### W79E633A/W79L633A DATA SHEET

## nuvoTon

### **8-BIT MICROCONTROLLER**

#### Table of Contents-

| 1.  | GENERAL DESCRIPTION                       | 4  |
|-----|-------------------------------------------|----|
| 2.  | FEATURES                                  | 4  |
| 3.  | PIN CONFIGURATION                         | 6  |
| 4.  | PIN DESCRIPTION                           | 7  |
|     | 4.1 Port 4                                |    |
| 5.  | MEMORY ORGANIZATION                       |    |
|     | 5.1 Program Memory (on-chip Flash)        |    |
|     | 5.2 Data Memory                           |    |
| 6.  | SPECIAL FUNCTION REGISTERS                |    |
| 7.  | INSTRUCTION SET                           |    |
|     | 7.1 Instruction Timing                    |    |
|     | 7.1.1 External Data Memory Access Timing  |    |
| 8.  | POWER MANAGEMENT                          |    |
|     | 8.1 Idle Mode                             |    |
|     | 8.2 Power Down Mode                       |    |
| 9.  | RESET                                     |    |
| -   | 9.1 Reset Conditions                      |    |
|     | 9.2 External Reset                        |    |
|     | 9.3 Power-On Reset (POR)                  |    |
|     | 9.4 Watchdog Timer Reset                  |    |
|     | 9.5 Reset State                           |    |
| 10. | INTERRUPTS                                |    |
|     | 10.1 Interrupt Sources                    |    |
|     | 10.2 Priority Level Structure             |    |
| 11. | PROGRAMMABLE TIMERS/COUNTERS              |    |
|     | 11.1 Timer/Counters 0 & 1                 |    |
|     | 11.1.1 Time-Base Selection                |    |
|     | 11.1.2 Mode 0                             | 60 |
|     | 11.1.3 Mode 1                             | 61 |
|     | 11.1.4 Mode 2                             | 61 |
|     | 11.1.5 Mode 3                             | 62 |
|     | 11.2 Timer/Counter 2                      | 62 |
|     | 11.2.1 Capture Mode                       | 63 |
|     | 11.2.2 Auto-reload Mode, Counting up      |    |
|     | 11.2.3 Auto-reload Mode, Counting Up/Down |    |
|     | 11.2.4 Baud Rate Generator Mode           |    |
| 12. | WATCHDOG TIMER                            |    |
| 13. | PULSE-WIDTH-MODULATED (PWM) OUTPUTS       | 69 |

Publication Release Date: Oct 08, 2010 Revision A6.0

| 14. | SERIAL PORT                                       | 71  |
|-----|---------------------------------------------------|-----|
|     | 14.1 Mode 0                                       | 71  |
|     | 14.2 Mode 1                                       | 72  |
|     | 14.3 Mode 2                                       | 73  |
|     | 14.4 Mode 3                                       | 75  |
|     | 14.5 Framing Error Detection                      |     |
|     | 14.6 Multiprocessor Communications                |     |
| 15. | I2C SERIAL PORTS                                  |     |
|     | 15.1 The I2C Control Registers                    | 79  |
|     | 15.1.1 Slave Address Registers, I2ADDRxx          | 79  |
|     | 15.1.2 Data Register, I2DAT                       | 80  |
|     | 15.1.3 Control Register, I2CONx                   | 80  |
|     | 15.1.4 Status Register, I2STATUSx                 | 81  |
|     | 15.1.5 I2C Clock Baud Rate Control, I2CLKx        |     |
|     | 15.1.6 I2C Time-out Counter, I2Timerx             | 81  |
|     | 15.2 Modes of Operation                           |     |
|     | 15.2.1 Master Transmitter Mode                    |     |
|     | 15.2.2 Master Receiver Mode                       |     |
|     | 15.2.3 Slave Receiver Mode                        |     |
|     | 15.2.4 Slave Transmitter Mode                     |     |
|     | 15.3 Data Transfer Flow in Four Operating Modes   |     |
|     | 15.3.1 Master/Transmitter Mode                    |     |
|     | 15.3.2 Master/Receiver Mode                       |     |
|     | 15.3.3 Slave/Transmitter Mode                     |     |
|     | 15.3.4 Slave/Receiver Mode<br>15.3.5 GC Mode      |     |
| 16  |                                                   |     |
| 16. | ANALOG-TO-DIGITAL CONVERTER                       |     |
|     | 16.1 Operation of ADC                             |     |
|     | 16.2 ADC Resolution and Analog Supply             |     |
| 47  | 16.3 ADC Control Registers                        |     |
| 17. |                                                   |     |
| 18. | PORT 4 STRUCTURE                                  |     |
| 19. | H/W REBOOT MODE (BOOT FROM 4K BYTES OF LDFLASH)   |     |
| 20. | IN-SYSTEM PROGRAMMING                             |     |
|     | 20.1 The Loader Program Locates at LDFlash Memory |     |
|     | 20.2 The Loader Program Locates at APFlash Memory |     |
| 21. | H/W WRITER MODE                                   |     |
| 22. | SECURITY BITS                                     |     |
| 23. | ELECTRICAL CHARACTERISTICS                        |     |
|     | 23.1 Absolute Maximum Ratings                     | 101 |
|     | 23.2 DC Characteristics                           | 101 |
|     | 23.3 AC Characteristics                           |     |
|     | 23.3.1 External Clock Characteristics             | 103 |
|     | 23.3.2 AC Specification                           | 103 |

|     |        | 23.3.3 MOVX Characteristics Using Stretch Memory Cycle | 104 |
|-----|--------|--------------------------------------------------------|-----|
|     | 23.4   | The ADC Converter DC ELECTRICAL CHARACTERISTICS 1      | 05  |
|     | 23.5   | I2C Bus Timing Characteristics 1                       | 06  |
|     | 23.6   | Program Memory Read Cycle 1                            | 07  |
|     | 23.7   | Data Memory Read Cycle1                                | 07  |
|     | 23.8   | Data Memory Write Cycle 1                              | 80  |
| 24. | TYPIC  | AL APPLICATION CIRCUITS 1                              | 09  |
|     | 24.1   | Expanded External Program Memory and Crystal 1         |     |
|     | 24.2   | Expanded External Data Memory and Oscillator1          | 09  |
| 25. | PACKA  | AGE DIMENSIONS 1                                       |     |
|     | 25.1   | 44-pin PLCC                                            | 10  |
|     | 25.2   | 44-pin QFP1                                            | 10  |
| 26. | APPLIC | CATION NOTE 1                                          | 11  |
| 27. | VERSI  | ON HISTORY 1                                           | 17  |



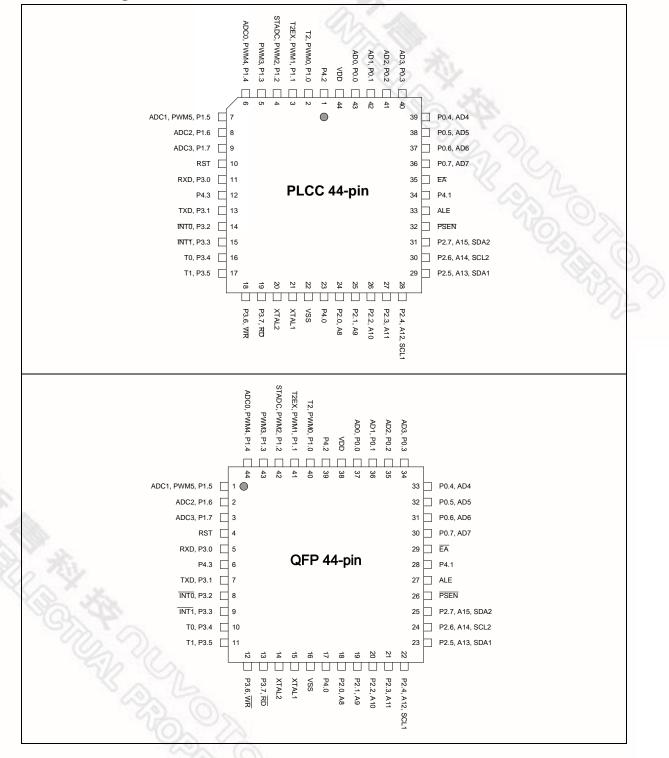
#### 1. General Description

The W79E(L)633 is a fast, 8051/52-compatible microcontroller with a redesigned processor core that eliminates wasted clock and memory cycles. Typically, the W79E(L)633 executes instructions 1.5 to 3 times faster than that of the traditional 8051/52, depending on the type of instruction, and the overall performance is about 2.5 times better at the same crystal speed. As a result, with the fully-static CMOS design, the W79E(L)633 can accomplish the same throughput with a lower clock speed, reducing power consumption.

The W79E(L)633 provides 256 bytes of on-chip RAM; 1-KB of auxiliary RAM; four 8-bit, bi-directional and bit-addressable I/O ports; an additional 4-bit port P4; three 16-bit timer/counters; an UART serial port, 2 channels of I2C with master/slave capability and 4 channels of 10-bit ADC. These peripherals are all supported by ten interrupt sources with 2 levels of priority.

The W79E(L)633 contains a 128-KB Flash EPROM whose contents may be updated in-system by a loader program stored in an auxiliary, 4-KB Flash EPROM. Once the contents are confirmed, it can be protected for security.

Note: If the applied  $V_{DD}$  is not stable, especially with long transition time of power on/off, it's recommended to apply an external RESET IC to the RST pin for improving the stability of system.


#### 2. Features

- Fully-static-design 8-bit Turbo 51 CMOS microcontroller up to 40MHz
- 128-KB of in-system-programmable Flash EPROM (AP Flash EPROM)
- 4-KB of Auxiliary Flash EPROM for the loader program (LD Flash EPROM)
- 1-KB auxiliary RAM, software-selectable, accessed by MOVX instruction
- 256 bytes of scratch-pad RAM
- Four 8-bit bi-directional ports
- All pins with Schmitt trigger inputs
- One 4-bit multipurpose I/O port4 with Chips select(CS) and boot function
- Three 16-bit timers
- 6 channel of 8-bit PWM
- One enhanced full-duplex UART with framing-error detection and automatic address recognition
- 2-channels of I2C with master/slave capability
- 10-bit ADC with 4-channel inputs
- Software programmable access cycle to external RAM/peripherals
- 10 interrupt sources with two levels of priority
- Software reset function
- Optional H/L state of ALE/PSEN during power down mode
- Built-in power management
- Code protection
- Development tool
  - JTAG ICE(In Circuit Emulator) tool
- Packages:
  - Lead Free(RoHS) PLCC 44: W79E633A40PL, W79L633A25PL
  - Lead Free(RoHS) QFP 44: W79E633A40FL, W79L633A25FL

| DEVICE       | OPERATING   | OPERATING   | PACKAGE         |
|--------------|-------------|-------------|-----------------|
| DETTOE       | FREQUENCY   | VOLTAGE     | LEAD FREE(ROHS) |
| W79E633A40PL | up to 40MHz | 4.5V ~ 5.5V | PLCC44          |
| W79E633A40FL | up to 40MHz | 4.5V ~ 5.5V | QFP44           |
| W79L633A25PL | up to 25MHz | 3.0V ~ 4.5V | PLCC44          |
| W79L633A25FL | up to 25MHz | 3.0V ~ 4.5V | QFP44           |

### nuvoTon

#### 3. Pin Configuration



#### 4. Pin Description

|                 | TYPE       | DECODIDIONO                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SYMBOL          | TYPE       | DESCRIPTIONS                                                                                                                                                                                                                                                                                                                                                                                               |
| ĒĀ              | I          | <b>EXTERNAL ACCESS ENABLE:</b> This pin forces the processor to execute the external ROM. The ROM address and data are not presented on the bus if the EA pin is high.                                                                                                                                                                                                                                     |
| PSEN            | он         | <b>PROGRAM STORE ENABLE:</b> PSEN enables the external ROM data in the Port 0 address/data bus. When internal ROM access is performed, no PSEN strobe signal outputs originate from this pin.                                                                                                                                                                                                              |
| ALE             | он         | ADDRESS LATCH ENABLE: ALE enables the address latch that separates the address from the data on Port 0.                                                                                                                                                                                                                                                                                                    |
| RST             | I L        | <b>RESET:</b> Set this pin high for two machine cycles while the oscillator is running to reset the device.                                                                                                                                                                                                                                                                                                |
| XTAL1           | 1          | CRYSTAL 1: Crystal oscillator input or external clock input.                                                                                                                                                                                                                                                                                                                                               |
| XTAL2           | 0          | CRYSTAL 2: Crystal oscillator output.                                                                                                                                                                                                                                                                                                                                                                      |
| V <sub>SS</sub> | 1          | GROUND: ground potential.                                                                                                                                                                                                                                                                                                                                                                                  |
| V <sub>DD</sub> | 1          | POWER SUPPLY: Supply voltage for operation.                                                                                                                                                                                                                                                                                                                                                                |
| P0.0-P0.7       | I/O<br>DSH | <b>PORT 0:</b> 8-bit, bi-directional I/O port with internal pull-up resisters. This por also provides a multiplexed, low-order address / data bus during accesses to external memory.                                                                                                                                                                                                                      |
| P1.0-P1.7       | I/O<br>S H | <ul> <li>PORT 1: 8-bit, bi-directional I/O port with internal pull-up resistors. This por also provides alternate functions as below.</li> <li>P1.0 ~ P1.5 provide PWM0 ~ PWM5.</li> <li>P1.4 ~ P1.7 provide ADC0 ~ ADC3.</li> <li>P1.0 alternately provides Timer2 external count input.(T2)</li> <li>P1.1 alternately provides Timer2 Reload/Capture/Direction control.(T2Ex)</li> </ul>                 |
| P2.0-P2.7       | I/О<br>S Н | <b>PORT 2:</b> 8-bit, bi-directional I/O port with internal pull-ups. This port also provides the upper address bits when accessing external memory. P2.4 to P2.7 can be software configured as I2C serial ports                                                                                                                                                                                           |
| P3.0-P3.7       | I/О<br>S Н | <b>PORT 3:</b> 8-bit, bi-directional I/O port with internal pull-up resistors.         All bits have alternate functions, which are described below:         RXD (P3.0): Serial Port 0 input         TXD (P3.1): Serial Port 0 output         INT0 (P3.2): External Interrupt 0         INT1(P3.3): External Interrupt 1         T0 (P3.4):Timer 0 External Input         T1 (P3.5):Timer 1 External Input |
| - N             | 2          | $\overline{WR}$ (P3.6): External Data Memory Write Strobe<br>$\overline{RD}$ (P3.7): External Data Memory Read Strobe                                                                                                                                                                                                                                                                                      |
| P4.0-P4.3       | I/O<br>S H | <b>PORT 4:</b> 4-bit bi-directional I/O port. The P4.3 also provides the alternate function REBOOT which is H/W reboot from LD flash.                                                                                                                                                                                                                                                                      |

\* Note : TYPE I: input, O: output, I/O: bi-directional, H: pull-high, L: pull-low, D: open drain S: Schmitt Trigger

#### 4.1 Port 4

SFR P4 at address A5H, is a 4-bit multipurpose programmable I/O port which functions are I/O, insert wait function and chip-select function. The Port 4 has four different operation modes:

In mode 0, P4.0 ~ P4.3 is a 4-bit bi-directional I/O port which is the same as port 1. The default Port 4 is a general I/O function.

In mode1, P4.0 ~ P4.3 are read data strobe signals which are synchronized with  $\overline{RD}$  signal at specified addresses. These read data strobe signals can be used as chip-select signals for external peripherals.

In mode2, P4.0 ~ P4.3 are write data strobe signals which are synchronized with  $\overline{WR}$  signal at specified addresses. These write data strobe signals can be used as chip-select signals for external peripherals.

In mode3, P4.0 ~ P4.3 are read/write data strobe signals which are synchronized with  $\overline{RD}$  or  $\overline{WR}$  signal at specified addresses. These read/write data strobe signals can be used as chip-select signals for external peripherals.

In mode1~mode3, Port 4 is configured with the feature of chip-select signals, the address range for chip-select signals depends on the contents of registers P4xAH and P4xAL, which contain the high-order byte and low-order byte, respectively, of the 16-bit address comparator for P4.x. The registers P4CONA and P4CONB contain the control bits to configure the Port 4 operation mode. This is illustrated in the following schematic.

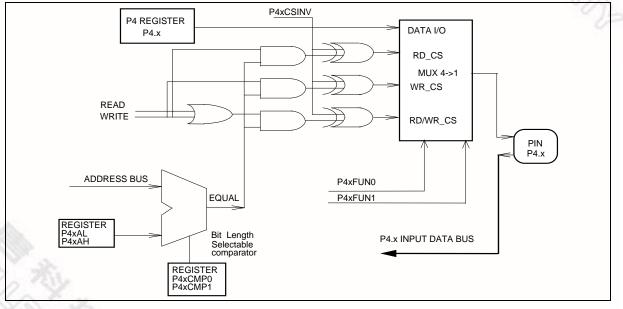



Figure 4-1

For example, the following program sets up P4.0 as a write-strobe signal for I/O port addresses 1234H – 1237H with positive polarity, while P4.1 – P4.3 are used as general I/O ports.

MOV P40AH, #12H MOV P40AL, #34H ; Base I/O address 1234H for P4.0 MOV P4CONA, #00001010B ; P4.0 is a write-strobe signal; address lines A0 and A1 are masked. MOV P4CONB, #00H ; P4.1 – P4.3 are general I/O ports

### nuvoTon

MOV P2ECON, #10H ; Set P40SINV to 1 to invert the P4.0 write-strobe to positive polarity. Then, any instruction MOVX @DPTR, A (where DPTR is in 1234H – 1237H) generates a positive-polarity, write-strobe signal on pin P4.0, while the instruction MOV P4, #XX puts bits 3 - 1 of data #XX on pins P4.3 – P4.1.



Publication Release Date: Oct 07, 2010 Revision A6.0

#### 5. Memory Organization

The W79E(L)633 separates the memory into two separate sections, the Program Memory and the Data Memory. Program Memory stores instruction op-codes, while Data Memory stores data or memory-mapped devices.

#### 5.1 Program Memory (on-chip Flash)

The Program Memory on the standard 8052 can only be addressed to 64 Kbytes long. By invoking the banking methodology, W79E(L)633can extend to two 64KB flash EPROM banks, AP Flash0 (AP0) and AP Flash1 (AP1). All instructions are fetched from this area, and the MOVC instruction can also access this region. There is an auxiliary 4-KB Flash EPROM (LD Flash EPROM), where the loader program for In-System Programming (ISP) resides. Both AP Flash banks are re-programmed by serial or parallel download according to this loader program.

The default active bank is AP0. User can set the EN128K bit to switch from AP0 to AP1 as well as properly set DCP1[2:0] to select one pin of Port1 to be the A16 to access the AP1 address region.

#### **ROM Banking Control**

Bit:

| 7 | 6 | 5 | 4 | 3      | 2     | 1     | 0     |
|---|---|---|---|--------|-------|-------|-------|
| - | - | - | - | EN128K | DCP12 | DCP11 | DCP10 |

Mnemonic: ROMCON

Address: ABh

EN128K On-chip ROM banking enable. Set this bit to enable AP Flash0 and AP Flash1 by banking mechanism. The P1.x is selected to be the auxiliary highest address line A16.

DCP1[2:0] A16 selection. By default, P1.7 is defined as A16.

| A16       | P1.0 | P1.1 | P1.2 | P1.3 | P1.4 | P1.5 | P1.6 | P1.7 |
|-----------|------|------|------|------|------|------|------|------|
| DCP1[2:0] | 000  | 001  | 010  | 011  | 100  | 101  | 110  | 111  |

### nuvoton

#### 5.2 **Data Memory**

The W79E(L)633 can access up to 64Kbytes of external Data Memory. This memory region is accessed by the MOVX instructions. Unlike the 8051 derivatives, the W79E(L)633 contains on-chip 1K-bytes of Data Memory, which only can be accessed by MOVX instructions. The 1-Kbytes of SRAM located between address 0000h and 03FFh is enabled by setting DMEO bit of PMR register. If MOVX instruction accesses the addresses greater than 03FFh CPU will automatically access external memory through Port 0 and 2. In default condition the 1K-bytes SRAM is disabled and any MOVX directed to the space between 0000h and FFFFh goes to the expanded bus on the Port 0 and 2. The W79E(L)633 also has the standard 256 bytes of on-chip Scratchpad RAM. This can be accessed either by direct addressing or by indirect addressing. There are also some Special Function Registers (SFRs), which can only be accessed by direct addressing. Since the Scratchpad RAM is only 256 bytes, it can be used only when data contents are small.

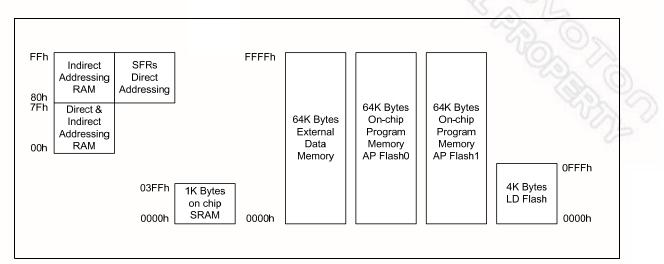
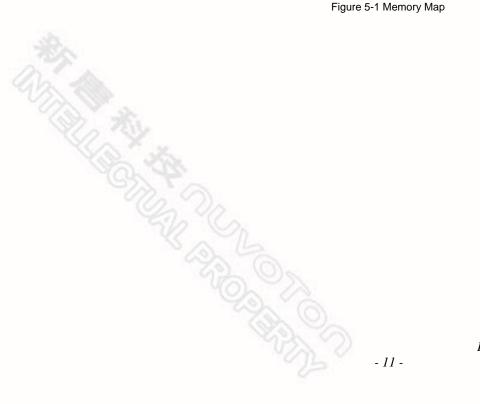




Figure 5-1 Memory Map



### nuvoton

#### 6. Special Function Registers

The W79E(L)633 uses Special Function Registers (SFR) to control and monitor peripherals. The SFR reside in register locations 80-FFh and are only accessed by direct addressing. The W79E(L)633 contains all the SFR present in the standard 8051/52, as well as some additional SFR, and, in some cases, unused bits in the standard 8051/52 have new functions. SFR whose addresses end in 0 or 8 (hex) are bit-addressable. The following table of SFR is condensed, with eight locations per row. Empty locations indicate that there are no registers at these addresses. When a bit or register is not implemented, it reads high.

| F8 | EIP    | I2CON2 | I2ADDR20 | I2ADDR21 | I2DATA2 | I2STATUS2 | I2CLK2  | I2TIMER2       |
|----|--------|--------|----------|----------|---------|-----------|---------|----------------|
| F0 | В      |        |          |          |         | 2         | 20      | 5              |
| E8 | EIE    | I2CON  | I2ADDR10 | I2ADDR11 | I2DATA  | I2STATUS  | I2CLK   | <b>I2TIMER</b> |
| E0 | ACC    |        |          |          |         |           | 32      | 0              |
| D8 | WDCON  | PWMP   | PWM0     | PWM1     | PWMCON1 | PWM2      | PWM3    | 20             |
| D0 | PSW    |        |          |          |         |           | 0       | WDCON2         |
| C8 | T2CON  | T2MOD  | RCAP2L   | RCAP2H   | TL2     | TH2       | PWMCON2 | PWM4           |
| C0 | ADDCON | ADCL   | ADCH     | PWM5     | PMR     | STATUS    | ADCPS   | TA             |
| B8 | IP     | SADEN  |          |          |         |           |         | 9              |
| B0 | P3     |        |          |          |         |           |         |                |
| A8 | IE     | SADDR  |          | ROMCON   | SFRAL   | SFRAH     | SFRFD   | SFRCN          |
| A0 | P2     | XRAMAH | P4CSIN   |          |         | P4        |         |                |
| 98 | SCON   | SBUF   | P42AL    | P42AH    | P43AL   | P43AH     |         | CHPCON         |
| 90 | P1     |        | P4CONA   | P4CONB   | P40AL   | P40AH     | P41AL   | P41AH          |
| 88 | TCON   | TMOD   | TL0      | TL1      | TH0     | TH1       | CKCON   |                |
| 80 | P0     | SP     | DPL      | DPH      |         |           |         | PCON           |

Table 6-1 Special Function Register Location Table

1. The SFRs in the column with dark borders are bit-addressable

2. The table is condensed with eight locations per row. Empty locations indicate that these are no registers at these addresses. When a bit or register is not implemented, it will read high. 

#### Table 6-2 Special Function Registers

| SYMBOL    | DEFINITION                  | ADDRESS |           | MSB       | BIT           |              | ESS, SY   | MBOL      | LSB           | 1             | RESET                   |
|-----------|-----------------------------|---------|-----------|-----------|---------------|--------------|-----------|-----------|---------------|---------------|-------------------------|
| I2TIMER2  | I2C2 Timer Counter Register | FFH     | -         | - 6       | an'           | -            | 7         | ENTI2     | DIV42         | TIF2          | 0000<br>0000B           |
| I2CLK2    | I2C2 Clock Rate             | FEH     | I2CLK.7   | I2CLK.6   | I2CLK.5       | I2CLK.4      | I2CLK.3   | I2CLK.2   | I2CLK.1       | I2CLK.0       | 0000<br>0000B           |
| I2STATUS2 | I2C2 Status Register        | FDH     |           |           | 9             | 20           | 20        | ē         | -             | -             | 0000<br>0000B           |
| I2DAT2    | I2C2 Data                   | FCH     | I2DAT.7   | I2DAT.6   | I2DAT.5       | I2DAT.4      | I2DAT.3   | I2DAT.2   | I2DAT.1       | I2DAT.0       | xxxx<br>xxxxxB          |
| I2ADDR21  | I2C2 Slave Address1         | FBH     | ADDR.7    | ADDR.6    | ADDR.5        | ADDR.4       | ADDR.3    | ADDR.2    | ADDR.1        | -             | xxxx<br>xxxxxB          |
| I2ADDR20  | I2C2 Slave Address0         | FAH     | ADDR.7    | ADDR.6    | ADDR.5        | ADDR.4       | ADDR.3    | ADDR.2    | ADDR.1        | GC            | xxxx<br>xxxx0B          |
| I2CON2    | I2C2 Control Register       | F9H     | -         | ENS2      | STA           | STO          | SI        | AA        | 2 (           | 25            | x000<br>00x0B           |
| EIP       | Extended Interrupt Priority | F8H     | (FF)      | (FE)      | (FD)          | (FC)<br>PWDI | (FB)      | (FA)      | (F9)<br>PI2C2 | (F8)<br>PI2C1 | 0000<br>0000B           |
| PCH       | PC Counter high register    | F2H     | -         | -         | -             |              | -         | -         | FIZCZ         | FIZCT         | 0000000                 |
| PCL       | PC Counter low register     | F1H     | (=-)      | (=-)      | ( <b>-</b> -) |              | (=-)      | (=-)      | (=.)          |               | 00000000                |
| В         | B Register                  | F0H     | (F7)      | (F6)      | (F5)          | (F4)         | (F3)      | (F2)      | (F1)          | (F0)          | 0000B<br>0000           |
| I2TIMER   | I2C1 Timer Counter Register | EFH     | -         | -         | -             | -            | -         | ENTI      | DIV4          | TIF 🔊         | 0000B                   |
| I2CLK     | I2C1 Clock Rate             | EEH     | I2CLK.7   | I2CLK.6   | I2CLK.5       | I2CLK.4      | I2CLK.3   | I2CLK.2   | I2CLK.1       | I2CLK.0       | 0000<br>0000B           |
| I2STATUS  | I2C1 Status Register        | EDH     |           |           |               |              |           | -         | -             | -             | 0000<br>0000B           |
| I2DAT     | I2C1 Data                   | ECH     | I2DAT.7   | I2DAT.6   | I2DAT.5       | I2DAT.4      | I2DAT.3   | I2DAT.2   | I2DAT.1       | I2DAT.0       | xxxx<br>xxxxxB          |
| I2ADDR11  | I2C1 Slave Address1         | EBH     | ADDR.7    | ADDR.6    | ADDR.5        | ADDR.4       | ADDR.3    | ADDR.2    | ADDR.1        | -             | xxxx<br>xxxxxB          |
| I2ADDR10  | I2C1 Slave Address0         | EAH     | ADDR.7    | ADDR.6    | ADDR.5        | ADDR.4       | ADDR.3    | ADDR.2    | ADDR.1        | GC            | xxxx<br>xxxx0B          |
| I2CON     | I2C1 Control Register       | E9H     | -         | ENS1      | STA           | STO          | SI        | AA        | -             | -             | x000<br>00x0B           |
| EIE       | Extended Interrupt Enable   | E8H     | (EF)      | (EE)      | (ED)          | (EC)<br>EWDI | (EB)      | (EA)      | (E9)<br>El2C2 | (E8)<br>EI2C1 | 0000<br>0000B           |
| ACC       | Accumulator                 | E0H     | (E7)      | (E6)      | (E5)          | (E4)         | (E3)      | (E2)      | (E1)          | (E0)          | 0000<br>0000B           |
| PWM3      | PWM3 Output                 | DEH     |           |           |               |              |           |           |               |               | 0000B<br>0000B          |
| PWM2      | PWM2 Output                 | DDH     |           |           |               |              |           |           |               |               | 0000B<br>00000<br>0000B |
| PWMCON1   | PWM Control Register1       | DCH     |           |           | ENPWM         |              |           |           | ENPWM         | ENPWM         | 0000                    |
| PWM1      | PWM1 Output                 | DBH     | E         | E         | 3             | 2            | E         | E         | 1             | 0             | 0000B                   |
| PWM0      | PWM0 Output                 | DAH     |           |           |               |              |           |           |               |               | 0000B<br>0000           |
| PWMP      | PWM Pre-scale Register      | D9H     |           |           |               |              |           |           |               |               | 0000B<br>0000           |
| WDCON     | Watch-Dog Control           | D8H     | (DF)      | (DE)      | (DD)          | (DC)         | (DB)      | (DA)      | (D9)          | (D8)          | 0000B<br>0100           |
|           | She Con                     |         | -         | POR       | -             | -            | WDIF      | WTRF      | EWT           | RWT           | 0000B<br>0000           |
| WDCON2    | Watch-Dog Control2          | D7H     | -<br>(D7) | -<br>(D6) | -<br>(D5)     | -<br>(D4)    | -<br>(D3) | -<br>(D2) | -<br>(D1)     | STRLD<br>(D0) | 0000B<br>0000           |
| PSW       | Program Status Word         | рон     | CV        | AC        | F0            | RS1          | RS0       | ov ́      | F1            | P             | 0000B                   |

#### Special Function Registers, continued

| SYMBOL  | DEFINITION                       | ADDRESS |              | MSB          | BIT          | _ADDRI       | ESS, SYI      | MBOL         | LSB          | r              | RESE              |
|---------|----------------------------------|---------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|----------------|-------------------|
| PWM4    | PWM4 Output                      | CFH     |              | 12           | 2            | A            |               |              |              |                | 0000<br>0000B     |
| PWMCON2 | PWM Control Register 2           | CEH     | -            | -            | USS.         | 0            | PWM5O<br>E    | PWM4O<br>E   | ENPWM<br>5   | ENPWM<br>4     | 0000<br>0000B     |
| TH2     | T2 reg. High                     | СDH     |              |              | 1            | 22           | ž             |              |              |                | 0000<br>0000B     |
| TL2     | T2 reg. Low                      | ссн     |              |              |              | X            | S×            | 25           |              |                | 0000<br>0000B     |
| RCAP2H  | T2 Capture Low                   | СВН     |              |              |              |              | a             | 12           |              |                | 0000<br>0000B     |
| RCAP2L  | T2 Capture High                  | САН     |              |              |              |              | 4             | 20           | 2            |                | 0000<br>0000B     |
| T2MOD   | Timer 2 Mode                     | С9Н     | -            | -            | -            | -            | T2CR          | SIL          | ,            | DCEN           | xxxx<br>0xx0B     |
| T2CON   | Timer 2 Control                  | С8Н     | (CF)<br>TF2  | (CE)<br>EXF2 | (CD)<br>RCLK | (CC)<br>TCLK | (CB)<br>EXEN2 | (CA)<br>TR2  | (C9)<br>C/T2 | (C8)<br>CP/RL2 | 0000<br>0000B     |
| ТА      | Time Access Register             | С7Н     |              |              |              |              |               |              | 5            | 21             | 0000<br>0000B     |
| ADCPS   | ADC Input Pin Switch             | С6Н     |              |              |              |              | ADCPS.<br>3   | ADCPS.<br>2  | ADCPS.       | ADCPS.         | 0000<br>0000B     |
| STATUS  | Status Register                  | C5H     | -            | HIP          | LIP          | -            | -             | -            | -            | - 3            | x00x<br>xxxxB     |
| PMR     | Power Management Register        | C4H     | -            | -            | -            | -            | -             | ALEOFF       | -            | DME0           | xxxx<br>x0x0B     |
| PWM5    | PWM5 Output                      | СЗН     |              |              |              |              |               |              |              |                | 0000<br>0000B     |
|         | ADC converter Result High        | C2H     | ADC.9        | ADC.8        | ADC.7        | ADC.6        | ADC.5         | ADC.4        | ADC.3        | ADC.2          | XXXX<br>XXXXXB    |
|         | Byte<br>ADC converter Result Low | С1Н     | ADCLK1       | ADCLK0       | -            | -            | -             | -            | ADC.1        | ADC.0          | 00xx              |
|         | Byte<br>ADC Control Register     | C0H     | ADCEN        | -            | ADCEX        | ADCI         | ADCS          | AADR2        | AADR1        | AADR0          | xxxxxB<br>0x00000 |
|         | Slave Address Mask               | в9н     |              |              |              |              |               |              |              |                | 0000<br>0000B     |
| IP      | Interrupt Priority               | B8H     | (BF)<br>-    | (BE)<br>PADC | (BD)<br>PT2  | (BC)<br>PS   | (BB)<br>PT1   | (BA)<br>PX1  | (B9)<br>PT0  | (B8)<br>PX0    | x000<br>0000B     |
| P3      | Port 3                           | вон     | (B7)<br>RD   | (B6)<br>WR   | (B5)<br>T1   | (B4)<br>T0   | (B3)<br>INT1  | (B2)<br>INT0 | (B1)<br>TXD  | (B0)<br>RXD    | 1111<br>1111B     |
| SFRCN   | F/W Flash Control                | AFH     | BANK         |              | NOE          | NCE          | CTRL3         | CTRL2        | CTRL1        | CTRL0          | 0011<br>1111B     |
| SFRFD   | F/W Flash Data                   | AEH     |              |              |              |              |               |              |              |                | xxxx<br>xxxxxB    |
| SFRAH   | F/W Flash High Address           | ADH     |              |              |              |              |               |              |              |                | 0000<br>0000B     |
| SFRAL   | F/W Flash Low Address            | АСН     |              |              |              |              |               |              |              |                | 0000B             |
| ROMCON  | ROM Control                      | ABH     | -            | -            | -            | -            | EN128K        | DCP12        | DCP11        | DCP10          | 00000             |
|         | Slave Address                    | A9H     |              |              |              |              |               |              |              |                | 0000<br>0000B     |
| E       | Interrupt Enable                 | A8H     | (AF)<br>EA   | (AE)<br>EADC | (AD)<br>ET2  | (AC)<br>ES   | (AB)<br>ET1   | (AA)<br>EX1  | (A9)<br>ET0  | (A8)<br>EX0    | 0000<br>0000B     |
| P4      | Port 4                           | A5H     | -            | -            | -            | -            |               |              |              |                | xxxx<br>1111B     |
| P4CSIN  | P4 CS SIGN                       | A2H     | P43CSI<br>NV | P42CSI<br>NV | P41CSI<br>NV | P40CSI<br>NV | -             | PWDNH        | RMWFP        | -              | 0000<br>0000B     |
| XRAMAH  | RAM High byte Address            | A1H     | -            | -            | -            | -            | -             | -            | 0            | 0              | 0000<br>0000B     |

#### Special Function Registers, continued

| SYMBOL | DEFINITION                     | ADDRESS |                      | MSB         | BIT         | _ADDRE      | ESS, SYI      | MBOL          | LSB          |             | RESET          |
|--------|--------------------------------|---------|----------------------|-------------|-------------|-------------|---------------|---------------|--------------|-------------|----------------|
| P2     | Port 2                         | A0H     | (A7)<br>A15          | (A6)<br>A14 | (A5)<br>A13 | (A4)<br>A12 | (A3)<br>A11   | (A2)<br>A10   | (A1)<br>A9   | (A0)<br>A8  | 1111<br>1111B  |
| CHPCON | On chip Programming<br>Control | 9FH     | SWRST<br>/REBO<br>OT | -           | LD/AP       | 20          | 0             | 0             | LDSEL        | ENP         | 0000<br>0000B  |
| P43AH  | HI Addr. Comparator of P4.3    | 9DH     |                      |             |             | \$          | N.            | 1             |              |             | 0000<br>0000B  |
| P43AL  | LO Addr. Comparator of P4.3    | 9CH     |                      |             |             | X           | 20            | ŝ             |              |             | 0000<br>0000B  |
| P42AH  | HI Addr. Comparator of P4.2    | 9BH     |                      |             |             |             | 5             | 1             | 0            |             | 0000<br>0000B  |
| P42AL  | LO Addr. Comparator of P4.2    | 9AH     |                      |             |             |             | - (           | 20            | 40           | 1           | 0000<br>0000B  |
| SBUF   | Serial Buffer                  | 99H     |                      |             |             |             |               | 3             | 2            | -n          | xxxx<br>xxxxxB |
| SCON   | Serial Control                 | 98H     | (9F)<br>SM0/FE       | (9E)<br>SM1 | (9D)<br>SM2 | (9C)<br>REN | (9B)<br>TB8   | (9A)<br>RB8   | (99)<br>TI   | (98)<br>RI  | 0000<br>0000B  |
| P41AH  | HI Addr. Comparator of P4.1    | 97H     |                      |             |             |             |               |               | -4           | 0           | 0000<br>0000B  |
| P41AL  | LO Addr. Comparator of P4.1    | 96H     |                      |             |             |             |               |               |              | -09         | 0000<br>0000B  |
| P40AH  | HI Addr. Comparator of P4.0    | 95H     |                      |             |             |             |               |               |              |             | 0000<br>0000B  |
| P40AL  | LO Addr. Comparator of P4.0    | 94H     |                      |             |             |             |               |               |              |             | 0000<br>0000B  |
| P4CONB | P4 Control Register            | 93H     | 1                    | P43FUN<br>0 | P1          | P43CM<br>P0 | P42FUN<br>1   | 0             | P1           | P42CM<br>P0 | 0000<br>0000B  |
| P4CONA | P4 Control Register            | 92H     | P41FUN<br>1          | P41FUN<br>0 | P41CM<br>P1 | P41CM<br>P0 | P40FUN<br>1   | P40FUN<br>0   | P40CM<br>P1  | P40CM<br>P0 | 0000<br>0000B  |
| P1     | Port 1                         | 90H     | (97)                 | (96)        | (95)        | (94)        | (93)<br>TXD_1 | (92)<br>RXD_1 | (91)<br>T2EX | (90)<br>T2  | 1111<br>1111B  |
| CKCON  | Clock Control                  | 8EH     | WD1                  | WD0         | T2M         | T1M         | том           | MD2           | MD1          | MD0         | 0000<br>0001B  |
| TH1    | Timer High 1                   | 8DH     |                      |             |             |             |               |               |              |             | 0000<br>0000B  |
| тно    | Timer High 0                   | 8CH     |                      |             |             |             |               |               |              |             | 0000<br>0000B  |
| TL1    | Timer Low 1                    | 8BH     |                      |             |             |             |               |               |              |             | 0000<br>0000B  |
| TL0    | Timer Low 0                    | 8AH     |                      |             |             |             |               |               |              |             | 0000<br>0000B  |
| тмор   | Timer Mode                     | 89H     | GATE                 | C/T         | M1          | мо          | GATE          | C/T           | M1           | MO          | 0000<br>0000B  |
| TCON   | Timer Control                  | 88H     | (8F)<br>TF1          | (8E)<br>TR1 | (8D)<br>TF0 | (8C)<br>TR0 | (8B)<br>IE1   | (8A)<br>IT1   | (89)<br>IE0  | (88)<br>IT0 | 0000<br>0000B  |
| PCON   | Power Control                  | 87H     | SMOD                 | SMOD0       | -           | -           | GF1           | GF0           | PD           | IDL         | 00xx<br>0000B  |
| DPH    | Data Pointer High              | 83H     |                      |             |             |             |               |               |              |             | 0000<br>0000B  |
| DPL    | Data Pointer Low               | 82H     |                      |             |             |             |               |               |              |             | 0000<br>0000B  |
| SP     | Stack Pointer                  | 81H     |                      |             |             |             |               |               |              |             | 0000<br>0111B  |
| P0     | Port 0                         | 80H     | (87)                 | (86)        | (85)        | (84)        | (83)          | (82)          | (81)         | (80)        | 1111<br>1111B  |

Note: In column BIT\_ADDRESS, SYMBOL, containing ( ) item means the bit address.

