Polling) or DQ6 (toggle) status bits or monitor the Ready / Busy# (RY / BY#) output to determine whether the operation is complete. To facilitate programming, an Unlock Bypass mode reduces command sequence over head by requiring only two write cycles to program data instead of four.

The I/O ($V_{\rm IO}$) control allows the host system to set the voltage levels that the device generates and tolerates on all input levels (address, chip control, and DQ input levels) to the same voltage level that is asserted on the $V_{\rm IO}$ pin. This allows the device to operate in a 1.8 V or 3 V system environment as required.

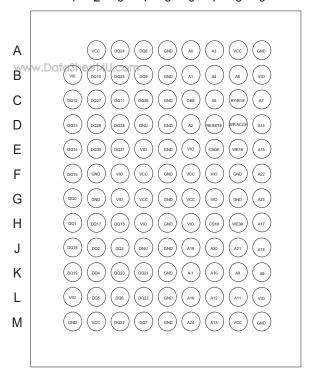
Hardware data protection measures include a low V_{CC} detector that automatically inhibits write operations during power transitions. Persistent Sector Protection provides in-system, comand-enabled protection of any combination of sectors using a single power supply at V_{CC}. Password

Sector Protection prevents unauthorized write and erase operations in any combination of sectors through a user-defined 64-bit password.

The erase Suspend / Erase Resume feature allows the host system to pause and erase operation in a given sector to read or program any other sector and then complete the erase operation. The Program Suspend / Program Resume feature enables the host system to pause the program operation in a given sector to read any other sector and then complete the program operation.

The hardware RESET# pin terminates any operation in progress and resets the device, after which it is then ready for a new operation. The RESET# pin may be tied to the system reset circuitry. A system reset would thus also reset the device, enabling the host system to read boot-up firmware from the Flash memory device.

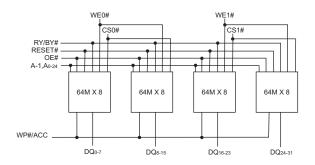
The device reduces power consumption in the standby mode when it detects specific voltage levels on CS# and RESET#, or when addresses have been stable for a specified period of time.


The Secured Silicon Sector provides a 128-work/256-byte area for code or data that can be permanently protected. Once this sector is protected, no further changes within the sector can occur.

The Write Protect (WP# / ACC) feature protects the first or last sector by asserting a logic low on the WP# pin.

FIG 1: PIN CONFIGURATION (TOP VIEW)

1 2 3 4 5 6 7 8 9



PIN DESCRIPTION

DQ ₀₋₆₃	Data Inputs/Outputs
A ₀₋₂₄ , A-1*	Address Inputs
WE# ₀₋₁	Write Enables
CS# ₀₋₁	Chip Selects
OE#	Output Enable
RESET#	Hardware Reset
WP#/ACC	Hardware Write
	Protection/Acceleration
RY/BY#	Ready/Busy Output
Vcc	Power Supply
Vio	I/O Power Supply
GND	Ground
DNU	Do Not Use

^{*} A-1 is the least significant address.

BLOCK DIAGRAM

ADVANCED*

ABSOLUTE MAXIMUM RATINGS

Parameter		Unit
Operating Temperature	-55 to +125	°C
Supply Voltage Range (Vcc)	-0.5 to +4.0	V
Signal Voltage Range	-0.5 to Vcc +0.5	V
Storage Temperature Range	-55 to +125	°C
Endurance (write/erase cycles)	1,000,000 min.	cycles

NOTES:

- Minimum DC voltage on input or input or I/Os is -0.5V. During voltage transitions, inputs or I/Os may overshoot Vss to -2.0V for periods of up to 20ns. Maximum DC voltage on input or I/Os us VCC + 0.5V. During voltage transitions, input or I/O pins may overshoot to Vcc + 2.0V for periods up to 20ns
- Minimum DC input voltage on pins A9, OE#, and ACC is 0.5V. During voltage transitions, A9, OE#, and ACC may overshoot Vss to -2.0V for periods of up to 20ns. Maximum DC input voltage on pin A9, OE#, and ACC is +12.5V which may overshoot to +14.0V for periods up to 20ns
- No more than one output may be shorted to ground at a time. Duration of the short circuit should not be greater than one second.
- 4. Stresses above those listed under Absolute Maxium Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of the data sheet is not implied. Exposure of the device to absolute maxium rating conditions for extended peroids may affect device reliability