#### PORT 0

|                                  |                                                     | Bit:                                                                                                                           | 7                                                                                                                                            | 6                                                                                                                | 5           | 4                                                          | 3                                                         | 2                                                                  | 1                                           | 0                                  |
|----------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------|------------------------------------|
|                                  |                                                     |                                                                                                                                | P0.7                                                                                                                                         | P0.6                                                                                                             | P0.5        | P0.4                                                       | P0.3                                                      | P0.2                                                               | P0.1                                        | P0.0                               |
|                                  |                                                     | M                                                                                                                              | nemonic:                                                                                                                                     | P0                                                                                                               | 10          | gh .                                                       |                                                           | Addres                                                             | s: 80h                                      |                                    |
|                                  | provides a                                          |                                                                                                                                |                                                                                                                                              |                                                                                                                  |             | Besides,<br>ta bus wł                                      |                                                           |                                                                    |                                             |                                    |
| STAC                             |                                                     | TER                                                                                                                            |                                                                                                                                              |                                                                                                                  |             |                                                            |                                                           |                                                                    |                                             |                                    |
|                                  |                                                     | Bit:                                                                                                                           | 7                                                                                                                                            | 6                                                                                                                | 5           | 4                                                          | 3                                                         | 2                                                                  | 1                                           | 0                                  |
|                                  |                                                     |                                                                                                                                | SP.7                                                                                                                                         | SP.6                                                                                                             | SP.5        | SP.4                                                       | SP.3                                                      | SP.2                                                               | SP.1                                        | SP.0                               |
|                                  |                                                     | M                                                                                                                              | nemonic:                                                                                                                                     | SP                                                                                                               |             |                                                            |                                                           | Addres                                                             | s: 81h                                      | 2                                  |
| he to                            | itack Poin<br>p of the st<br>A <b>POINT</b> I       | ack.                                                                                                                           |                                                                                                                                              | dress in S                                                                                                       | Scratchpa   | d RAM wh                                                   | ere the s                                                 | tack begi                                                          | ns. It alwa                                 | ays points                         |
|                                  |                                                     | Bit:                                                                                                                           | 7                                                                                                                                            | 6                                                                                                                | 5           | 4                                                          | 3                                                         | 2                                                                  | 100                                         | 0                                  |
|                                  |                                                     | 2                                                                                                                              | DPL.7                                                                                                                                        | DPL.6                                                                                                            | DPL.5       | DPL.4                                                      | DPL.3                                                     | DPL.2                                                              | DPL.1                                       | DPL.0                              |
|                                  |                                                     | M                                                                                                                              | nemonic:                                                                                                                                     |                                                                                                                  |             | 1                                                          | 1                                                         | Addres                                                             |                                             | (S)                                |
| This is                          | s the low b                                         |                                                                                                                                |                                                                                                                                              |                                                                                                                  | 2, 16-bit   | data pointe                                                | er.                                                       |                                                                    |                                             |                                    |
| DAT                              |                                                     | ER HIG                                                                                                                         | iΗ                                                                                                                                           |                                                                                                                  |             |                                                            |                                                           |                                                                    |                                             |                                    |
|                                  |                                                     | Bit:                                                                                                                           | 7                                                                                                                                            | 6                                                                                                                | 5           | 4                                                          | 3                                                         | 2                                                                  | 1                                           | 0                                  |
|                                  |                                                     |                                                                                                                                |                                                                                                                                              |                                                                                                                  |             |                                                            |                                                           |                                                                    |                                             | DDULO                              |
| This is                          | s the low t                                         |                                                                                                                                | DPH.7<br>nemonic:<br>ne standa                                                                                                               |                                                                                                                  | DPH.5       | DPH.4                                                      | DPH.3                                                     | DPH.2<br>Addres                                                    | DPH.1<br>s: 83h                             | DPH.0                              |
|                                  | s the low t<br><b>ER CON</b><br>Bit:                | oyte of th<br>TROL<br>7<br>SM                                                                                                  | nemonic:<br>ne standa<br>6<br>MOD S                                                                                                          | DPH<br>ard-8051/5<br>5<br>5<br>6<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 2, 16-bit   | data pointe                                                |                                                           | Addres<br>2<br>GF0                                                 | s: 83h<br>1<br>PD                           | 0<br>IDL                           |
| POW                              | ER CON<br>Bit:                                      | oyte of th<br>TROL<br>7<br>SM                                                                                                  | nemonic:<br>ne standa<br>6                                                                                                                   | DPH<br>ard-8051/5<br>5<br>5<br>6<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 2, 16-bit   | data pointe<br>4<br>-                                      | er.<br>3<br>GF1                                           | Addres                                                             | s: 83h<br>1<br>PD                           | 0                                  |
| POW                              | ER CON<br>Bit:                                      | oyte of th<br>TROL<br>7<br>SM<br>M                                                                                             | nemonic:<br>ne standa<br>6<br>MOD S<br>nemonic:                                                                                              | DPH<br>ard-8051/5<br>SMOD0 -<br>PCON                                                                             | 2, 16-bit ( | data pointe<br>4<br>- FUNCTI                               | er.<br>3<br>GF1<br>ON                                     | Addres<br>2<br>GF0<br>Addres                                       | 1<br>PD<br>s: 87h                           | 0                                  |
| POW                              | ER CON<br>Bit:                                      | oyte of th<br>TROL<br>7<br>SM<br>M<br>1: This<br>0: Disa<br>function                                                           | nemonic:<br>ne standa<br>MOD S<br>nemonic:<br>bit double<br>able Fram<br>n.<br>ole Frami                                                     | DPH<br>ard-8051/5<br>MOD0 -<br>PCON<br>es the sering Erro                                                        | ial-port ba | data pointe<br>4<br>-                                      | er.<br>3<br>GF1<br>ON<br>modes 1<br>I.7 acts              | Addres<br>2<br>GF0<br>Addres<br>, 2 and 3.<br>as per th            | 1<br>PD<br>s: 87h                           | 0<br>IDL<br>ard 8051/              |
| POW<br>BIT<br>7                  | Bit:<br>Bit:<br>NAME<br>SMOD                        | oyte of th<br>TROL<br>7<br>SM<br>Mi<br>1: This<br>0: Disa<br>function<br>1: Enal                                               | nemonic:<br>ne standa<br>6<br>MOD S<br>nemonic:<br>bit double<br>able Fram<br>n.<br>ble Frami                                                | DPH<br>ard-8051/5<br>MOD0 -<br>PCON<br>es the sering Erro                                                        | ial-port ba | data pointe<br>4<br>-<br>FUNCTI<br>aud rate in<br>on. SCON | er.<br>3<br>GF1<br>ON<br>modes 1<br>I.7 acts              | Addres<br>2<br>GF0<br>Addres<br>, 2 and 3.<br>as per th            | 1<br>PD<br>s: 87h                           | 0<br>IDL<br>ard 8051/              |
| <b>BIT</b><br>7<br>6             | ER CON<br>Bit:<br>NAME<br>SMOD<br>SMOD0             | oyte of th<br>TROL<br>7<br>SM<br>1: This<br>0: Disa<br>function<br>1: Enal<br>FE flag<br>Reserv                                | nemonic:<br>ne standa<br>6<br>MOD S<br>nemonic:<br>bit double<br>able Frami<br>n.<br>ble Frami<br>ved                                        | DPH<br>ard-8051/5<br>MOD0 -<br>PCON<br>es the sering Erro                                                        | ial-port ba | data pointe<br>4<br>-<br>FUNCTI<br>aud rate in<br>on. SCON | er.<br>3<br>GF1<br>ON<br>modes 1<br>I.7 acts              | Addres<br>2<br>GF0<br>Addres<br>, 2 and 3.<br>as per th            | 1<br>PD<br>s: 87h                           | 0<br>IDL<br>ard 8051/              |
| POW<br>BIT<br>7<br>6<br>5-4      | ER CON<br>Bit:<br>NAME<br>SMOD<br>SMOD0             | yte of th<br>TROL<br>7<br>SM<br>1: This<br>1: This<br>1: This<br>1: Disa<br>function<br>1: Enal<br>FE flag<br>Reserv<br>Genera | nemonic:<br>ne standa<br>MOD S<br>nemonic:<br>bit double<br>able Fran<br>n.<br>bie Frami<br>ed<br>al-purpose                                 | DPH<br>ard-8051/5<br>MOD0 -<br>PCON<br>es the sering<br>ning Error I                                             | 2, 16-bit o | data pointe<br>4<br>-<br>FUNCTI<br>aud rate in<br>on. SCON | er.<br>3<br>GF1<br>ON<br>modes 1<br>I.7 acts              | Addres<br>2<br>GF0<br>Addres<br>, 2 and 3.<br>as per th            | 1<br>PD<br>s: 87h                           | 0<br>IDL<br>ard 8051/              |
| POW<br>BIT<br>7<br>6<br>5-4<br>3 | ER CON<br>Bit:<br>NAME<br>SMOD<br>SMOD0<br>-<br>GF1 | 7<br>TROL<br>7<br>SM<br>1: This<br>0: Disa<br>function<br>1: Enal<br>FE flag<br>Reserv<br>Genera                               | nemonic:<br>ne standa<br>6<br>MOD S<br>nemonic:<br>bit double<br>able Frami<br>n.<br>ble Frami<br>sed<br>al-purpose<br>al-purpose<br>nto POW | DPH<br>ard-8051/5<br>MOD0 -<br>PCON<br>es the sering<br>ning Error<br>ng Error E<br>e user flag                  | ial-port ba | data pointe<br>4<br>-<br>FUNCTI<br>aud rate in<br>on. SCON | er.<br>3<br>GF1<br>ON<br>modes 1<br>I.7 acts<br>indicates | Addres<br>2<br>GF0<br>Addres<br>, 2 and 3.<br>as per th<br>a Frame | 1<br>PD<br>s: 87h<br>he standa<br>Error and | 0<br>IDL<br>ard 8051/<br>acts as t |

TF0

TF1

TR1

TR0

IE1

IT1

IE0

IT0

## nuvoTon

| BITNAMEFUNCTION7TF1Timer 1 overflow flag: This bit is set when T<br>automatically when the program executes the T<br>Software can also set or clear this bit.6TR1Timer 1 run control: This bit turns the Timer 1 on or5TF0Timer 0 overflow flag: This bit is set when T<br>automatically when the program executes the T<br>Software can also set or clear this bit. | Timer-1 interrupt service routine. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 7TF1automatically when the program executes the T<br>Software can also set or clear this bit.6TR1Timer 1 run control: This bit turns the Timer 1 on or<br>Timer 0 overflow flag: This bit is set when T<br>automatically when the program executes the T                                                                                                             | Timer-1 interrupt service routine. |
| Timer 0 overflow flag: This bit is set when T<br>5 TF0 automatically when the program executes the T                                                                                                                                                                                                                                                                 |                                    |
| 5 TF0 automatically when the program executes the T                                                                                                                                                                                                                                                                                                                  | imer 0 overflows. It is cleared    |
|                                                                                                                                                                                                                                                                                                                                                                      |                                    |
| 4 TR0 Timer 0 run control: This bit turns Timer 0 on or off t                                                                                                                                                                                                                                                                                                        | by setting TR0 to 1 or 0.          |
| 3 IE1 Interrupt 1 Edge Detect: Set by hardware when an<br>This bit is cleared by the hardware when the ISR<br>edge-triggered. Otherwise, it follows the pin.                                                                                                                                                                                                         |                                    |
| 2 IT1 Interrupt 1 type control: Specify falling-edge or low-l                                                                                                                                                                                                                                                                                                        | evel trigger for INT1.             |
| 1 IE0 Interrupt 0 Edge Detect: Set by hardware when an<br>This bit is cleared by the hardware when the ISR<br>edge-triggered. Otherwise, it follows the pin.                                                                                                                                                                                                         |                                    |
| 0 IT0 Interrupt 0 type control: Specify falling-edge or low-l                                                                                                                                                                                                                                                                                                        | evel trigger for INTO.             |

#### TIMER MODE CONTROL

Bit:

| 7 | ,     | 6                | 5  | 4  | 3      | 2                | 1  | 0  |
|---|-------|------------------|----|----|--------|------------------|----|----|
| C | GATE  | $C/\overline{T}$ | M1 | M0 | GATE   | $C/\overline{T}$ | M1 | MO |
| Т | IMER1 |                  |    |    | TIMER0 |                  |    |    |

Mnemonic: TMOD

Address: 89h

|      | BIT | NAME | FUNCTION                                                                                                                                                                                                                                 |
|------|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 7   | GATE | Gating control: When this bit is set, Timer 1 is enabled only while the $\overline{INT1}$ pin is high and the TR1 control bit is set. When cleared, the $\overline{INT1}$ pin has no effect, and Timer 1 is enabled whenever TR1 is set. |
| No.  | 6   | C/T  | Timer or Counter Select: When clear, Timer 1 is incremented by the internal clock. When set, the timer counts falling edges on the T1 pin.                                                                                               |
| an 1 | 5   | M1   | Timer 1 mode select bit 1. See table below.                                                                                                                                                                                              |
| N/X  | 4   | MO   | Timer 1 mode select bit 0. See table below.                                                                                                                                                                                              |
| - R  | 3   | GATE | Gating control: When this bit is set, Timer 0 is enabled only while the $\overline{INT0}$ pin is high and the TR0 control bit is set. When cleared, the $\overline{INT0}$ pin has no effect, and Timer 0 is enabled whenever TR0 is set. |
|      | 2   | C/T  | Timer or Counter Select: When clear, Timer 0 is incremented by the internal clock.<br>When set, the timer counts falling edges on the T0 pin.                                                                                            |
|      | 1   | M1   | Timer 0 mode select bit 1. See table below.                                                                                                                                                                                              |
|      | 0   | MO   | Timer 0 mode select bit 0. See table below.                                                                                                                                                                                              |

M1, M0: Mode Select bits:

M1 M0 Mode

0 0 Mode 0: 8-bit timer/counter TLx serves as 5-bit pre-scale.

## nuvoTon

|                    |                | er 1) Time | Counter | 1 is stoppe | ed.   |       |         |          |       |
|--------------------|----------------|------------|---------|-------------|-------|-------|---------|----------|-------|
| TIMER 0            |                |            |         |             |       |       |         |          |       |
|                    | Bit:           | 7          | 6       | 5           | 4     | 3     | 2       | 1        | 0     |
|                    |                | TL0.7      | TL0.6   | TL0.5       | TL0.4 | TL0.3 | TL0.2   | TL0.1    | TL0.0 |
| TL0.7-0            | ۸<br>Timer 0 L | Inemonic:  | TL0     |             |       |       | Address | s: 8Ah   |       |
| TIMER 1            |                | 50         |         |             |       |       |         |          |       |
|                    | Bit:           | 7          | 6       | 5           | 4     | 3     | 2       | 1        | 0     |
|                    |                | TL1.7      | TL1.6   | TL1.5       | TL1.4 | TL1.3 | TL1.2   | TL1.1    | TL1.0 |
|                    | Ν              | Inemonic:  | TL1     |             |       |       | Address | s: 8Bh   | 1.65  |
| TL1.7-0            | Timer 1 L      | SB         |         |             |       |       |         |          |       |
| TIMER 0            | MSB            |            |         |             |       |       |         |          |       |
|                    | Bit:           | 7          | 6       | 5           | 4     | 3     | 2       | 1        | 0     |
|                    |                | TH0.7      | TH0.6   | TH0.5       | TH0.4 | TH0.3 | TH0.2   | TH0.1    | TH0.0 |
|                    |                | Inemonic:  | TH0     |             |       |       | Address | s: 8Ch   |       |
| TH0.7-0<br>TIMER 1 | Timer 0 M      | 5B         |         |             |       |       |         |          |       |
|                    | Bit:           | 7          | 6       | 5           | 4     | 3     | 2       | 1        | 0     |
|                    |                | TH1.7      | TH1.6   | TH1.5       | TH1.4 | TH1.3 |         | TH1.1    | TH1.0 |
|                    | Ν              | Inemonic:  | TH1     |             |       |       |         | Address: | 8Dh   |
| TH1.7-0            | Timer 1 M      | SB         |         |             |       |       |         |          |       |
| CLOCK              | CONTROL        |            |         |             |       |       |         |          |       |
|                    | Bit:           | 7          | 6       | 5           | 4     | 3     | 2       | 1        | 0     |
|                    |                | WD1        | WD0     | T2M         | T1M   | TOM   | MD2     | MD1      | MD0   |
|                    | Ν              | Inemonic:  | CKCON   |             |       |       | Address | s: 8Eh   |       |
|                    |                |            |         |             |       |       |         |          |       |
|                    |                |            |         |             |       |       |         |          |       |
|                    |                |            |         |             |       |       |         |          |       |
|                    |                |            |         |             |       |       |         |          |       |

- 18 -

| BIT | NAME | FUNCTION                                                                                                                  |
|-----|------|---------------------------------------------------------------------------------------------------------------------------|
| 7   | WD1  | Watchdog Timer mode select bit 1. See table below.                                                                        |
| 6   | WD0  | Watchdog Timer mode select bit 0. See table below.                                                                        |
|     |      | Timer 2 clock select:                                                                                                     |
| 5   | T2M  | 1: divide-by-4 clock                                                                                                      |
|     |      | 0: divide-by-12 clock                                                                                                     |
|     |      | Timer 1 clock select:                                                                                                     |
| 4   | T1M  | 1: divide-by-4 clock                                                                                                      |
|     |      | 0: divide-by-12 clock                                                                                                     |
|     |      | Timer 0 clock select:                                                                                                     |
| 3   | TOM  | 1: divide-by-4 clock                                                                                                      |
|     |      | 0: divide-by-12 clock                                                                                                     |
|     |      | Stretch MOVX select bit 2:                                                                                                |
|     |      | MD2, MD1, and MD0 select the stretch value for the MOVX instruction. The $\overline{\text{RD}}$ or                        |
|     |      | WR strobe is stretched by the selected interval, which enables the W79E(L)633 to                                          |
| 2   | MD2  | access faster or slower external memory devices or peripherals without the need for                                       |
|     |      | external circuits. By default, the stretch value is one. See table below.                                                 |
|     |      | (Note: When accessing on-chip SRAM, these bits have no effect, and the MOVX instruction always takes two machine cycles.) |
| 1   | MD1  | Stretch MOVX select bit 1. See MD2.                                                                                       |
|     |      |                                                                                                                           |
| 0   | MD0  | Stretch MOVX select bit 0. See MD2.                                                                                       |

#### WD1, WD0: Mode Select bits:

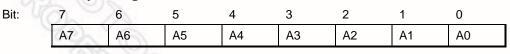
These bits determine the time-out periods for the Watchdog Timer. The reset time-out period is 512 clocks more than the interrupt time-out period.

| WD1 | WD0 | INTERRUPT TIME-OUT | RESET TIME-OUT        |
|-----|-----|--------------------|-----------------------|
| 0   | 0   | 2 <sup>17</sup>    | 2 <sup>17</sup> + 512 |
| 0   | 1   | 2 <sup>20</sup>    | 2 <sup>20</sup> + 512 |
| 1   | 0   | 2 <sup>23</sup>    | 2 <sup>23</sup> + 512 |
| 1   | 1   | 2 <sup>26</sup>    | 2 <sup>26</sup> + 512 |

#### MD2, MD1, MD0: Stretch MOVX select bits:

| MD2 | MD1  | MD0 | STRETCH VALUE | MOVX DURATION              |
|-----|------|-----|---------------|----------------------------|
| 0   | 0    | 0   | 0             | 2 machine cycles           |
| 0   | 0    | 1   | 1             | 3 machine cycles (Default) |
| 0   | 2,10 | 0   | 2             | 4 machine cycles           |
| 0   | 1    | 1   | 3             | 5 machine cycles           |
| 1   | 0    | 0   | 4             | 6 machine cycles           |
| 1   | 0    | 15  | 5             | 7 machine cycles           |
| 1   | 1    | 0   | 6             | 8 machine cycles           |
| 1   | 1    | 0   | 7             | 9 machine cycles           |

| Bit: | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|------|------|------|------|------|------|------|------|------|
|      | P1.7 | P1.6 | P1.5 | P1.4 | P1.3 | P1.2 | P1.1 | P1.0 |


Mnemonic: P1

Address: 90h

P1.7-0: General-purpose digital input port or analog input port AD0~AD7. For digital input, portread instructions read the port pins, while read-modify-write instructions read the port latch. Additional functions are described below.

|             |       | ALTE                                | RNATE FU      | INCTION1      |            |             | TERNAT      | and and a second s |                | RNATE<br>TION3 |
|-------------|-------|-------------------------------------|---------------|---------------|------------|-------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|
| P1.0        | T2: E | External inpu                       | ut for Timer/ | Counter 2     |            | PWM0: I     | PWM output  | ut ch0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -              |                |
| P1.1        | T2E   | X: Timer/Co                         | unter 2 Cap   | ture/Reload   | d Trigger  | PWM1: I     | PWM output  | ut ch1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9).            |                |
| P1.2        | STA   | DC: Externa                         | I rising edge | e input to st | art ADC    | PWM2: I     | PWM output  | ut ch2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 40 -         |                |
| P1.3        | -     |                                     |               |               |            | PWM3: I     | PWM outpu   | ut ch3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | )              |
| P1.4        | -     |                                     |               |               |            | PWM4: I     | PWM outpu   | ut ch4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ADC0: Ana      | log input(     |
| P1.5        | -     |                                     |               |               |            | PWM5: I     | PWM outpu   | ut ch5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ADC1: Ana      | log input      |
| P1.6        | -     |                                     |               |               |            | -           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ADC2: Ana      | log input2     |
| P1.7        | -     |                                     |               |               |            | -           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ADC3: Ana      | log input      |
| Port 4      | Con   | trol Regi                           | ster A        |               |            |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | (D)            |
|             |       | Bit:                                | 7             | 6             | 5          | 4           | 3           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1              | 0              |
|             |       |                                     | P41M1         | P41M0         | P41C1      | P41C0       | P40M1       | P40M0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) P40C1        | P40C0          |
|             |       | Μ                                   | Inemonic:     | P4CONA        |            |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Address:       | 92h            |
| Port 4      | Con   | trol Regi                           |               |               |            |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                |
|             |       | Bit:                                | 7             | 6             | 5          | 4           | 3           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1              | 0              |
|             |       |                                     | P43M1         | P43M0         | P43C1      | P43C0       | P42M1       | P42M0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) P42C1        | P42C0          |
|             |       | Μ                                   | Inemonic:     | P4CONB        |            | 1           | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Address:       | 93h            |
| BIT N       | AME   |                                     |               |               | F          | UNCTION     | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                |
|             |       | =00: Mode                           |               | general pu    |            |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                |
| P4xľ        | 11    |                                     |               |               |            |             | ect purpose | e. The ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dress range    | depends        |
| P4xi<br>P4x | ,     | the SFR P4<br>=10 <sup>:</sup> Mode |               |               |            |             | ect nurnos  | - The ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dress range    | denende        |
|             |       | the SFR P4                          |               |               |            |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | alooo lange    | aoponus        |
|             |       | =11: Mode                           | 3. P4.x is    | a Read/W      | rite Strob | e signal fo |             | ect purpo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ose. The ad    | dress rar      |
| . 7         | See.  |                                     | the SFR P     |               |            |             | 4xC0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                |
|             |       |                                     | -select Mod   |               |            |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>D</b> ( ))) |                |
|             |       |                                     |               |               |            |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ers P4xAH a    |                |
| P4x         | C1.   | and P4xAL                           |               | nign bits (/  | 413-A1) 0  | address t   | ous with th | ie base a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | address regis  | sters P4X      |
| P4x         |       |                                     | are the 14    | high bits (/  | A15-A2) of | address b   | ous with th | e base a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | address regis  | sters P4x      |
|             |       |                                     |               | gh bits (A1   | 5-A8) of a | dress bus   | with the ba | ase addre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ess registers  | P4xAH a        |

#### P4.0 Base Address Low Byte Register



|                 |                       | Bit:                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                 | 5                                                                                                                                               | 4                                                                                                                              | 3                                                                                                            | 2                                                                    | 1                                                          | 0                                             |
|-----------------|-----------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------|
|                 |                       |                                                                                                               | A15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A14                                                                                                                                               | A13                                                                                                                                             | A12                                                                                                                            | A11                                                                                                          | A10                                                                  | A9                                                         | A8                                            |
|                 |                       | -                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | c: P40AH                                                                                                                                          |                                                                                                                                                 |                                                                                                                                |                                                                                                              |                                                                      | Address                                                    | s: 95h                                        |
| P4.1            | Base Ad               |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | yte Regis                                                                                                                                         |                                                                                                                                                 |                                                                                                                                |                                                                                                              | X                                                                    |                                                            |                                               |
|                 |                       | Bit:                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                 | 5                                                                                                                                               | 4                                                                                                                              | 3                                                                                                            | 2                                                                    | 1                                                          | 0                                             |
|                 |                       |                                                                                                               | A7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A6                                                                                                                                                | A5                                                                                                                                              | A4                                                                                                                             | A3                                                                                                           | A2                                                                   | A1                                                         | A0                                            |
| DA 1            | Raso Ad               |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | c: P41AL<br>S <b>yte Regi</b>                                                                                                                     | stor                                                                                                                                            |                                                                                                                                |                                                                                                              |                                                                      | Address                                                    | s: 96n                                        |
| 7.1             | Dase Au               | Bit:                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                 | 5                                                                                                                                               | 4                                                                                                                              | 3                                                                                                            | 2                                                                    | 1                                                          | 0                                             |
|                 |                       |                                                                                                               | A15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A14                                                                                                                                               | A13                                                                                                                                             | A12                                                                                                                            | A11                                                                                                          | A10                                                                  | A9                                                         | A8                                            |
|                 |                       | ſ                                                                                                             | Mnemoni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c: P41AH                                                                                                                                          |                                                                                                                                                 |                                                                                                                                |                                                                                                              |                                                                      | Address                                                    | s: 97h                                        |
| Seria           | I Port Co             | ontrol                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                |                                                                                                              |                                                                      |                                                            |                                               |
|                 |                       | Bit:                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                 | 5                                                                                                                                               | 4                                                                                                                              | 3                                                                                                            | 2                                                                    | 1                                                          | 0                                             |
|                 |                       |                                                                                                               | SM0/FE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SM1                                                                                                                                               | SM2                                                                                                                                             | REN                                                                                                                            | TB8                                                                                                          | RB8                                                                  | TI                                                         | RI                                            |
|                 |                       | ſ                                                                                                             | Mnemoni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c: SCON                                                                                                                                           |                                                                                                                                                 |                                                                                                                                |                                                                                                              |                                                                      | Address                                                    | s: 98h                                        |
|                 | 1                     |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                |                                                                                                              |                                                                      |                                                            |                                               |
| <b>BIT</b><br>7 | NAME<br>SM0/FE<br>SM1 | SMOI<br>(SM0<br>(FE)                                                                                          | D0 bit in t<br>) See tab<br>This bit in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ode select<br>the PCON<br>le below.<br>ndicates ar<br>de select t                                                                                 | register.<br>n invalid st                                                                                                                       | top bit. It n                                                                                                                  | Error Fla<br>nust be m                                                                                       | -                                                                    |                                                            |                                               |
|                 |                       | SMOI<br>(SM0                                                                                                  | D0 bit in t<br>) See tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the PCON<br>le below.                                                                                                                             | register.                                                                                                                                       | Framing                                                                                                                        | Error Fla                                                                                                    | -                                                                    |                                                            |                                               |
| 7               | SM0/FE                | SMOI<br>(SM0<br>(FE) <sup>-</sup><br>Serial                                                                   | D0 bit in t<br>) See tab<br>This bit in<br>Port mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the PCON<br>le below.<br>idicates ar                                                                                                              | register.<br>n invalid st<br>bit 1. See                                                                                                         | Framing<br>top bit. It n<br>table belo                                                                                         | Error Fla<br>nust be m<br>w.                                                                                 | -                                                                    |                                                            |                                               |
| 7               | SM0/FE                | SMOI<br>(SM0<br>(FE) <sup>-</sup><br>Serial<br>Serial<br>(Mode                                                | D0 bit in t<br>) See tab<br>This bit in<br>Port mo<br>Port Clo<br>e 0) This                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | the PCON<br>le below.<br>ndicates ar<br>de select to<br>ock or Mult<br>bit contro                                                                 | register.<br>n invalid st<br>bit 1. See<br>i-Processe<br>Is the seri                                                                            | Framing<br>top bit. It n<br>table belo<br>or Commu                                                                             | Error Fla<br>nust be m<br>w.<br>nication.<br>ck. If set                                                      | anually cl                                                           | eared by                                                   | software                                      |
| 7               | SM0/FE                | SMOI<br>(SMO<br>(FE)<br>Serial<br>Serial<br>(Mode<br>divide                                                   | D0 bit in 1<br>) See tab<br>This bit in<br>Port mo<br>Port Clo<br>e 0) This<br>e-by-12 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the PCON<br>le below.<br>ndicates ar<br>de select t<br>lock or Mult                                                                               | register.<br>n invalid st<br>bit 1. See<br>i-Processe<br>ls the seri<br>e oscillato                                                             | Framing<br>top bit. It n<br>table belo<br>or Commu<br>ial port clo<br>or. This is                                              | Error Fla<br>nust be m<br>w.<br>nication.<br>ck. If set<br>compatib                                          | anually cl<br>to zero, tl<br>le with th                              | eared by<br>ne serial p<br>e standar                       | software                                      |
| 7               | SM0/FE<br>SM1         | SMOI<br>(SMO<br>(FE) <sup>-</sup><br>Serial<br>Serial<br>(Mode<br>set to<br>(Mode                             | D0 bit in 1<br>) See tab<br>This bit in<br>Port mo<br>Port Clo<br>e 0) This<br>e-by-12 c<br>one, the<br>e 1) If SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the PCON<br>ole below.<br>Indicates ar<br>de select to<br>ock or Mult<br>bit contro<br>lock of the<br>serial cloo<br>12 is set to                 | register.<br>n invalid st<br>bit 1. See<br>i-Processo<br>Is the seri<br>e oscillato<br>ck is a divi                                             | Framing<br>top bit. It n<br>table belo<br>or Commu<br>ial port clo<br>or. This is<br>ide-by-4 cl<br>s not active               | Error Fla<br>nust be m<br>w.<br>nication.<br>ck. If set<br>compatib<br>ock of the<br>ated if a v             | anually cl<br>to zero, tl<br>le with th<br>oscillator<br>alid stop l | eared by<br>ne serial p<br>e standar<br>r.<br>bit is not r | software<br>port runs<br>d 8051/9<br>eceived. |
| 7               | SM0/FE<br>SM1         | SMOI<br>(SMO<br>(FE)<br>Serial<br>(Mode<br>divide<br>set to<br>(Mode<br>(Mode                                 | D0 bit in 1<br>) See tab<br>This bit in<br>Port mo<br>Port Clo<br>e 0) This<br>b-by-12 c<br>one, the<br>e 1) If SM<br>es 2 / 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the PCON<br>de below.<br>de select to<br>bek or Mult<br>bit contro<br>lock of the<br>serial cloo<br>12 is set to<br>This bit en                   | register.<br>n invalid st<br>bit 1. See<br>i-Processe<br>ls the seri<br>e oscillato<br>ck is a divi<br>o one, RI is<br>ables mul                | Framing<br>top bit. It n<br>table belo<br>or Commu<br>ial port clo<br>or. This is<br>ide-by-4 cl<br>s not active<br>ti-process | Error Fla<br>nust be m<br>w.<br>nication.<br>ck. If set<br>compatib<br>ock of the<br>ated if a v<br>or commu | anually cl<br>to zero, tl<br>le with th<br>oscillator<br>alid stop l | eared by<br>ne serial p<br>e standar<br>r.<br>bit is not r | software<br>port runs<br>d 8051/9<br>eceived. |
| 7               | SM0/FE<br>SM1         | SMOI<br>(SMO<br>(FE) <sup>-</sup><br>Serial<br>(Mode<br>divide<br>set to<br>(Mode<br>is not                   | D0 bit in 1<br>) See tab<br>This bit in<br>Port mo<br>Port Clo<br>e 0) This<br>b-by-12 c<br>one, the<br>e 1) If SM<br>es 2 / 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the PCON<br>de below.<br>de select to<br>be ck or Mult<br>bit contro<br>lock of the<br>serial cloc<br>12 is set to<br>This bit en<br>d if RB8, th | register.<br>n invalid st<br>bit 1. See<br>i-Processe<br>ls the seri<br>e oscillato<br>ck is a divi<br>o one, RI is<br>ables mul                | Framing<br>top bit. It n<br>table belo<br>or Commu<br>ial port clo<br>or. This is<br>ide-by-4 cl<br>s not active<br>ti-process | Error Fla<br>nust be m<br>w.<br>nication.<br>ck. If set<br>compatib<br>ock of the<br>ated if a v<br>or commu | anually cl<br>to zero, tl<br>le with th<br>oscillator<br>alid stop l | eared by<br>ne serial p<br>e standar<br>r.<br>bit is not r | software<br>port runs<br>d 8051/9<br>eceived. |
| 7               | SM0/FE<br>SM1<br>SM2  | SMOI<br>(SMO<br>(FE) <sup>-</sup><br>Serial<br>(Mode<br>divide<br>set to<br>(Mode<br>is not<br>Recei<br>1: En | D0 bit in 1<br>) See tab<br>This bit in<br>Port mo<br>Port Clo<br>Port Port Clo<br>Port Port Clo<br>Port Port Port Port Port Port Port Port | the PCON<br>de below.<br>de select to<br>be ck or Mult<br>bit contro<br>lock of the<br>serial cloc<br>12 is set to<br>This bit en<br>d if RB8, th | register.<br>n invalid st<br>bit 1. See<br>i-Processe<br>is the seri<br>e oscillato<br>ck is a divi<br>o one, RI is<br>ables mul<br>ne ninth da | Framing<br>top bit. It n<br>table belo<br>or Commu<br>ial port clo<br>or. This is<br>ide-by-4 cl<br>s not active<br>ti-process | Error Fla<br>nust be m<br>w.<br>nication.<br>ck. If set<br>compatib<br>ock of the<br>ated if a v<br>or commu | anually cl<br>to zero, tl<br>le with th<br>oscillator<br>alid stop l | eared by<br>ne serial p<br>e standar<br>r.<br>bit is not r | software<br>port runs<br>d 8051/9<br>eceived. |

Continued

| BIT | NAME | FUNCTION                                                                                                                                                                                                                                                     |
|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3   | TB8  | (Modes 2 / 3) This is the 9th bit to transmit. This bit is set by software.                                                                                                                                                                                  |
| 2   | RB8  | (Mode 0) No function.<br>(Mode 1) If SM2 = 0, RB8 is the stop bit that was received.<br>(Modes 2 / 3) This is the 9th bit that was received.                                                                                                                 |
| 1   | ТІ   | Transmit interrupt flag: This flag is set by the hardware at the end of the 8th bit in mode 0 or at the beginning of the stop bit in the other modes during serial transmission. This bit must be cleared by software.                                       |
| 0   | RI   | Receive interrupt flag: This flag is set by the hardware at the end of the 8th bit in mode 0 or halfway through the stop bits in the other modes during serial reception. However, SM2 can restrict this behavior. This bit can only be cleared by software. |

#### SM0, SM1: Mode Select bits:

| SM0 | SM1 | MODE | DESCRIPTION  | LENGTH | BAUD RATE                |
|-----|-----|------|--------------|--------|--------------------------|
| 0   | 0   | 0    | Synchronous  | 8      | Tclk divided by 4 or 12  |
| 0   | 1   | 1    | Asynchronous | 10     | Variable                 |
| 1   | 0   | 2    | Asynchronous | 11     | Tclk divided by 32 or 64 |
| 1   | 1   | 3    | Asynchronous | 11     | Variable                 |

#### **Serial Data Buffer**

|       |          |        |        |        | . –    |        |        |
|-------|----------|--------|--------|--------|--------|--------|--------|
| SBUF. | 7 SBUF.6 | SBUF.5 | SBUF.4 | SBUF.3 | SBUF.2 | SBUF.1 | SBUF.0 |

**Mnemonic: SBUF** 

Address: 99h

SBUF.7-0 Serial data is read from or written to this location. It actually consists of two separate 8-bit registers. One is the receive buffer, and the other is the transmit buffer. Any read access gets data from the receive data buffer, while write access is to the transmit data buffer.

#### P4.2 Base Address Low Byte Register

| P4.2 Base Add | ress l | Low Byt  | e Regis  | ter |     |     |     |         |        |
|---------------|--------|----------|----------|-----|-----|-----|-----|---------|--------|
| В             | it:    | 7        | 6        | 5   | 4   | 3   | 2   | 1       | 0      |
|               |        | A7       | A6       | A5  | A4  | A3  | A2  | A1      | A0     |
|               | M      | nemonic: | P42AL    |     |     |     |     | Address | s: 9Ah |
| P4.2 Base Add | ress l | High By  | te Regis | ter |     |     |     |         |        |
| В             | it:    | 7        | 6        | 5   | 4   | 3   | 2   | 1       | 0      |
|               |        | A15      | A14      | A13 | A12 | A11 | A10 | A9      | A8     |
|               | M      | nemonic: | P42AH    |     |     |     |     | Address | s: 9Bh |
| P4.3 Base Add | ress l | Low Byt  | e Regis  | ter |     |     |     |         |        |
| В             | it:    | 7        | 6        | 5   | 4   | 3   | 2   | 1       | 0      |
|               |        | A7       | A6       | A5  | A4  | A3  | A2  | A1      | A0     |
|               | M      | nemonic: | P43AL    |     |     |     |     | Address | s: 9Ch |
| P4.3 Base Add | ress l | High By  | te Regis | ter |     |     |     |         |        |
| P             | it:    | 7        | 6        | 5   | 4   | 3   | 2   | 1       | 0      |

## nuvoTon

|     |                       | Mnemoni                          | c: P43A                                       | Н                                                                                    | 1                                         | 200                                     |                                     | Address:      | 9Dh           |
|-----|-----------------------|----------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------|-------------------------------------|---------------|---------------|
| PC  | ontrol Regis          |                                  |                                               |                                                                                      |                                           |                                         |                                     |               |               |
|     | Bit:                  | 7                                | 6                                             | 5                                                                                    | 4                                         | 3                                       | 2                                   | 1             | 0             |
|     |                       | SWRST<br>/HWB                    | -                                             | LD/AP                                                                                | - 33                                      |                                         |                                     | LDSEL         | ENP           |
|     |                       | Mnemoni                          | : CHPC                                        | CON                                                                                  |                                           | - YS                                    | Addre                               | ss: 9Fh       |               |
| BIT | NAME                  |                                  |                                               |                                                                                      |                                           | FUNCTION                                | BY/                                 | ~             |               |
| 7   | W:SWRST<br>R:HWB      | Set th<br>RST<br>auton<br>Read   | nis bit to<br>pin. The<br>natically           | bit indicate                                                                         | device.<br>oller retu                     | This has t<br>urns to its i             | he same<br>nitial state             | , and this b  | it is cleared |
| 6   | -                     | Rese                             | rved                                          |                                                                                      |                                           |                                         |                                     | 2             | 92 (          |
| 5   | LD/AP<br>(read-only)  |                                  |                                               | ecuting AR F                                                                         |                                           |                                         |                                     |               | E.            |
| 4-2 | -                     | Rese                             | rved                                          |                                                                                      |                                           |                                         |                                     |               | 0             |
| 1   | LDSEL<br>(write-only) | mode<br>1: Ru                    | n the pr                                      | ocation Sel<br>ogram in LD<br>ogram in AF                                            | ) Flash E                                 | PROM.                                   | ould be s                           | et before e   | entering ISF  |
| 0   | ENP                   | 1: Er<br>opera<br>devic<br>0: Di | hable in<br>tions ar<br>e runs ir<br>sable ir | ogram Enab<br>-system pro-<br>e executed<br>n IDLE state<br>n-system pr<br>nd PCON.1 | ogrammi<br>accordir<br>, so PC0<br>ogramm | ng to variou<br>DN.1 has n<br>ing mode. | is SFR set<br>to effect.<br>The dev | tings. In thi | s mode, the   |

The way to enter ISP mode is to set ENP to 1 and write LDSEL properly then force CPU in IDLE mode, after IDLE mode is released CPU will restart from AP or LD ROM according the value of LDSEL.

### PORT 2

| Bit: | 7         | 6    | 5    | 4    | 3    | 2        | 1    | 0    |
|------|-----------|------|------|------|------|----------|------|------|
|      | P2.7      | P2.6 | P2.5 | P2.4 | P2.3 | P2.2     | P2.1 | P2.0 |
| Mn   | emonic: F | 2    |      |      |      | Address: | A0h  |      |

P2.7-0:

Port 2 is a bi-directional I/O port with internal pull-up resistors. This port also provides the upper address bits for accesses to external memory.

## nuvoTon

#### Port 4 Chip-select Polarity

|                                     |                                                                                            | P43IN                                                                  | V P4                                                                                                               | 12INV                                                                                                                                                                                                              | P42INV                                                 | ′ P4     | OINV                               | 1000                              | PWDNH            | RMWFP                        | Р    |
|-------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------|------------------------------------|-----------------------------------|------------------|------------------------------|------|
|                                     |                                                                                            |                                                                        |                                                                                                                    | : P4CS                                                                                                                                                                                                             |                                                        |          |                                    | 105                               |                  | s: A2h                       |      |
| BIT                                 | NAM                                                                                        |                                                                        |                                                                                                                    |                                                                                                                                                                                                                    |                                                        |          | FUN                                | CTION                             |                  |                              |      |
| 7-4                                 | P4xINV                                                                                     | Th<br>1: .                                                             | e Activ<br>Active<br>Active                                                                                        | High.                                                                                                                                                                                                              | rity of P4                                             | .x as l  |                                    | 0                                 | nip-select s     | strobe outp                  | put. |
| 3                                   | -                                                                                          | Re                                                                     | served                                                                                                             | ł                                                                                                                                                                                                                  |                                                        |          |                                    |                                   | and a            | 2                            |      |
| 2                                   | PWDNH                                                                                      | 1: /                                                                   | ALE ar                                                                                                             | nd PSE                                                                                                                                                                                                             | Noutput                                                | logic l  | nigh in p                          | n mode.<br>ower dow<br>wer dowi   |                  | 22                           | 2    |
| 1                                   | RMWFP                                                                                      | Co<br>rea                                                              | ontrol R                                                                                                           | Read Pa                                                                                                                                                                                                            | ath of In                                              | structi  | on "Rea                            | d-Modify-                         | Write". W        |                              |      |
| 0                                   | -                                                                                          | Re                                                                     | served                                                                                                             | 1                                                                                                                                                                                                                  |                                                        |          |                                    |                                   |                  |                              |      |
| PORT                                | Г 4                                                                                        |                                                                        |                                                                                                                    |                                                                                                                                                                                                                    |                                                        |          |                                    |                                   |                  |                              |      |
|                                     |                                                                                            |                                                                        |                                                                                                                    |                                                                                                                                                                                                                    |                                                        |          |                                    |                                   |                  |                              |      |
|                                     | E                                                                                          | Bit:                                                                   | 7                                                                                                                  | 6                                                                                                                                                                                                                  | 5                                                      |          | 4                                  | 3                                 | 2                | 1                            |      |
|                                     | E                                                                                          | Bit:                                                                   | 7                                                                                                                  | 6                                                                                                                                                                                                                  | 5                                                      |          | 4 -                                | 3<br>P4.3                         | 2<br>P4.2        | 1<br>P4.1                    | - 1  |
|                                     | E                                                                                          | [                                                                      | 7<br>-<br>emonic                                                                                                   | -                                                                                                                                                                                                                  |                                                        |          | 1                                  |                                   |                  | 1                            |      |
| 94.3-0                              | ): Port                                                                                    | Mne<br>4 is a bi                                                       | -<br>emonic                                                                                                        | -<br>:: P4                                                                                                                                                                                                         |                                                        | ith inte | -                                  | P4.3                              |                  | P4.1                         |      |
|                                     | ): Port<br>r <b>upt Enab</b>                                                               | Mne<br>4 is a bi<br>9 <b>le</b>                                        | -<br>emonic<br>i-directi                                                                                           | -<br>:: P4<br>ional I/(                                                                                                                                                                                            | -<br>O port wi                                         | ith inte | -<br>ernal pull                    | P4.3                              | P4.2             | P4.1<br>Address:             | : A! |
|                                     | ): Port<br>r <b>upt Enab</b>                                                               | Mne<br>4 is a bi                                                       | -<br>emonic<br>i-directi<br>7                                                                                      | -<br>:: P4<br>ional I/(<br>6                                                                                                                                                                                       | -<br>O port wi<br>5                                    |          | -<br>ernal pull<br>4               | P4.3<br>-ups.                     | P4.2             | P4.1<br>Address:             | : A  |
|                                     | ): Port<br>r <b>upt Enab</b>                                                               | <br>Mne<br>4 is a bi<br><b>Ie</b><br>Bit:                              | -<br>emonic<br>i-directi<br>7<br>EA                                                                                | -<br>:: P4<br>ional I/(<br>6<br>EAI                                                                                                                                                                                | -<br>O port wi<br>5                                    | ith inte | -<br>ernal pull                    | P4.3                              | P4.2<br>2<br>EX1 | P4.1<br>Address:<br>1<br>ET0 | : A  |
| nterr                               | ): Port<br>r <b>upt Enab</b>                                                               | <br>Mne<br>4 is a bi<br><b>le</b><br>Bit:                              | -<br>emonic<br>i-directi<br>7                                                                                      | -<br>:: P4<br>ional I/(<br>6<br>EAI                                                                                                                                                                                | -<br>O port wi<br>5                                    |          | -<br>ernal pull<br>4<br>ES         | P4.3<br>-ups.<br>3<br>ET1         | P4.2<br>2<br>EX1 | P4.1<br>Address:             | : At |
|                                     | ): Port<br>rupt Enab                                                                       | <br>Mne<br>4 is a bi<br><b>le</b><br>Bit:                              | -<br>emonic<br>i-directi<br>7<br>EA                                                                                | -<br>:: P4<br>ional I/(<br>6<br>EAI                                                                                                                                                                                | -<br>O port wi<br>5                                    |          | -<br>ernal pull<br>4               | P4.3<br>-ups.<br>3<br>ET1         | P4.2<br>2<br>EX1 | P4.1<br>Address:<br>1<br>ET0 | : A  |
| nterr                               | ): Port<br>r <b>upt Enab</b>                                                               | Mne<br>4 is a bi<br>ole<br>Bit:                                        | -<br>emonic<br>i-directi<br>7<br>EA<br>emonic                                                                      | -<br>:: P4<br>ional I/(<br>6<br>EAI<br>:: IE                                                                                                                                                                       | -<br>O port wi<br>5                                    | Γ2       | -<br>ernal pull<br>4<br>ES<br>FUNC | P4.3<br>-ups.<br>3<br>ET1<br>TION | P4.2<br>2<br>EX1 | P4.1<br>Address:<br>1<br>ET0 |      |
| BIT                                 | ): Port<br>rupt Enab                                                                       | Mne<br>4 is a bi<br>ole<br>Bit:                                        | -<br>emonic<br>i-directi<br>7<br>EA<br>emonic<br>enable                                                            | -<br>:: P4<br>ional I/(<br>6<br>EAI<br>:: IE<br>e. Enab                                                                                                                                                            | Dport wi<br>5<br>DC E <sup>-</sup><br>le/disabl        | Γ2       | -<br>ernal pull<br>4<br>ES<br>FUNC | P4.3<br>-ups.<br>3<br>ET1<br>TION | P4.2<br>2<br>EX1 | P4.1<br>Address:<br>1<br>ET0 | : A  |
| BIT<br>7                            | ): Port<br>rupt Enab<br>F<br>NAME<br>EA                                                    | Mne<br>4 is a bi<br>Jle<br>Bit:<br>Mne<br>Global                       | -<br>emonic<br>i-directi<br>7<br>EA<br>emonic<br>enable<br>ADC i                                                   | -<br>:: P4<br>ional I/(<br>EAI<br>:: IE<br>:: IE                                                                                                                                                                   | DC E                                                   | Γ2       | -<br>ernal pull<br>4<br>ES<br>FUNC | P4.3<br>-ups.<br>3<br>ET1<br>TION | P4.2<br>2<br>EX1 | P4.1<br>Address:<br>1<br>ET0 | : A  |
| BIT<br>7<br>6                       | ): Port<br><b>upt Enab</b><br>E<br>EA<br>EA<br>EADC                                        | Mne<br>4 is a bi<br>ole<br>Bit:<br>Mne<br>Global<br>Enable<br>Enable   | -<br>emonic<br>i-directi<br>7<br>EA<br>emonic<br>enable<br>9 ADC i                                                 | -<br>:: P4<br>ional I/(<br>6<br>EAI<br>:: IE<br>e. Enab<br>nterrup<br>2 inter                                                                                                                                      | DC E                                                   | Γ2       | -<br>ernal pull<br>4<br>ES<br>FUNC | P4.3<br>-ups.<br>3<br>ET1<br>TION | P4.2<br>2<br>EX1 | P4.1<br>Address:<br>1<br>ET0 | : A  |
| BIT<br>7<br>6<br>5                  | ): Port<br>rupt Enab<br>EA<br>EA<br>EADC<br>ET2                                            | Mne<br>4 is a bi<br>ole<br>Bit:<br>Mne<br>Global<br>Enable<br>Enable   | -<br>emonic<br>i-directi<br>7<br>EA<br>emonic<br>enable<br>ADC i<br>a Timer<br>9 Serial                            | P4<br>ional I/0<br>6<br>EAI<br>2. Enab<br>nterrup<br>2 inter<br>Port in                                                                                                                                            | DC E <sup>-</sup>                                      | Γ2       | -<br>ernal pull<br>4<br>ES<br>FUNC | P4.3<br>-ups.<br>3<br>ET1<br>TION | P4.2<br>2<br>EX1 | P4.1<br>Address:<br>1<br>ET0 | : At |
| BIT<br>7<br>6<br>5<br>4             | D: Port<br>Port Enab<br>F<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P | A is a bi<br>le<br>Bit:<br>Mne<br>Global<br>Enable<br>Enable<br>Enable | -<br>emonic<br>i-directi<br>7<br>EA<br>emonic<br>enable<br>9 ADC i<br>9 Timer<br>9 Serial<br>9 Timer               | -<br>:: P4<br>ional I/(<br>6<br>EAI<br>:: IE<br>e. Enab<br>nterrup<br>2 inter<br>Port in<br>1 inter                                                                                                                | DC E <sup>-</sup>                                      | Γ2       | -<br>ernal pull<br>4<br>ES<br>FUNC | P4.3<br>-ups.<br>3<br>ET1<br>TION | P4.2<br>2<br>EX1 | P4.1<br>Address:<br>1<br>ET0 | : At |
| <b>BIT</b><br>7<br>6<br>5<br>4<br>3 | ): Port<br><b>upt Enab</b><br>E<br><b>NAME</b><br>EA<br>EADC<br>ET2<br>ES<br>ET1           | A is a bi<br>le<br>Bit:<br>Mne<br>Global<br>Enable<br>Enable<br>Enable | -<br>emonic<br>i-directi<br>7<br>EA<br>emonic<br>enable<br>enable<br>ADC i<br>erial<br>Serial<br>s Timer<br>extern | <ul> <li>-</li> <li>P4</li> <li>ional I/0</li> <li>EAI</li> <li>EAI</li> <li>Enab</li> <li>Enab</li> <li>e. Enab</li> <li>nterrup</li> <li>2 inter</li> <li>Port in</li> <li>1 inter</li> <li>nal inter</li> </ul> | DC E<br>le/disabl<br>ot.<br>rupt.<br>rupt.<br>rrupt 1. | Γ2       | -<br>ernal pull<br>4<br>ES<br>FUNC | P4.3<br>-ups.<br>3<br>ET1<br>TION | P4.2<br>2<br>EX1 | P4.1<br>Address:<br>1<br>ET0 |      |

Bit:

 7
 6
 5
 4
 3
 2
 1
 0

 SADDR.7
 SADDR.6
 SADDR.5
 SADDR.4
 SADDR.3
 SADDR.2
 SADDR.1
 SADDR.0

|                   | Banking Co<br>Bit:                                        |                                    | 7                                            | 6                                         | 5                  | 4             | 3           | 2       | 1                           | 0        |
|-------------------|-----------------------------------------------------------|------------------------------------|----------------------------------------------|-------------------------------------------|--------------------|---------------|-------------|---------|-----------------------------|----------|
|                   | 2                                                         |                                    | -                                            |                                           |                    |               | EN128K      | DCP12   | DCP11                       | DCP10    |
|                   |                                                           | ∟<br>Mne                           | monic: F                                     | ROMCON                                    | 1                  |               | ×           | A St.   | Address                     |          |
| BIT               | NAME                                                      |                                    |                                              |                                           |                    | FL            | INCTION     | an      | 2                           |          |
| 7-4               | -                                                         | Res                                | erved                                        |                                           |                    |               |             | Un.     | 6                           |          |
| 3                 | EN128K                                                    |                                    | anking                                       |                                           |                    |               |             |         | PFlash0 ar<br>uxiliary high |          |
| 2-0               | DCP1[2:0                                                  | By I<br>code                       |                                              | mechan<br>AP0(A16:                        |                    |               |             |         | where the C<br>1.7 is defir |          |
| DCP1[2            | -                                                         |                                    | Ī                                            |                                           |                    |               |             | -       |                             | Y        |
|                   |                                                           | <b>21.0</b>                        | <b>P1.1</b> 001                              |                                           | .2                 | P1.3<br>011   | <b>P1.4</b> | P1.5    | <b>P1.6</b>                 | P1.      |
| <u> </u>          |                                                           | 000                                |                                              | 0                                         | 10                 | 011           | 100         | 101     | 110                         | 111      |
| ISF AU            | Idress Lov<br>Bit:                                        | -                                  | :<br>7                                       | 6                                         | 5                  | 4             | 3           | 2       | 1                           | 0        |
|                   | Dit.                                                      | Г                                  | ,<br>A7                                      | A6                                        | A5                 | 4<br>A4       | A3          | A2      | A1                          | A0       |
|                   |                                                           |                                    | monic: S                                     |                                           | 7.10               | 7.1           | 7.0         |         | ess: ACh                    | 7.0      |
| Low byt           | e destinatio                                              |                                    |                                              |                                           | n Progra           | amming o      | operations  |         | 555. AON                    |          |
| •                 | ldress Hig                                                |                                    |                                              |                                           | Ū                  | Ū             |             |         |                             |          |
|                   | Bit:                                                      |                                    | 7                                            | 6                                         | 5                  | 4             | 3           | 2       | 1                           | 0        |
|                   |                                                           |                                    | A15                                          | A14                                       | A13                | A12           | A11         | A10     | A9                          | A8       |
|                   |                                                           |                                    |                                              | SERAH                                     |                    |               |             | Addre   | ess: ADh                    |          |
|                   |                                                           | Mne                                | monic: S                                     |                                           |                    |               |             |         | AH SERAL                    | ) ronroo |
| the add           | te destination<br>ress of the F                           | n add                              | ress for                                     | In Syste                                  |                    |               |             |         |                             | ) iepies |
| the add           | ress of the F<br>ta Buffer                                | on add<br>ROM b                    | ress for<br>yte that                         | In Syste<br>will be er                    | ased, p            | programm      | ned or rea  | d.      |                             |          |
| the add           | ress of the F                                             | on add<br>ROM b                    | ress for<br>yte that<br>7                    | In Syste<br>will be er                    |                    | orogramm<br>4 | and or rea  | 2       | 1                           |          |
| the add           | ress of the F<br>ta Buffer                                | on add<br>ROM b                    | ress for<br>yte that<br>7<br>D7              | In Syste<br>will be er<br>6<br>D6         | ased, p            | programm      | ned or rea  | d.      | 1<br>D1                     | 0<br>D0  |
| the add<br>ISP Da | ress of the F<br>ta Buffer                                | on add<br>ROM b<br>Mnei<br>vrite a | ress for<br>yte that<br>7<br>D7<br>monic: \$ | n Syste<br>will be er<br>6<br>D6<br>SFRFD | ased, p<br>5<br>D5 | 4<br>D4       | 3<br>D3     | 2<br>D2 | 1<br>D1<br>Address          | 0<br>D0  |
| the add<br>ISP Da | ress of the F<br><b>ta Buffer</b><br>Bit:<br>node, read/\ | Mner<br>write a                    | ress for<br>yte that<br>7<br>D7<br>monic: \$ | n Syste<br>will be er<br>6<br>D6<br>SFRFD | ased, p<br>5<br>D5 | 4<br>D4       | 3<br>D3     | 2<br>D2 | 1<br>D1<br>Address          | 0<br>D0  |

## nuvoTon

| BANK | Select APFlash bank | s for ISP. | Set it 1 | to | access | APFlash1, | clear i | it for | access | to |
|------|---------------------|------------|----------|----|--------|-----------|---------|--------|--------|----|
|      | APFlash0.           |            |          |    |        |           |         |        |        |    |

WFWIN On-chip FLASH EPROM bank select for in-system programming. 0= AP FLASH EPROM bank is selected as destination for re-programming. 1= LD FLASH EPROM bank is selected as destination for re-programming. NOE Flash EPROM output enable.

NCE Flash EPROM chip enable.

CTRL[3:0] The Flash Control Signals.

| ISP MODE                 | BANK | WFWIN | NOE | NCE | CTRL[3:0] | SFRAH,<br>SFRAL | SFRFD    |
|--------------------------|------|-------|-----|-----|-----------|-----------------|----------|
| Erase 4KB LDFlash        | 0    | 1     | 1   | 0   | 0010      | x               | Х        |
| Erase 64K APFlash0       | 0    | 0     | 1   | 0   | 0010      | x               | Х        |
| Erase 64K APFlash1       | 1    | 0     | 1   | 0   | 0010      | x               | Х        |
| Program 4KB LDFlash      | 0    | 1     | 1   | 0   | 0001      | Address in      | Data in  |
| Program 64KB<br>APFlash0 | 0    | 0     | 1   | 0   | 0001      | Address in      | Data in  |
| Program 64KB<br>APFlash1 | 1    | 0     | 1   | 0   | 0001      | Address in      | Data in  |
| Read 4KB LDFlash         | 0    | 1     | 0   | 0   | 0000      | Address in      | Data out |
| Read 64KB APFlash0       | 0    | 0     | 0   | 0   | 0000      | Address in      | Data out |
| Read 64KB APFlash1       | 1    | 0     | 0   | 0   | 0000      | Address in      | Data out |

#### PORT 3

| Bit: | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|------|------|------|------|------|------|------|------|------|
|      | P3.7 | P3.6 | P3.5 | P3.4 | P3.3 | P3.2 | P3.1 | P3.0 |
|      |      |      |      |      |      |      |      |      |

Mnemonic: P3

Address: B0h

P3.7-0: General-purpose I/O port. Each pin also has an alternative input or output function, which is described below.

| BIT | NAME | FUNCTION                                  |
|-----|------|-------------------------------------------|
| 7   | P3.7 | RD : strobe for reading from external RAM |
| 6   | P3.6 | WR : strobe for writing to external RAM   |
| 5   | P3.5 | T1: Timer 1 external count input          |
| 4   | P3.4 | T0: Timer 0 external count input          |
|     |      | - 26 -                                    |

## nuvoTon

| 3 | P3.3 | INT1: External interrupt 1  |
|---|------|-----------------------------|
| 2 | P3.2 | INT0 : External interrupt 0 |
| 1 | P3.1 | TxD: Serial port 0 output   |
| 0 | P3.0 | RxD: Serial port 0 input    |

#### **Interrupt Priority**

Bit:

| 7    | 6    | 5   | 4  | 3   | 2      | Э.  | 0   |
|------|------|-----|----|-----|--------|-----|-----|
| -    | PADC | PT2 | PS | PT1 | PX1    | PT0 | PX0 |
| <br> |      |     |    |     | - XCC. |     |     |

Mnemonic: IP

Address: B8h

| BIT | NAME | FUNCTION                                                               |
|-----|------|------------------------------------------------------------------------|
| 7   | -    | Reserved. This bit reads high.                                         |
| 6   | PADC | 1: Set the priority of the ADC interrupt to the highest level.         |
| 5   | PT2  | 1: Set the priority of the Timer 2 interrupt to the highest level.     |
| 4   | PS   | 1: Set the priority of the Serial Port interrupt to the highest level. |
| 3   | PT1  | 1: Set the priority of the Timer 1 interrupt to the highest level.     |
| 2   | PX1  | 1: Set the priority of external interrupt 1 to the highest level.      |
| 1   | PT0  | 1: Set the priority of the Timer 0 interrupt to the highest level.     |
| 0   | PX0  | 1: Set the priority of external interrupt 0 to the highest level.      |

#### Slave Address Mask Enable

| Bit: | 7         | 6       | 5       | 4       | 3       | 2       | 1         | 0       |
|------|-----------|---------|---------|---------|---------|---------|-----------|---------|
|      | SADEN.7   | SADEN.6 | SADEN.5 | SADEN.4 | SADEN.3 | SADEN.2 | SADEN.1   | SADEN.0 |
| Mn   | emonic: S | ADEN    |         |         |         | A       | ddress: E | 39h     |

SADEN[7:0] This register enables the Automatic Address Recognition feature for the serial port. When a bit in SADEN is set to 1, the same bit in SADDR is compared to incoming serial data. When a bit in SADEN is set to 0, the same bit becomes a "don't care" condition in the comparison. Disable Automatic Address Recognition by setting all the bits in SADEN to 0.

#### **ADC Control Register**

| Bit: | 7         | 6     | 5     | 4    | 3       | 2           | 1          | 0            |
|------|-----------|-------|-------|------|---------|-------------|------------|--------------|
|      | ADCEN     | -     | ADCEX | ADCI | ADCS    | AADR2       | AADR1      | AADR0        |
| Mr   | emonic: A | DCCON |       |      |         | A           | Address: C | C0h          |
|      |           |       |       |      |         |             |            |              |
|      |           |       |       |      |         |             |            |              |
|      |           |       |       |      |         |             |            |              |
|      |           |       |       |      |         |             |            |              |
|      |           |       |       |      |         |             |            |              |
|      |           |       |       |      | Publice | ation Relea |            | Oct 07, 2010 |
|      |           |       | - 27  | -    |         |             | Re         | evision A6.0 |
|      |           |       |       |      |         |             |            |              |

## nuvoTon

| BIT | NAME  |                                                                                                                                                                                                                     |                                                                                                                                                                                                 | FUNCTION                                                                                                                                                                                                                           |  |  |  |  |  |
|-----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 7   | ADCEN |                                                                                                                                                                                                                     | /D Conve<br>e ADC blo                                                                                                                                                                           | rter Function.<br>ck.                                                                                                                                                                                                              |  |  |  |  |  |
| 6   | -     | Reserved                                                                                                                                                                                                            | t                                                                                                                                                                                               | See and a second                                                                                                                                                                                                                   |  |  |  |  |  |
| 5   | ADCEX | 0: Conve                                                                                                                                                                                                            | nable STADC-triggered conversion<br>: Conversion can only be started by software (i.e., by setting ADCS).<br>: Conversion can be started by software or by a rising edge on STADC (pin<br>1.2). |                                                                                                                                                                                                                                    |  |  |  |  |  |
| 4   | ADCI  | This flag<br>ADC inte                                                                                                                                                                                               | rrupt, if it                                                                                                                                                                                    | en the result of an A/D conversion is ready. This generates an is enabled. The flag must be cleared by the software. While this cannot start a new conversion. ADCI can not be set by software.                                    |  |  |  |  |  |
|     |       | STADC i<br>right afte<br>start a ne                                                                                                                                                                                 | f ADCEX<br>r ADCI is<br>w conver                                                                                                                                                                | tus: Set this bit to start an A/D conversion. It may also be set by<br>is 1. This signal remains high while the ADC is busy and is reset<br>set. ADCS can not be reset by software, and the ADC cannot<br>sion while ADCS is high. |  |  |  |  |  |
|     |       | ADCI                                                                                                                                                                                                                | ADCS                                                                                                                                                                                            | ADC Status                                                                                                                                                                                                                         |  |  |  |  |  |
| 3   | ADCS  | 00ADC not busy; a conversion can be started01ADC busy; start of a new conversion is blocked10Conversion completed; start of a new conversio11ADCI=0Conversion completed; start of a new conversioADCI=0ADCI=0ADCI=0 |                                                                                                                                                                                                 |                                                                                                                                                                                                                                    |  |  |  |  |  |
|     |       |                                                                                                                                                                                                                     |                                                                                                                                                                                                 | to clear ADCI <b>before</b> ADCS is set. However, if ADCI is cleared at the same time, a new A/D conversion may start on the same                                                                                                  |  |  |  |  |  |
| 2   | AADR2 | See table                                                                                                                                                                                                           | See table below.                                                                                                                                                                                |                                                                                                                                                                                                                                    |  |  |  |  |  |
| 1   | AADR1 | See table                                                                                                                                                                                                           | See table below.                                                                                                                                                                                |                                                                                                                                                                                                                                    |  |  |  |  |  |
| 0   | AADR0 | See table                                                                                                                                                                                                           | e below.                                                                                                                                                                                        |                                                                                                                                                                                                                                    |  |  |  |  |  |

#### AADR2, AADR1, AADR0: ADC Analog Input Channel select bits:

These bits can only be changed when ADCI and ADCS are both zero.

| 000 ADCCH0 (P1.4) |  |
|-------------------|--|
|                   |  |
| 001 ADCCH1 (P1.5) |  |
| 010 ADCCH2 (P1.6) |  |
| 011 ADCCH3 (P1.7) |  |



Bit:

#### ADC Converter Result Low Register

| 7      | 6          | 5 | 4    | 3    | 2       | 1      | 0     |
|--------|------------|---|------|------|---------|--------|-------|
| ADCLK1 | ADCLK0     | - | ·m   | - 10 | -       | ADC.1  | ADC.0 |
| Mnemo  | onic: ADCL |   | Mrs. | 100  | Address | s: C1h | -     |

ADCLK[1:0] ADC Clock Frequency Select. The 10-bit ADC needs a clock to drive the converting that the clock frequency may not over 4MHz. ADCLK[1:0] controls the frequency of the clock to ADC block as below table.

| ADCLK1 | ADCLK0 | ADC CLOCK FREQUENCY         |
|--------|--------|-----------------------------|
| 0      | 0      | Crystal clock / 4 (Default) |
| 0      | 1      | Crystal clock / 8           |
| 1      | 0      | Crystal clock / 16          |
| 1      | 1      | Reserved                    |

ADC[1:0] 2 LSB of 10-bit A/D conversion result. These 2 bits are read only.

#### **ADC Converter Result High Register**

| Bit: | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
|      | ADC.9 | ADC.8 | ADC.7 | ADC.6 | ADC.5 | ADC.4 | ADC.3 | ADC.2 |
|      |       |       |       |       |       |       |       |       |

Mnemonic: ADCH

Address: C2h

ADC[9:2] 8 MSB of 10-bit A/D conversion result. Register ADCH is read only.

#### **PWM5 Register**

| Bit:           | 7         | 6      | 5 |   | 4 | 3 | 2      | 1      | 0    |
|----------------|-----------|--------|---|---|---|---|--------|--------|------|
|                |           |        |   |   |   |   |        |        |      |
| Ν              | /Inemonic | : PWM5 |   |   |   |   | Addres | s: C3H |      |
| POWER Manageme | ent Regi  | ster   |   |   |   |   |        |        |      |
| Bit:           | 7         | 6      | 5 | 4 |   | 3 | 2      | 1      | 0    |
|                | -         | -      | - | - |   | - | ALEOFF | -      | DME0 |

|   | -       | - | - | - | - | ALEOFF        | -      | DME0 |
|---|---------|---|---|---|---|---------------|--------|------|
| N | Inomoni |   |   |   |   | <b>Addroo</b> | o: C4b |      |

Mnemonic: PMR

Address: C4h

| BIT | NAME   | FUNCTION                                                                                                                                                                                                                                            |
|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7~3 | -      | Reserved.                                                                                                                                                                                                                                           |
| 2   | ALEOFF | <ul><li>0: ALE expression is enabled during on-board program and data accesses.</li><li>1: ALE expression is disabled. Keep the logic in the high state.</li><li>External memory accesses automatically enable ALE, regardless of ALEOFF.</li></ul> |
| 1   | 3-0    | Reserved.                                                                                                                                                                                                                                           |
| 0   | DME0   | On-chip MOVX SRAM enable bit.<br>1: Enable on-chip 1KB MOVX SRAM                                                                                                                                                                                    |

### nuvoTon



| ЫІ  |           | FUNCTION                                                                                                                                                                                                                      |
|-----|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-4 | -         | Must be zeros                                                                                                                                                                                                                 |
| 3-0 | ADCPS.3-0 | Switch I/O pins, P1.7~P1.4, to analog input.<br>Analog inputs of ADC0-ADC3 share the I/O pins from P1.4 to P1.7. Setting<br>the bits in ADCPS[3:0] switches the corresponding pins of Port1[7:4] to<br>analog input function. |

#### ADCPS.3-0: Switch P1.7~P1.4 to analog input function

| BIT     | CORRESPONDING PIN |
|---------|-------------------|
| ADCPS.0 | P1.4              |
| ADCPS.1 | P1.5              |
| ADCPS.2 | P1.6              |
| ADCPS.3 | P1.7              |

**Timed Access** 

ΤA

| Bit: | 7       | 6    | 5    | 4    | 3    | 2       | 1      | 0    |
|------|---------|------|------|------|------|---------|--------|------|
|      | TA.7    | TA.6 | TA.5 | TA.4 | TA.3 | TA.2    | TA.1   | TA.0 |
| Mr   | emonic: | TA   |      |      |      | Address | s: C7h |      |

This register controls the access to protected bits. To access protected bits, the program must write AAH, followed immediately by 55H, to TA. This opens a window for three machine cycles, during which the program can write to protected bits.

#### TIMER 2 CONTROL

Bit: 7 6 5 4 3 2 1 0

## nuvoTon

|     |        | TF2                                                        | EXF2                                                                                                                                                                                                                                                                                                                                                                                     | RCLK                          | TCLK         | EXEN2      | TR2         | $C/\overline{T2}$ | CP/RL2                         |  |  |
|-----|--------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------|------------|-------------|-------------------|--------------------------------|--|--|
|     |        | Mnemor                                                     | ic: T2CO                                                                                                                                                                                                                                                                                                                                                                                 | N                             |              | 2          | Addre       | ss: C8h           |                                |  |  |
| BIT | NAME   |                                                            |                                                                                                                                                                                                                                                                                                                                                                                          |                               | FUNG         | CTION      |             |                   |                                |  |  |
| 7   | TF2    | count is equ                                               | al to the o<br>t by the h                                                                                                                                                                                                                                                                                                                                                                | capture reg<br>ardware o      | gister in do | wn-count   | mode.       |                   | set when the<br>it can be set  |  |  |
| 6   | EXF2   | underflow /<br>This bit can<br>be cleared                  | imer 2 External flag: A negative transition on the T2EX pin (P1.1) or a timer 2<br>nderflow / overflow sets this flag according to the CP/RL2, EXEN2 and DCEN bits.<br>his bit can also be set by the software. If set by a negative transition, this flag must<br>e cleared by software. If set by a negative transition or by software, a Timer 2<br>terrupt is generated, if enabled. |                               |              |            |             |                   |                                |  |  |
| 5   | RCLK   | data in Seria<br>0: The Time<br>1: The Time                | Receive Clock flag: This bit determines the serial-port time base when receiving<br>lata in Serial Port modes 1 or 3.<br>It: The Timer 1 overflow is used for baud-rate generation<br>: The Timer 2 overflow is used for baud-rate generation, forcing Timer 2 into baud-<br>ate generator mode.                                                                                         |                               |              |            |             |                   |                                |  |  |
| 4   | TCLK   | data in Seria<br>0: The Time                               | al Port mo<br>er 1 overflo<br>er 2 overflo                                                                                                                                                                                                                                                                                                                                               | odes 1 or 3<br>ow is used     | for baud-r   | ate genera | ation       |                   | transmitting<br>2 into baud-   |  |  |
| 3   | EXEN2  | Timer 2 Ext<br>pin, as long<br>0: Ignore T2<br>1: Negative | as Timer<br>EX.                                                                                                                                                                                                                                                                                                                                                                          | 2 is not ge                   | enerating b  | aud clocks | s for the s |                   | on the T2EX                    |  |  |
| 2   | TR2    | Timer 2 Ru<br>preserves th                                 |                                                                                                                                                                                                                                                                                                                                                                                          |                               |              |            | imer 2. W   | /hen disab        | led, Timer 2                   |  |  |
| 1   | C/T2   | Counter / Ti<br>0: Timer 2 c<br>1: Timer 2 c<br>Regardless | perates a<br>ounts neg                                                                                                                                                                                                                                                                                                                                                                   | is a timer a<br>gative edge   | es on the T  | 2EX pin.   |             | ,                 | ,                              |  |  |
| 0   | CP/RL2 | on T2EX (ai<br>0: Auto-relo<br>1: Capture i                | nd EXEN2<br>ad Timer<br>n Timer 2<br>TCLK is s                                                                                                                                                                                                                                                                                                                                           | 2 = 1).<br>2<br>set, this bit |              |            |             |                   | e is detected<br>a auto-reload |  |  |

#### TIMER 2 MODE CONTROL

Bit:

7

6

4

3

5

|                     |       |                                          | M                                                                     | nemonic                                                                                           | : T2MOD                                                    |                                          |                                     |                                 | Add                                          | ress:                      | C9h                                                     |                                |           |
|---------------------|-------|------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------|-------------------------------------|---------------------------------|----------------------------------------------|----------------------------|---------------------------------------------------------|--------------------------------|-----------|
| BIT                 | -     | NAME                                     |                                                                       |                                                                                                   |                                                            | 6                                        | FUNCT                               | ION                             |                                              |                            |                                                         |                                |           |
| 7~4                 | 1     | -                                        | Res                                                                   | erved.                                                                                            |                                                            |                                          | V2                                  | S.                              | SPP AL                                       |                            |                                                         |                                |           |
|                     |       |                                          | Tim                                                                   | er 2 Cap                                                                                          | ture Rese                                                  | t. In Timer-                             | 2 Capture                           | Mode,                           | SL.                                          |                            |                                                         |                                |           |
| 3                   |       | T2CR                                     |                                                                       |                                                                                                   |                                                            | that auton<br>d the value                |                                     |                                 | ner 2 or                                     | nce tl                     | he Time                                                 | er 2 ca                        | pture     |
| 2~1                 |       | -                                        | Res                                                                   | erved.                                                                                            |                                                            |                                          |                                     | 10                              | 22                                           | 50                         | 201                                                     |                                |           |
| 0                   |       | DCEN                                     |                                                                       | own Count Enable: This bit controls the direction that Timer 2 counts in 16-b<br>uto-reload mode. |                                                            |                                          |                                     |                                 |                                              |                            |                                                         | 16-bi                          |           |
| ГІМЕ                | R 2   | CAPT                                     | URE                                                                   | LSB                                                                                               |                                                            |                                          |                                     |                                 | 2                                            | 5                          | 21                                                      | 6                              |           |
| Bit:                | 7     |                                          | 6                                                                     | 5                                                                                                 |                                                            | 4                                        | 3                                   | 2                               |                                              | 1                          | Es.                                                     | 0                              | 1         |
|                     | RCA   | P2L.7                                    | RCAP                                                                  | 2L.6 R0                                                                                           | CAP2L.5                                                    | RCAP2L.4                                 | RCAP2L.                             | 3 RCA                           | P2L.2                                        | RCA                        | P2L.1                                                   | RCAP2                          | 2L.0      |
|                     |       |                                          | M                                                                     | nemonic                                                                                           | : RCAP2L                                                   |                                          |                                     |                                 |                                              | Α                          | ddress:                                                 | CAh                            | 0         |
| RCAF                |       |                                          | o-reloa                                                               |                                                                                                   |                                                            | egister o<br>ter is the L                | captures<br>SB of the               |                                 |                                              |                            | Timer                                                   | 2                              | (TL2)     |
| ГІМЕ                | ER 2  | CAPT                                     | URE                                                                   | MSB                                                                                               |                                                            |                                          |                                     |                                 |                                              |                            |                                                         |                                |           |
| Bit:                | 7     |                                          | 6                                                                     | 5                                                                                                 | 5                                                          | 4                                        | 3                                   | 2                               |                                              | 1                          |                                                         | 0                              |           |
|                     | ,<br> |                                          | 1                                                                     |                                                                                                   |                                                            |                                          |                                     |                                 |                                              |                            |                                                         |                                |           |
| RCAF                | RC    | AP2H.7<br>(Cap                           | RCAI<br>Mi<br>Dture                                                   | nemonic<br>mode)                                                                                  |                                                            | egister c                                | aptures                             | the I                           | ЛSB                                          | A                          | AP2H.1<br>ddress:<br>Timer                              |                                |           |
|                     | RC/   | (Cap<br>(Auto<br><b>LSB</b>              | RCAI<br>Mi<br>oture<br>o-reloa                                        | nemonic<br>mode)<br>d mode)                                                                       | : RCAP2H<br>This r<br>This regis                           | egister c<br>ster is the N               | aptures<br>ISB of the               | the I<br>16-bit r               | /ISB<br>eload v                              | A                          | ddress:<br>Timer                                        | CBh<br>2 (                     |           |
|                     | RC/   | (Cap<br>(Auto<br><b>LSB</b>              | RCAI<br>Mi<br>Dture                                                   | nemonic<br>mode)<br>d mode)<br>7                                                                  | : RCAP2H<br>This r<br>This regis                           | egister c<br>ter is the M                | aptures<br>ISB of the               | the I<br>16-bit r<br>3          | /ISB<br>eload v<br>2                         | A<br>of<br>alue.           | ddress:<br>Timer<br>1                                   | CBh<br>2 (<br>0                | TH2)      |
|                     | RC/   | (Cap<br>(Auto<br><b>LSB</b>              | RCAI<br>Mi<br>oture<br>o-reloa                                        | nemonic<br>mode)<br>d mode)<br>7<br>TL2.7                                                         | RCAP2H<br>This r<br>This regis<br>6<br>TL2.6               | egister c<br>ster is the N               | aptures<br>ISB of the               | the I<br>16-bit r               | /ISB<br>eload v                              | A<br>of<br>alue.<br>2      | ddress:<br>Timer<br>1<br>TL2.1                          | CBh<br>2 (<br>0<br>TL2         | TH2)      |
| ГІМЕ                | RC/   | (Cap<br>(Auto<br><b>LSB</b><br>E         | RCAI<br>Mi<br>biture<br>p-reloa<br>Bit:<br>Mi                         | nemonic<br>mode)<br>d mode)<br>7<br>TL2.7<br>nemonic                                              | RCAP2H<br>This r<br>This regis<br>6<br>TL2.6               | egister c<br>ter is the M                | aptures<br>ISB of the               | the I<br>16-bit r<br>3          | /ISB<br>eload v<br>2                         | A<br>of<br>alue.<br>2      | ddress:<br>Timer<br>1                                   | CBh<br>2 (<br>0<br>TL2         | TH2)      |
| <b>FIME</b><br>FL2  | P2H   | (Cap<br>(Auto<br><b>LSB</b><br>E         | RCAI<br>Mi<br>oture<br>o-reloa                                        | nemonic<br>mode)<br>d mode)<br>7<br>TL2.7<br>nemonic                                              | RCAP2H<br>This r<br>This regis<br>6<br>TL2.6               | egister c<br>ter is the M                | aptures<br>ISB of the               | the I<br>16-bit r<br>3          | /ISB<br>eload v<br>2                         | A<br>of<br>alue.<br>2      | ddress:<br>Timer<br>1<br>TL2.1                          | CBh<br>2 (<br>0<br>TL2         | TH2)      |
| <b>FIME</b><br>FL2  | P2H   | (Cap<br>(Auto<br>LSB<br>E<br>Time<br>MSB | RCAI<br>Mi<br>biture<br>p-reloa<br>Bit:<br>Mi                         | nemonic<br>mode)<br>d mode)<br>7<br>TL2.7<br>nemonic                                              | RCAP2H<br>This r<br>This regis<br>6<br>TL2.6               | egister c<br>ter is the M                | aptures<br>ISB of the               | the I<br>16-bit r<br>3          | /ISB<br>eload v<br>2                         | A<br>of<br>alue.<br>2      | ddress:<br>Timer<br>1<br>TL2.1                          | CBh<br>2 (<br>0<br>TL2         | TH2)      |
| <b>FIME</b><br>FL2  | P2H   | (Cap<br>(Auto<br>LSB<br>E<br>Time<br>MSB | RCAI<br>Mi<br>biture<br>b-reloa<br>Bit:<br>Mi<br>er 2 LS              | nemonic<br>mode)<br>d mode)<br>7<br>TL2.7<br>nemonic<br>B                                         | RCAP2H<br>This r<br>This regis<br>6<br>TL2.6<br>: TL2<br>6 | egister c<br>ster is the M<br>5<br>TL2.5 | aptures<br>ISB of the<br>4<br>TL2.4 | the I<br>16-bit r<br>3<br>TL2.3 | //SB<br>eload v<br>2<br>TL2.                 | A<br>of<br>alue.<br>2<br>A | ddress:<br>Timer<br>1<br>TL2.1<br>ddress:               | CBh<br>2 (<br>0<br>TL2.<br>CCh | TH2)<br>0 |
| <b>FIME</b><br>FL2  | P2H   | (Cap<br>(Auto<br>LSB<br>E<br>Time<br>MSB | RCAI<br>Mi<br>oture<br>o-reloa<br>Bit:<br>Mi<br>er 2 LS<br>Bit:       | nemonic<br>mode)<br>d mode)<br>7<br>TL2.7<br>nemonic<br>B                                         | RCAP2H<br>This regis<br>6<br>TL2.6<br>: TL2<br>6<br>TH2.6  | egister c<br>ster is the M<br>5<br>TL2.5 | aptures<br>ISB of the<br>4<br>TL2.4 | the I<br>16-bit r<br>3<br>TL2.3 | ASB<br>eload v<br>2<br>TL2.<br>2<br>2<br>TH2 | A<br>of<br>alue.<br>2<br>A | ddress:<br>Timer<br>1<br>TL2.1<br>ddress:<br>1<br>TH2.1 | CBh<br>2 (<br>0<br>TL2<br>CCh  | TH2)<br>0 |
| TIME                | P2H   | (Cap<br>(Auto<br>LSB<br>E<br>Time<br>MSB | RCAI<br>Mi<br>oture<br>o-reloa<br>Bit:<br>Mi<br>er 2 LS<br>Bit:       | nemonic<br>mode)<br>d mode)<br>7<br>TL2.7<br>nemonic<br>B<br>7<br>TH2.7<br>nemonic                | RCAP2H<br>This regis<br>6<br>TL2.6<br>: TL2<br>6<br>TH2.6  | egister c<br>ster is the M<br>5<br>TL2.5 | aptures<br>ISB of the<br>4<br>TL2.4 | the I<br>16-bit r<br>3<br>TL2.3 | ASB<br>eload v<br>2<br>TL2.<br>2<br>2<br>TH2 | A<br>of<br>alue.<br>2<br>A | ddress:<br>Timer<br>1<br>TL2.1<br>ddress:<br>1<br>TH2.1 | CBh<br>2 (<br>0<br>TL2<br>CCh  | TH2)<br>0 |
| rime<br>rl2<br>rime | P2H   | (Cap<br>(Auto<br>LSB<br>E<br>Time<br>MSB | RCAI<br>Mi<br>bture<br>p-reloa<br>Bit:<br>Mi<br>er 2 LS<br>Bit:<br>Mi | nemonic<br>mode)<br>d mode)<br>7<br>TL2.7<br>nemonic<br>B<br>7<br>TH2.7<br>nemonic                | RCAP2H<br>This regis<br>6<br>TL2.6<br>: TL2<br>6<br>TH2.6  | egister c<br>ster is the M<br>5<br>TL2.5 | aptures<br>ISB of the<br>4<br>TL2.4 | the I<br>16-bit r<br>3<br>TL2.3 | ASB<br>eload v<br>2<br>TL2.<br>2<br>2<br>TH2 | A<br>of<br>alue.<br>2<br>A | ddress:<br>Timer<br>1<br>TL2.1<br>ddress:<br>1<br>TH2.1 | CBh<br>2 (<br>0<br>TL2<br>CCh  | TH2)<br>0 |
| TIME                | P2H   | (Cap<br>(Auto<br>LSB<br>E<br>Time<br>MSB | RCAI<br>Mi<br>bture<br>p-reloa<br>Bit:<br>Mi<br>er 2 LS<br>Bit:<br>Mi | nemonic<br>mode)<br>d mode)<br>7<br>TL2.7<br>nemonic<br>B<br>7<br>TH2.7<br>nemonic                | RCAP2H<br>This regis<br>6<br>TL2.6<br>: TL2<br>6<br>TH2.6  | egister c<br>ster is the M<br>5<br>TL2.5 | aptures<br>ISB of the<br>4<br>TL2.4 | the I<br>16-bit r<br>3<br>TL2.3 | ASB<br>eload v<br>2<br>TL2.<br>2<br>2<br>TH2 | A<br>of<br>alue.<br>2<br>A | ddress:<br>Timer<br>1<br>TL2.1<br>ddress:<br>1<br>TH2.1 | CBh<br>2 (<br>0<br>TL2<br>CCh  | TH2)<br>0 |
| TIME                | P2H   | (Cap<br>(Auto<br>LSB<br>E<br>Time<br>MSB | RCAI<br>Mi<br>bture<br>p-reloa<br>Bit:<br>Mi<br>er 2 LS<br>Bit:<br>Mi | nemonic<br>mode)<br>d mode)<br>7<br>TL2.7<br>nemonic<br>B<br>7<br>TH2.7<br>nemonic                | RCAP2H<br>This regis<br>6<br>TL2.6<br>: TL2<br>6<br>TH2.6  | egister c<br>ster is the M<br>5<br>TL2.5 | aptures<br>ISB of the<br>4<br>TL2.4 | the I<br>16-bit r<br>3<br>TL2.3 | ASB<br>eload v<br>2<br>TL2.<br>2<br>2<br>TH2 | A<br>of<br>alue.<br>2<br>A | ddress:<br>Timer<br>1<br>TL2.1<br>ddress:<br>1<br>TH2.1 | CBh<br>2 (<br>0<br>TL2<br>CCh  | TH2)<br>0 |
| TIME                | P2H   | (Cap<br>(Auto<br>LSB<br>E<br>Time<br>MSB | RCAI<br>Mi<br>bture<br>p-reloa<br>Bit:<br>Mi<br>er 2 LS<br>Bit:<br>Mi | nemonic<br>mode)<br>d mode)<br>7<br>TL2.7<br>nemonic<br>B<br>7<br>TH2.7<br>nemonic                | RCAP2H<br>This regis<br>6<br>TL2.6<br>: TL2<br>6<br>TH2.6  | egister c<br>ster is the M<br>5<br>TL2.5 | aptures<br>ISB of the<br>4<br>TL2.4 | the I<br>16-bit r<br>3<br>TL2.3 | ASB<br>eload v<br>2<br>TL2.<br>2<br>2<br>TH2 | A<br>of<br>alue.<br>2<br>A | ddress:<br>Timer<br>1<br>TL2.1<br>ddress:<br>1<br>TH2.1 | CBh<br>2 (<br>0<br>TL2<br>CCh  | TH2)<br>0 |
| TL2                 | P2H   | (Cap<br>(Auto<br>LSB<br>E<br>Time<br>MSB | RCAI<br>Mi<br>bture<br>p-reloa<br>Bit:<br>Mi<br>er 2 LS<br>Bit:<br>Mi | nemonic<br>mode)<br>d mode)<br>7<br>TL2.7<br>nemonic<br>B<br>7<br>TH2.7<br>nemonic                | RCAP2H<br>This regis<br>6<br>TL2.6<br>: TL2<br>6<br>TH2.6  | egister c<br>ster is the M<br>5<br>TL2.5 | aptures<br>ISB of the<br>4<br>TL2.4 | the I<br>16-bit r<br>3<br>TL2.3 | ASB<br>eload v<br>2<br>TL2.<br>2<br>2<br>TH2 | A<br>of<br>alue.<br>2<br>A | ddress:<br>Timer<br>1<br>TL2.1<br>ddress:<br>1<br>TH2.1 | CBh<br>2 (<br>0<br>TL2<br>CCh  | TH2)<br>0 |