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	3.0	3.6	V
Operating Temp. (Mil.)	TA	-55	+125	°C
Operating Temp. (Ind.)	TA	-40	+85	°C

CAPACITANCE

 $T_A = +25$ °C, F = 1.0MHz

Parameter	Symbol	Max	Unit
WE1-4# capacitance	Cwe	TBD	pF
CS1-4# capacitance	Ccs	TBD	pF
Data I/O capacitance	C _{I/O}	TBD	pF
Address input capacitance	C _{AD}	TBD	pF
RESET# capacitance	C _{RS}	TBD	pF
RY/BY# capacitance	C _{RB}	TBD	pF
OE# capacitance	COE	TBD	pF

This parameter is guaranteed by design but not tested.

DATA RETENTION

Parameter	Test Conditions	Min	Unit
Pattern Data	150°C	10	Years
Retention Time	125°C	20	Years

DC CHARACTERISTICS - CMOS COMPATIBLE

 $V_{CC} = 3.3V \pm 0.3V, -55^{\circ}C \le T_{A} \le +125^{\circ}C$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input Load Current (1)	lu	VIN = Vss to Vcc, #Vcc = Vcc(MAX)			WP/ACC: ±2.0	
					Others: ±1.0	μΑ
A9 Input Load Current	Ішт	Vcc = to Vcc(MAX); A9 = 12.5V			35	μA
Output Leakage Current	ILO	Vout = Vss to Vcc, # Vcc = Vcc(MAX)			±1.0	μΑ
www.DataSheet4U.com	l	CE# = V _{IL} #, OE# = V _{IH} , V _{CC} = V _{CC(MAX)} ; # f = 1 MHz, Byte Mode		24	80	mA
Vcc Active Current for Read (1)	lcc1	CE# = VIL#, OE# = VIH, VCC = VCC(MAX); # f = 5MHz, Word Mode		120	200	mA
Vcc Intra-Page Read Current (1)	Icc2	CE# = V _{IL} #, OE# = V _{IH} , V _{CC} = V _{CC(MAX)} ; f = 10MHz		1	10	mA
Vcc Active Erase/Program Current (2,3)	Іссз	CE# = V _{IL} #, OE# = V _{IH} , V _{CC} = V _{CC(MAX)}		200	320	mA
Vcc Standby Current	Icc4	Vcc = Vcc(MAX); Vio = Vcc; OE# = ViH; # ViL = Vss + 0.3V/-0.1V; # CE#, RESET# = Vss ± 0.3V		4	20	μΑ
Vcc Reset Current	Icc5	Vcc = Vcc(MAX); Vio = Vss + 0.3V/- 0.1V; RESET# = Vss ± 0.3V		4	20	μΑ
Automatic Sleep Mode (4)	Icc6	Vcc = Vcc(MAX); Vio = Vcc; Vih = Vcc ± 0.3V; #ViL = Vss + 0.3V/- 0.1V; WP#/Acc = Vih		4	20	μA
		CE# = V _{IL} , OE# = V _{IH} , V _{CC} =	WP#/Acc pin	40	80	
Acc Accelerated Program Current	IACC	Vcc(MAX), #WP#/Acc = ViH	V _{CC} pin	200	320	mA
Input Low Voltage (5)	VIL		-0.1		0.3 x V _{IO}	V
Input High Voltage (5)	VIH		0.7 x V _{IO}		V _{IO} + 0.3	V
Voltage for ACC Erase/Program Acceleration	V _{НН}	V _{CC} = 2.7 - 3.6V	11.5		12.5	V
Voltage for Autoselect and Temporary Sector Unprotect	VID	Vcc = 2.7 - 3.6V	11.5		12.5	V
Output Low Voltage (5)	Vol	I _{OL} = -100 μA			0.15 x V _{IO}	V
Output High Voltage (5)	Voн	I _{OH} = -100 µA	0.85 x V _{IO}			V
Low Vcc Lock-Out Voltage	VLKO		2.3		2.5	V

NOTES:

- 1. The lcc current is typically less than 2 mA/MHz, with OE# at VIH
- 2. Icc active while Embedded Erase or Embedded Program or Write Buffer Programming is in progress.
- 3. Not 100% tested
- 4. Automatic sleep mode enables the lower power mode when addresses remain stable for tacc + 30ns.
- 5. V_{IO} = 1.65-1.95V or 2.7-3.6V.
- 6. Vcc = 3 V and Vlo = 3V or 1.8V. When Vlo is at 1.8V, I/O pins cannot operate at 3V.

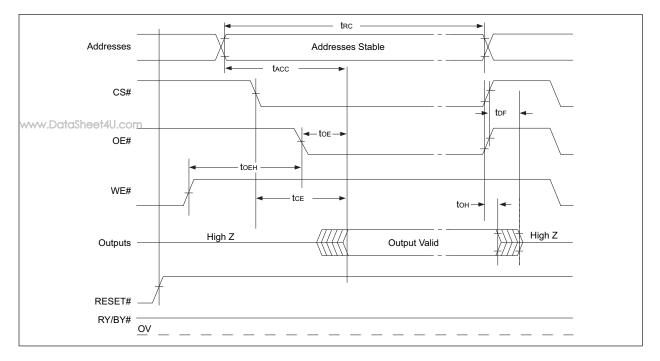
AC CHARACTERISTICS - WRITE/ERASE/PROGRAM OPERATIONS - WE# CONTROLLED

 $V_{CC} = 3.3V \pm 0.3V, -55^{\circ}C \le T_{A} \le +125^{\circ}C$

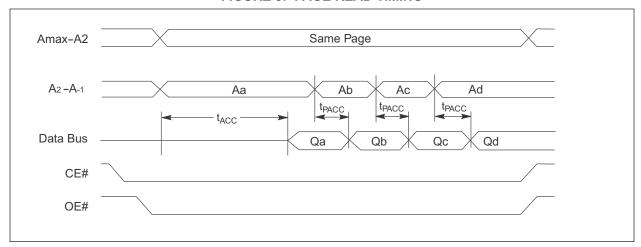
Parameter	Syr	nbol	-1 Min	00 Max	-12 Min	20 Max	Unit
Write Cycle Time (3)	tavav	twc	100		120		ns
Chip Select Setup Time (3)	telwl	tcs	0		0		ns
Write Enable Pulse Width	tww	twp	35		50		ns
Address Setup Time	tavwl	tas	0		0		ns
Data Setup Timeeet 4U.com	tоvwн	tos	45		50		ns
Data Hold Time	twndx	tон	0		0		ns
Address Hold Time	twlax	tан	45		50		ns
Write Enable Pulse Width High (3)	twhwL	twph	30		30		ns
Duration of Byte Programming Operation (1)	twnwh1			500		500	μs
Sector Erase (2)	twhwh2			3.5		5	sec
Read Recovery Time before Write (3)	tghwl		0		0		ns
VCC Setup Time	tvcs		50		50		μs
Address Setup Time to OE# low during toggle bit polling		taso	15		15		ns
Write Recovery Time from RY/BY# (3)		trв	0		0		ns
Program/Erase Valid to RY/BY#		tBUSY	90		90		ns

NOTES:

- 1. Typical value for twhwh1 is 60 μs.
- 2. Typical value for twhwh2 is 0.5 sec.
- 3. Guaranteed by design, but not tested.