|                                          |                                                              | Bit:                                                                                                                   | 7                                                                                                                              | 6                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                           | 3                                                                                                                                                                        | 2                                                                                                                              | 1                                                                                                              |                           | 0                                            |
|------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------|
|                                          |                                                              |                                                                                                                        | -                                                                                                                              | -                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                           | PWM5OE                                                                                                                                                                   | PWM40                                                                                                                          | E ENF                                                                                                          | WM5                       | ENPWM4                                       |
|                                          |                                                              |                                                                                                                        | Mne                                                                                                                            | monic:                                                                                                   | PWMCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N2                                                                                                          | W/A                                                                                                                                                                      |                                                                                                                                | Address                                                                                                        | : CEh                     |                                              |
| BIT                                      | NAN                                                          | 1E                                                                                                                     |                                                                                                                                |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                             | FUNC                                                                                                                                                                     | TION                                                                                                                           |                                                                                                                |                           |                                              |
| 7~4                                      | -                                                            |                                                                                                                        |                                                                                                                                | erved.                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                             | X                                                                                                                                                                        | 223                                                                                                                            | (                                                                                                              |                           |                                              |
| 0                                        |                                                              |                                                                                                                        |                                                                                                                                |                                                                                                          | le for PV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                             |                                                                                                                                                                          |                                                                                                                                |                                                                                                                |                           |                                              |
| 3                                        | PWM                                                          | OE                                                                                                                     |                                                                                                                                |                                                                                                          | WM5 Ou<br>NM5 Ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                           |                                                                                                                                                                          |                                                                                                                                |                                                                                                                |                           |                                              |
|                                          |                                                              |                                                                                                                        |                                                                                                                                |                                                                                                          | ble for PV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                                    |                                                                                                                                                                          | 9                                                                                                                              | 6                                                                                                              | 22                        |                                              |
| 2                                        | PWM4                                                         | 10E                                                                                                                    |                                                                                                                                |                                                                                                          | WM4 Ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                             |                                                                                                                                                                          |                                                                                                                                |                                                                                                                |                           |                                              |
|                                          |                                                              |                                                                                                                        | 1: Er                                                                                                                          | hable P                                                                                                  | WM4 Ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tput.                                                                                                       |                                                                                                                                                                          |                                                                                                                                | - 25                                                                                                           | ~                         | 16-5                                         |
|                                          |                                                              |                                                                                                                        |                                                                                                                                | le PW                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                             |                                                                                                                                                                          |                                                                                                                                |                                                                                                                |                           |                                              |
| 1                                        | ENPV                                                         | /M5                                                                                                                    |                                                                                                                                | sable P<br>hable P                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                             |                                                                                                                                                                          |                                                                                                                                |                                                                                                                |                           |                                              |
|                                          |                                                              |                                                                                                                        |                                                                                                                                |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                             |                                                                                                                                                                          |                                                                                                                                |                                                                                                                | -                         | 20, 10                                       |
| 0 ENPWM4                                 |                                                              | /\\/4                                                                                                                  |                                                                                                                                |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                             |                                                                                                                                                                          |                                                                                                                                |                                                                                                                |                           |                                              |
|                                          |                                                              | T-171                                                                                                                  | 0: Di                                                                                                                          | sable P                                                                                                  | WM4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                             |                                                                                                                                                                          |                                                                                                                                |                                                                                                                |                           |                                              |
|                                          |                                                              |                                                                                                                        |                                                                                                                                | sable P<br>nable P                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                             |                                                                                                                                                                          |                                                                                                                                |                                                                                                                |                           | - PD                                         |
| WM4                                      | l Regist                                                     |                                                                                                                        |                                                                                                                                |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                             |                                                                                                                                                                          |                                                                                                                                |                                                                                                                |                           | - PD                                         |
| WM4                                      | l Regist                                                     |                                                                                                                        | 1: Er                                                                                                                          |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                           | 4                                                                                                                                                                        | 3                                                                                                                              | 2                                                                                                              | 1                         | 0                                            |
| WM4                                      | l Regist                                                     | er                                                                                                                     | 1: Er                                                                                                                          | able P                                                                                                   | WM4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                           | 4                                                                                                                                                                        | 3                                                                                                                              | 2                                                                                                              | 1                         | 0                                            |
| WM4                                      | l Regist                                                     | er                                                                                                                     | 1: Er                                                                                                                          | able P                                                                                                   | 0 00 00 00 00 00 00 00 00 00 00 00 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                           | 4                                                                                                                                                                        | 3                                                                                                                              | 2<br>Address                                                                                                   |                           | 0                                            |
|                                          | Regist                                                       | er<br>Bit:                                                                                                             | 1: Er                                                                                                                          | nable P<br>7<br>monic:                                                                                   | 0 00 00 00 00 00 00 00 00 00 00 00 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                           | 4                                                                                                                                                                        | 3                                                                                                                              |                                                                                                                |                           | 0                                            |
|                                          | U                                                            | er<br>Bit:                                                                                                             | 1: Er<br>                                                                                                                      | nable P<br>7<br>monic:                                                                                   | 0 00 00 00 00 00 00 00 00 00 00 00 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                           | 4                                                                                                                                                                        | 3                                                                                                                              |                                                                                                                |                           | 0                                            |
|                                          | U                                                            | Bit:                                                                                                                   | 1: Er<br>                                                                                                                      | 7<br>7<br>monic:<br><b>/ORD</b>                                                                          | 6<br>PWM4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                             |                                                                                                                                                                          |                                                                                                                                | Address                                                                                                        | S: CFH                    |                                              |
|                                          | U                                                            | Bit:                                                                                                                   | <u>1: Er</u><br>Mne<br><b>JS M</b>                                                                                             | mable P<br>7<br>monic:<br><b>/ORD</b><br>7<br>CY                                                         | 0<br>6<br>PWM4<br>6<br>AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                           | 4                                                                                                                                                                        | 3                                                                                                                              | Address<br>2<br>OV                                                                                             | :: CFH<br>1<br>F1         | 0                                            |
| ROG                                      | GRAM S                                                       | Bit:                                                                                                                   | <u>1: Er</u><br>Mne<br><b>JS M</b>                                                                                             | mable P<br>7<br>monic:<br><b>/ORD</b><br>7                                                               | 0<br>6<br>PWM4<br>6<br>AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                           | 4<br>RS1                                                                                                                                                                 | 3<br>RS0                                                                                                                       | Address<br>2                                                                                                   | :: CFH<br>1<br>F1         | 0                                            |
| ROG                                      | RAM S                                                        | er<br>Bit:<br>TATI<br>Bit:                                                                                             | 1: Er<br>Mne<br>JS W                                                                                                           | mable P<br>7<br>monic:<br><b>/ORD</b><br>7<br>CY<br>monic:                                               | 0<br>6<br>PWM4<br>6<br>AC<br>PSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5<br>F0                                                                                                     | 4<br>RS1<br>FUNCTI                                                                                                                                                       | 3<br>RS0<br>ON                                                                                                                 | Address<br>2<br>OV<br>Address                                                                                  | : CFH<br>1<br>F1<br>: D0h | 0<br>P                                       |
| ROG                                      | GRAM S                                                       | er<br>Bit:<br>TATI<br>Bit:                                                                                             | 1: Er                                                                                                                          | mable P <sup>1</sup><br>7<br>monic:<br><b>/ORD</b><br>7<br>CY<br>monic:<br>g: Set w                      | WM4.<br>6<br>PWM4<br>6<br>AC<br>PSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5<br>F0<br>arithmeti                                                                                        | 4<br>RS1<br>FUNCTI                                                                                                                                                       | 3<br>RS0<br>ON<br>results in a                                                                                                 | Address<br>2<br>OV<br>Address<br>a carry b                                                                     | : CFH<br>1<br>F1<br>: D0h | 0                                            |
| ROG<br>BIT<br>7                          | BRAM S                                                       | Bit:<br>Bit:<br>Bit:<br>Carr<br>the /<br>Auxi                                                                          | 1: Er<br>Mne<br>JS W<br>JS V<br>Js V<br>Js V<br>Js V<br>Js V<br>Js V<br>Js V<br>Js V<br>Js                                     | monic:<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7    | MM4.<br>6<br>PWM4<br>6<br>AC<br>PSW<br>hen an a<br>5 used as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5<br>F0<br>arithmeti                                                                                        | 4<br>RS1<br>FUNCTI<br>c operation<br>cumulator fo                                                                                                                        | 3<br>RS0<br>ON<br>results in a<br>r bit operat                                                                                 | Address<br>2<br>OV<br>Address<br>a carry b<br>ions.                                                            | : CFH<br>1<br>F1<br>: D0h | 0<br>P                                       |
| ROG<br>BIT<br>7<br>6                     | RAM S                                                        | Bit:<br>TATI<br>Bit:<br>Carr<br>the A<br>Auxi<br>orde                                                                  | 1: Er<br>Mne<br>JS W<br>JS W<br>Js I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | monic:<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7    | WM4.<br>6<br>PWM4<br>6<br>AC<br>PSW<br>when an a<br>5 used as<br>5 bet wher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>F0<br>arithmeti<br>s the acconn<br>the pre                                                             | 4<br>RS1<br>FUNCTI<br>c operation<br>cumulator fo<br>evious oper                                                                                                         | 3<br>RS0<br>ON<br>results in a<br>r bit operat<br>ation result                                                                 | Address<br>2<br>OV<br>Address<br>a carry b<br>ions.<br>ted in a                                                | E CFH                     | 0<br>P<br>enerated from<br>om the high       |
| <b>ROG</b><br><b>BIT</b><br>7<br>6<br>5  | RAM S                                                        | ERIERIE                                                                                                                | 1: Er<br>Mne<br>JS W<br>Mne<br>y flag<br>ALU.<br>liary<br>r nibb                                                               | mable P<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7   | MM4.<br>6<br>PWM4<br>6<br>AC<br>PSW<br>/hen an a<br>5 used as<br>5 bused as<br>5 bused as<br>5 bused as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5<br>F0<br>arithmeti<br>s the acc<br>n the pre                                                              | 4<br>RS1<br>FUNCTI<br>c operation<br>cumulator fo<br>evious oper<br>g that can b                                                                                         | 3<br>RS0<br>ON<br>results in a<br>r bit operat<br>ation result                                                                 | Address<br>2<br>OV<br>Address<br>a carry b<br>ions.<br>ted in a                                                | E CFH                     | 0<br>P<br>enerated from<br>om the high       |
| <b>BIT</b><br>7<br>6<br>5<br>4           | RAM S<br>NAME<br>CY<br>AC<br>F0<br>RS1                       | er<br>Bit:<br>TATU<br>Bit:<br>Carr<br>the A<br>Auxi<br>orde<br>Useg                                                    | 1: Er<br>Mne<br>JS W<br>JS W<br>JS W<br>JS S<br>Mne<br>JS W<br>JS S<br>JS S<br>JS S<br>JS S<br>JS S<br>JS S<br>JS S            | mable P<br>7<br>monic:<br>7<br>7<br>CY<br>monic:<br>1 is also<br>carry: \$<br>ble.<br>0: A ge<br>Bank se | MM4.<br>6<br>PWM4<br>6<br>AC<br>PSW<br>when an a<br>5 used as<br>5 used as<br>5 et wher<br>neral-put<br>elect bits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5<br>F0<br>arithmeti<br>s the acc<br>the pre<br>rpose fla<br>See tab                                        | 4<br>RS1<br>FUNCTI<br>c operation<br>cumulator fo<br>evious oper<br>g that can b<br>le below.                                                                            | 3<br>RS0<br>ON<br>results in a<br>r bit operat<br>ation result                                                                 | Address<br>2<br>OV<br>Address<br>a carry b<br>ions.<br>ted in a                                                | E CFH                     | 0<br>P<br>enerated from<br>om the high       |
| <b>ROG</b><br><b>BIT</b><br>7<br>6<br>5  | RAM S                                                        | EREGI                                                                                                                  | 1: Er<br>Mne<br>JS W<br>JS W<br>Js V<br>Iiary<br>r nibb<br>r flag<br>ister I                                                   | mable P<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7   | MM4.<br>6<br>PWM4<br>6<br>AC<br>PSW<br>when an a<br>5 used as<br>5 used as<br>5 et wher<br>neral-pur<br>elect bits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5<br>F0<br>arithmeti<br>s the acc<br>the pre<br>rpose fla<br>See tab                                        | 4<br>RS1<br>FUNCTI<br>c operation<br>cumulator fo<br>evious oper<br>g that can b<br>le below.<br>le below.                                                               | 3<br>RS0<br>ON<br>results in a<br>r bit operat<br>ation result<br>e set or cle                                                 | Address<br>2<br>OV<br>Address<br>a carry b<br>ions.<br>ied in a<br>eared by                                    | E CFH                     | 0<br>P<br>enerated from<br>om the high       |
| <b>BIT</b><br>7<br>6<br>5<br>4           | RAM S<br>NAME<br>CY<br>AC<br>F0<br>RS1                       | EREGIOVE                                                                                                               | 1: Er<br>Mne<br>JS W<br>JS W<br>JS W<br>JS S<br>Mne<br>y flag<br>ALU.<br>liary<br>r nibb<br>r flag<br>ster I<br>ster I<br>flow | mable P<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7   | MM4.<br>6<br>PWM4<br>6<br>AC<br>PSW<br>hen an a<br>5 used as<br>5 used as<br>5 et when<br>elect bits.<br>elect bits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5<br>F0<br>arithmeti<br>s the acc<br>the pre-<br>rpose fla<br>See tab<br>See tab<br>a carry v               | 4<br>RS1<br>FUNCTI<br>c operation<br>cumulator fo<br>evious oper<br>g that can b<br>le below.<br>le below.<br>vas generat                                                | 3<br>RS0<br>ON<br>results in a<br>r bit operat<br>ation result<br>e set or cle                                                 | Address<br>2<br>OV<br>Address<br>a carry b<br>ions.<br>ted in a<br>eared by                                    | E CFH                     | 0<br>P<br>enerated from<br>om the high       |
| <b>BIT</b><br>7<br>6<br>5<br>4<br>3      | RAM S                                                        | er<br>Bit:<br>TATU<br>Bit:<br>Carr<br>the A<br>Auxi<br>orde<br>Usei<br>Regi<br>Ove<br>eigh                             | 1: Er<br>Mne<br>JS W<br>JS W<br>JS W<br>JS W<br>JS W<br>JS W<br>JS W<br>JS W                                                   | monic:<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7    | MM4.<br>6<br>PWM4<br>6<br>AC<br>PSW<br>bused as<br>bused as<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused<br>bused | 5<br>F0<br>arithmeti<br>s the acc<br>the pre-<br>see tab<br>See tab<br>See tab<br>a carry v<br>s a resu     | 4<br>RS1<br>FUNCTI<br>c operation<br>cumulator fo<br>evious oper<br>g that can b<br>le below.<br>le below.                                                               | 3<br>RS0<br>ON<br>results in a<br>r bit operat<br>ation result<br>e set or cle<br>ed from the<br>vious opera                   | Address<br>2<br>OV<br>Address<br>a carry b<br>ions.<br>aed in a<br>eared by<br>e seventh<br>ation.             | E CFH                     | 0<br>P<br>enerated from<br>om the high<br>r. |
| <b>BIT</b><br>7<br>6<br>5<br>4<br>3<br>2 | RAM S<br>RAM S<br>NAME<br>CY<br>AC<br>F0<br>RS1<br>RS0<br>OV | EREGI<br>Bit:<br>Bit:<br>Bit:<br>Carr<br>the A<br>Auxi<br>orde<br>Usei<br>Regi<br>Regi<br>Ove<br>eigh<br>Usei<br>Parit | 1: Er<br>Mne<br>JS W<br>JS W<br>JS W<br>JS W<br>JS W<br>JS W<br>JS W<br>JS W                                                   | mable P<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7   | MM4.<br>6<br>PWM4<br>6<br>AC<br>PSW<br>when an a<br>5 used as<br>5 use                                                                                                                                                                                                                                                                  | 5<br>F0<br>arithmeti<br>s the acc<br>the pre<br>rpose fla<br>See tab<br>a carry v<br>is a resu<br>rpose fla | 4<br>RS1<br>FUNCTI<br>c operation<br>cumulator fo<br>evious oper<br>g that can b<br>le below.<br>le below.<br>le below.<br>vas generat<br>lt of the pre-<br>g that can b | 3<br>RS0<br>ON<br>results in a<br>r bit operat<br>ation result<br>e set or cle<br>ed from the<br>vious operate<br>e set or cle | Address<br>2<br>OV<br>Address<br>a carry b<br>ions.<br>ted in a<br>eared by<br>e seventh<br>ation.<br>eared by | E CFH                     | 0<br>P<br>enerated from<br>om the high<br>r. |

#### RS1, RS0: Register Bank select bits:

| RS1 | RS0 | REGISTER BANK | ADDRESS |
|-----|-----|---------------|---------|
| 0   | 0   | 0             | 00-07h  |
| 0   | 1   | 951           | 08-0Fh  |
| 1   | 0   | 2             | 10-17h  |
| 1   | 1   | 3             | 18-1Fh  |

#### WATCHDOG CONTROL 2

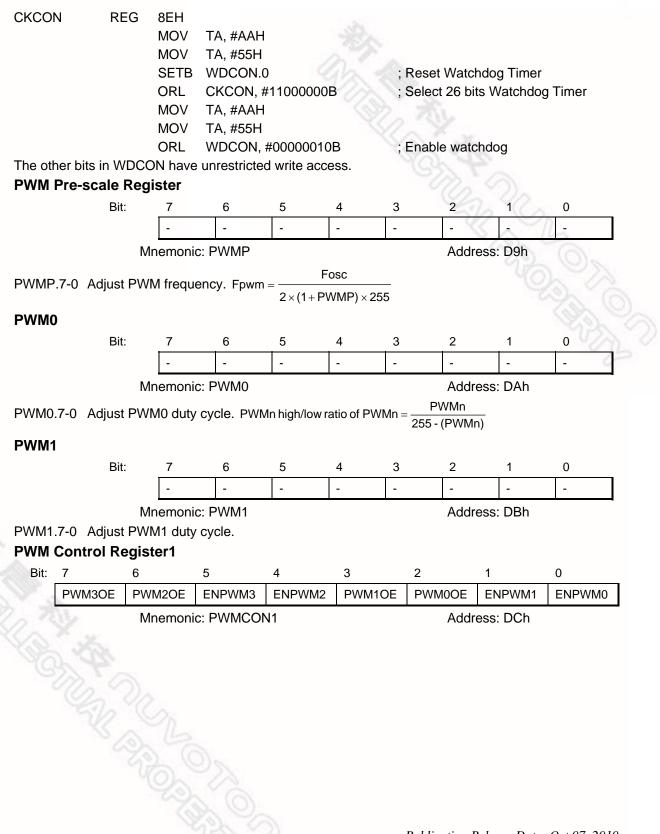
| Bit: | 7     | 6 | 5  | 4 | 3 | 2     | 1        | 0     |
|------|-------|---|----|---|---|-------|----------|-------|
|      | -     | - | -  | - | - | 025   | < P.     | STRLD |
| Mrs  | omoni |   | 10 |   |   | Addre | bee: D7b | 2.15  |

Mnemonic: WDCON2

Address: D7h

STRLD Set this bit, CPU will re-start from LD Flash EPROM after watchdog reset. Clear this bit, CPU will re-start from AP Flash EPROM after watchdog reset. This register is protected by timer access (TA) register.

#### WATCHDOG CONTROL


| Bit: | 7         | 6     | 5 | 4 | 3    | 2       | 1 4 | 0   |
|------|-----------|-------|---|---|------|---------|-----|-----|
|      | -         | POR   | - | - | WDIF | WTRF    | EWT | RWT |
| Mn   | emonic: V | VDCON |   |   |      | Address | D8h | 100 |

| BIT | NAME | FUNCTION                                                                                                                                                                                                                                                                                              |
|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | -    | Reserved.                                                                                                                                                                                                                                                                                             |
| 6   | POR  | Power-on reset flag. The hardware sets this flag during power–up, and it can only be cleared by software. This flag can also be written by software.                                                                                                                                                  |
| 5-4 | -    | Reserved.                                                                                                                                                                                                                                                                                             |
| 3   | WDIF | Watchdog Timer Interrupt Flag. If the watchdog interrupt is enabled, the hardware sets this bit to indicate that the watchdog interrupt has occurred. If the interrupt is not enabled, this bit indicates that the time-out period has elapsed. This bit must be cleared by software.                 |
| 2   | WTRF | Watchdog Timer Reset Flag. If EWT is 0, the Watchdog Timer has no affect on this bit. Otherwise, the hardware sets this bit when the Watchdog Timer causes a reset. It can be cleared by software or a power-fail reset. It can be also read by software, which helps determine the cause of a reset. |
| 1   | EWT  | Enable Watchdog-Timer Reset. Set this bit to enable the Watchdog Timer Reset function.                                                                                                                                                                                                                |
| 0   | RWT  | Reset Watchdog Timer. Set this bit to reset the Watchdog Timer before a time-out occurs. This bit is automatically cleared by the hardware.                                                                                                                                                           |

The WDCON register is affected differently by different kinds of resets. After an external reset, the WDCON register is set to 0x0x0xx0b. After a Watchdog Timer reset, WTRF is set to 1, and the other bits are unaffected. On a power-on/-down reset, WTRF and EWT are set to 0, and POR is set to 1.

All the bits in this SFR have unrestricted read access. POR, EWT, WDIF and RWT are protected bits, so programs must follow the Timed Access procedure to write them. (See the TA Register description for more information.) This is illustrated in the following example.

| ТА    | EG  | C7H |
|-------|-----|-----|
| WDCON | REG | D8H |



| BIT  | NAME        |           |                                 |         | FU | NCTION |         |               |            |
|------|-------------|-----------|---------------------------------|---------|----|--------|---------|---------------|------------|
| 7    | PWM3OE      | 0: Disabl | nable for<br>e PWM3<br>e PWM3 ( | Output. | a) |        | 20.     |               |            |
| 6    | PWM2OE      | 0: Disabl | nable for<br>e PWM2<br>e PWM2 ( | Output. |    |        | N A     | 5             |            |
| 5    | ENPWM3      |           | PWM3<br>e PWM3.<br>e PWM3.      |         |    | 0      |         | $\mathcal{P}$ | 2h         |
| 4    | ENPWM2      |           | PWM2<br>e PWM2.<br>e PWM2.      |         |    |        | ~       | , Age         | DON        |
| 3    | PWM1OE      | 0: Disabl | nable for<br>e PWM1<br>e PWM1 ( | Output. |    |        |         |               | The second |
| 2    | PWM0OE      | 0: Disabl | nable for<br>e PWM0<br>e PWM0 ( | Output. |    |        |         |               | 6          |
| 1    | ENPWM1      |           | PWM1<br>e PWM1.<br>e PWM1.      |         |    |        |         |               |            |
| 0    | ENPWM0      |           | PWM0<br>e PWM0.<br>e PWM0.      |         |    |        |         |               |            |
| PWM2 |             |           |                                 |         |    |        |         |               |            |
|      | Bit:        | 7         | 6                               | 5       | 4  | 3      | 2       | 1             | 0          |
|      |             | -         | -                               | -       | -  | -      | -       | -             | -          |
| 0 20 |             | Anemonic  |                                 |         |    |        | Addre   | ss: DDh       |            |
|      | 0 Adjust PV | VM2 duty  | cycle.                          |         |    |        |         |               |            |
| PWM3 | Bit:        | 7         | 6                               | 5       | 4  | 3      | 2       | 1             | 0          |
|      | 200         | ,<br>-    | -                               | -       | -  | -      | -       | -             | -          |
|      | Sh "        | Anemonic  | ·· P\//M3                       |         |    |        |         | ss: DEh       |            |
|      | 0 Adjust PV |           |                                 |         |    |        | / (0010 | SS. DEN       |            |

## nuvoTon

|                                                   | Bit:                                                                                                                                                                                                              | 7                                                                                                                                                                                                  | 6                                                                                                                                                                                                              | 5                                                                                                                                                                                        | 4                                                                                                                                                         | 3                                                                                                                                                                    | 2                                                                                                                                         | 1                                                                                                                                        | 0                                                                                 |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|                                                   |                                                                                                                                                                                                                   | ACC.7                                                                                                                                                                                              | ACC.6                                                                                                                                                                                                          | ACC.5                                                                                                                                                                                    | ACC.4                                                                                                                                                     | ACC.3                                                                                                                                                                | ACC.2                                                                                                                                     | ACC.1                                                                                                                                    | ACC                                                                               |
|                                                   | Mi                                                                                                                                                                                                                | nemonic:                                                                                                                                                                                           | ACC                                                                                                                                                                                                            |                                                                                                                                                                                          | VA                                                                                                                                                        | 00                                                                                                                                                                   | Addres                                                                                                                                    | s: E0h                                                                                                                                   |                                                                                   |
| ACC.7-0                                           | The A (or A                                                                                                                                                                                                       | ACC) regis                                                                                                                                                                                         | ster is the                                                                                                                                                                                                    | standard                                                                                                                                                                                 | 8051/52 a                                                                                                                                                 | ccumula                                                                                                                                                              | tor.                                                                                                                                      |                                                                                                                                          |                                                                                   |
| EXTEND                                            | ED INTERR                                                                                                                                                                                                         |                                                                                                                                                                                                    | ABLE                                                                                                                                                                                                           |                                                                                                                                                                                          |                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                           |                                                                                                                                          |                                                                                   |
|                                                   | Bit:                                                                                                                                                                                                              | 7                                                                                                                                                                                                  | 6                                                                                                                                                                                                              | 5                                                                                                                                                                                        | 4                                                                                                                                                         | 3                                                                                                                                                                    | 2                                                                                                                                         | 1                                                                                                                                        | 0                                                                                 |
|                                                   |                                                                                                                                                                                                                   | -                                                                                                                                                                                                  | -                                                                                                                                                                                                              | -                                                                                                                                                                                        | EWDI                                                                                                                                                      | - ~Q                                                                                                                                                                 | 1                                                                                                                                         | EI2C2                                                                                                                                    | El2                                                                               |
|                                                   | Mi                                                                                                                                                                                                                | nemonic:                                                                                                                                                                                           | EIE                                                                                                                                                                                                            | ÷                                                                                                                                                                                        | -                                                                                                                                                         |                                                                                                                                                                      | an'                                                                                                                                       | Address:                                                                                                                                 | E8h                                                                               |
| EWDI                                              | Enable Wa                                                                                                                                                                                                         | tchdog tin                                                                                                                                                                                         | ner interru                                                                                                                                                                                                    | pt                                                                                                                                                                                       |                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                           |                                                                                                                                          |                                                                                   |
| EI2C2                                             | Enable I2C                                                                                                                                                                                                        | channel 2                                                                                                                                                                                          | 2 interrupt                                                                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                           |                                                                                                                                          |                                                                                   |
| EI2C1                                             | Enable I2C                                                                                                                                                                                                        | channel                                                                                                                                                                                            | 1 interrupt                                                                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                           |                                                                                                                                          |                                                                                   |
| I2C Cont                                          | rol Register                                                                                                                                                                                                      | r Channe                                                                                                                                                                                           | el 1                                                                                                                                                                                                           |                                                                                                                                                                                          |                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                           |                                                                                                                                          |                                                                                   |
|                                                   | Bit:                                                                                                                                                                                                              | 7                                                                                                                                                                                                  | 6                                                                                                                                                                                                              | 5                                                                                                                                                                                        | 4                                                                                                                                                         | 3                                                                                                                                                                    | 2                                                                                                                                         | 1 👻                                                                                                                                      | 0                                                                                 |
|                                                   |                                                                                                                                                                                                                   | -                                                                                                                                                                                                  | ENS1                                                                                                                                                                                                           | STA                                                                                                                                                                                      | STO                                                                                                                                                       | SI                                                                                                                                                                   | AA                                                                                                                                        | -                                                                                                                                        | 0                                                                                 |
|                                                   | Mi                                                                                                                                                                                                                | nemonic:                                                                                                                                                                                           | I2CON                                                                                                                                                                                                          |                                                                                                                                                                                          |                                                                                                                                                           |                                                                                                                                                                      | Addres                                                                                                                                    | s: E9h                                                                                                                                   | M                                                                                 |
| ENS1                                              | Enchla cha                                                                                                                                                                                                        | nnol 1 of                                                                                                                                                                                          | I2C seria                                                                                                                                                                                                      | Ifunction                                                                                                                                                                                | block W/                                                                                                                                                  | hen ENS                                                                                                                                                              | 1-1 the c                                                                                                                                 | hannel 1                                                                                                                                 | of 120                                                                            |
| ENGI                                              | Enable cha                                                                                                                                                                                                        |                                                                                                                                                                                                    | 120 30110                                                                                                                                                                                                      | Tunction                                                                                                                                                                                 | DIOCK. VVI                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                           |                                                                                                                                          |                                                                                   |
| ENST                                              | function en                                                                                                                                                                                                       |                                                                                                                                                                                                    |                                                                                                                                                                                                                |                                                                                                                                                                                          |                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                           |                                                                                                                                          |                                                                                   |
| STA                                               | function en<br>I2C START                                                                                                                                                                                          | ables. The<br>Flag. Se                                                                                                                                                                             | e port latc<br>tting STA                                                                                                                                                                                       | hes of SD<br>to logic 1                                                                                                                                                                  | A1 and S<br>to enter                                                                                                                                      | CL1 mus<br>master m                                                                                                                                                  | t be set to<br>ode, the                                                                                                                   | o logic high                                                                                                                             | ۱.                                                                                |
| STA                                               | function en<br>I2C START<br>START or r                                                                                                                                                                            | ables. The<br>F Flag. Se<br>repeat ST                                                                                                                                                              | e port latc<br>tting STA<br>ART cond                                                                                                                                                                           | hes of SD<br>to logic 1<br>ition to bu                                                                                                                                                   | A1 and S<br>to enter<br>is when th                                                                                                                        | CL1 mus<br>master m<br>ne bus is                                                                                                                                     | t be set to<br>ode, the<br>free.                                                                                                          | o logic high<br>I2C hardw                                                                                                                | n.<br>are se                                                                      |
|                                                   | function en<br>I2C START<br>START or r<br>I2C STOP                                                                                                                                                                | ables. The<br>F Flag. Se<br>repeat ST<br>Flag. In r                                                                                                                                                | e port latc<br>etting STA<br>ART cond<br>naster mc                                                                                                                                                             | hes of SD<br>to logic 1<br>ition to bu<br>ode, settin                                                                                                                                    | A1 and S<br>to enter<br>is when th<br>g STO to                                                                                                            | CL1 mus<br>master m<br>ne bus is<br>o transmit                                                                                                                       | t be set to<br>ode, the<br>free.<br>a STOP                                                                                                | o logic high<br>I2C hardw<br>condition                                                                                                   | n.<br>are se<br>to bu                                                             |
| STA                                               | function en<br>I2C START<br>START or r<br>I2C STOP<br>I2C hardwa<br>cleared by                                                                                                                                    | ables. The<br>Flag. Se<br>repeat ST<br>Flag. In r<br>are checks<br>hardware                                                                                                                        | e port latch<br>htting STA<br>ART cond<br>naster mo<br>s the bus<br>automatio                                                                                                                                  | hes of SD<br>to logic 1<br>ition to bu<br>de, settin<br>condition<br>cally. In a                                                                                                         | A1 and S<br>to enter i<br>is when th<br>g STO to<br>, if a STC<br>slave mo                                                                                | CL1 mus<br>master m<br>he bus is<br>transmit<br>P condition                                                                                                          | t be set to<br>ode, the<br>free.<br>a STOP<br>on is det                                                                                   | o logic high<br>I2C hardw<br>condition<br>ected this                                                                                     | n.<br>are so<br>to bu<br>s flag                                                   |
| STA<br>STO                                        | function en<br>I2C START<br>START or r<br>I2C STOP<br>I2C hardwa<br>cleared by<br>the defined                                                                                                                     | ables. The<br>repeat ST<br>Flag. In r<br>are checks<br>hardware                                                                                                                                    | e port latc<br>tting STA<br>ART cond<br>naster mo<br>s the bus<br>automatio<br>ressed" sla                                                                                                                     | hes of SD<br>to logic 1<br>ition to bu<br>de, settin<br>condition<br>cally. In a<br>ave mode                                                                                             | A1 and S<br>to enter<br>is when th<br>g STO to<br>, if a STC<br>slave mo                                                                                  | CL1 mus<br>master m<br>he bus is<br>transmit<br>P conditiode, settin                                                                                                 | t be set to<br>node, the<br>free.<br>a STOP<br>ion is det<br>ng STO ro                                                                    | o logic high<br>I2C hardw<br>condition<br>ected this<br>esets I2C                                                                        | n.<br>are se<br>to bu<br>flag<br>hardw                                            |
| STA                                               | function en<br>I2C START<br>START or r<br>I2C STOP<br>I2C hardwa<br>cleared by<br>the defined<br>I2C Port 1                                                                                                       | ables. The<br>Flag. Se<br>repeat ST<br>Flag. In r<br>are checks<br>hardware<br>"not addr<br>Interrupt F                                                                                            | e port latch<br>tting STA<br>ART cond<br>naster mo<br>s the bus<br>automatio<br>ressed" sla<br>Flag. Whe                                                                                                       | hes of SD<br>to logic 1<br>ition to bu<br>ode, settin<br>condition<br>cally. In a<br>ave mode<br>n a new S                                                                               | A1 and S<br>to enter is<br>swhen th<br>g STO to<br>, if a STC<br>slave mo<br>SIO1 state                                                                   | CL1 mus<br>master m<br>he bus is<br>transmit<br>P condit<br>ode, settin<br>a is prese                                                                                | t be set to<br>lode, the<br>free.<br>a STOP<br>lon is det<br>ng STO ro<br>nt in the S                                                     | o logic high<br>I2C hardw<br>condition<br>ected this<br>esets I2C<br>S1STA reg                                                           | n.<br>are se<br>to bu<br>flag<br>hardw<br>jister,                                 |
| STA<br>STO                                        | function en<br>I2C START<br>START or r<br>I2C STOP<br>I2C hardwa<br>cleared by<br>the defined<br>I2C Port 1<br>flag is set I                                                                                      | ables. The<br>Flag. Se<br>repeat ST<br>Flag. In r<br>are checks<br>hardware<br>mot addr<br>Interrupt f<br>by hardwa                                                                                | e port latch<br>atting STA<br>ART cond<br>naster mo<br>s the bus<br>automatio<br>ressed" sla<br>Flag. Whe<br>are, and if                                                                                       | hes of SD<br>to logic 1<br>ition to bu<br>de, settin<br>condition<br>cally. In a<br>ave mode<br>n a new S<br>the EA a                                                                    | A1 and S<br>to enter i<br>is when th<br>g STO to<br>slave mo<br>slave mo<br>SIO1 state<br>and EI2C                                                        | CL1 mus<br>master m<br>he bus is<br>transmit<br>P condit<br>ode, settin<br>a is prese                                                                                | t be set to<br>lode, the<br>free.<br>a STOP<br>lon is det<br>ng STO ro<br>nt in the S                                                     | o logic high<br>I2C hardw<br>condition<br>ected this<br>esets I2C<br>S1STA reg                                                           | n.<br>are se<br>to bu<br>flag<br>hardw<br>jister,                                 |
| STA<br>STO<br>SI                                  | function en<br>I2C START<br>START or r<br>I2C STOP<br>I2C hardwa<br>cleared by<br>the defined<br>I2C Port 1<br>flag is set I<br>requested.                                                                        | ables. The<br>Flag. Se<br>repeat ST<br>Flag. In r<br>are checks<br>hardware<br>"not addr<br>Interrupt f<br>by hardwa<br>SI must b                                                                  | e port latch<br>atting STA<br>ART cond<br>naster mo<br>s the bus<br>automation<br>ressed" sla<br>Flag. Whe<br>are, and if<br>he cleared                                                                        | hes of SD<br>to logic 1<br>ition to bu<br>ode, settin<br>condition<br>cally. In a<br>ave mode<br>n a new S<br>the EA a<br>by softwa                                                      | A1 and S<br>to enter it<br>is when th<br>g STO to<br>, if a STC<br>slave mo<br>SIO1 state<br>and EI2C<br>ire.                                             | CL1 mus<br>master m<br>he bus is<br>transmit<br>P condit<br>ode, settin<br>de, settin<br>s is prese<br>1 bits are                                                    | t be set to<br>ode, the<br>free.<br>a STOP<br>on is det<br>ng STO ro<br>nt in the set<br>both set                                         | o logic high<br>I2C hardw<br>condition<br>ected this<br>esets I2C<br>S1STA reg<br>t, the I2C1                                            | n.<br>are se<br>to bu<br>flag<br>hardw<br>jister,<br>inter                        |
| STA<br>STO                                        | function en<br>I2C START<br>START or r<br>I2C STOP<br>I2C hardwa<br>cleared by<br>the defined<br>I2C Port 1<br>flag is set I<br>requested.<br>Assert Ack<br>SDA) will I                                           | ables. The<br>repeat ST<br>Flag. In r<br>are checks<br>hardware<br>"not addr<br>Interrupt F<br>by hardwa<br>SI must b<br>nowledge<br>be returne                                                    | e port latch<br>titing STA<br>ART cond<br>naster mo<br>s the bus<br>automation<br>ressed" sla<br>Flag. Whe<br>are, and if<br>he cleared<br>Flag. If A<br>ed during                                             | hes of SD<br>to logic 1<br>ition to bu<br>ode, settin<br>condition<br>cally. In a<br>ave mode<br>n a new S<br>the EA a<br>by softwa<br>AA is set<br>the ackr                             | A1 and S<br>to enter i<br>is when th<br>g STO to<br>, if a STC<br>slave mo<br>SIO1 state<br>and El2C<br>ire.<br>to logic 1<br>nowledge                    | CL1 mus<br>master m<br>he bus is<br>transmit<br>PC condit<br>DC condit<br>de, settin<br>sis prese<br>1 bits are<br>1 bits are<br>1, an ack<br>clock pu               | t be set to<br>lode, the<br>free.<br>a STOP<br>lon is det<br>ng STO ro<br>nt in the set<br>both set<br>nowledge<br>ilse on th             | o logic high<br>I2C hardw<br>condition<br>ected this<br>esets I2C<br>S1STA reg<br>t, the I2C1<br>ed signal (<br>ne SCL lir               | n.<br>are se<br>flag<br>hardw<br>jister,<br>inter<br>low le                       |
| STA<br>STO<br>SI                                  | function en<br>I2C START<br>START or r<br>I2C STOP<br>I2C hardwa<br>cleared by<br>the defined<br>I2C Port 1<br>flag is set I<br>requested.<br>Assert Ack<br>SDA) will I<br>cleared, a                             | ables. The<br>repeat ST<br>Flag. In r<br>are checks<br>hardware<br>"not addr<br>Interrupt f<br>by hardwa<br>SI must b<br>nowledge<br>be returne<br>non-ackr                                        | e port latch<br>titing STA<br>ART cond<br>naster mo<br>s the bus<br>automation<br>ressed" sla<br>Flag. Whe<br>are, and if<br>he cleared<br>Flag. If A<br>ed during<br>nowledgeo                                | hes of SD<br>to logic 1<br>ition to bu<br>ode, settin<br>condition<br>cally. In a<br>ave mode<br>n a new S<br>the EA a<br>by softwa<br>AA is set<br>the ackr<br>I signal (               | A1 and S<br>to enter is<br>swhen th<br>g STO to<br>slave mo<br>SlO1 state<br>and El2C<br>ire.<br>to logic 1<br>nowledge<br>high leve                      | CL1 mus<br>master m<br>he bus is<br>transmit<br>PC condit<br>DC condit<br>de, settin<br>sis prese<br>1 bits are<br>1 bits are<br>1, an ack<br>clock pu               | t be set to<br>lode, the<br>free.<br>a STOP<br>lon is det<br>ng STO ro<br>nt in the set<br>both set<br>nowledge<br>ilse on th             | o logic high<br>I2C hardw<br>condition<br>ected this<br>esets I2C<br>S1STA reg<br>t, the I2C1<br>ed signal (<br>ne SCL lir               | n.<br>are so<br>flag<br>hardw<br>jister,<br>inter<br>low le                       |
| STA<br>STO<br>SI<br>AA                            | function en<br>I2C START<br>START or r<br>I2C STOP<br>I2C hardwa<br>cleared by<br>the defined<br>I2C Port 1<br>flag is set I<br>requested.<br>Assert Ack<br>SDA) will I<br>cleared, a<br>acknowledg               | ables. The<br>repeat ST<br>Flag. In r<br>are checks<br>hardware<br>"not addr<br>Interrupt f<br>by hardwa<br>SI must b<br>nowledge<br>be returne<br>non-ackr<br>ge clock p                          | e port latch<br>atting STA<br>ART cond<br>naster mo<br>s the bus<br>automatio<br>ressed" sla<br>Flag. Whe<br>are, and if<br>e cleared<br>Flag. If <i>A</i><br>ed during<br>nowledgeo<br>ulse on th             | hes of SD<br>to logic 1<br>ition to bu<br>ode, settin<br>condition<br>cally. In a<br>ave mode<br>n a new S<br>the EA a<br>by softwa<br>AA is set<br>the ackr<br>I signal (               | A1 and S<br>to enter is<br>swhen th<br>g STO to<br>slave mo<br>SlO1 state<br>and El2C<br>ire.<br>to logic 1<br>nowledge<br>high leve                      | CL1 mus<br>master m<br>he bus is<br>transmit<br>PC condit<br>DC condit<br>de, settin<br>sis prese<br>1 bits are<br>1 bits are<br>1, an ack<br>clock pu               | t be set to<br>lode, the<br>free.<br>a STOP<br>lon is det<br>ng STO ro<br>nt in the set<br>both set<br>nowledge<br>ilse on th             | o logic high<br>I2C hardw<br>condition<br>ected this<br>esets I2C<br>S1STA reg<br>t, the I2C1<br>ed signal (<br>ne SCL lir               | n.<br>are se<br>flag<br>hardw<br>jister,<br>inter<br>low le                       |
| STA<br>STO<br>SI<br>AA<br>Bit0                    | function en<br>I2C START<br>START or r<br>I2C STOP<br>I2C hardwa<br>cleared by<br>the defined<br>I2C Port 1<br>flag is set I<br>requested.<br>Assert Ack<br>SDA) will I<br>cleared, a<br>acknowledg               | ables. The<br>repeat ST<br>Flag. In r<br>are checks<br>hardware<br>"not addr<br>Interrupt F<br>by hardwa<br>SI must b<br>nowledge<br>be returne<br>non-ackr<br>ge clock p<br>ro always             | e port latch<br>titing STA<br>ART cond<br>naster mo<br>s the bus<br>automation<br>ressed" sla<br>Flag. Whe<br>are, and if<br>re cleared<br>Flag. If A<br>ed during<br>nowledgec<br>ulse on th                  | hes of SD<br>to logic 1<br>ition to bu<br>ode, settin<br>condition<br>cally. In a<br>ave mode<br>n a new S<br>the EA a<br>by softwa<br>AA is set<br>the ackr<br>I signal (               | A1 and S<br>to enter is<br>swhen th<br>g STO to<br>slave mo<br>SlO1 state<br>and El2C<br>ire.<br>to logic 1<br>nowledge<br>high leve                      | CL1 mus<br>master m<br>he bus is<br>transmit<br>PC condit<br>DC condit<br>de, settin<br>sis prese<br>1 bits are<br>1 bits are<br>1, an ack<br>clock pu               | t be set to<br>lode, the<br>free.<br>a STOP<br>lon is det<br>ng STO ro<br>nt in the set<br>both set<br>nowledge<br>ilse on th             | o logic high<br>I2C hardw<br>condition<br>ected this<br>esets I2C<br>S1STA reg<br>t, the I2C1<br>ed signal (<br>ne SCL lir               | n.<br>are se<br>flag<br>hardw<br>jister,<br>inter<br>low le                       |
| STA<br>STO<br>SI<br>AA<br>Bit0<br><b>I2C Char</b> | function en<br>I2C START<br>START or r<br>I2C STOP<br>I2C hardwa<br>cleared by<br>the defined<br>I2C Port 1<br>flag is set I<br>requested.<br>Assert Ack<br>SDA) will I<br>cleared, a<br>acknowledg<br>Must be ze | ables. The<br>Flag. Se<br>repeat ST<br>Flag. In r<br>are checks<br>hardware<br>"not addr<br>Interrupt F<br>by hardwa<br>SI must b<br>nowledge<br>be returne<br>non-ackr<br>ge clock p<br>ro always | e port latch<br>titing STA<br>ART cond<br>naster mo<br>s the bus<br>automatic<br>ressed" sla<br>Flag. Whe<br>are, and if<br>re cleared<br>Flag. If <i>I</i><br>ed during<br>nowledgec<br>rulse on th<br>ster 0 | hes of SD<br>to logic 1<br>ition to bu<br>ode, settin<br>condition<br>cally. In a<br>ave mode<br>n a new S<br>the EA a<br>by softwa<br>AA is set<br>the ackr<br>I signal (<br>e SCL line | A1 and S<br>to enter i<br>is when th<br>g STO to<br>, if a STC<br>slave mo<br>SIO1 state<br>and El2C<br>tre.<br>to logic 1<br>howledge<br>high leve<br>e. | CL1 mus<br>master m<br>he bus is<br>transmit<br>P condit<br>ode, settin<br>de, settin<br>is prese<br>1 bits are<br>1 bits are<br>1, an ack<br>clock pu               | t be set to<br>ode, the<br>free.<br>a STOP<br>on is det<br>ng STO ro<br>nt in the set<br>both set<br>nowledge<br>ilse on th<br>A) will be | o logic high<br>I2C hardw<br>condition<br>ected this<br>esets I2C<br>S1STA reg<br>t, the I2C1<br>ed signal (<br>he SCL lin<br>e returned | n.<br>are se<br>flag v<br>hardw<br>jister,<br>intern<br>low le<br>ne. If<br>durir |
| STA<br>STO<br>SI<br>AA<br>Bit0                    | function en<br>I2C START<br>START or r<br>I2C STOP<br>I2C hardwa<br>cleared by<br>the defined<br>I2C Port 1<br>flag is set I<br>requested.<br>Assert Ack<br>SDA) will I<br>cleared, a<br>acknowledg<br>Must be ze | ables. The<br>repeat ST<br>Flag. In r<br>are checks<br>hardware<br>"not addr<br>Interrupt F<br>by hardwa<br>SI must b<br>nowledge<br>be returne<br>non-ackr<br>ge clock p<br>ro always             | e port latch<br>titing STA<br>ART cond<br>naster mo<br>s the bus<br>automation<br>ressed" sla<br>Flag. Whe<br>are, and if<br>e cleared<br>Flag. If A<br>ed during<br>nowledged<br>bulse on th<br>ster 0        | hes of SD<br>to logic 1<br>ition to bu<br>ode, settin<br>condition<br>cally. In a<br>ave mode<br>n a new S<br>the EA a<br>by softwa<br>AA is set<br>the ackr<br>I signal (<br>e SCL line | A1 and S<br>to enter is<br>when the<br>g STO to<br>slave mo<br>SIO1 state<br>and EI2C<br>re.<br>to logic 1<br>nowledge<br>high leve<br>e.<br>3            | CL1 mus<br>master m<br>he bus is<br>transmit<br>P condit<br>ode, settin<br>de, settin<br>s is prese<br>1 bits are<br>1 bits are<br>1, an ack<br>clock pu<br>l to SD/ | t be set to<br>ode, the<br>free.<br>a STOP<br>on is det<br>ng STO ro<br>nt in the set<br>both set<br>nowledge<br>ilse on th<br>A) will be | o logic high<br>I2C hardw<br>condition<br>ected this<br>esets I2C<br>S1STA reg<br>t, the I2C1<br>ed signal (<br>ne SCL lir               | n.<br>are se<br>flag v<br>hardw<br>jister,<br>interi<br>low le                    |

ADDR10.7-1 12C1 Slave Address0. The 8051 uC can read from and write to this 8-bit, directly addressable SFR. The contents of the register are irrelevant when I2C is in master mode. In the slave mode, the seven most significant bits must be loaded with the MCU's own slave address. The I2C hardware will react if the contents of I2ADDR10 are matched with the received slave address.

### nuvoTon

GC Enable General Call Function. The GC bit is set the I2C port1 hardware will respond to General Call address (00H). Clear GC bit to disable general call function.

#### I2C Channel 1 Address Register 1

| Bit: | 7        | 6           | 5        | 4        | 3        | 2        | 1        | 0 |
|------|----------|-------------|----------|----------|----------|----------|----------|---|
|      | I2ADDR.7 | I2ADDR.6    | I2ADDR.5 | I2ADDR.4 | I2ADDR.3 | I2ADDR.2 | I2ADDR.1 | - |
|      | N        | Inemonic: l | 2ADDR11  |          | W/A      | Addre    | ss: EBh  |   |

I2ADDR11.7-1 I2C1 Slave Address1. The 8051 uC can read from and write to this 8-bit, directly addressable SFR. The contents of the register are irrelevant when I2C is in master mode. In the slave mode, the seven most significant bits must be loaded with the MCU's own slave address. The I2C hardware will react if the contents of I2ADDR11 are matched with the received slave address.

#### Bit0 Reserved

#### I2C Data Register Channel 1

| Bit:           | 7           | 6           | 5         | 4       | 3       | 2       | 132     | 0       |
|----------------|-------------|-------------|-----------|---------|---------|---------|---------|---------|
|                | I2DAT.7     | I2DAT.6     | I2DAT.5   | I2DAT.4 | I2DAT.3 | I2DAT.2 | I2DAT.1 | I2DAT.0 |
|                | Mnem        | onic: I2DA  | Т         |         |         | Addres  | s: ECh  | XD C    |
| I2DAT.7-0 The  | data regist | er of I2C c | hannel 1. |         |         |         |         |         |
| I2C Status Reg | jister Cha  | annel 1     |           |         |         |         |         |         |
| E              | Bit: 7      | 6           | 5         | 4       | 3       | 2       | 1       | 0       |
|                |             |             |           |         |         | 0       | 0       | 0       |
|                | Mnem        | onic: I2ST  | ATUS      |         |         | Addres  | s: EDh  |         |

I2STATUS.7-0 The Status Register of I2C Channel 1(I2C1). The three least significant bits are always 0. The five most significant bits contain the status code. There are 23 possible status codes. When I2STATUS contains F8H, no serial interrupt is requested. All other I2STATUS values correspond to defined I2C states. When each of these states is entered, the I2C1 interrupt is requested (SI = 1). A valid status code is present in I2STATUS one machine cycle after SI is set by hardware and is still present one machine cycle after SI has been reset by software. In addition, states 00H stands for a Bus Error. A Bus Error occurs when a START or STOP condition is present at an illegal position in the formation frame. Example of illegal position are during the serial transfer of an address byte, a data byte or an acknowledge bit.

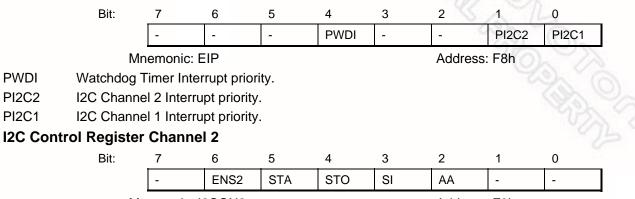
#### I2C Baud Rate Control Register Channel 1

| Bit:          | 7           | 6           | 5        | 4         | 3       | 2             | 1        | 0       |
|---------------|-------------|-------------|----------|-----------|---------|---------------|----------|---------|
|               | I2CLK.7     | I2CLK.6     | I2CLK.5  | I2CLK.4   | I2CLK.3 | I2CLK.2       | I2CLK.1  | I2CLK.0 |
|               | Mnem        | onic: I2CLI | <b>K</b> |           |         | Addres        | s: EEh   |         |
| I2CLK.7-0 The | I2C clock r | ate control |          |           |         |               |          |         |
| I2C Timer Cou | nter Regi   | ster Char   | nnel 1   |           |         |               |          |         |
| SU            | Bit: 7      | 6           | 5        | 4         | 3       | 2             | 1        | 0       |
|               | a C         | 20          | -        | -         | -       | ENTI          | DIV4     | TIF     |
|               | Mnem        | onic: I2TIN | 1ER      |           |         | Addres        | s: EFh   |         |
|               | his 100 44  | hite Time   |          | . Catting |         | البيد ما ما م | I fireth |         |

ENTI Enable I2C 14-bits Time-out Counter. Setting ENTI to logic high will firstly reset the timeout counter and then start up counting. Clearing ENTI disables the 14-bit time-out counter. ENTI can be set to logic high only when SI=0.

- DIV4 I2C Time-out Counter Clock Frequency Selection. DIV4 = 0 the clock frequency is coherent to the system clock Fosc. DIV4 = 1 the clock frequency is Fosc/4.
- TIF I2C Time-out Flag. When the time-out counter overflows hardware will set this flag and request the I2C1 interrupt if I2C1 interrupt is enabled (EI2C1=1). This bit must be cleared by software.

#### **B REGISTER**


| Bit: | 7   | 6   | 5   | 4   | 3        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | 0   |
|------|-----|-----|-----|-----|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
|      | B.7 | B.6 | B.5 | B.4 | B.3      | B.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B.1 | B.0 |
|      |     |     |     |     | - M(7.11 | and the second s |     |     |

Mnemonic: B

Address: F0h

B.7-0 The B register is the standard 8051/52 register that serves as a second accumulator

#### **EXTENDED INTERRUPT PRIORITY**



Mnemonic: I2CON2

Must be zero always

Address: F9h

- ENS2 Enable channel 2 of I2C serial function block. When ENS2=1 the channel 2 of I2C serial function enables. The port latches of SDA2 and SCL2 must be set to logic high.
- STA I2C START Flag. Setting STA to logic 1 to enter master mode, the I2C hardware sends a START or repeat START condition to bus when the bus is free.
- STO I2C STOP Flag. In master mode, setting STO to transmit a STOP condition to bus then I2C hardware will check the bus condition if a STOP condition is detected this flag will be cleared by hardware automatically. In a slave mode, setting STO resets I2C hardware to the defined "not addressed" slave mode.
  - I2C Port 2 Interrupt Flag. When a new SIO2 state is present in the S1STA register, the SI flag is set by hardware, and if the EA and EI2C2 bits are both set, the I2C2 interrupt is requested. SI must be cleared by software.
    - Assert Acknowledge Flag. If AA is set to logic 1, an acknowledged signal (low level to SDA) will be returned during the acknowledge clock pulse on the SCL line. If AA is cleared, a non-acknowledged signal (high level to SDA) will be returned during the acknowledge clock pulse on the SCL line.

Bit0

SI

AA

Publication Release Date: Oct 07, 2010 Revision A6.0

## nuvoTon

#### I2C Channel 2 Address Register 0 Bit: 7 6 5 4 2 0 3 1 I2ADDR.7 I2ADDR.6 I2ADDR.5 I2ADDR.4 I2ADDR.3 I2ADDR.2 I2ADDR.1 GC Mnemonic: I2ADDR20 Address: FAh I2ADDR20.7-1 I2C2 Slave Address. The 8051 uC can read from and write to this 8-bit, directly addressable SFR. The contents of the register are irrelevant when I2C is in master mode. In the slave mode, the seven most significant bits must be loaded with the MCU's own slave address. The I2C hardware will react if the contents of I2ADDR20 are matched with the received slave address. GC Enable General Call Function. The GC bit is set the I2C port1 hardware will respond to General Call address (00H). Clear GC bit to disable general call function. I2C Channel 2 Address Register 1 Bit: 7 6 5 4 3 2 0 I2ADDR.4 I2ADDR.7 I2ADDR.6 I2ADDR.5 I2ADDR.3 I2ADDR.2 I2ADDR.1 Mnemonic: I2ADDR21 Address: FBh I2ADDR21.7-1 I2C2 Slave Address. The 8051 uC can read from and write to this 8-bit, directly addressable SFR. The contents of the register are irrelevant when I2C is in master mode. In the slave mode, the seven most significant bits must be loaded with the MCU's own slave address. The I2C hardware will react if the contents of I2ADDR21 are matched with the received slave address. Bit0 Reserved **I2C Data Register Channel 2** Bit: 2 0 7 6 5 3 1 I2DAT.7 I2DAT.6 I2DAT.5 I2DAT.4 I2DAT.3 I2DAT.2 I2DAT.1 I2DAT.0 Mnemonic: I2DAT2 Address: FCh I2DAT2.7-0 The data register of I2C Channel 2. **I2C Status Register Channel 2** Bit: 7 6 5 4 3 2 0 1 0 0 0 Address: FDh Mnemonic: I2STATUS2 I2STATUS2.7-0The Status Register of I2C Channel 2(I2C2). The three least significant bits are always 0. The five most significant bits contain the status code. There are 23 possible status codes. When I2STATUS contains F8H, no serial interrupt is requested. All other I2STATUS values correspond to defined I2C states. When each of these states is entered, the I2C2 interrupt is requested (SI = 1). A valid status code is present in I2STATUS one machine cycle after SI is set by hardware and is still present one machine cycle after SI has been reset by software. In addition, states 00H stands for a Bus Error. A Bus Error occurs when a START or STOP condition is present at an illegal position in the formation frame. Example of illegal position are during the serial transfer of an address

2A

byte, a data byte or an acknowledge bit.

#### I2C Baud Rate Control Register Channel 2

|                |             | -           |         |         |         |         |         |         |
|----------------|-------------|-------------|---------|---------|---------|---------|---------|---------|
| Bit:           | 7           | 6           | 5       | 4       | 3       | 2       | 1       | 0       |
|                | I2CLK.7     | I2CLK.6     | I2CLK.5 | I2CLK.4 | I2CLK.3 | I2CLK.2 | I2CLK.1 | I2CLK.0 |
|                | Mnem        | onic: I2CLI | ≺2      | N)      | 10      | Addres  | s: FEh  | -       |
| I2CLK2.7-0 The | I2C clock r | ate control |         |         |         |         |         |         |
| I2C Timer Cou  | nter Regi   | ster Char   | nnel 2  |         |         |         |         |         |
| E              | Bit: 7      | 6           | 5       | 4       | 3       | 2       | 1       | 0       |
|                | -           | -           | -       | -       | - 76    | ENTI2   | DIV42   | TIF2    |
|                | Mnem        | onic: I2TIN | 1ER2    |         |         | Addres  | s: FFh  |         |

- ENTI2 Enable I2C 14-bits Time-out Counter. Setting ENTI to logic high will firstly reset the timeout counter and then start up counting. Clearing ENTI disables the 14-bit time-out counter. ENTI can be set to logic high only when SI=0.
- DIV42 I2C Time-out Counter Clock Frequency Selection. DIV42= 0 the clock frequency is coherent to the system clock Fosc. DIV42 = 1 the clock frequency is Fosc/4.
- TIF2 I2C Time-out Flag. When the time-out counter overflows hardware will set this flag and request the I2C2 interrupt if I2C2 interrupt is enabled (EI2C1=1). This bit must be cleared by software.



#### 7. Instruction Set

The W79E(L)633 executes all the instructions of the standard 8051/52 family. The operations of these instructions, as well as their effect on flag and status bits, are exactly the same. However, the timing of these instructions is different in two ways. First, the W79E(L)633 machine cycle is four clock periods, while the standard-8051/52 machine cycle is twelve clock periods. Second, the W79E(L)633 can fetch only once per machine cycle (i.e., four clocks per fetch), while the standard 8051/52 can twice per machine cycle (i.e., six clocks per fetch).

The timing difference creates an advantage for the W79E(L)633. There is only one fetch per machine cycle, so the number of machine cycles is usually equal to the number of operands in the instruction. (Jumps and calls do require an additional cycle to calculate the new address.) As a result, the W79E(L)633 reduces the number of dummy fetches and wasted cycles and improves overall efficiency, compared to the standard 8051/52.

| OP-CODE       | HEX CODE | BYTES | W79E(L)633<br>MACHINE<br>CYCLE | W79E(L)633<br>CLOCK<br>CYCLES | 8032<br>CLOCK<br>CYCLES | W79E(L)633 VS.<br>8032 SPEED<br>RATIO |
|---------------|----------|-------|--------------------------------|-------------------------------|-------------------------|---------------------------------------|
| NOP           | 00       | 1     | 1                              | 4                             | 12                      | 3                                     |
| ADD A, R0     | 28       | 1     | 1                              | 4                             | 12                      | 3                                     |
| ADD A, R1     | 29       | 1     | 1                              | 4                             | 12                      | 3                                     |
| ADD A, R2     | 2A       | 1     | 1                              | 4                             | 12                      | 3                                     |
| ADD A, R3     | 2B       | 1     | 1                              | 4                             | 12                      | 3                                     |
| ADD A, R4     | 2C       | 1     | 1                              | 4                             | 12                      | 3                                     |
| ADD A, R5     | 2D       | 1     | 1                              | 4                             | 12                      | 3                                     |
| ADD A, R6     | 2E       | 1     | 1                              | 4                             | 12                      | 3                                     |
| ADD A, R7     | 2F       | 1     | 1                              | 4                             | 12                      | 3                                     |
| ADD A, @R0    | 26       | 1     | 1                              | 4                             | 12                      | 3                                     |
| ADD A, @R1    | 27       | 1     | 1                              | 4                             | 12                      | 3                                     |
| ADD A, direct | 25       | 2     | 2                              | 8                             | 12                      | 1.5                                   |
| ADD A, #data  | 24       | 2     | 2                              | 8                             | 12                      | 1.5                                   |
| ADDC A, R0    | 38       | 1     | 1                              | 4                             | 12                      | 3                                     |
| ADDC A, R1    | 39       | 1     | 1                              | 4                             | 12                      | 3                                     |
| ADDC A, R2    | 3A       | 1     | 1                              | 4                             | 12                      | 3                                     |
| ADDC A, R3    | 3B       | 1     | 1                              | 4                             | 12                      | 3                                     |
| ADDC A, R4    | 3C       | 1     | 1                              | 4                             | 12                      | 3                                     |
| ADDC A, R5    | 3D       | 1     | 1                              | 4                             | 12                      | 3                                     |
| ADDC A, R6    | 3E       | 1     | 1                              | 4                             | 12                      | 3                                     |
| ADDC A, R7    | 3F       | 1     | 1                              | 4                             | 12                      | 3                                     |
| ADDC A, @R0   | 36       | 1     | 1                              | 4                             | 12                      | 3                                     |
| ADDC A, @R1   | 37       | 1     | 1                              | 4                             | 12                      | 3                                     |

Table 7-1 Instruction Set for W79E(L)633

|      | OP-CODE        | HEX CODE | BYTES | W79E(L)633<br>MACHINE<br>CYCLE | W79E(L)633<br>CLOCK<br>CYCLES | 8032<br>CLOCK<br>CYCLES | W79E(L)633 VS<br>8032 SPEED<br>RATIO |
|------|----------------|----------|-------|--------------------------------|-------------------------------|-------------------------|--------------------------------------|
| ·    | ADDC A, direct | 35       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
|      | ADDC A, #data  | 34       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
|      | SUBB A, R0     | 98       | 1     | 1                              | 4                             | 12                      | 3                                    |
|      | SUBB A, R1     | 99       | 1     | 1                              | 4                             | 12                      | 3                                    |
|      | SUBB A, R2     | 9A       | 1     | 1                              | 4                             | 12                      | 3                                    |
|      | SUBB A, R3     | 9B       | 1     | 1                              | 4                             | 12                      | 3                                    |
|      | SUBB A, R4     | 9C       | 1     | 1                              | 4                             | 12                      | 3                                    |
|      | SUBB A, R5     | 9D       | 1     | 1                              | 4                             | 12                      | 3                                    |
|      | SUBB A, R6     | 9E       | 1     | 1                              | 4                             | 12                      | 3                                    |
|      | SUBB A, R7     | 9F       | 1     | 1                              | 4                             | 12                      | 3                                    |
|      | SUBB A, @R0    | 96       | 1     | 1                              | 4                             | 12                      | 3                                    |
|      | SUBB A, @R1    | 97       | 1     | 1                              | 4                             | 12                      | 3                                    |
|      | SUBB A, direct | 95       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
|      | SUBB A, #data  | 94       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
|      | INC A          | 04       | 1     | 1                              | 4                             | 12                      | 3                                    |
|      | INC R0         | 08       | 1     | 1                              | 4                             | 12                      | 3                                    |
|      | INC R1         | 09       | 1     | 1                              | 4                             | 12                      | 3                                    |
|      | INC R2         | 0A       | 1     | 1                              | 4                             | 12                      | 3                                    |
|      | INC R3         | 0B       | 1     | 1                              | 4                             | 12                      | 3                                    |
|      | INC R4         | 0C       | 1     | 1                              | 4                             | 12                      | 3                                    |
|      | INC R5         | 0D       | 1     | 1                              | 4                             | 12                      | 3                                    |
| 33.  | INC R6         | 0E       | 1     | 1                              | 4                             | 12                      | 3                                    |
| Y)   | INC R7         | 0F       | 1     | 1                              | 4                             | 12                      | 3                                    |
| 24   | INC @R0        | 06       | 1     | 1                              | 4                             | 12                      | 3                                    |
| UN . | INC @R1        | 07       | 1     | 1                              | 4                             | 12                      | 3                                    |
| 87   | INC direct     | 05       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
| X    | INC DPTR       | A3       | 1     | 2                              | 8                             | 24                      | 3                                    |
|      | DEC A          | 14       | 1     | 1                              | 4                             | 12                      | 3                                    |
|      | DEC R0         | 18       | 1     | 1                              | 4                             | 12                      | 3                                    |
|      | DEC R1         | 19       | 1     | 1                              | 4                             | 12                      | 3                                    |
|      | DEC R2         | 1A       | 1     | 1                              | 4                             | 12                      | 3                                    |
|      | DEC R3         | 1B       | 1     | 1                              | 4                             | 12                      | 3                                    |
|      | DEC R4         | 1C       | 1     | 1                              | 4                             | 12                      | 3                                    |

|        | OP-CODE           | HEX CODE | BYTES | W79E(L)633<br>MACHINE<br>CYCLE | W79E(L)633<br>CLOCK<br>CYCLES | 8032<br>CLOCK<br>CYCLES | W79E(L)633 V<br>8032 SPEED<br>RATIO |
|--------|-------------------|----------|-------|--------------------------------|-------------------------------|-------------------------|-------------------------------------|
|        | DEC R5            | 1D       | 1     | 1                              | 4                             | 12                      | 3                                   |
|        | DEC R6            | 1E       | 1     | 1 (                            | 4                             | 12                      | 3                                   |
|        | DEC R7            | 1F       | 1     | 1                              | 4                             | 12                      | 3                                   |
|        | DEC @R0           | 16       | 1     | 1                              | 4                             | 12                      | 3                                   |
|        | DEC @R1           | 17       | 1     | 1                              | 4 5                           | 12                      | 3                                   |
|        | DEC direct        | 15       | 2     | 2                              | 8                             | 12                      | 1.5                                 |
|        | MUL AB            | A4       | 1     | 5                              | 20                            | 48                      | 2.4                                 |
|        | DIV AB            | 84       | 1     | 5                              | 20                            | 48                      | 2.4                                 |
|        | DA A              | D4       | 1     | 1                              | 4                             | 12                      | 3                                   |
|        | ANL A, R0         | 58       | 1     | 1                              | 4                             | 12                      | 3                                   |
|        | ANL A, R1         | 59       | 1     | 1                              | 4                             | 12                      | 3                                   |
|        | ANL A, R2         | 5A       | 1     | 1                              | 4                             | 12                      | 3                                   |
|        | ANL A, R3         | 5B       | 1     | 1                              | 4                             | 12                      | 3                                   |
|        | ANL A, R4         | 5C       | 1     | 1                              | 4                             | 12                      | 3                                   |
|        | ANL A, R5         | 5D       | 1     | 1                              | 4                             | 12                      | 3                                   |
|        | ANL A, R6         | 5E       | 1     | 1                              | 4                             | 12                      | 3                                   |
|        | ANL A, R7         | 5F       | 1     | 1                              | 4                             | 12                      | 3                                   |
|        | ANL A, @R0        | 56       | 1     | 1                              | 4                             | 12                      | 3                                   |
|        | ANL A, @R1        | 57       | 1     | 1                              | 4                             | 12                      | 3                                   |
|        | ANL A, direct     | 55       | 2     | 2                              | 8                             | 12                      | 1.5                                 |
|        | ANL A, #data      | 54       | 2     | 2                              | 8                             | 12                      | 1.5                                 |
| 2      | ANL direct, A     | 52       | 2     | 2                              | 8                             | 12                      | 1.5                                 |
| $\sim$ | ANL direct, #data | 53       | 3     | 3                              | 12                            | 24                      | 2                                   |
| 1      | ORL A, R0         | 48       | 1     | 1                              | 4                             | 12                      | 3                                   |
| 2      | ORL A, R1         | 49       | 1     | 1                              | 4                             | 12                      | 3                                   |
| X7     | ORL A, R2         | 4A       | 1     | 1                              | 4                             | 12                      | 3                                   |
| X      | ORL A, R3         | 4B       | 1     | 1                              | 4                             | 12                      | 3                                   |
|        | ORL A, R4         | 4C       | 1     | 1                              | 4                             | 12                      | 3                                   |
|        | ORL A, R5         | 4D       | 1     | 1                              | 4                             | 12                      | 3                                   |
|        | ORL A, R6         | 4E       | 1     | 1                              | 4                             | 12                      | 3                                   |
|        | ORL A, R7         | 4F       | 1     | 1                              | 4                             | 12                      | 3                                   |
|        | ORL A, @R0        | 46       | 1     | 1                              | 4                             | 12                      | 3                                   |
|        | ORL A, @R1        | 47       | 1     | 1                              | 4                             | 12                      | 3                                   |