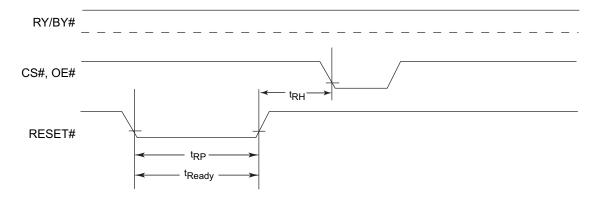

AC CHARACTERISTICS - READ-ONLY OPERATIONS

 $V_{CC} = 3.3V \pm 0.3V, -55^{\circ}C \le T_{A} \le +125^{\circ}C$

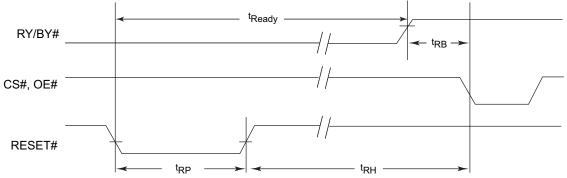

Parameter	Parameter		Symbol		-100 Min Max		-120 Min Max	
Read Cycle Time (1)		tavav	t _{RC}	100		120		ns
Address Access Time		tavqv	tacc		100		120	ns
Chip Select Access Time		tELQV	tce		100		120	ns
Page Access Time			t PACC		25		30	ns
Output Enable to Output Valid		tglqv	toe		25		35	ns
Chip Select High to Output High Z		tehqz	tor		20		20	ns
Output Enable High to Output High Z		tgнqz	tor		20		20	ns
Output Hold from Addresses, CS# or Whichever occurs first	OE# Change,	taxqx	tон	0		0		ns
Output Enable Hold Time (1)	Read		tоен	0		0		ns
	Toggle and Data# Polling			10		10		ns

^{1.} Guaranteed by design, not tested.

FIGURE 3: PAGE READ TIMING

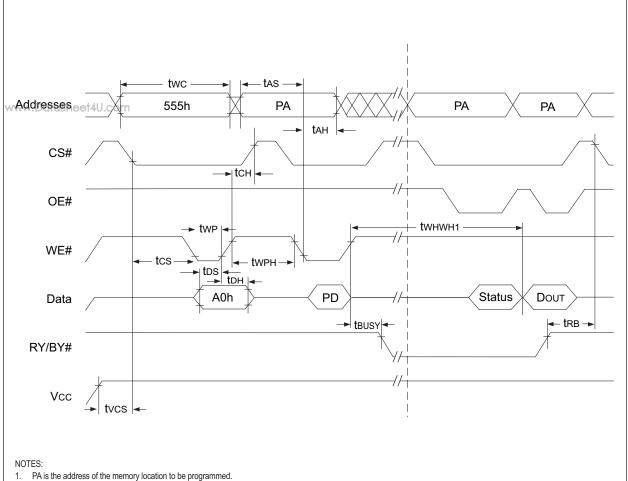


AC CHARACTERISTICS – HARDWARE RESET (RESET#)


Parameter	Symbol			Unit
1 4141113101		Min	Max	J
RESET# Pin Low (During Embedded Algorithms) to Read Mode (1)	tready		20	μs
RESET# Pin Low (NOT During Embedded Algorithms) to Read Mode (1)	tready		500	ns
RESET# Pulse Width	t _{RP}	500		ns
RESET# High Time Before Read (1)	t _{RH}	50		ns
RESET# Low to Standby Mode (1)	t _{RPD}	20		μs
RY/BY# Recovery Time	trB	0		ns

NOTE: 1. Not tested.

FIGURE 4: RESET TIMINGS NOT DURING EMBEDDED ALGORITHMS


FIGURE 5: RESET TIMINGS DURING EMBEDDED ALGORITHMS

White Electronic Designs Corp. reserves the right to change products or specifications without notice.

FIGURE 6: PROGRAM OPERATIONS

- PD is the data to be programmed at byte address.
- Dout is the output of the data written to the device.
- 4. Figure indicates last two bus cycles of four bus cycle sequence.

FIGURE 7: ACCELERATED PROGRAM TIMING DIAGRAM

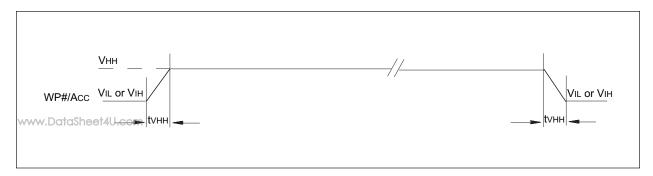
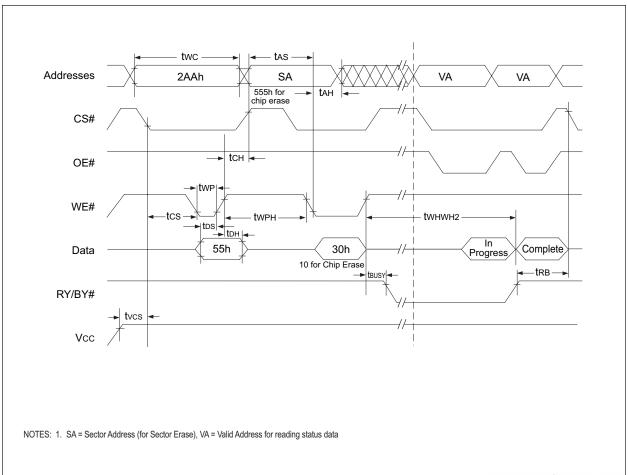
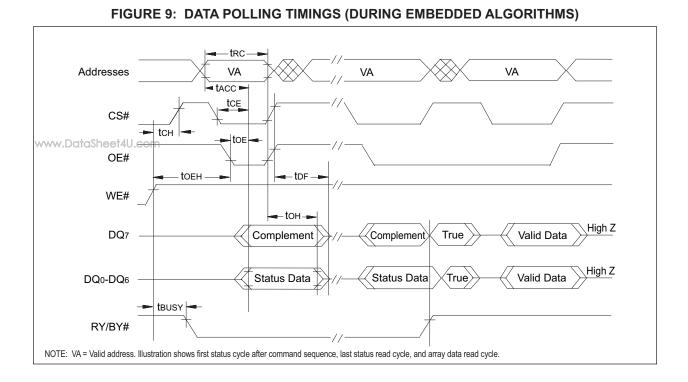




FIGURE 8: CHIP/SECTOR ERASE OPERATION TIMINGS

White Electronic Designs Corp. reserves the right to change products or specifications without notice.

FIGURE 10: TOGGLE BIT TIMINGS (DURING EMBEDDED ALGORITHMS)

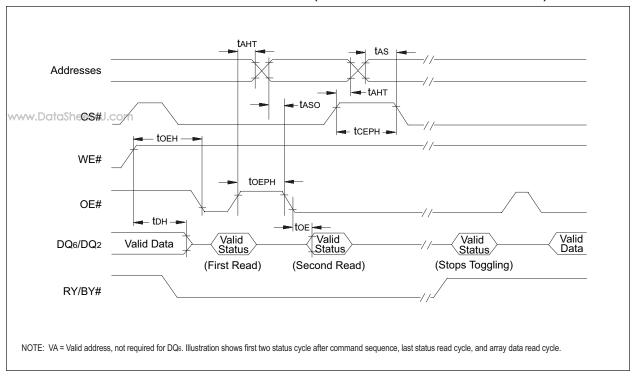
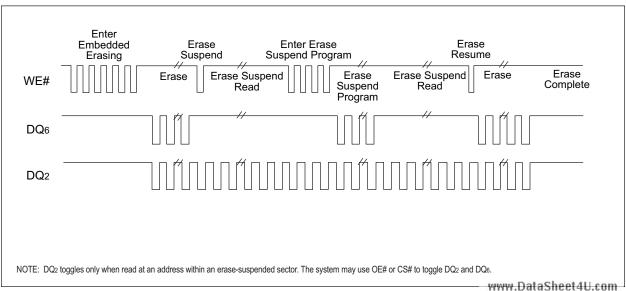
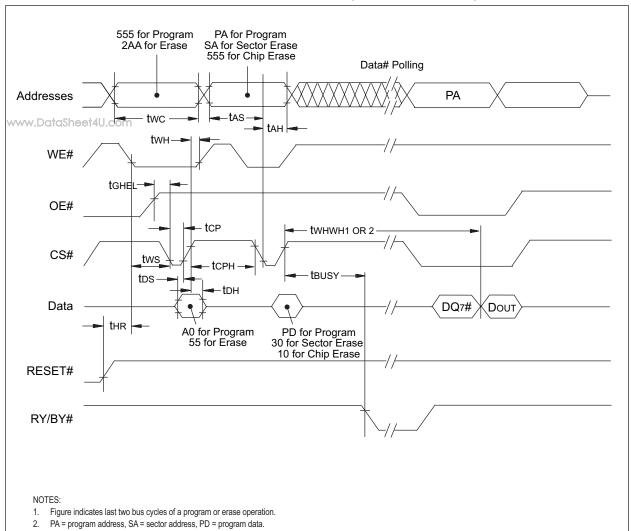