Instruction Set for W79E(L)633, continued

| OP-CODE           | HEX CODE | BYTES | W79E(L)633<br>MACHINE<br>CYCLE | W79E(L)633<br>CLOCK<br>CYCLES | 8032<br>CLOCK<br>CYCLES | W79E(L)633 VS<br>8032 SPEED<br>RATIO |
|-------------------|----------|-------|--------------------------------|-------------------------------|-------------------------|--------------------------------------|
| ORL A, direct     | 45       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
| ORL A, #data      | 44       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
| ORL direct, A     | 42       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
| ORL direct, #data | 43       | 3     | 3                              | 12                            | 24                      | 2                                    |
| XRL A, R0         | 68       | 1     | 1                              | 4 5                           | 12                      | 3                                    |
| XRL A, R1         | 69       | 1     | 1                              | 4                             | 12                      | 3                                    |
| XRL A, R2         | 6A       | 1     | 1                              | 4                             | 12                      | 3                                    |
| XRL A, R3         | 6B       | 1     | 1                              | 4                             | 12                      | 3                                    |
| XRL A, R4         | 6C       | 1     | 1                              | 4                             | 12                      | 3                                    |
| XRL A, R5         | 6D       | 1     | 1                              | 4                             | 12                      | 3                                    |
| XRL A, R6         | 6E       | 1     | 1                              | 4                             | 12                      | 3                                    |
| XRL A, R7         | 6F       | 1     | 1                              | 4                             | 12                      | 3                                    |
| XRL A, @R0        | 66       | 1     | 1                              | 4                             | 12                      | 3                                    |
| XRL A, @R1        | 67       | 1     | 1                              | 4                             | 12                      | 3                                    |
| XRL A, direct     | 65       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
| XRL A, #data      | 64       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
| XRL direct, A     | 62       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
| XRL direct, #data | 63       | 3     | 3                              | 12                            | 24                      | 2                                    |
| CLR A             | E4       | 1     | 1                              | 4                             | 12                      | 3                                    |
| CPL A             | F4       | 1     | 1                              | 4                             | 12                      | 3                                    |
| RL A              | 23       | 1     | 1                              | 4                             | 12                      | 3                                    |
| RLC A             | 33       | 1     | 1                              | 4                             | 12                      | 3                                    |
| RR A              | 03       | 1     | 1                              | 4                             | 12                      | 3                                    |
| RRC A             | 13       | 1     | 1                              | 4                             | 12                      | 3                                    |
| SWAP A            | C4       | 1     | 1                              | 4                             | 12                      | 3                                    |
| MOV A, R0         | E8       | 1     | 1                              | 4                             | 12                      | 3                                    |
| MOV A, R1         | E9       | 1     | 1                              | 4                             | 12                      | 3                                    |
| MOV A, R2         | EA       | 1     | 1                              | 4                             | 12                      | 3                                    |
| MOV A, R3         | EB       | 1     | 1                              | 4                             | 12                      | 3                                    |
| MOV A, R4         | EC       | 1     | 1                              | 4                             | 12                      | 3                                    |
| MOV A, R5         | ED       | 1     | 1                              | 4                             | 12                      | 3                                    |
| MOV A, R6         | EE       | 1     | 1                              | 4                             | 12                      | 3                                    |
| MOV A, R7         | EES      | 1     | 1                              | 4                             | 12                      | 3                                    |

|        | OP-CODE         | HEX CODE | BYTES | W79E(L)633<br>MACHINE<br>CYCLE | W79E(L)633<br>CLOCK<br>CYCLES | 8032<br>CLOCK<br>CYCLES | W79E(L)633 VS<br>8032 SPEED<br>RATIO |
|--------|-----------------|----------|-------|--------------------------------|-------------------------------|-------------------------|--------------------------------------|
|        | MOV A, @R0      | E6       | 1     | 1                              | 4                             | 12                      | 3                                    |
|        | MOV A, @R1      | E7       | 1     | 1                              | 4                             | 12                      | 3                                    |
|        | MOV A, direct   | E5       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
|        | MOV A, #data    | 74       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
|        | MOV R0, A       | F8       | 1     | 1                              | 4 55                          | 12                      | 3                                    |
|        | MOV R1, A       | F9       | 1     | 1                              | 4                             | 12                      | 3                                    |
|        | MOV R2, A       | FA       | 1     | 1                              | 4                             | 12                      | 3                                    |
|        | MOV R3, A       | FB       | 1     | 1                              | 4                             | 12                      | 3                                    |
|        | MOV R4, A       | FC       | 1     | 1                              | 4                             | 12                      | 3                                    |
|        | MOV R5, A       | FD       | 1     | 1                              | 4                             | 12                      | 3                                    |
|        | MOV R6, A       | FE       | 1     | 1                              | 4                             | 12                      | 3                                    |
|        | MOV R7, A       | FF       | 1     | 1                              | 4                             | 12                      | 3                                    |
|        | MOV R0, direct  | A8       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
|        | MOV R1, direct  | A9       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
|        | MOV R2, direct  | AA       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
|        | MOV R3, direct  | AB       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
|        | MOV R4, direct  | AC       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
|        | MOV R5, direct  | AD       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
|        | MOV R6, direct  | AE       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
|        | MOV R7, direct  | AF       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
|        | MOV R0, #data   | 78       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
| here . | MOV R1, #data   | 79       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
|        | MOV R2, #data   | 7A       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
| 1      | MOV R3, #data   | 7B       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
| 2      | MOV R4, #data   | 7C       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
| S7     | MOV R5, #data   | 7D       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
| X      | MOV R6, #data   | 7E       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
|        | MOV R7, #data   | 7F       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
|        | MOV @R0, A      | F6       | 1     | 1                              | 4                             | 12                      | 3                                    |
|        | MOV @R1, A      | F7       | 1     | 1                              | 4                             | 12                      | 3                                    |
|        | MOV @R0, direct | A6       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
|        | MOV @R1, direct | A7       | 2     | 2                              | 8                             | 12                      | 1.5                                  |
|        | MOV @R0, #data  | 76       | 2     | 2                              | 8                             | 12                      | 1.5                                  |

| OP-CODE            | HEX CODE | BYTES | W79E(L)633<br>MACHINE<br>CYCLE | W79E(L)633<br>CLOCK<br>CYCLES | 8032<br>CLOCK<br>CYCLES | W79E(L)633 V<br>8032 SPEED<br>RATIO |
|--------------------|----------|-------|--------------------------------|-------------------------------|-------------------------|-------------------------------------|
| MOV @R1, #data     | 77       | 2     | 2                              | 8                             | 12                      | 1.5                                 |
| MOV direct, A      | F5       | 2     | 2                              | 8                             | 12                      | 1.5                                 |
| MOV direct, R0     | 88       | 2     | 2                              | 8                             | 12                      | 1.5                                 |
| MOV direct, R1     | 89       | 2     | 2                              | 8                             | 12                      | 1.5                                 |
| MOV direct, R2     | 8A       | 2     | 2                              | 8                             | 12                      | 1.5                                 |
| MOV direct, R3     | 8B       | 2     | 2                              | 8                             | 12                      | 1.5                                 |
| MOV direct, R4     | 8C       | 2     | 2                              | 8                             | 12                      | 1.5                                 |
| MOV direct, R5     | 8D       | 2     | 2                              | 8                             | 12                      | 1.5                                 |
| MOV direct, R6     | 8E       | 2     | 2                              | 8                             | 12                      | 1.5                                 |
| MOV direct, R7     | 8F       | 2     | 2                              | 8                             | 12                      | 1.5                                 |
| MOV direct, @R0    | 86       | 2     | 2                              | 8                             | 12                      | 1.5                                 |
| MOV direct, @R1    | 87       | 2     | 2                              | 8                             | 12                      | 1.5                                 |
| MOV direct, direct | 85       | 3     | 3                              | 12                            | 24                      | 2                                   |
| MOV direct, #data  | 75       | 3     | 3                              | 12                            | 24                      | 2                                   |
| MOV DPTR, #data 16 | 90       | 3     | 3                              | 12                            | 24                      | 2                                   |
| MOVC A, @A+DPTR    | 93       | 1     | 2                              | 8                             | 24                      | 3                                   |
| MOVC A, @A+PC      | 83       | 1     | 2                              | 8                             | 24                      | 3                                   |
| MOVX A, @R0        | E2       | 1     | 2 - 9                          | 8 - 36                        | 24                      | 3 - 0.66                            |
| MOVX A, @R1        | E3       | 1     | 2 - 9                          | 8 - 36                        | 24                      | 3 - 0.66                            |
| MOVX A, @DPTR      | E0       | 1     | 2 - 9                          | 8 - 36                        | 24                      | 3 - 0.66                            |
| MOVX @R0, A        | F2       | 1     | 2 - 9                          | 8 - 36                        | 24                      | 3 - 0.66                            |
| MOVX @R1, A        | F3       | 1     | 2 - 9                          | 8 - 36                        | 24                      | 3 - 0.66                            |
| MOVX @DPTR, A      | F0       | 1     | 2 - 9                          | 8 - 36                        | 24                      | 3 - 0.66                            |
| PUSH direct        | C0       | 2     | 2                              | 8                             | 24                      | 3                                   |
| POP direct         | D0       | 2     | 2                              | 8                             | 24                      | 3                                   |
| XCH A, R0          | C8       | 1     | 1                              | 4                             | 12                      | 3                                   |
| XCH A, R1          | C9       | 1     | 1                              | 4                             | 12                      | 3                                   |
| XCH A, R2          | CA       | 1     | 1                              | 4                             | 12                      | 3                                   |
| XCH A, R3          | СВ       | 1     | 1                              | 4                             | 12                      | 3                                   |
| XCH A, R4          | CC       | 1     | 1                              | 4                             | 12                      | 3                                   |
| XCH A, R5          | CD       | 1     | 1                              | 4                             | 12                      | 3                                   |
| XCH A, R6          | CE       | 1     | 1                              | 4                             | 12                      | 3                                   |
| XCH A, R7          | CF       | 1     | 1                              | 4                             | 12                      | 3                                   |

|       | OP-CODE       | HEX CODE                             | BYTES | W79E(L)633<br>MACHINE<br>CYCLE | W79E(L)633<br>CLOCK<br>CYCLES | 8032<br>CLOCK<br>CYCLES | W79E(L)633 VS<br>8032 SPEED<br>RATIO |
|-------|---------------|--------------------------------------|-------|--------------------------------|-------------------------------|-------------------------|--------------------------------------|
|       | XCH A, @R0    | C6                                   | 1     | 1                              | 4                             | 12                      | 3                                    |
|       | XCH A, @R1    | C7                                   | 1     | 1                              | 4                             | 12                      | 3                                    |
|       | XCHD A, @R0   | D6                                   | 1     | 1                              | 4                             | 12                      | 3                                    |
|       | XCHD A, @R1   | D7                                   | 1     | 1                              | 4                             | 12                      | 3                                    |
|       | XCH A, direct | C5                                   | 2     | 2                              | 8                             | 12                      | 1.5                                  |
|       | CLR C         | C3                                   | 1     | 1                              | 4                             | 12                      | 3                                    |
|       | CLR bit       | C2                                   | 2     | 2                              | 8                             | 12                      | 1.5                                  |
|       | SETB C        | D3                                   | 1     | 1                              | 4                             | 12                      | 3                                    |
|       | SETB bit      | D2                                   | 2     | 2                              | 8                             | 12                      | 1.5                                  |
|       | CPL C         | B3                                   | 1     | 1                              | 4                             | 12                      | 3                                    |
|       | CPL bit       | B2                                   | 2     | 2                              | 8                             | 12                      | 1.5                                  |
|       | ANL C, bit    | 82                                   | 2     | 2                              | 8                             | 24                      | 3                                    |
|       | ANL C, /bit   | B0                                   | 2     | 2                              | 6                             | 24                      | 3                                    |
|       | ORL C, bit    | 72                                   | 2     | 2                              | 8                             | 24                      | 3                                    |
|       | ORL C, /bit   | A0                                   | 2     | 2                              | 6                             | 24                      | 3                                    |
|       | MOV C, bit    | A2                                   | 2     | 2                              | 8                             | 12                      | 1.5                                  |
|       | MOV bit, C    | 92                                   | 2     | 2                              | 8                             | 24                      | 3                                    |
|       | ACALL addr11  | 71, 91, B1,<br>11, 31, 51,<br>D1, F1 | 2     | 3                              | 12                            | 24                      | 2                                    |
|       | LCALL addr16  | 12                                   | 3     | 4                              | 16                            | 24                      | 1.5                                  |
|       | RET           | 22                                   | 1     | 2                              | 8                             | 24                      | 3                                    |
|       | RETI          | 32                                   | 1     | 2                              | 8                             | 24                      | 3                                    |
| N XV  | AJMP ADDR11   | 01, 21, 41,<br>61, 81, A1,<br>C1, E1 | 2     | 3                              | 12                            | 24                      | 2                                    |
| $\gg$ | LJMP addr16   | 02                                   | 3     | 4                              | 16                            | 24                      | 1.5                                  |
| Ś     | JMP @A+DPTR   | 73                                   | 1     | 2                              | 6                             | 24                      | 3                                    |
|       | SJMP rel      | 80                                   | 2     | 3                              | 12                            | 24                      | 2                                    |
|       | JZ rel        | 60                                   | 2     | 3                              | 12                            | 24                      | 2                                    |
|       | JNZ rel       | 70                                   | 2     | 3                              | 12                            | 24                      | 2                                    |
|       | JC rel        | 40                                   | 2     | 3                              | 12                            | 24                      | 2                                    |
|       | JNC rel       | 50                                   | 2     | 3                              | 12                            | 24                      | 2                                    |
|       | JB bit, rel   | 20                                   | 3     | 4                              | 16                            | 24                      | 1.5                                  |

| OP-CODE              | HEX CODE | BYTES | W79E(L)633<br>MACHINE<br>CYCLE | W79E(L)633<br>CLOCK<br>CYCLES | 8032<br>CLOCK<br>CYCLES | W79E(L)633 VS<br>8032 SPEED<br>RATIO |
|----------------------|----------|-------|--------------------------------|-------------------------------|-------------------------|--------------------------------------|
| JNB bit, rel         | 30       | 3     | 4                              | 16                            | 24                      | 1.5                                  |
| JBC bit, rel         | 10       | 3     | 4                              | 16                            | 24                      | 1.5                                  |
| CJNE A, direct, rel  | B5       | 3     | 4                              | 16                            | 24                      | 1.5                                  |
| CJNE A, #data, rel   | B4       | 3     | 4                              | 16                            | 24                      | 1.5                                  |
| CJNE @R0, #data, rel | B6       | 3     | 4                              | 16                            | 24                      | 1.5                                  |
| CJNE @R1, #data, rel | B7       | 3     | 4                              | 16                            | 24                      | 1.5                                  |
| CJNE R0, #data, rel  | B8       | 3     | 4                              | 16                            | 24                      | 1.5                                  |
| CJNE R1, #data, rel  | B9       | 3     | 4                              | 16                            | 24                      | 1.5                                  |
| CJNE R2, #data, rel  | BA       | 3     | 4                              | 16                            | 24                      | 1.5                                  |
| CJNE R3, #data, rel  | BB       | 3     | 4                              | 16                            | 24                      | 1.5                                  |
| CJNE R4, #data, rel  | BC       | 3     | 4                              | 16                            | 24                      | 1.5                                  |
| CJNE R5, #data, rel  | BD       | 3     | 4                              | 16                            | 24                      | 1.5                                  |
| CJNE R6, #data, rel  | BE       | 3     | 4                              | 16                            | 24                      | 1.5                                  |
| CJNE R7, #data, rel  | BF       | 3     | 4                              | 16                            | 24                      | 1.5                                  |
| DJNZ R0, rel         | D8       | 2     | 3                              | 12                            | 24                      | 2                                    |
| DJNZ R1, rel         | D9       | 2     | 3                              | 12                            | 24                      | 2                                    |
| DJNZ R5, rel         | DD       | 2     | 3                              | 12                            | 24                      | 2                                    |
| DJNZ R2, rel         | DA       | 2     | 3                              | 12                            | 24                      | 2                                    |
| DJNZ R3, rel         | DB       | 2     | 3                              | 12                            | 24                      | 2                                    |
| DJNZ R4, rel         | DC       | 2     | 3                              | 12                            | 24                      | 2                                    |
| DJNZ R6, rel         | DE       | 2     | 3                              | 12                            | 24                      | 2                                    |
| DJNZ R7, rel         | DF       | 2     | 3                              | 12                            | 24                      | 2                                    |
| DJNZ direct, rel     | D5       | 3     | 4                              | 16                            | 24                      | 1.5                                  |
| DJNZ direct, rel     | D5       | 3     | 4                              | 16                            | 24                      | 1.5                                  |

#### 7.1 Instruction Timing

This section is important because some applications use software instructions to generate timing delays. It also provides more information about timing differences between the W79E(L)633 and the standard 8051/52.

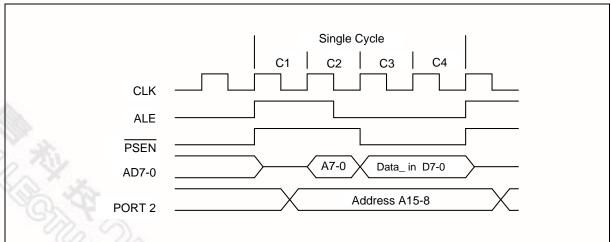
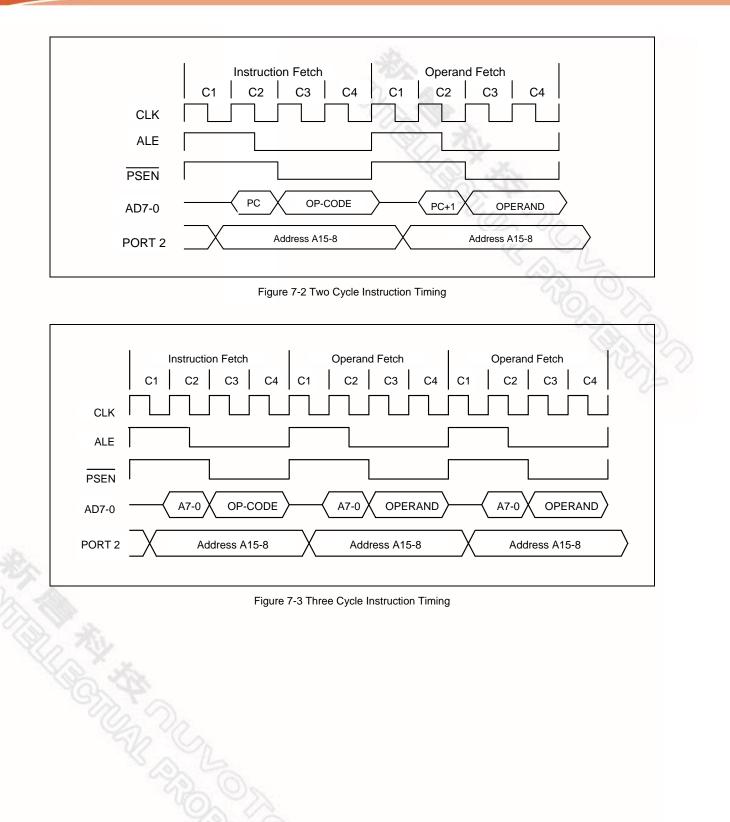
In the W79E(L)633, each machine cycle is four clock periods long. Each clock period is called a state, and each machine cycle consists of four states: C1, C2 C3 and C4, in order. Both clock edges are used for internal timing, so the duty cycle of the clock should be as close to 50% as possible.

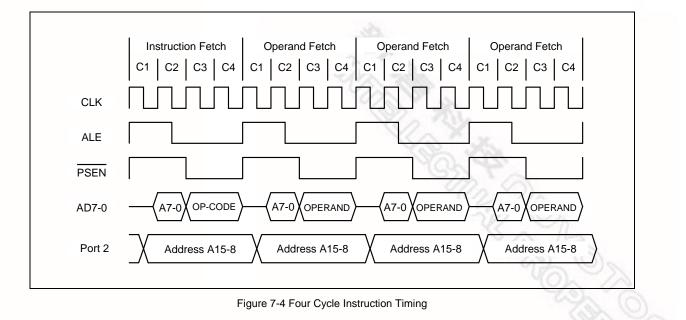
The W79E(L)633 does one op-code fetch per machine cycle, so, in most instructions, the number of machine cycles required is equal to the number of bytes in the instruction. There are 256 available op-codes. 128 of them are single-cycle instructions, so many op-codes are executed in just four clock periods. Some of the other op-codes are two-cycle instructions, and most of these have two-byte op-codes. However, there are some instructions that have one-byte instructions yet take two cycles to execute. One important example is the MOVX instruction.

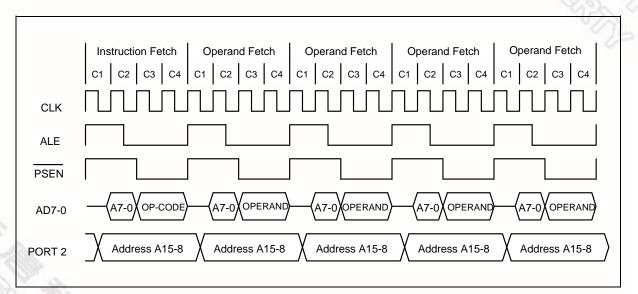
In the standard 8051/52, the MOVX instruction is always two machine cycles long. However, in the W79E(L)633, the duration of this instruction is controlled by the software. It can vary from two to nine machine cycles long, and the  $\overline{RD}$  and  $\overline{WR}$  strobe lines are elongated proportionally. This is called stretching, and it gives a lot of flexibility when accessing fast and slow peripherals. It also reduces the amount of external circuitry and software overhead.

The rest of the instructions are three-, four- or five-cycle instructions. At the end of this section, there are timing diagrams that provide an example of each type of instruction (single-cycle, two-cycle, ...).

In summary, there are five types of instructions in the W79E(L)633, based on the number of machine cycles, and each machine cycle is four clock periods long. The standard 8051/52 has only three types of instructions, based on the number of machine cycles, but each machine cycle is twelve clock periods long. As a result, even though the number of categories is higher, each instruction in the W79E(L)633 runs 1.5 to 3 times faster, based on the number of clock periods, than it does in the standard 8051/52.



Figure 7-1 Single Cycle Instruction Timing


### nuvoTon



Publication Release Date: Oct 07, 2010 Revision A6.0

## nuvoTon







#### 7.1.1 External Data Memory Access Timing

The timing for the MOVX instruction is another feature of the W79E(L)633. In the standard 8051/52, the MOVX instruction has a fixed execution time of 2 machine cycles. However, in the W79E(L)633, the duration of the access can be controlled by the user.

The instruction starts off as a normal op-code fetch that takes four clocks. In the next machine cycle, the W79E(L)633 puts out the external memory address, and the actual access occurs. The user can control the duration of this access by setting the stretch value in CKCON, bits 2 - 0. As shown in the table below, these three bits can range from zero to seven, resulting in MOVX instructions that take two to nine machine cycles. The default value is one, resulting in a MOVX instruction of three machine cycles.

Stretching only affects the MOVX instruction. There is no effect on any other instruction or its timing, it is as if the state of the CPU is held for the desired period. The timing waveforms when the stretch value is zero, one, and two are shown below.

| M2 | M1 | МО | MACHINE<br>CYCLES | RD OR WR<br>STROBE<br>WIDTH IN<br>CLOCKS | RD OR WR<br>STROBE WIDTH<br>@ 25 MHZ | RD OR WR<br>STROBE WIDTH<br>@ 40 MHZ |
|----|----|----|-------------------|------------------------------------------|--------------------------------------|--------------------------------------|
| 0  | 0  | 0  | 2                 | 2                                        | 80 nS                                | 50 nS                                |
| 0  | 0  | 1  | 3 (default)       | 4                                        | 160 nS                               | 100 nS                               |
| 0  | 1  | 0  | 4                 | 8                                        | 320 nS                               | 200 nS                               |
| 0  | 1  | 1  | 5                 | 12                                       | 480 nS                               | 300 nS                               |
| 1  | 0  | 0  | 6                 | 16                                       | 640 nS                               | 400 nS                               |
| 1  | 0  | 1  | 7                 | 20                                       | 800 nS                               | 500 nS                               |
| 1  | 1  | 0  | 8                 | 24                                       | 960 nS                               | 600 nS                               |
| 1  | 1  | 1  | 9                 | 28                                       | 1120 nS                              | 700 nS                               |

Table 7-2 Data Memory Cycle Stretch Values

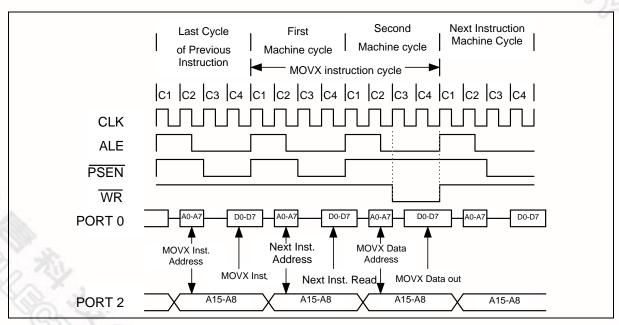



Figure 7-6 Data Memory Write with Stretch Value = 0

## nuvoTon

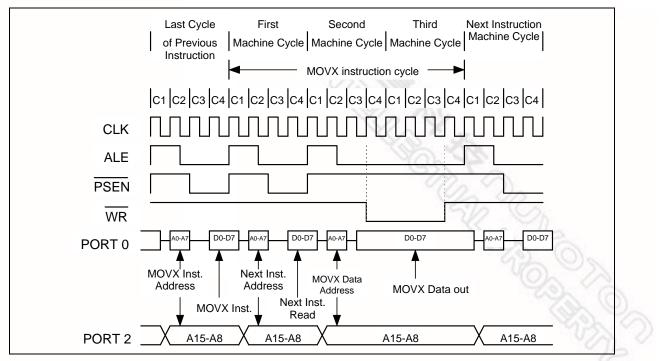



Figure 7-7 Data Memory Write with Stretch Value = 1

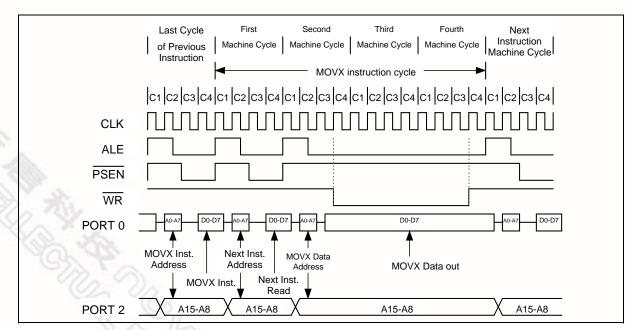



Figure 7-8 Data Memory Write with Stretch Value = 2

#### 8. Power Management

The W79E(L)633 provides idle mode and power-down mode to control power consumption. These modes are discussed in the next two sections, followed by a discussion of resets.

#### 8.1 Idle Mode

Write a one to bit 0 in PCON at 87h to put the device in Idle mode. The instruction that sets the idle bit is the last instruction executed before the device goes into Idle mode. In Idle mode, the clock to the CPU is halted, but not the one to the Interrupt, Timer, Watchdog Timer, PWM, ADC, UART and I2C ports. This freezes the CPU state, including the Program Counter, Stack Pointer, Program Status Word, Accumulator and registers. The ALE and PSEN pins are held high, and port pins hold the same states they had when the device went into Idle mode. Table 8-1 below provides the values of various pins in Idle mode.

Idle mode can be terminated two ways. First, since the interrupt controller is still active, any enabled interrupt wakes up the processor. This automatically clears the Idle bit, terminates Idle mode, and executes the Interrupt Service Routine (ISR). After the ISR, the program resumes after the instruction that put the device into Idle mode.

Idle mode can also be exited by a reset, such as a high signal on the external RST pin, a power-on reset or a Watchdog Timer reset (if enabled). During reset, the program counter is reset to 0000h, so the instruction following the one that put the device into Idle mode is not executed. All the SFRs are also reset to their default values. Since the clock is already running, there is no delay, and execution starts immediately.

#### 8.2 Power Down Mode

Write a one to bit 1 in PCON register at 87h to put the device in Power-Down mode. The instruction that sets the power-down bit is the last instruction executed before the device goes into Power-Down mode. In Power-Down mode, all the clocks and all activity stop completely, and power consumption is reduced to the lowest possible value. The ALE and PSEN pins are pulled low, and port pins output the values held by their respective registers. Table 8-1 provides the values of various pins in Power-Down mode.

The W79E(L)633 can exit Power-Down mode two ways. First, it can be exited by a reset, such as a high signal on the external RST pin or a power-on reset. The Watchdog Timer cannot provide a reset to exit Power-Down mode because the clock has stopped. A reset terminates Power-Down mode, restarts the clock, and restarts program execution at 0000h.

The W79E(L)633 can also exit Power-Down mode by an external interrupt pin, as long as the external input has been set to low level or falling edge detect, the corresponding interrupt is enabled, and the global enable (EA) bit is set. If these conditions are met, then a low-level or falling-edge signal on the external INT pin re-starts the oscillator. The device executes the interrupt service routine (ISR) for the corresponding external interrupt, and, afterwards, the program resumes execution after the one that put the device into Power-Down mode.

| MODE       | PROGRAM<br>MEMORY | ALE | PSEN | PORT0 | PORT1 | PORT2   | PORT3 |
|------------|-------------------|-----|------|-------|-------|---------|-------|
| Idle       | Internal          | 1   | 1    | Data  | Data  | Data    | Data  |
| Idle       | External          | 29  | 1    | Float | Data  | Address | Data  |
| Power Down | Internal          | 0   | 0    | Data  | Data  | Data    | Data  |

Table 8-1 Status of external pins during Idle and Power Down



#### 9. Reset

The user has several hardware related options for placing the W79E(L)633 into reset condition. In general, most register bits go to their reset value irrespective of the reset condition, but there are a few flags whose state depends on the source of reset. The user can use these flags to determine the cause of reset using software. There are two ways of putting the device into reset state. They are External reset and Watchdog reset.

#### 9.1 Reset Conditions

There are three ways to reset the W79E(L)633—External Reset, Watchdog Timer Reset and Power-On Reset. In general, most registers return to their default values regardless of the source of the reset, but a couple flags depend on the source. As a result, the user can use these flags to determine the cause of the reset.

The rest of this section discusses the three causes of resets and then elaborates on the reset state.

#### 9.2 External Reset

The device samples the RST pin every machine cycle during state C4. The RST pin must be held high for at least two machine cycles before the reset circuitry applies an internal reset signal. Thus, this reset is a synchronous operation and requires the clock to be running.

The device remains in the reset state as long as RST is one and remains there up to two machine cycles after RST is deactivated. Then, the device begins program execution at 0000h. There are no flags associated with the external reset, but, since the other two reset sources do have flags, the external reset is the cause if those flags are clear.

#### 9.3 Power-On Reset (POR)

If the power supply falls below  $V_{rst}$ , the device goes into the reset state. When the power supply returns to proper levels, the device performs a power-on reset and sets the POR flag. The software should clear the POR flag, or it will be difficult to determine the source of future resets.

#### 9.4 Watchdog Timer Reset

The Watchdog Timer is a free-running timer with programmable time-out intervals. The program must clear the Watchdog Timer before the time-out interval is reached to restart the count. If the time-out interval is reached, an interrupt flag is set. 512 clocks later, if the Watchdog Reset is enabled and the Watchdog Timer has not been cleared, the Watchdog Timer generates a reset. The reset condition is maintained by the hardware for two machine cycles, and the WTRF bit in WDCON is set. Afterwards, the device begins program execution at 0000h.

#### 9.5 Reset State

When the device is reset, most registers return to their initial state. The Watchdog Timer is disabled if the reset source was a power-on reset. The port registers are set to FFh, which puts most of the port pins in a high state and makes Port 0 float (as it does not have on-chip pull-up resistors). The Program Counter is set to 0000h, and the stack pointer is reset to 07h. After this, the device remains in the reset state as long as the reset conditions are satisfied.

Reset does not affect the on-chip RAM, however, so RAM is preserved as long as VDD remains above approximately 2 V, the minimum operating voltage for the RAM. If VDD falls below 2 V, the

### nuvoTon

RAM contents are also lost. In either case, the stack pointer is always reset, so the stack contents are lost.

The WDCON SFR bits are set/cleared in reset condition depends on the source of the reset. The WDCON SFR is set to a 0x0x0xx0b on an external reset. WTRF is set to a 1 on a Watchdog timer reset, but to a 0 on power on/down resets. WTRF is not altered by an external reset. POR is set to 1 by a power-on reset. EWT is cleared to 0 on a Power-on reset and unaffected by other resets. All the bits in this SFR have unrestricted read access. The bits of POR, WDIF, EWT and RWT require Timed Access (TA) procedure to write. The remaining bits have unrestricted write accesses. Please refer TA register description. Table 9-1 lists the different reset values.

Table 9-1 The WDCON reset values in three reset conditions

| WDCON | Watch-Dog<br>Control | D8H | · / | (DE)<br>POR | (DD)<br>- | (DC)<br>- | (DB)<br>WDIF | (DA)<br>WTRF | (D9)<br>EWT | (D8)<br>RWT | 0x0x 0xx0B External reset<br>0x0x 01x0B Watchdog<br>reset<br>0100 0000B Power on reset |
|-------|----------------------|-----|-----|-------------|-----------|-----------|--------------|--------------|-------------|-------------|----------------------------------------------------------------------------------------|
|-------|----------------------|-----|-----|-------------|-----------|-----------|--------------|--------------|-------------|-------------|----------------------------------------------------------------------------------------|



### nuvoton

#### 10. Interrupts

The W79E(L)633 has a two priority level interrupt structure with 10 interrupt sources. Each interrupt source has a separate priority bit, interrupt flag, interrupt enable bit, and interrupt vector. In addition, all the interrupts can be globally disabled.

#### **10.1 Interrupt Sources**

External Interrupts INTO and INT1 can be edge-triggered or level-triggered, depending on bits ITO and IT1. In edge-triggered mode, the INTx input is sampled every machine cycle. If the sample is high in one cycle and low in the next, then a high-to-low transition is detected, and the interrupt request flag IEx in TCON is set. This flag requests the interrupt, and it is automatically cleared when the interrupt service routine is called. Since external interrupts are sampled every machine cycle, the input has to be held high or low for at least one complete machine cycle. In level-triggered mode, the requesting source has to hold the pin low until the interrupt is serviced. The IEx flag is not cleared automatically when the service routine is called, and, if the input continues to be held low after the service routine is completed, the signal may generate another interrupt request.

Timer 0 and 1 interrupts are generated by the TF0 and TF1 flags. These flags are set by a timer overflow, and they are cleared automatically when the interrupt service routine is called. The Timer 2 interrupt is generated by a logical-OR of the TF2 (overflow) and the EXF2 (capture / reload events) flags. The hardware does not clear these flags when the interrupt service routine is called, so the software has to resolve the cause of the interrupt and clear the appropriate flag(s).

When ADC conversion is completed hardware will set flag ADCI to logic high to request ADC interrupt if bit EADC (IE.6) is in high state. ADCI is cleared by software only. W79E(L)633 provides 2 identically independent I2C serial ports, I2C1 and I2C2. When a new SIO1 state is present in the S1STA register, the SI flag is set by hardware, and if the EA and EI2C2 bits are both set, the I2C2 interrupt is requested. SI must be cleared by software.

The Watchdog Timer can be used as a system monitor or a simple timer. In either case, when the time-out count is reached, the Watchdog Timer interrupt flag WDIF (WDCON.3) is set. If the interrupt is enabled by bit EIE.4, then an interrupt is generated.

All of the interrupt flags can be set or reset by software, as well as hardware, by setting or clearing the appropriate bit in the IE register. This register also has the global disable bit EA, which can be cleared

#### **10.2 Priority Level Structure**

There are two priority levels for interrupts, high and low, and the priority of each interrupt source can be set individually. When two interrupts have the same priority, there is a pre-defined hierarchy to resolve simultaneous requests. This hierarchy is shown below, highest-priority interrupts first.

| SOURCE               | FLAG       | VECTOR<br>ADDRESS | FLAG CLEARED BY    | PRIORITY<br>LEVEL |
|----------------------|------------|-------------------|--------------------|-------------------|
| External Interrupt 0 | IE0        | 0003H             | Hardware, software | 1                 |
| Timer 0 Overflow     | TF0        | 000BH             | Hardware, software | 2                 |
| External Interrupt 1 | IE1        | 0013H             | Hardware, software | 3                 |
| Timer 1 Overflow     | TF1        | 001BH             | Hardware, software | 4                 |
| Serial Port          | RI + TI    | 0023H             | Hardware, software | 5                 |
| Timer 2 Overflow     | TF2 + EXF2 | 002BH             | Software           | 6                 |
| A/D Converter        | ADCI       | 033H              | Software           | 7                 |
| I2C Channel 1        | I2C1 SI    | 03BH              | Software           | 8                 |
| I2C Channel 2        | I2C2 SI    | 043H              | Software           | 9                 |
| Watchdog Timer       | WDIF       | 0063H             | Software           | 10 (lowest)       |

Table 10-1 Priority structure of interrupts



### nuvoton

#### 11. Programmable Timers/Counters

The W79E(L)633 has three 16-bit programmable timer/counters.

#### 11.1 Timer/Counters 0 & 1

TM0 and TM1 are 16-bit Timer/Counters and are nearly identical. Each of these Timer/Counters has two 8 bit registers which form the 16 bit counting register. For Timer/Counter 0 they are TH0, the upper 8 bits register, and TLO, the lower 8 bit register. Similarly Timer/Counter 1 has two 8 bit registers, TH1 and TL1. The two timers can be configured to operate either as timers, counting machine cycles or as counters counting external inputs.

When configured as a "Timer", the timer counts clock cycles. The timer clock can be programmed to be thought of as 1/12 of the system clock or 1/4 of the system clock. In "Counter" mode, the register is incremented on the falling edge of the corresponding external input pins, T0 for Timer 0 and T1 for Timer 1. The T0 and T1 inputs are sampled in every machine cycle at C4. If the sampled value is high in one machine cycle and low in the next, then a valid high to low transition on the pin is recognized and the count register is incremented. Since it takes two machine cycles to recognize a negative transition on the pin, the minimum period at which counting will take place is double of the machine cycle. In either the "Timer" or "Counter" mode, the count register will be updated at C3. Therefore, in the "Timer" mode, the recognized negative transition on pin T0 and T1 can cause the count register value to be updated only in the machine cycle following the one in which the negative edge was detected.

The "Timer" or "Counter" function is selected by the "C/ $\overline{T}$ " bit in the TMOD Special Function Register. Each Timer/Counter has one selection bit for its own; bit 2 of TMOD selects the function for Timer/Counter 0 and bit 6 of TMOD selects the function for Timer/Counter 1. In addition each Timer/Counter can be set to operate in any one of four possible modes. The mode selection is done by bits M0 and M1 in the TMOD SFR.

#### 11.1.1 Time-Base Selection

The W79E(L)633 can operate like the standard 8051/52 family, counting at the rate of 1/12 of the clock speed, or in turbo mode, counting at the rate of 1/4 clock speed. The speed is controlled by the TOM and T1M bits in CKCON, and the default value is zero, which uses the standard 8051/52 speed.

#### 11.1.2 Mode 0

In Mode 0, the timer/counter is a 13-bit counter. The 13-bit counter consists of THx (8 MSB) and the five lower bits of TLx (5 LSB). The upper three bits of TLx are ignored. The timer/counter is enabled when TRx is set and either GATE is 0 or  $\overline{INTx}$  is 1. When  $C/\overline{T}$  is 0, the timer/counter counts clock cycles; when  $C/\overline{T}$  is 1, it counts falling edges on T0 (P3.4 for Timer 0) or T1 (P3.5 for Timer 1). For clock cycles, the time base may be 1/12 or 1/4 clock speed, and the falling edge of the clock increments the counter. When the 13-bit value moves from 1FFFh to 0000h, the timer overflow flag an in. TFx is set, and an interrupt occurs if enabled. This is illustrated below.

#### 11.1.3 Mode 1

Mode 1 is the same as Mode 0, except that the timer/counter is 16 bits, instead of 13 bits.

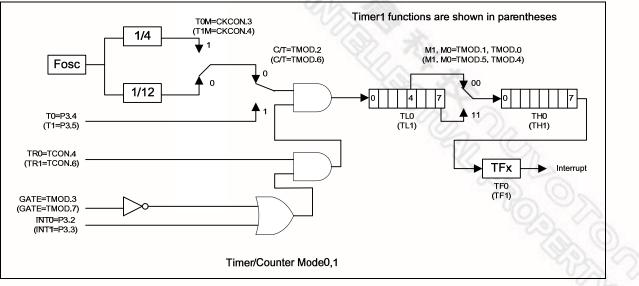



Figure 11-1 Timer/Counters 0/1 in Mode 0 & Mode 1

#### 11.1.4 Mode 2

In Mode 2, the timer/counter is in the Auto Reload Mode. In this mode, TLx acts as a 8 bit count register, while THx holds the reload value. When the TLx register overflows from FFh to 00h, the TFx bit in TCON is set and TLx is reloaded with the contents of THx, and the counting process continues from here. The reload operation leaves the contents of the THx register unchanged. Counting is enabled by the TRx bit and proper setting of GATE and INTx pins. As in the other two modes 0 and 1 mode 2 allows counting of either clock cycles (clock/12 or clock/4) or pulses on pin Tn.

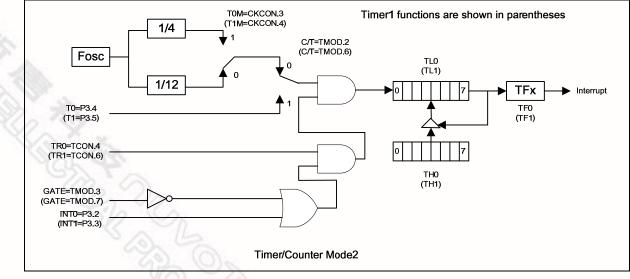



Figure 11-2 Timer/Counter 0/1 in Mode 2

#### 11.1.5 Mode 3

Mode 3 is used when an extra 8-bit timer is needed. It has a different effect on Timer 0 and Timer 1. TL0 and TH0 become two separate 8 bit counters. TL0 uses the Timer 0 control bits  $C/\overline{T}$ , GATE, TR0, INT0 and TF0, and it can be used to count clock cycles (clock/12 or clock/4) or falling edges on pin T0, as determined by  $C/\overline{T}$  (TMOD.2). TH0 becomes a clock-cycle counter (clock/12 or clock/4) and takes over the Timer 1 enable bit TR1 and overflow flag TF1. In contrast, mode 3 simply freezes Timer 1. If Timer 0 is in mode 3, Timer 1 can still be used in modes 0, 1 and 2, but it no longer has control over TR1 and TF1. Therefore when Timer 0 is in Mode 3, Timer 1 can only count oscillator cycles, and it does not have an interrupt or flag. With these limitations, baud rate generation is its most practical application, but other time-base functions may be achieved by reading the registers.

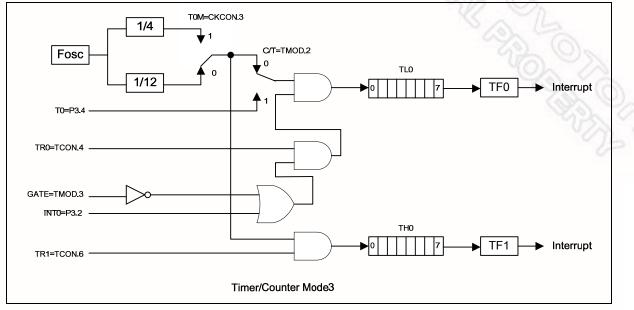



Figure 11-3 Timer/Counter 0 Mode 3

#### 11.2 Timer/Counter 2

Timer/Counter 2 is a 16-bit up/down-counter equipped with a capture/reload capability. The clock source for Timer/Counter 2 may be the external T2 pin  $(C/\overline{T2} = 1)$  or the crystal oscillator  $(C/\overline{T2} = 0)$ , divided by 12 or 4. The clock is enabled and disabled by TR2. Timer/Counter 2 runs in one of four operating modes, each of which is discussed below.

#### 11.2.1 Capture Mode

Capture mode is enabled by setting  $CP/\overline{RL2}$  in T2CON to 1. In capture mode, Timer/Counter 2 is a 16-bit up-counter. When the counter rolls over from FFFFh to 0000h, the timer overflow flag TF2 is set, and an interrupt is generated, if enabled.

If the EXEN2 bit is set, a negative transition on the T2EX pin captures the current value of TL2 and TH2 in the RCAP2L and RCAP2H registers. It also sets the EXF2 bit in T2CON, which generates an interrupt if enabled. In addition, if the T2CR bit in T2MOD is set, the W79E(L)633 resets Timer 2 automatically after the capture. This is illustrated below.

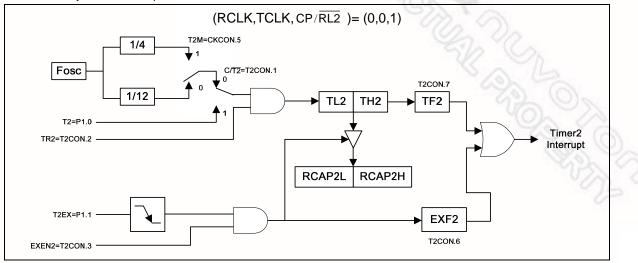



Figure 11-4 Timer2 16-Bit Capture Mode

#### 11.2.2 Auto-reload Mode, Counting up

This mode is enabled by clearing CP/RL2 in T2CON register and DCEN in T2MOD. In this mode, Timer/Counter 2 is a 16-bit up-counter. When the counter rolls over from FFFFh to 0000h, the timer overflow flag TF2 is set, and TL2 and TH2 capture the contents of RCAP2L and RCAP2H, respectively. Alternatively, if EXEN2 is set, a negative transition on the T2EX pin causes a reload, which also sets the EXF2 bit in T2CON.

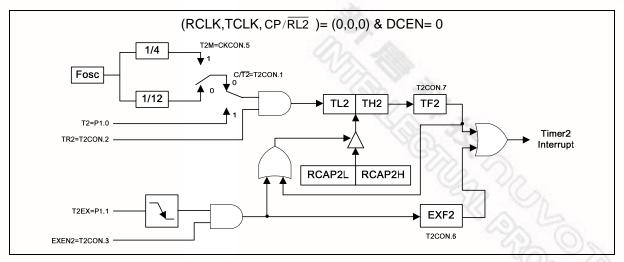



Figure 11-5 16-Bit Auto-reload Mode, Counting Up

#### 11.2.3 Auto-reload Mode, Counting Up/Down

This mode is enabled by clearing CP /  $\overline{RL2}$  in T2CON and setting DCEN in T2MOD. In this mode, Timer/Counter 2 is a 16-bit up/down-counter, whose direction is controlled by the T2EX pin (1 = up, 0 = down). If Timer/Counter 2 is counting up, an overflow reloads TL2 and TH2 with the contents of the capture registers RCAP2L and RCAP2H. If Timer/Counter 2 is counting down, TL2 and TH2 are loaded with FFFFh when the contents of Timer/Counter 2 equal the capture registers RCAP2L and RCAP2H. Regardless of direction, reloading sets the TF2 bit. It also toggles the EXF2 bit, but the EXF2 bit can not generate an interrupt in this mode. This is illustrated below.

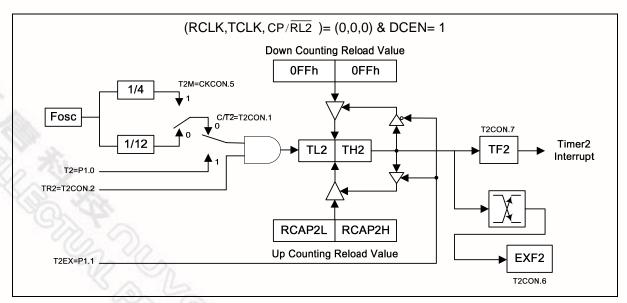



Figure 11-6 16-Bit Auto-reload Up/Down Counter

#### 11.2.4 Baud Rate Generator Mode

Baud rate generator mode is enabled by setting either RCLK or TCLK in T2CON. In baud rate generator mode, Timer/Counter 2 is a 16-bit counter with auto-reload when the count rolls over from FFFFh. However, rolling-over does not set TF2. If EXEN2 is set, then a negative transition on the T2EX pin sets EXF2 bit in the T2CON register and causes an interrupt request.

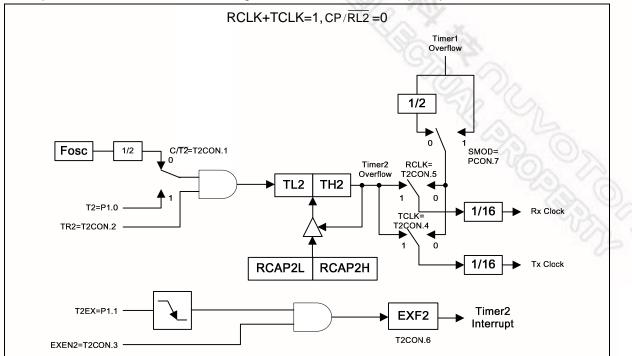



Figure 11-7 Baud Rate Generator Mode



Publication Release Date: Oct 07, 2010 Revision A6.0

### nuvoton

### 12. Watchdog Timer

The Watchdog Timer is a free-running timer that can be programmed to serve as a system monitor, a time-base generator or an event timer. It is basically a set of dividers that divide the system clock to determine the time-out interval. When the time-out occurs, a flag is set, which can generate an interrupt or a system reset, if enabled. The interrupt occurs if the individual interrupt enable and the global enable are set. The interrupt and reset functions are independent of each other and may be used separately or together.

The main use of the Watchdog Timer is as a system monitor. In case of power glitches or electromagnetic interference, the processor may begin to execute errant code. The Watchdog Timer helps the W79E(L)633 recovers from these states. During development, the code is first written without the watchdog interrupt or reset. Then, the watchdog interrupt is enabled to identify code locations where the interrupt occurs, and instructions are inserted to reset the Watchdog Timer in these locations. In the final version, the watchdog interrupt is disabled, and the watchdog reset is enabled. If errant code is executed, the Watchdog Timer is not reset at the required times, so a Watchdog Timer reset occurs.

When used as a simple timer, the reset and interrupt functions are disabled. The Watchdog Timer can be started by RWT and sets the WDIF flag after the selected time interval. Meanwhile, the program polls the WDIF flag to find out when the selected time interval has passed. Alternatively, the Watchdog Timer can also be used as a very long timer. In this case, the interrupt feature is enabled.

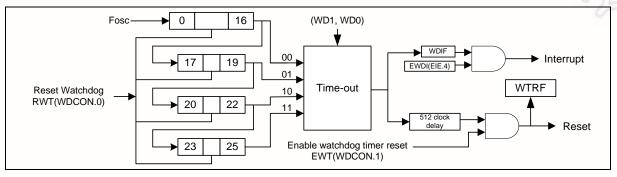



Figure 12-1 Watchdog Timer

The Watchdog Timer should be started by RWT because this ensures that the timer starts from a known state. The RWT bit is self-clearing: i.e., after writing a 1 to this bit, the bit is automatically cleared. After setting RWT, the Watchdog Timer begins counting clock cycles. The time-out interval is selected by WD1 and WD0 (CKCON.7 and CKCON.6).

#### Table 2 Time-out values for the Watchdog Timer

When the selected time-out occurs, the watchdog interrupt flag WDIF (WDCON.3) is set. Then, if there is no RWT and if the Watchdog Timer reset EWT (WDCON.1) is enabled, the Watchdog Timer reset occurs 512 clocks later. This reset lasts two machine cycles, and the Watchdog Timer reset flag WTRF (WDCON.2) is set, which indicates that the Watchdog Timer caused the reset.

The Watchdog Timer is disabled by a power-on/fail reset. The external reset and Watchdog Timer reset can not disable Watchdog Timer but restart the Timer.

The control bits that support the Watchdog Timer are discussed below.

| Watchdog Timer | Control | (WDCON) |
|----------------|---------|---------|
|----------------|---------|---------|

| 7   | -    | Reserved.                                                                                                                                                                                                                                                                                             |
|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6   | POR  | Power-on reset flag. The hardware sets this flag during power-up, and it can only be cleared by software. This flag can also be written by software.                                                                                                                                                  |
| 5-4 | -    | Reserved.                                                                                                                                                                                                                                                                                             |
| 3   | WDIF | Watchdog Timer Interrupt Flag. If the watchdog interrupt is enabled, the hardware sets this bit to indicate that the watchdog interrupt has occurred. If the interrupt is not enabled, this bit indicates that the time-out period has elapsed. This bit must be cleared by software.                 |
| 2   | WTRF | Watchdog Timer Reset Flag. If EWT is 0, the Watchdog Timer has no affect on this bit. Otherwise, the hardware sets this bit when the Watchdog Timer causes a reset. It can be cleared by software or a power-fail reset. It can be also read by software, which helps determine the cause of a reset. |
| 1   | EWT  | Enable Watchdog-Timer Reset. Set this bit to enable the Watchdog Timer Reset function.                                                                                                                                                                                                                |
| 0   | RWT  | Reset Watchdog Timer. Set this bit to reset the Watchdog Timer before a time-out occurs. This bit is automatically cleared by the hardware.                                                                                                                                                           |

The EWT, WDIF and RWT bits are protected by the Timed Access procedure. This procedure prevents software, especially errant code, from accidentally enabling or disabling the Watchdog Timer. An example is provided below.

|        | org<br>mov<br>mov<br>clr<br>jnb | 63h<br>TA,#AA<br>TA,#55<br>WDIF |    | voass rosot |   | Test if CP | l nood t   | o resot    |   |
|--------|---------------------------------|---------------------------------|----|-------------|---|------------|------------|------------|---|
|        | JIID                            | jmp                             | \$ | ypass_reset | - | Wait to re |            | 0 16361.   |   |
| bypass | _reset:                         | Juip                            | Ŷ  |             | , |            | 001        |            |   |
|        | mov                             | TA,#AA                          | λH |             |   |            |            |            |   |
|        | mov                             | TA,#55                          | H  |             |   |            |            |            |   |
|        | setb                            | RWT                             |    |             |   |            |            |            |   |
|        | reti                            |                                 |    |             |   |            |            |            |   |
|        |                                 | ° LOS                           |    |             |   |            |            |            |   |
|        | org                             | 300h                            |    |             |   |            |            |            |   |
|        |                                 |                                 |    |             |   |            |            |            |   |
|        |                                 |                                 |    |             |   |            |            |            |   |
|        |                                 |                                 |    |             |   | Р          | ublication | Roloaso Da | 7 |

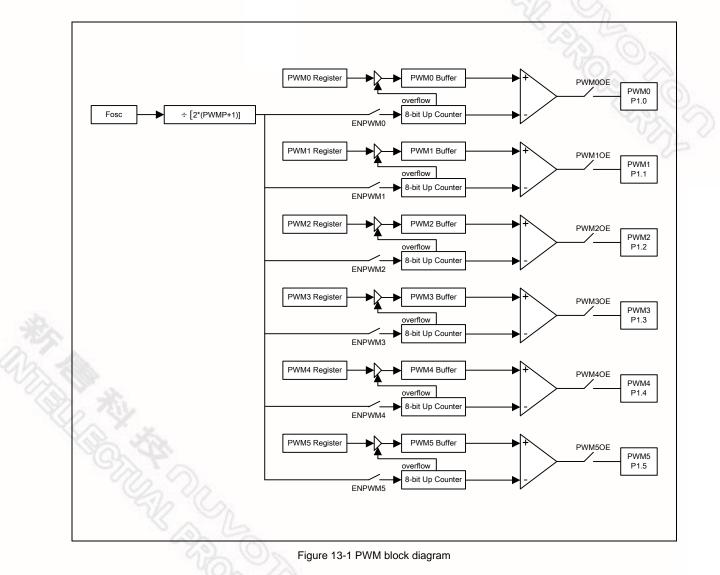
Publication Release Date: Oct 07, 2010 Revision A6.0

## nuvoTon

#### start:

|       | mov   | ckcon,#01h       | ; select 2 ^ 17 timer |
|-------|-------|------------------|-----------------------|
| ;     | mov   | ckcon,#61h       | ; select 2 ^ 20 timer |
| ;     | mov   | ckcon,#81h       | ; select 2 ^ 23 timer |
| ;     | mov   | ckcon,#c1h       | ; select 2 ^ 26 timer |
|       | mov   | TA,#aah          |                       |
|       | mov   | TA,#55h          |                       |
|       | mov   | WDCON,#00000011B |                       |
|       | setb  | EWDI             |                       |
|       | setb  | ea               |                       |
|       | jmp   | \$               | ; wait time out       |
| Clock | Contr | ol               |                       |

#### Clock Control


WD1, WD0: CKCON.7, CKCON.6 - Watchdog Timer Mode select bits. These two bits select the timeout interval for the Watchdog Timer. The reset interval is 512 clocks longer than the selected interval. The default time-out is 2<sup>17</sup> clocks, the shortest time-out period.



#### 13. Pulse-Width-Modulated (PWM) Outputs

There are six pulse-width-modulated (PWM) output channels that can generate pulses of programmable length and interval. The frequency is controlled by the 8-bit prescale PWMP, which supplies the clock for the 8-bit PWM counter that counts modular 255 (0 ~ 254). The same prescale and counter are shared by all the PWM channels. The PWM outputs are weakly pulled high.

Each channel is enabled and disabled by bit ENPWM*n* ( $n = 0 \sim 5$ ). If channel *n* is enabled, the PWM counter is compared to the corresponding register PWM*n*. When PWM*n* is greater than the PWM counter, the corresponding PWM output is set high. When the register value is equal to or less than the counter value, the output is set low. Therefore, the pulse-width ratio is defined by the contents of PWM0, PWM1, PWM2, PWM3, PWM4 and PWM5 and may be programmed in increments of 1/255. This is illustrated below.



Publication Release Date: Oct 07, 2010 Revision A6.0

### nuvoTon

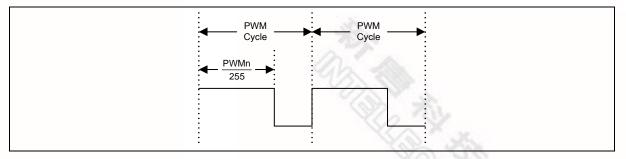



Figure 13-2 PWM Duty Ratio

If register PWM*n* is loaded with a new value, the associated output is updated immediately. By loading PWM*n* with 00H or FFH, the corresponding channel provides a constant high or low level output, respectively. Since the 8-bit counter counts modulo 255, it can never actually reach FFh, so the output remains low all the time.

Buffered PWM outputs may be used to drive DC motors. In this case, the rotation speed of the motor is proportional to the contents of PWM*n*. The repetition frequency Fpwm for channel *n* is given by:

$$Fpwm = \frac{Fosc}{2 \times (1 + PWMP) \times 255}$$

Prescale division factor = PWM + 1

PWMn high/low ratio of PWMn =  $\frac{(PWMn)}{255 - (PWMn)}$ 

This gives a repetition frequency range of 123 Hz to 31.4 KHz ( $f_{osc}$  = 16 MHz).

Please refer as below code.

 mov
 pwmcon1, #00110011b

 mov
 pwmp, #40h

 mov
 pwm0, #14h

 mov
 pwm1, #18h

 mov
 pwm2, #20h

 mov
 pwm3, #b0h

 mov
 pwmcon1, #1111111b

; enable pwm3, 2, 1, 0 ; Fpwm = Fosc/(2\*(1+PWMP)\*255) ; duty cycle high/low = PWM0/(255-PWM0)

; output enable pwm3, 2, 1, 0

- 70 -

#### 14. Serial Port

The W79E(L)633 serial port is a full-duplex port, and the W79E(L)633 provides additional features, such as Frame Error Detection and Automatic Address Recognition. The serial port is capable of synchronous and asynchronous communication. In synchronous mode, the W79E(L)633 generates the clock and operates in half-duplex mode. In asynchronous mode, the serial port can simultaneously transmit and receive data. The transmit register and the receive buffer are both addressed as SBUF, but any write to SBUF writes to the transmit register while any read from SBUF reads from the receive buffer. The serial port can operate in four modes, as described below.

#### 14.1 Mode 0

This mode provides half-duplex, synchronous communication with external devices. In this mode, serial data is transmitted and received on the RXD line, and the W79E(L)633 provides the shift clock on TxD, whether the device is transmitting or receiving. Eight bits are transmitted or received per frame, LSB first. The baud rate is 1/12 or 1/4 of the oscillator frequency, as determined by the SM2 bit (SCON.5; 0 = 1/12; 1 = 1/4). This programmable baud rate is the only difference between the standard 8051/52 and the W79E(L)633 in mode 0.

Any write to SBUF starts transmission. The shift clock is activated, and data is shifted out on RxD until all eight bits are transmitted. If SM2 is 1, the data appears on RxD one clock period before the falling edge of the shift clock on TxD. Then, the clock remains low for two clock periods before going high again. If SM2 is 0, the data appears on RxD three clock periods before the falling edge of the shift clock on TxD, and the clock on TxD remains low for six clock periods before going high again. This ensures that, at the receiving end, the data on the RxD line can be clocked on the rising edge of the shift clock or latched when the clock is low. The TI flag is set high in C1 following the end of transmission. The functional block diagram is shown below.

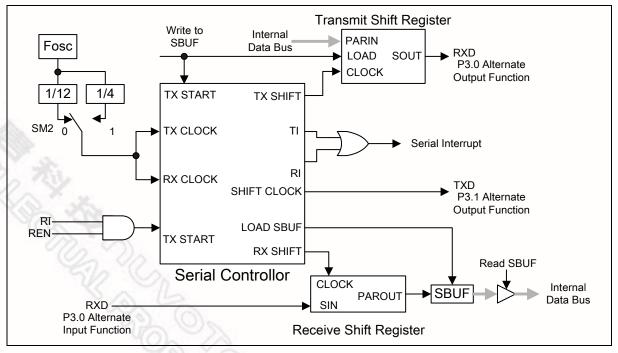



Figure 14-1 Serial Port Mode 0

### nuvoTon

The serial port receives data when REN is 1 and RI is zero. The shift clock (TxD) is activated, and the serial port latches data on the rising edge of the shift clock. The external device should, therefore, present data on the falling edge of the shift clock. This process continues until all eight bits have been received. The RI flag is set in C1 following the last rising edge of the shift clock, which stops reception until RI is cleared by the software.

#### 14.2 Mode 1

In Mode 1, full-duplex asynchronous communication is used. Frames consist of ten bits transmitted on TXD and received on RXD. The ten bits consist of a start bit (0), eight data bits (LSB first), and a stop bit (1). When receiving, the stop bit goes into RB8 in SCON. The baud rate in this mode is 1/16 or 1/32 of the Timer 1 overflow, and since Timer 1 can be set to a wide range of values, a wide variation of baud rates is possible.

Transmission begins with a write to SBUF but is synchronized with the divide-by-16 counter, not the write to SBUF. The start bit is put on TxD at C1 following the first roll-over of the divide-by-16 counter, and the next bit is placed at C1 following the next rollover. After all eight bits are transmitted, the stop bit is transmitted. The TI flag is set in the next C1 state, or the tenth rollover of the divide-by-16 counter after the write to SBUF.

Reception is enabled when REN is high, and the serial port starts receiving data when it detects a falling edge on RxD. The falling-edge detector monitors the RxD line at 16 times the selected baud rate. When a falling edge is detected, the divide-by-16 counter is reset to align the bit boundaries with the rollovers of the counter. The 16 states of the counter divide the bit time into 16 slices. Bit detection is done on a best-of-three basis using samples at the 8th, 9th and 10th counter states. If the first bit after the falling edge is not 0, the start bit is invalid, reception is aborted immediately, and the serial port resumes looking for a falling edge on RxD. If a valid start bit is detected, the rest of the bits are shifted into SBUF. After shifting in eight data bits, the stop bit is received. Then, if

#### 1. RI is 0 and

2. SM2 is 0 or the received stop bit is 1

the stop bit goes into RB8, the eight data bits go into SBUF, and RI is set. Otherwise, the received frame is lost. In the middle of the stop bit, the receiver resumes looking for a falling edge on RxD.

# nuvoTon

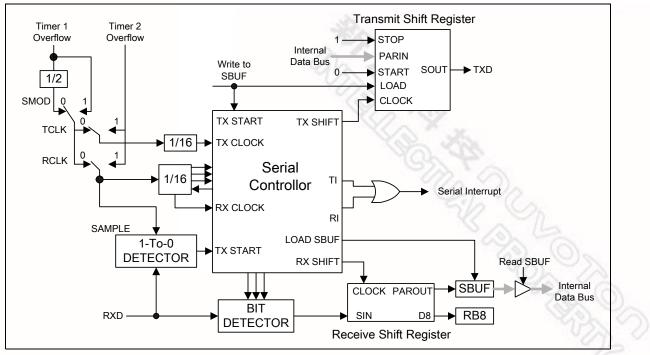



Figure 14-2 Serial Port Mode 1

### 14.3 Mode 2

In Mode 2, full-duplex asynchronous communication is used. Frames consist of eleven bits: one start bit (0), eight data bits (LSB first), a programmable ninth bit (TB8) and a stop bit (0). When receiving, the ninth bit is put into RB8. The baud rate is 1/16 or 1/32 of the oscillator frequency, as determined by SMOD in PCON.

Transmission begins with a write to SBUF but is synchronized with the divide-by-16 counter, not the write to SBUF. The start bit is put on TxD pin at C1 following the first roll-over of the divide-by-16 counter, and the next bit is placed on TxD at C1 following the next rollover. After all nine bits of data are transmitted, the stop bit is transmitted. The TI flag is set in the next C1 state, or the 11th rollover of the divide-by-16 counter after the write to SBUF.

Reception is enabled when REN is high, and the serial port starts receiving data when it detects a falling edge on RxD. The falling-edge detector monitors the RxD line at 16 times the selected baud rate. When a falling edge is detected, the divide-by-16 counter is reset to align the bit boundaries with the rollovers of the counter. The 16 states of the counter divide the bit time into 16 slices. Bit detection is done on a best-of-three basis using samples at the 8th, 9th and 10th counter states. If the first bit after the falling edge is not 0, the start bit is invalid, reception is aborted, and the serial port resumes looking for a falling edge on RxD. If a valid start bit is detected, the rest of the bits are shifted into SBUF. After shifting in nine data bits, the stop bit is received. Then, if

#### 1. RI is 0 and

2. SM2 is 0 or the received stop bit is 1

the stop bit goes into RB8, the eight data bits go into SBUF, and RI is set. Otherwise, the received frame may be lost. In the middle of the stop bit, the receiver resumes looking for a falling edge on RxD. The functional description is shown in the figure below.

# nuvoTon

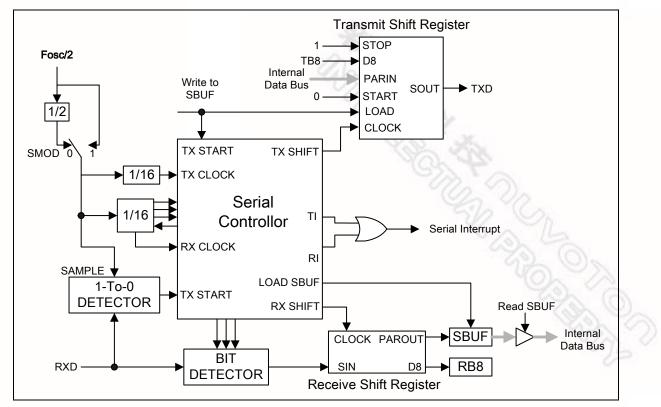



Figure 14-3 Serial Port Mode 2



### 14.4 Mode 3

This mode is the same as Mode 2, except that the baud rate is programmable. The program must select the mode and baud rate in SCON before any communication can take place. Timer 1 should be initialized if Mode 1 or Mode 3 will be used.

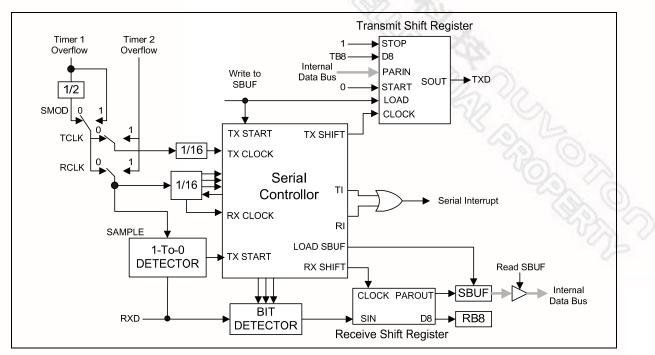



Figure 14-4 Serial Port Mode 3

| Table | 14-1 | Serial | Ports | Modes |
|-------|------|--------|-------|-------|
|-------|------|--------|-------|-------|

|   | SM0 | SM1 | MODE | TYPE    | BAUD CLOCK   | FRAME<br>SIZE | START<br>BIT | STOP<br>BIT | 9TH BIT<br>FUNCTION |
|---|-----|-----|------|---------|--------------|---------------|--------------|-------------|---------------------|
|   | 0   | 0   | 0    | Synch.  | 4 or 12 OSC  | 8 bits        | No           | No          | None                |
| ê | 0   | 1   | 1    | Asynch. | Timer 1 or 2 | 10 bits       | 1            | 1           | None                |
|   | 1   | 0   | 2    | Asynch. | 32 or 64 OSC | 11 bits       | 1            | 1           | 0, 1                |
| 2 | 212 | 1   | 3    | Asynch. | Timer 1 or 2 | 11 bits       | 1            | 1           | 0, 1                |

- 75 -

## nuvoton

#### 14.5 Framing Error Detection

A frame error occurs when a valid stop bit is not detected. This could indicate incorrect serial data communication. Typically, a frame error is due to noise or contention on the serial communication line. The W79E(L)633 has the ability to detect framing errors and set a flag that can be checked by software.

The frame error FE (FE 1) bit is located in SCON.7. This bit is SM0 in the standard 8051/52 family, but, in the W79E(L)633, it serves a dual function and is called SM0/FE. There are actually two separate flags, SM0 and FE. The flag that is actually accessed as SCON.7 is determined by SMOD0 (PCON.6). When SMOD0 is set to 1, the FE flag is accessed. When SMOD0 is set to 0, the SM0 flag is accessed.

The FE bit is set to 1 by the hardware, but it must be cleared by the software. Once FE is set, any frames received afterwards, even those without errors, do not clear the FE flag. The flag has to be cleared by the software. Note that SMOD0 must be set to 1 while reading or writing FE.

### 14.6 Multiprocessor Communications

Multiprocessor communication is available in modes 1, 2 and 3 and makes use of the 9th data bit and the automatic address recognition feature. This approach eliminates the software overhead required to check every received address and greatly simplifies the program.

In modes 2 and 3, address bytes are distinguished from data bytes by 9th bit set, which is set high in address bytes. When the master processor wants to transmit a block of data to one of the slaves, it first sends the address of the target slave(s). The slave processors have already set their SM2 bits high so that they are only interrupted by an address byte. The automatic address recognition feature then ensures that only the addressed slave is actually interrupted. This feature compares the received byte to the slave's Given or Broadcast address and only sets the RI flag if the bytes match. This slave then clears the SM2 bit, clearing the way to receive the data bytes. The unaddressed slaves are not affected, as they are still waiting for their address.

In mode 1, the 9th bit is the stop bit, which is 1 in valid frames. Therefore, if SM2 is 1, RI is only set if a valid frame is received and if the received byte matches the Given or Broadcast address.

The master processor can selectively communicate with groups of slaves using the Given Address or all the slaves can be addressed together using the Broadcast Address. The addresses for each slave are defined by the SADDR and SADEN registers. The slave address is the 8-bit value specified in SADDR. SADEN is a mask for the value in SADDR. If a bit position in SADEN is 0, then the corresponding bit position in SADDR is a don't-care condition in the address comparison. Only those bit positions in SADDR whose corresponding bits in SADEN are 1 are used to obtain the Given Address. This provides flexibility to address multiple slaves without changing addresses in SADDR.

The following example shows how to setup the Given Addresses to address different slaves. IQ

## nuvoTon

#### Slave 1:

SADDR 1010 0100 SADEN 1111 1010 Given 1010 0x0x

#### Slave 2:

SADDR 1010 0111 SADEN 1111 1001 Given 1010 0xx1

The Given Address for slaves 1 and 2 differ in the LSB. In slave 1, it is a don't-care, while, in slave 2, it is 1. Thus, to communicate with only slave 1, the master must send an address with LSB = 0 (1010 0000). Similarly, bit 1 is 0 for slave 1 and don't-care for slave 2. Hence, to communicate only with slave 2, the master has to transmit an address with bit 1 = 1 (1010 0011). If the master wishes to communicate with both slaves simultaneously, then the address must have bit 0 = 1 and bit 1 = 0. Since bit 3 is don't-care for both slaves, two different addresses can address both slaves (1010 0001 and 1010 0101).

The master can communicate with all the slaves simultaneously using the Broadcast Address. The Broadcast Address is formed from the logical OR of the SADDR and SADEN registers. The zeros in the result are don't–care values. In most cases, the Broadcast Address is FFh. In the previous case, the Broadcast Address is (1111111X) for slave 1 and (1111111) for slave 2.

The SADDR and SADEN registers are located at addresses A9h and B9h, respectively. These two registers default to 00h, so the Given Address and Broadcast Address default to XXXX XXXX (i.e., all bits don't-care), which effectively removes the multiprocessor communications feature



- 77 -

## nuvoTon

### 15. I2C Serial Ports

W79E(L)633 supports two identical but independent hardware I2C ports to transmit/receive data to and from the external devices. These two ports implement the following features:

- Function is compatible to standard mode of I2C bus with the baud rate up to 400KHz.
- Each port consists of a pair of SCL and SDA which can be assigned to port 2 or port 6 by software
- Each port supports two recognizable slave addresses.
- P2.4~P2.7 have internal pull-ups.
- Provide two individual interrupt sources.
- Produce interrupt request when status is changed.
- Provide time-out mechanism to protect bus hang up.

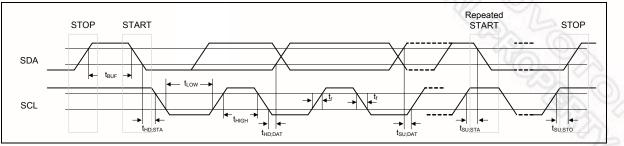



Figure 15-1 I2C Bus Timing

The W79E(L)633 on-chip I2C logic provides the serial interface that meets the I2C bus standard mode specification. The I2C logic handles bytes transfer autonomously. It also keeps track of serial transfers, and a status register (I2STATUSx) reflects the status of the I2C bus. W79E(L)633 provides 2 identical but independent I2C ports.

The I2C port1 shares pins P2.4 and P2.5, I2C port2 shares pins P2.6 and P2.7. When the I/O pins are used as I2C port, user must set the corresponding pins to logic high in advance. Note that P2.4~P2.7 have internal weakly pull-up resisters.

When I2C port is enabled by setting ENSx to high, the internal states will be controlled by I2CONx and I2C logic hardware. Once a new status code is generated and stored in I2STATUSx the I2C interrupt flag (SI) will be set automatically, in the meanwhile, if EA and EI2Cx both are also in logic high, the I2C interrupt is requested. The 5 most significant bits of I2STATUSx stores the internal state code, the lowest 3 bits are always zero and the content keeps stable until SI is cleared by software.

Since both I2C ports are similar, I2C port 1 is used to be the represent to explain I2C operation in following description.

- 78 -

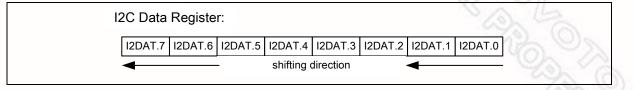
### 15.1 The I2C Control Registers

Each I2C logic has 1 control register (I2CONx) to control the transmit/receive flow, 1 data register (I2DATx) to buffer the Tx/Rx data, 1 status register (I2STATUSx) to catch the state of Tx/Rx, 2 recognizable slave address registers for slave mode and 1 clock rate control block for master mode to generate the variable baud rate.

| SYMBOL    | DEFINITION                     | ADDR | N       | ISB     | BIT_AD  | DRESS   | , SYMB  | OL      | LS      | В       | RESET          |
|-----------|--------------------------------|------|---------|---------|---------|---------|---------|---------|---------|---------|----------------|
| 1211MER2  | I2C2 Timer Counter<br>Register | FFH  | -       | -       | -       | -       | - 63    | ENTI2   | DIV42   | TIF2    | 0000<br>0000B  |
| I2CLK2    | I2C2 Clock Rate                | FEH  | I2CLK.7 | I2CLK.6 | I2CLK.5 | I2CLK.4 | I2CLK.3 | I2CLK.2 | I2CLK.1 | I2CLK.0 | 0000<br>0000B  |
| I2STATUS2 | I2C2 Status Register           | FDH  |         |         |         |         |         | - 8     | 1       | L       | 0000<br>0000B  |
| I2DAT2    | I2C2 Data                      | FCH  | I2DAT.7 | I2DAT.6 | I2DAT.5 | I2DAT.4 | I2DAT.3 | I2DAT.2 | I2DAT.1 | I2DAT.0 | xxxx<br>xxxxxB |
| I2ADDR21  | I2C2 Slave Address1            | FBH  | ADDR.7  | ADDR.6  | ADDR.5  | ADDR.4  | ADDR.3  | ADDR.2  | ADDR.1  | 50      | xxxx<br>xxxxxB |
| I2ADDR20  | I2C2 Slave Address0            | FAH  | ADDR.7  | ADDR.6  | ADDR.5  | ADDR.4  | ADDR.3  | ADDR.2  | ADDR.1  | GC      | xxxx<br>xxxx0B |
| I2CON2    | I2C2 Control Register          | F9H  | -       | ENS2    | STA     | STO     | SI      | AA      | -       | 0       | x000<br>00x0B  |
|           | I2C1 Timer Counter<br>Register | EFH  | -       | -       | -       | -       | -       | ENTI    | DIV4    | TIF     | 0000<br>0000B  |
| I2CLK     | I2C1 Clock Rate                | EEH  | I2CLK.7 | I2CLK.6 | I2CLK.5 | I2CLK.4 | I2CLK.3 | I2CLK.2 | I2CLK.1 | I2CLK.0 | 0000<br>0000B  |
| I2STATUS  | I2C1 Status Register           | EDH  |         |         |         |         |         | -       | -       | -       | 0000<br>0000B  |
| I2DAT     | I2C1 Data                      | ECH  | I2DAT.7 | I2DAT.6 | I2DAT.5 | I2DAT.4 | I2DAT.3 | I2DAT.2 | I2DAT.1 | I2DAT.0 | xxxx<br>xxxxxB |
| I2ADDR11  | I2C1 Slave Address1            | EBH  | ADDR.7  | ADDR.6  | ADDR.5  | ADDR.4  | ADDR.3  | ADDR.2  | ADDR.1  | -       | xxxx<br>xxxxxB |
| I2ADDR10  | I2C1 Slave Address0            | EAH  | ADDR.7  | ADDR.6  | ADDR.5  | ADDR.4  | ADDR.3  | ADDR.2  | ADDR.1  | GC      | xxxx<br>xxxx0B |
| I2CON     | I2C1 Control Register          | E9H  | -       | ENS1    | STA     | STO     | SI      | AA      | -       | 0       | x000<br>00x0B  |

Table 15-1 Control Registers of I2C Ports

#### 15.1.1 Slave Address Registers, I2ADDRxx


Each I2C port is equipped with two slave address registers. The contents of the register are irrelevant when I2C is in master mode. In the slave mode, the seven most significant bits must be loaded with the MCU's own slave address. The I2C hardware will react if the contents of I2ADDRxx are matched with the received slave address.

The I2C ports support the "General Call" function. If the GC bit is set the I2C port1 hardware will respond to General Call address (00H). Clear GC bit to disable general call function.

#### 15.1.2 Data Register, I2DAT

This register contains a byte of serial data to be transmitted or a byte which has just been received. The CPU can read from or write to this 8-bit directly addressable SFR while it is not in the process of shifting a byte. Data in I2DAT remains stable as long as SI is set. The MSB is shifted out first. While data is being shifted out, data on the bus is simultaneously being shifted in; I2DAT always contains the last data byte present on the bus.

I2DAT and the acknowledge bit form a 9-bit shift register which shifts in or out an 8-bit byte, followed by an acknowledge bit. The acknowledge bit is controlled by the hardware and cannot be accessed by the CPU. Serial data is shifted into I2DAT on the rising edges of serial clock pulses on the SCL line. When a byte has been shifted into I2DAT, the serial data is available in I2DAT, and the acknowledge bit (ACK or NACK) is returned by the control logic during the ninth clock pulse. Serial data is shifted out from I2DAT on the falling edges of SCL clock pulses.





#### 15.1.3 Control Register, I2CONx

Two bits are affected by hardware: the SI bit is set when the I2C hardware requests a serial interrupt, and the STO bit is cleared when a STOP condition is present on the bus. The STO bit is also cleared when ENS1 = "0".

#### I2C Control Register Channel 1 Bit: 7

| 7 | 6    | 5   | 4   | 3  | 2  | 1 | 0 |
|---|------|-----|-----|----|----|---|---|
| - | ENS1 | STA | STO | SI | AA | - | - |

- ENS1 Enable channel 1 of I2C serial function block. When ENS1=1 the channel 1 of I2C serial function enables. The port latches of SDA1 and SCL1 must be set to logic high.
- STA I2C START Flag. Setting STA to logic 1 to enter master mode, the I2C hardware sends a START or repeat START condition to bus when the bus is free.
- STO I2C STOP Flag. In master mode, setting STO to transmit a STOP condition to bus then I2C hardware checks the bus condition, if a STOP condition is detected this flag will be cleared by hardware automatically. In a slave mode, setting STO resets I2C hardware to the defined "not addressed" slave mode.
  - I2C Port 1 Interrupt Flag. When a new SIO1 state is present in the S1STA register, the SI flag is set by hardware, and if the EA and EI2C1 bits are both set, the I2C1 interrupt is requested. SI must be cleared by software.
- AA Assert Acknowledge Flag. If AA is set to logic 1, an acknowledged signal (low level to SDA) will be returned during the acknowledge clock pulse on the SCL line. If AA is cleared, a non-acknowledged signal (high level to SDA) will be returned during the acknowledge clock pulse on the SCL line.

Bit0 Must be zero always

SI

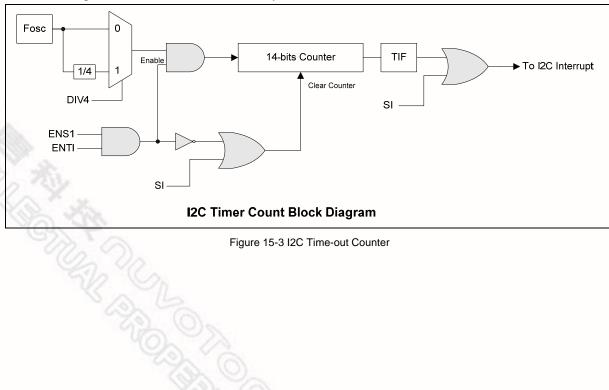
### 15.1.4 Status Register, I2STATUSx

I2STATUSx is an 8-bit read-only register. The five most significant bits contain the status code. The three least significant bits are always 0. There are 23 possible status codes. When I2STATUSx contains F8H, no serial interrupt is requested. All other I2STATUSx values correspond to defined I2C ports states. When each of these states is entered, a status interrupt is requested (SI = 1). A valid status code is present in I2STATUSx one machine cycle after SI is set by hardware and is still present one machine cycle after SI has been reset by software.

In addition, state 00H stands for a Bus Error. A Bus Error occurs when a START or STOP condition is present at an illegal position in the format frame. Examples of illegal positions are during the serial transfer of an address byte, a data byte or an acknowledge bit.

### 15.1.5 I2C Clock Baud Rate Control, I2CLKx

The data baud rate of I2C is determined by I2CLKx register when I2C port is in a master mode. In the slave modes, SIO1 will automatically synchronize with any clock frequency up to 400 KHz from master I2C device.


The data baud rate of I2C setting conforms to the following equation.

Data Baud Rate of I2C =  $F_{CPU}$  / (I2CLKx + 1), where  $F_{CPU} = F_{OSC}/4$ .

For example, if  $F_{OSC}$ =16MHz ( $F_{CPU}$ =4MHz), the I2CLK=40(28H), the baud rate =4MHz/(40+1) = 97.56K bits/sec.

#### 15.1.6 I2C Time-out Counter, I2Timerx

In W79E(L)633, the I2C logic block provides a 14-bit timer-out counter that helps user to deal with bus pending problem. When SI is cleared user can set ENTI=1 to start the time-out counter. If I2C bus hangs up too long to get any valid signal from devices on the bus, the time-out counter overflows cause TIF=1 to request an I2C interrupt. The I2C interrupt is requested in the condition of either SI=1 or TIF=1. Flags SI and TIF must be cleared by software.



Publication Release Date: Oct 07, 2010 Revision A6.0

### 15.2 Modes of Operation

The on-chip I2C ports support four operation modes, Master transmitter, Master receiver, Slave transmitter and Slave receiver.

In a given application, I2C port may operate as a master and as a slave. In the slave mode, the I2C port hardware looks for its own slave address and the general call address. If one of these addresses is detected, an interrupt is requested. When the microcontroller wishes to become the bus master, the hardware waits until the bus is free before the master mode is entered so that a possible slave action is not interrupted. If bus arbitration is lost in the master mode, I2C port switches to the slave mode immediately and can detect its own slave address in the same serial transfer.

#### 15.2.1 Master Transmitter Mode

Serial data output through SDAx while SCLx outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the data direction bit. In this case the data direction bit (R/W) will be logic 0, and we say that a "W" is transmitted. Thus the first byte transmitted is SLA+W. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an acknowledge bit is received. START and STOP conditions are output to indicate the beginning and the end of a serial transfer.