FIGURE 11: DQ2 Vs. DQ6

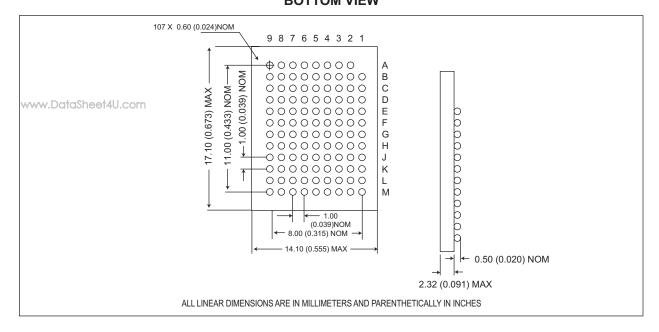
White Electronic Designs Corp. reserves the right to change products or specifications without notice

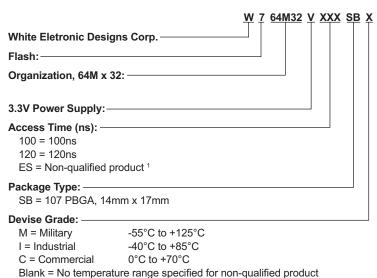

AC CHARACTERISTICS - ALTERNATE CS# CONTROLLED ERASE AND PROGRAM OPERATIONS

Parai	meter			Speed	Options	
JEDEC	Std	Description		100	120	Unit
tavav	twc	Write Cycle Time (1)	Min	100	120	ns
tavwl	tas	Address Setup Time	Min	0	0	ns
telax	tан	Address Hold Time	Min	45	50	ns
toveh	tos	Data Setup Time	Min	45	50	ns
tehdx	tон	Data Hold Time	Min	0	0	ns
Wytghel ^{Da}	aShee141	Read Recovery Time Before Write (OE# High to WE# Low)	Min	0	0	ns
twlel	Tws	WE# Setup Time	Min	0	0	ns
tehwh	twн	WE# Hold Time	Min	0	0	ns
teleh	tcp	CS# Pulse Width	Min	35	35	ns
tehel	tсрн	CS# Pulse Width High	Min	30	30	ns
twnwh1	twnwh1	Programming Operation	Тур	60	6	μs
twnwh1	twnwh1	Accelerated Programming Operation	Тур	54	54	μs
twhwh2	twhwh2	Sector Erase Operation	Тур	0.5	05	sec

NOTE: 1. Not tested.

ADVANCED*


FIGURE 12: ALTERNATE CS# CONTROLLED WRITE (ERASE/PROGRAM) OPERATION TIMINGS


3. DQ7 is the complement of the data written to the device. Dout is the data written to the device.

ADVANCED*

PACKAGE: 107 PBGA (PLASTIC BALL GRID ARRAY) BOTTOM VIEW

ORDERING INFORMATION

NOTE 1: W764M32V-ESSB is only available product until completion of qualification.

Document Title

64Mx32 Flash 3.3V

Revision History

Rev#	History	Release Date	Status
Rev 0	Initial Release	November 2005	Advanced
www.DataSh Rev 1	changes (All Pages) 1.1 Add AC + DC characteristics and timing diagrams 1.2 Update package dimensions 1.3 Add preliminary pinout	February 2006	Advanced
Rev 2	Changes (Pg. 1, 3, 16) 2.1 Correct typographical error in pinout on page 3, ball 'B4' is DQ9	March 2006	Advanced