#### 15.2.2 Master Receiver Mode

In this case the data direction bit (R/W) will be logic 1, and we say that an "R" is transmitted. Thus the first byte transmitted is SLA+R. Serial data is received via SDAx while SCLx outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an acknowledge bit is transmitted. START and STOP conditions are output to indicate the beginning and end of a serial transfer.

### 15.2.3 Slave Receiver Mode

Serial data and the serial clock are received through SDAx and SCLx. After each byte is received, an acknowledge bit is transmitted. START and STOP conditions are recognized as the beginning and end of a serial transfer. Address recognition is performed by hardware after reception of the slave address and direction bit.

#### 15.2.4 Slave Transmitter Mode

The first byte is received and handled as in the slave receiver mode. However, in this mode, the direction bit will indicate that the transfer direction is reversed. Serial data is transmitted via SDAx while the serial clock is input through SCLx. START and STOP conditions are recognized as the beginning and end of a serial transfer.

#### 15.3 Data Transfer Flow in Four Operating Modes

The four operating modes are: Master/Transmitter, Master/Receiver, Slave/Transmitter and Slave/Receiver. Bits STA, STO and AA in I2CONx decide the next action the I2C port hardware will take after SI is cleared. When the next action is completed, a new status code in I2STATUSx will be updated and SI will be set by hardware in the same time. Now, the interrupt service routine is entered (if the I2C interrupt is enabled), the new status code can be used to decide which appropriate service routine the software is to branch. Data transfers in each mode are shown in the following figures.

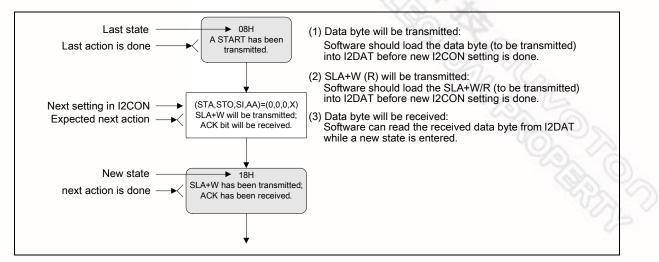
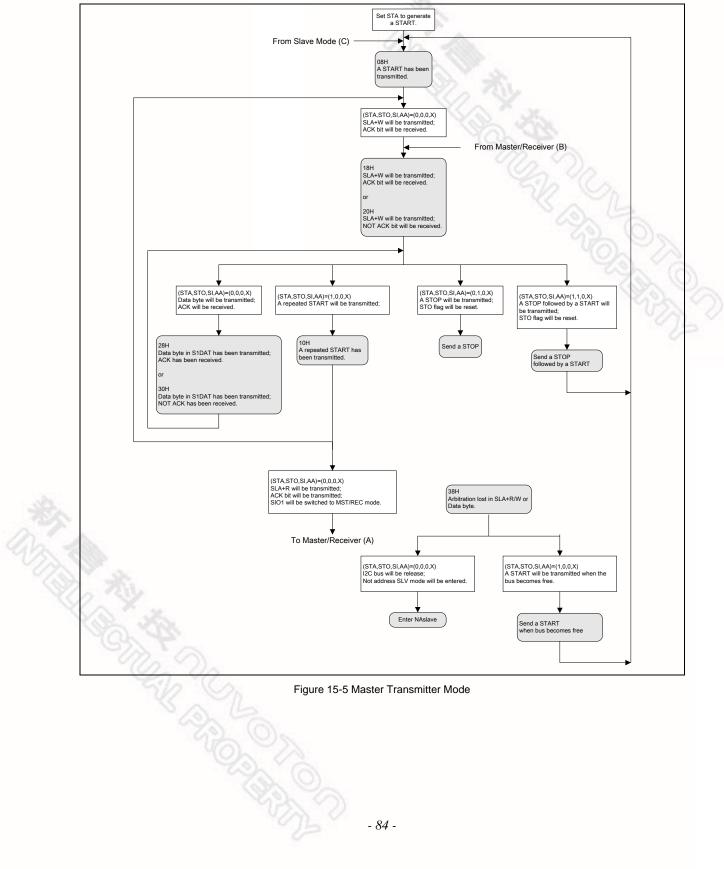




Figure 15-4 Legend for the following four figures

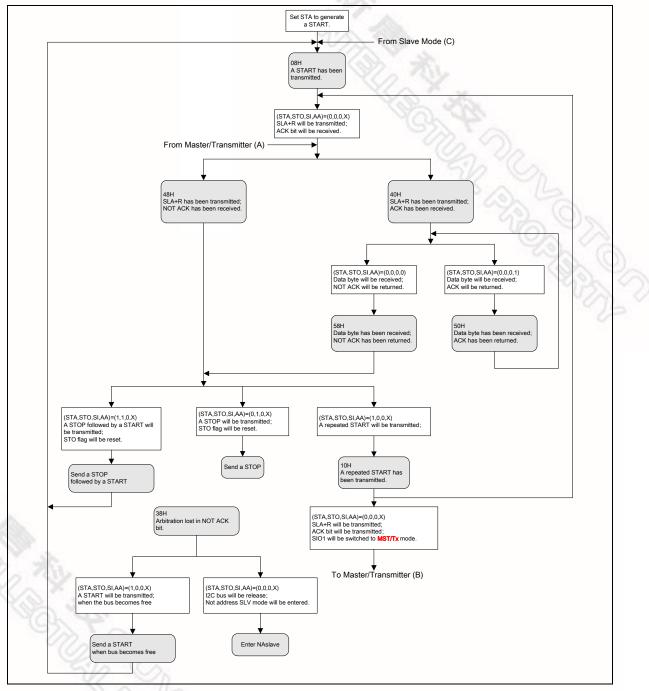
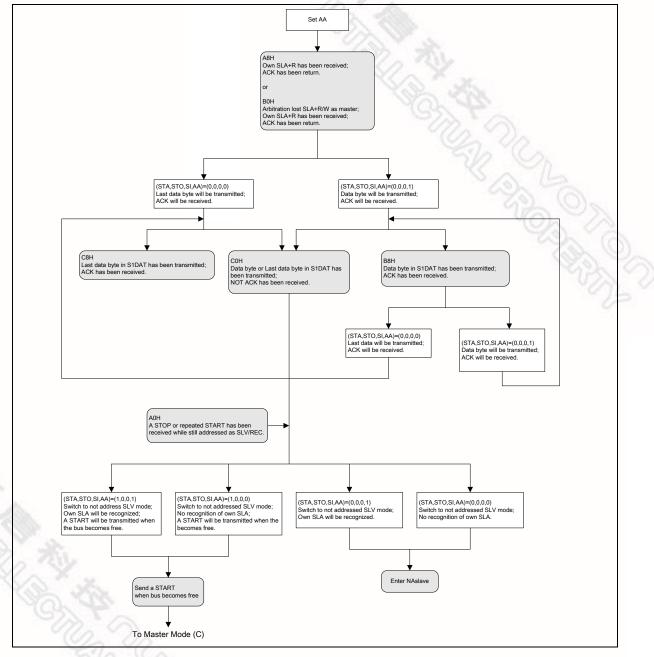
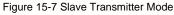


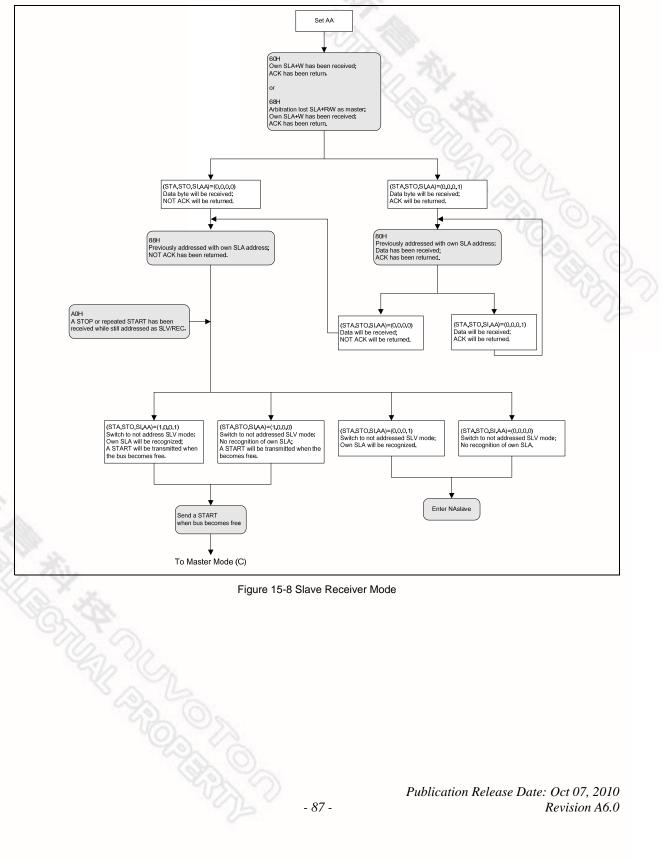
- 83 -

### 15.3.1 Master/Transmitter Mode



### 15.3.2 Master/Receiver Mode



Figure 15-6 Master Receiver Mode S I ON

### 15.3.3 Slave/Transmitter Mode





#### 15.3.4 Slave/Receiver Mode



Publication Release Date: Oct 07, 2010 Revision A6.0

#### 15.3.5 GC Mode

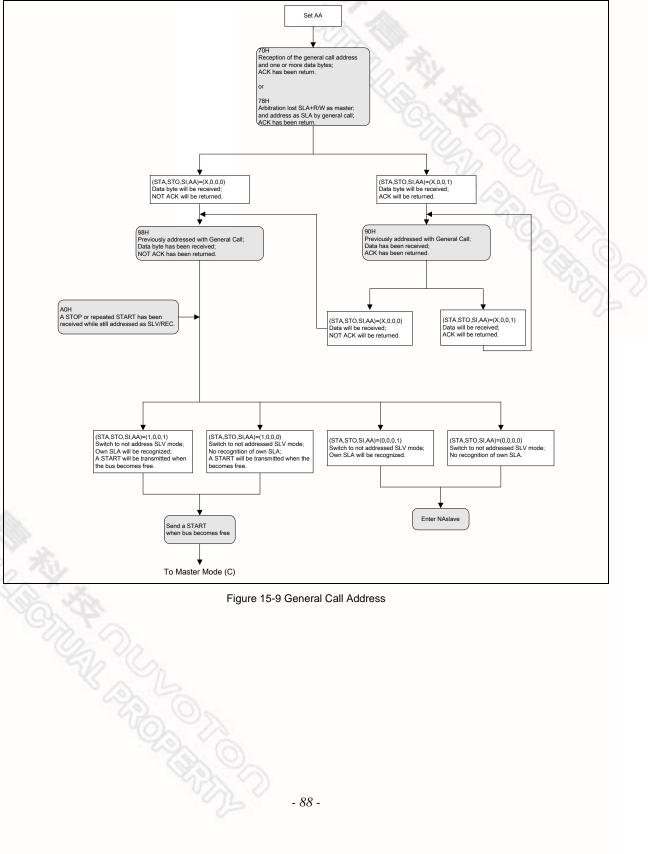
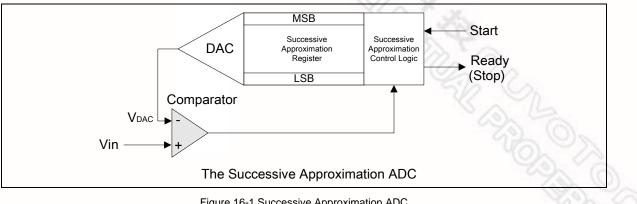




Figure 15-9 General Call Address

### 16. Analog-To-Digital Converter

The ADC contains a digital-to-analog converter (DAC) that converts the contents of a successive approximation register to a voltage ( $V_{DAC}$ ), which is compared to the analog input voltage (Vin). The output of the comparator is then fed back to the successive approximation control logic that controls the successive approximation register. This is illustrated in the figure below.



#### Figure 16-1 Successive Approximation ADC

### 16.1 Operation of ADC

The ADC circuit is enabled by ADCCEN. Control bits ADCCON.0, ADCCON.1 and ADCCON.2 are connected to an analog multiplexer that selects one of eight analog channels to convert (Vin). A conversion is initiated by setting the ADCS bit (ADDCON.3). The ADCS bit can be set by either hardware (P1.2) or software, according to the ADEX bit (ADCCON.5). If ADEX is 0, only the software can set ADCS. If ADEX is 1, the software can set ADCS, or it can be set by applying a rising edge to external pin STADC. The rising edge must consist of a low level on STADC for at least one machine cycle followed by a high level signal on STADC for at least one machine cycle, to make sure the W79E(L)633 detects both parts of the transition. The low-to-high transition on STADC is then recognized at the end of a machine cycle, and the conversion commences at the beginning of the next cycle.

The conversion takes 50 machine cycles, and the end of the conversion is flagged by ADCI (ADCCON.4). The result is a 10-bit value: the upper eight bits are stored in register ADCH, and the two LSB are stored in ADCCON, bits 7 and 6. The program may ignore the two LSB in ADCCON and use the 8-bit value in ADCH instead.

Once an ADC conversion is in progress, another ADC start (by the hardware or software) has no effect on it, but a conversion in progress is aborted if the W79E(L)633 enters power-down mode. The result of a completed conversion (once ADCI is set to 1) is unaffected in this case, however.

W79E(L)633 supports 4 analog input ports which share the I/O pins from P1.4 to P1.7. The bits ADCCH[4:0] in register ADCPS control the which mode of digital I/O mode(default) or analog input mode the above 4 I/O pins to work in.



## nuvoTon

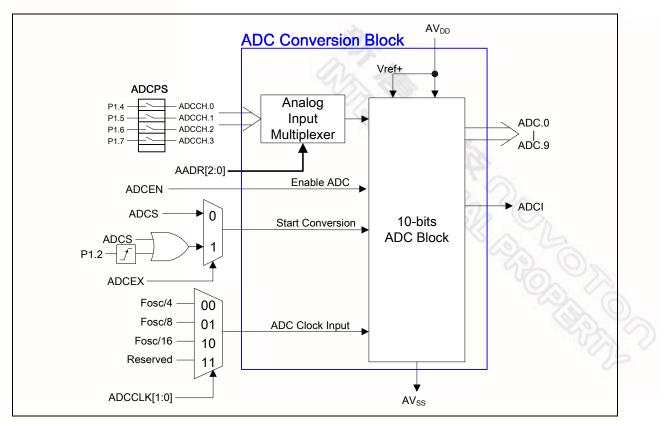
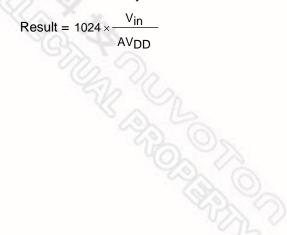




Figure 16-2 ADC Block Diagram

### 16.2 ADC Resolution and Analog Supply

The ADC circuit has its own supply pins  $AV_{DD}$  and  $AV_{SS}$ , which are connected to each end of the DAC's resistance-ladder. The ladder has 1023 equally-spaced taps, separated by a resistance of "R". The first tap is located 0.5 x R above AVss, and the last tap is located 0.5 x R below Vref+, giving a total ladder resistance of 1024 x R. This structure ensures that the DAC is monotonic and results in a symmetrical quantization error.

For input voltages between AV<sub>SS</sub> and [(AV<sub>SS</sub>) +  $\frac{1}{2}$  LSB], the 10-bit result of an A/D conversion will be 000000000B = 000H. For input voltages between [(AV<sub>DD</sub>) - 3/2 LSB] and AV<sub>DD</sub>, the result of a conversion will be 111111111B = 3FFH. The input voltage (Vin ) should be between AV<sub>DD</sub> and AV<sub>SS</sub>. The result can always be calculated from the following formula:



### **16.3 ADC Control Registers**

#### **ADC Control Register**

|                               | •                                                                                                                                                    |       |   |       |      |      |       |       |       |  |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---|-------|------|------|-------|-------|-------|--|
|                               | Bit:                                                                                                                                                 | 7     | 6 | 5     | 4    | 3    | 2     | 1     | 0     |  |
|                               |                                                                                                                                                      | ADCEN | - | ADCEX | ADCI | ADCS | AADR2 | AADR1 | AADR0 |  |
| Mnemonic: ADCCON Address: C0h |                                                                                                                                                      |       |   |       |      |      |       |       |       |  |
| ADCEN                         | Enable A/D Converter Function. Set ADCEN to logic high to enable ADC block.                                                                          |       |   |       |      |      |       |       |       |  |
| ADCEX                         | Enable external start control of ADC conversion by a rising edge from P1.2. ADCEX=0: Disable external start. ADCEX=1: Enable external start control. |       |   |       |      |      |       |       |       |  |
| ADCI                          | A/D Conve<br>completed a                                                                                                                             |       |   |       |      |      |       |       |       |  |

- ADCS A/D Converting Start. Setting this bit by software starts the conversion of the selected ADC input. ADCS remains high while ADC is converting signal and will be automatically cleared by hardware when ADC conversion is completed.
- AADR[2:0] Select and enable analog input channel from ADC0 to ADC3.

#### The ADCI and ADCS control the ADC conversion as below:

| ADCI | ADCS | ADC STATUS                                                         |  |  |  |  |  |
|------|------|--------------------------------------------------------------------|--|--|--|--|--|
| 0    | 0    | ADC not busy; A conversion can be started.                         |  |  |  |  |  |
| 0    | 1    | ADC busy; Start of a new conversion is blocked.                    |  |  |  |  |  |
| 1    | 0    | Conversion completed; Start of a new conversion requires ADCI = 0. |  |  |  |  |  |
| 1    | 1    | This is an internal temporary state that user can ignore it.       |  |  |  |  |  |

#### **ADC Converter Result Low Register**

| Bit:          | 7             | 6 | 5 | 4 | 3 | 2             | 1     | 0 |
|---------------|---------------|---|---|---|---|---------------|-------|---|
|               | ADCLK1 ADCLK0 |   | - | - | - | ADC.1         | ADC.0 |   |
| Magmania ADCI |               |   |   |   |   | م ما ما بده م |       |   |

Mnemonic: ADCL

Address: C1h

ADCLK[1:0] ADC Clock Frequency Select. The 10-bit ADC needs a clock to drive the converting that the clock frequency may not over 4MHz. ADCLK[1:0] controls the frequency of the clock to ADC block as below table.

| ADCLK1 | ADCLK0 | ADC CLOCK FREQUENCY         |  |  |  |
|--------|--------|-----------------------------|--|--|--|
| 0      | 0      | Crystal clock / 4 (Default) |  |  |  |
| 0      | 1      | Crystal clock / 8           |  |  |  |
| 1      | 0      | Crystal clock / 16          |  |  |  |
| 1      | 2100   | Reserved                    |  |  |  |

ADC[1:0] 2 LSB of 10-bit A/D conversion result. The 2 bits are read only.

# nuvoTon

### ADC Converter Result High Register

|                                                                               | Bit:          | 7                                                                                                                                                                                                                                    | 6         | 5        | 4         | 3       | 2     | 1       | 0       |
|-------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|-----------|---------|-------|---------|---------|
|                                                                               |               | ADC.9                                                                                                                                                                                                                                | ADC.8     | ADC.7    | ADC.6     | ADC.5   | ADC.4 | ADC.3   | ADC.2   |
|                                                                               | М             | nemonic: A                                                                                                                                                                                                                           |           | Addres   | s: C2h    | -       |       |         |         |
| ADC[9:2] 8 MSB of 10-bit A/D conversion result. ADCH is a read only register. |               |                                                                                                                                                                                                                                      |           |          |           |         |       |         |         |
| ADC Pin Switch                                                                |               |                                                                                                                                                                                                                                      |           |          |           |         |       |         |         |
| E                                                                             | Bit: 7        | 6                                                                                                                                                                                                                                    | 5         | 4        | 3         | 2       |       | 1       | 0       |
|                                                                               | 0             | 0                                                                                                                                                                                                                                    | 0         | 0        | ADC       | PS.3 AD | CPS.2 | ADCPS.1 | ADCPS.0 |
| Mnemonic: ADCPS Address: C6h                                                  |               |                                                                                                                                                                                                                                      |           |          |           |         |       |         |         |
| BIT                                                                           | NAME          |                                                                                                                                                                                                                                      | FUNCTION  |          |           |         |       |         |         |
| 7-4                                                                           | -             | Must be z                                                                                                                                                                                                                            | eros      |          |           |         | 0     | D.      | 50      |
| 3-0                                                                           | ADCPS.3-0     | Switch I/O pins P1.4~P1.7 to analog inputs. Analog inputs, ADC0-ADC3 which share the I/O pins from P1.4 to P1.7<br>1: The corresponding I/O pin functions as analog input.<br>0: The corresponding I/O pin functions as digital I/O. |           |          |           |         |       |         |         |
| ADCPS                                                                         | 6.3-0: Switch | P1.7~P1.4                                                                                                                                                                                                                            | 4 to anal | og input | t functio | n       |       |         | NSA.    |
|                                                                               |               |                                                                                                                                                                                                                                      |           |          |           |         |       |         |         |

| BIT     | CORRESPONDING PIN |
|---------|-------------------|
| ADCPS.0 | P1.4              |
| ADCPS.1 | P1.5              |
| ADCPS.2 | P1.6              |
| ADCPS.3 | P1.7              |

- 92 -

### **17. Timed Access Protection**

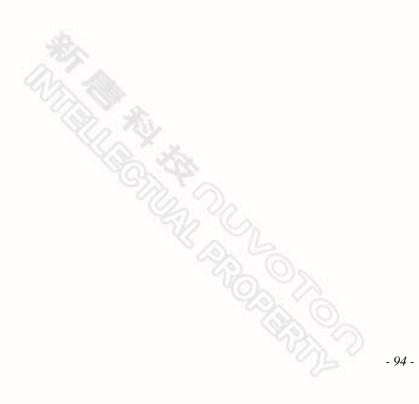
The W79E(L)633 has features like the Watchdog Timer, wait-state control signal and power-on/fail reset flag that are crucial to the proper operation of the system. If these features are unprotected, errant code may write critical control bits, resulting in incorrect operation and loss of control. To prevent this, the W79E(L)633 provides has a timed-access protection scheme that controls write access to critical bits.

In this scheme, protected bits have a timed write-enable window. A write is successful only if this window is active; otherwise, the write is discarded. The write-enable window is opened in two steps. First, the software writes AAh to the Timed Access (TA) register. This starts a counter, which expires in three machine cycles. Then, if the software writes 55h to the TA register before the counter expires, the write-enable window is opened for three machine cycles. After three machine cycles, the window automatically closes, and the procedure must be repeated again to access protected bits.

The suggested code for opening the write-enable window is

|  | TA | REG | 0C7h | ; Define new register TA, located at 0C |
|--|----|-----|------|-----------------------------------------|
|--|----|-----|------|-----------------------------------------|

- MOV TA, #0AAh
- MOV TA, #055h


Five examples, some correct and some incorrect, of using timed-access protection are shown below. Example 1: Valid access

| ·               | MOV       | TA, #0AAh    |        | 3 M/C | ; Note: M/C = Machine Cycles |
|-----------------|-----------|--------------|--------|-------|------------------------------|
|                 | MOV       | TA, #055h    |        | 3 M/C |                              |
|                 | MOV       | WDCON, #00h  |        | 3 M/C |                              |
| Example 2: Val  | id acces  | S            |        |       |                              |
|                 | MOV       | TA, #0AAh    |        | 3 M/C |                              |
|                 | MOV       | TA, #055h    |        | 3 M/C |                              |
|                 | NOP       | ,            |        | 1 M/C |                              |
|                 | SETB      | EWT          |        | 2 M/C |                              |
| Example 3: Val  | id acces  | S            |        |       |                              |
| MOV             | TA, #04   |              | 3 M/C  |       |                              |
| MOV             | TA, #055h |              | 3 M/C  |       |                              |
|                 | ORL       | WDCON, #0000 | 00010B | 3M/C  |                              |
| Example 4: Inva | alid acce | SS           |        |       |                              |
| SP .            | MOV       | TA, #0AAh    |        | 3 M/C |                              |
|                 | MOV       | TA, #055h    |        | 3 M/C |                              |
|                 | NOP       |              |        | 1 M/C |                              |
|                 | NOP       |              |        | 1 M/C |                              |
|                 | CLR       | POR          |        | 2 M/C |                              |
| Example 5: Inva | alid Acce | ess          |        |       |                              |
|                 | MOV       | TA, #0AAh    |        | 3 M/C |                              |
|                 | NOP       |              |        | 1 M/C |                              |
|                 | MOV       | TA, #055h    |        | 3 M/C |                              |
|                 | SETB      | EWT          |        | 2 M/C |                              |
|                 |           |              |        |       |                              |

In the first three examples, the protected bits are written before the window closes. In Example 4, however, the write occurs after the window has closed, so there is no change in the protected bit. In



Example 5, the second write to TA occurs four machine cycles after the first write, so the timed access window in not opened at all, and the write to the protected bit fails.



### 18. PORT 4 Structure

Port 4 is a multi-function port that performs general purpose I/O port and chip-select strobe signals including read strobe, write strobe and read/write strobe signals. The 4 alternate modes are selected by P4xM1 and P4xM0. The function of chip-select strobe output provides that user can activate external devices by access to some specific address region.

#### Port 4 Control Register A

| Bit: | 7         | 6     | 5     | 4     | 3     | 2     | 1          | 0     |
|------|-----------|-------|-------|-------|-------|-------|------------|-------|
|      | P41M1     | P41M0 | P41C1 | P41C0 | P40M1 | P40M0 | P40C1      | P40C0 |
| Mn   | emonic: F | 4CONA |       |       | 0     | Co. 1 | Address: 9 | )2h   |

#### Port 4 Control Register B

| Bit: | 7         | 6     | 5     | 4     | 3     | 2     | 1 1        | 0     |
|------|-----------|-------|-------|-------|-------|-------|------------|-------|
|      | P43M1     | P43M0 | P43C1 | P43C0 | P42M1 | P42M0 | P42C1      | P42C0 |
| Mn   | emonic: F | 4CONB |       |       |       | ŀ     | Address: 9 | 93h   |

| BIT NAME     | FUNCTION                                                                                                                                         |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Port 4 alternate modes.                                                                                                                          |
|              | =00: Mode 0. P4.x is a general purpose I/O port which is the same as Port 1.                                                                     |
| P4xM1, P4xM0 | =01: Mode 1. P4.x is a Read Strobe signal for chip select purpose. The address range depends on the SFR P4xAH, P4xAL and bits P4xC1, P4xC0.      |
|              | =10: Mode 2. P4.x is a Write Strobe signal for chip select purpose. The address range depends on the SFR P4xAH, P4xAL and bits P4xC1, P4xC0.     |
|              | =11: Mode 3. P4.x is a Read/Write Strobe signal for chip select purpose. The address range depends on the SFR P4xAH, P4xAL and bits P4xC1, P4xC0 |
|              | Port 4 Chip-select Mode address comparison:                                                                                                      |
|              | =00: Compare the full address (16 bits length) with the base address registers P4xAH and P4xAL.                                                  |
| P4xC1, P4xC0 | =01: Compare the 15 high bits (A15-A1) of address bus with the base address registers P4xAH and P4xAL.                                           |
|              | =10: Compare the 14 high bits (A15-A2) of address bus with the base address registers P4xAH and P4xAL.                                           |
|              | =11: Compare the 8 high bits (A15-A8) of address bus with the base address registers P4xAH and P4xAL.                                            |

#### P40AH, P40AL:

The Base address register for comparator of P4.0. P40AH contains the high-order byte of address, P40AL contains the low-order byte of address.

#### P41AH,P41AL:

The Base address register for comparator of P4.1. P41AH contains the high-order byte of address, P41AL contains the low-order byte of address.

P42AH, P42AL;

The Base address register for comparator of P4.2. P42AH contains the high-order byte of address, P42AL contains the low-order byte of address.

# nuvoTon

#### P43AH, P43AL:

The Base address register for comparator of P4.3. P43AH contains the high-order byte of address, P43AL contains the low-order byte of address.

#### PORT 4

| Bit:      | 7         | 6           | 5      | 4          | 3    | 2    | 1    | 0    |  |
|-----------|-----------|-------------|--------|------------|------|------|------|------|--|
|           | -         | -           | -      | - 78       | P4.3 | P4.2 | P4.1 | P4.0 |  |
|           | Mnemor    | Addres      | s: A5h |            |      |      |      |      |  |
| Dort 1 io | a hi dira | ational I/O |        | internal r |      |      |      |      |  |

P4.3-0 Port 4 is a bi-directional I/O port with internal pull-ups.

#### Port 4 Chip-select Polarity

|        | Bit:                                                                                                                | 7      | 6         | 5      | 4      | 3      | 2      | 100   | 0 |
|--------|---------------------------------------------------------------------------------------------------------------------|--------|-----------|--------|--------|--------|--------|-------|---|
|        |                                                                                                                     | P43INV | P42INV    | P42INV | P40INV | -      | PWDNH  | RMWFP | - |
|        | -                                                                                                                   | Mnemo  | nic: P4CS |        |        | Addres | s: A2h | 2     |   |
| P4xINV | 24xINV The active polarity of P4.x when it is set as a chip-select strobe output. High =<br>High. Low = Active Low. |        |           |        |        |        |        |       |   |

PWDNH Set PWDNH to logic 1 then ALE and PSEN will keep high state, clear this bit to logic 0 then ALE and PSEN will output low during power down mode.

RMWFP Control Read Path of Instruction "Read-Modify-Write". When this bit is set, the read path of executing "read-modify-write" instruction is from port pin otherwise from SFR.



# nuvoTon

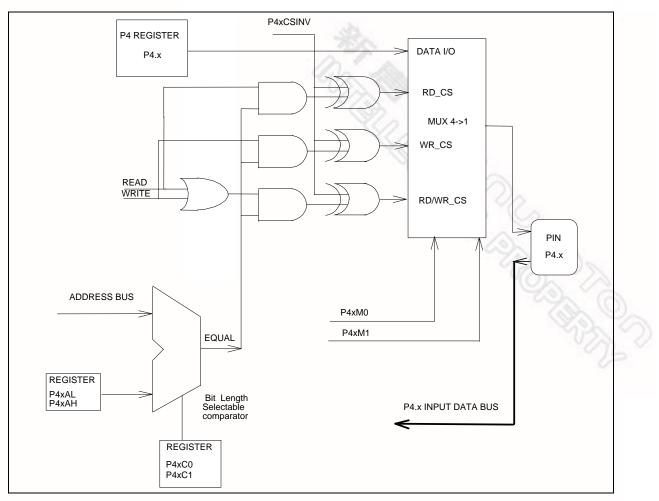



Figure 18-1 Port 4 Structure Diagram

Here is an example to program the P4.0 as a write strobe signal at the I/O port address 1234H ~1237H and positive polarity, and P4.1 ~ P4.3 are used as general I/O ports.

P40AH,#12H MOV

MOV P40AL,#34H ;Define the base I/O address 1234H for P4.0 as an special function MOV P4CONA,#00001010B ;Define the P4.0 as a write strobe signal pin and the compared address is [A15:A2] MOV

P4CONB,#00H ;P4.1~P4.3 as general I/O port which are the same as PORT1

MOV P4CSIN,#10H ;Write the P40CSINV =1 to inverse the P4.0 write strobe polarity

Then any instruction writes data to address from 1234H to 1237H, for example MOVX @DPTR,A (with DPTR=1234H~1237H), will generate the positive polarity write strobe signal at pin P4.0. And the instruction of "MOV P4,#XX" will output the bit3 to bit1 of data #XX to pin P4.3~ P4.1.

- 97 -

### 19. H/W Reboot Mode (Boot From 4k Bytes Of LDFLASH)

The W79E(L)633 boots from APFlash program by default at the external reset. On some occasions, for example to re-program APFlash in system, user can force W79E(L)633 to boot from the LDFlash program (4K bytes) at the external reset. Pull both P2.7 and P2.6 or P4.3 which are controlled by option bit4 and bit5 to logic low at the external reset state will force W79E(L)633 to reboot from LDFlash ROM. The setting is shown as below. It is necessary to add 10K pull-high resistors on P2.6, P2.7 and P4.3 pins.

Table 19-1 Reboot Mode

| OPTION BITS | RST | P4.3 | P2.7 | P2.6 | MODE   |
|-------------|-----|------|------|------|--------|
| Bit4 L      | H↓  | Х    | L    | L    | REBOOT |
| Bit5 L      | H↓  | L    | Х    | Х    | REBOOT |

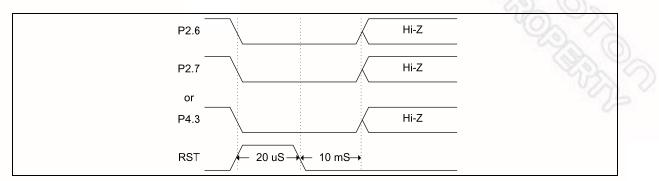


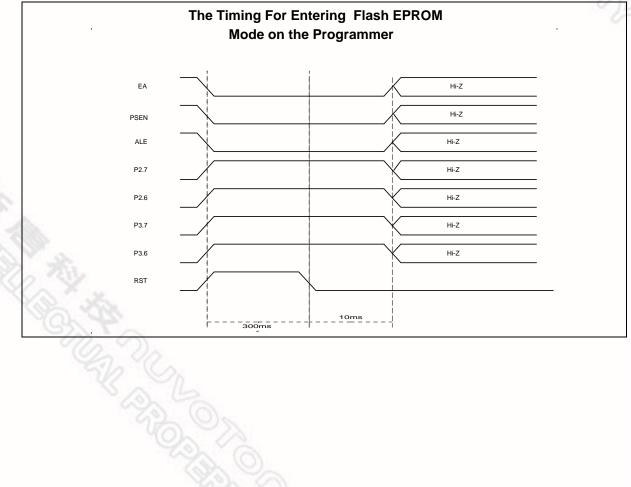

Figure 19-1 Timing of Entering Re-Boot Mode

#### Notes:

- 1. The possible situation that user need to enter REBOOT mode is when the APFlash program can not run normally and W79E(L)633 can not jump to LDFlash to execute on chip programming function. Then user can use this REBOOT mode to force the CPU to jump to LDFlash and run on chip programming procedure. On the system board, user can connect the pins P26, P27 to switches or jumpers. For example in a CD ROM system, user can connect the P26 and P27 to PLAY and EJECT buttons on the panel. When the APFlash program is fail to execute the normal application program. User can press both two buttons at the same time and then switch on the power of the personal computer to force the W79E(L)633 to enter the REBOOT mode. After power on of personal computer, user can release both PLAY and EJECT buttons and run the on chip programming procedure to re-program the application code to the APFlash. Then user can back to normal condition of CD ROM.
- 2: In application system design, user must take care the P4.3, P2, P3, ALE, /EA and /PSEN pin value at reset to avoid W79E(L)633 entering the programming mode or REBOOT mode in normal operation.

### 20. In-System Programming

#### 20.1 The Loader Program Locates at LDFlash Memory


CPU is Free Run at APFlash memory. CHPCON register had been set #03H value before CPU has entered idle state. CPU will switch to LDFlash memory and execute a reset action. H/W reboot mode will switch to LDFlash memory, too. Set SFRCN register where it locates at user's loader program to update APFlash bank 0 or bank 1 memory. Set a SWRESET (CHPCON=#83H) to switch back APFlash after CPU has updated APFlash program. CPU will restart to run program from reset state.

### 20.2 The Loader Program Locates at APFlash Memory

CPU is Free Run at APFlash memory. CHPCON register had been set #01H value before CPU has entered idle state. Set SFRCN register to update LDFlash or another bank of APFlash program. CPU will continue to run user's APFlash program after CPU has updated program. Please refer demonstrative code to understand other detail description.

### 21. H/W Writer Mode

This mode is for the writer to write / read Flash EPROM operation. A general user may not enter this mode.



Publication Release Date: Oct 07, 2010 Revision A6.0

### 22. Security Bits

During the on-chip FLASH EPROM programming mode, the FLASH EPROM can be programmed and verified repeatedly. And the program code can be protected by setting security bits. The protection of FLASH EPROM and those operations on it are described below.

The W79E(L)633 has several Special Setting Registers, including the Security Register and Company/Device ID Registers, which can not be accessed in programming mode. Those bits of the Security bits can not be changed once they have been programmed from high to low. They can only be reset to the default value FFh through "Erase-All" operation. The contents of the Company ID and Device ID registers have been set in factory.

If user doesn't need ISP function, do not fill "FFh" code in LD Flash memory. The writer always writes both AP and LD flash in a completed program procedure.

| Table 2 | 2-1 Security Bits                                                                                        |         |
|---------|----------------------------------------------------------------------------------------------------------|---------|
| BIT     | DESCRIPTION                                                                                              | and the |
| B0      | =0: Lock data out                                                                                        | 32 00   |
| B1      | =0: MOVC Inhibited                                                                                       | (O)~~/~ |
| B2      | Reserved                                                                                                 | 2.9 C   |
| B3      | Reserved                                                                                                 | Q.S.    |
| B4      | <ul><li>=1: Disable H/W reboot by P2.6 and P2.7</li><li>=0: Enable H/W reboot by P2.6 and P2.7</li></ul> | 200     |
| B5      | =1: Disable H/W reboot by P4.3<br>=0: Enable H/W reboot by P4.3                                          | č.      |
| B6      | Reserved                                                                                                 |         |
| B7      | =1: Crystal > 24MHz<br>=0: Crystal < 24MHz                                                               |         |
|         | al hit                                                                                                   |         |

#### B0: Lock bit

This bit is used to protect the customer's program code in the W79E(L)633. After the programmer finishes the programming and verifies sequence B0 can be cleared to logic 0 to protect code from reading by any access path. Once this bit is set to logic 0, both the Flash EPROM data and Special Setting Registers can not be accessed again.

### B1: MOVC Inhibit

This bit is used to restrict the accessible region of the MOVC instruction. It can prevent the MOVC instruction in external program memory from reading the internal program code. When this bit is set to logic 0, a MOVC instruction in external program memory space will be able to access code only in the external memory, not in the internal memory. A MOVC instruction in internal program memory space will always be able to access the ROM data in both internal and external memory. If this bit is logic 1, there are no restrictions on the MOVC instruction.

#### B4: H/W Reboot with P2.6 and P2.7

If this bit is set to logic 0, enable to reboot 4k LD Flash mode while RST =H, P2.6 = L and P2.7 = L state. CPU will start from LD Flash to update the user's program.

### B5: H/W Reboot with P4.3

If this bit is set to logic 0, enable to reboot 4k LD Flash mode while RST =H and P4.3 = L state. CPU will start from LD Flash to update the user's program

#### B7: Select clock frequency.

If clock frequency is over 24MHz, then set this bit is H. If clock frequency is less than 24MHz, then clear this bit.

### 23. Electrical Characteristics

### 23.1 Absolute Maximum Ratings

| SYMBOL                | PARAMETER                       | CONDITION            | RATING               | UNIT |
|-----------------------|---------------------------------|----------------------|----------------------|------|
| DC Power Supply       | $V_{\text{DD}} - V_{\text{SS}}$ | -0.3                 | +7.0                 | V    |
| Input Voltage         | V <sub>IN</sub>                 | V <sub>SS</sub> -0.3 | V <sub>DD</sub> +0.3 | V    |
| Operating Temperature | T <sub>A</sub>                  | 0                    | +70                  | °C   |
| Storage Temperature   | T <sub>st</sub>                 | -55                  | +150                 | °C   |

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

### 23.2 DC Characteristics

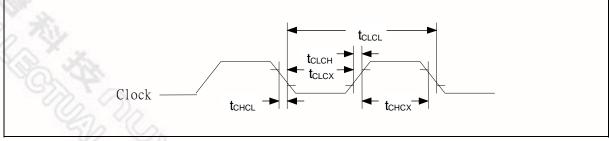
| ( | (Vpp – | Vss = | 5V +10%.  | $TA = 25^{\circ}C$ | Fosc = | = 20 MHz. | unless   | otherwise s | pecified.) |
|---|--------|-------|-----------|--------------------|--------|-----------|----------|-------------|------------|
|   |        | • 00  | 0 10 / 0, |                    | ,      | ,         | 01110000 | 011011100 0 | poonioar   |

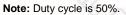
|  | PARAMETER                                                | SYMBOL                          | S          | PECIFICATIO          | TEST CONDITIONS |                                                          |
|--|----------------------------------------------------------|---------------------------------|------------|----------------------|-----------------|----------------------------------------------------------|
|  | TANAMETER                                                | STWIDOL                         | MIN.       | MAX.                 | UNIT            | TEST CONDITIONS                                          |
|  | Operating Voltage                                        | V <sub>DD</sub>                 | 4.5<br>3.0 | 5.5<br>4.5           | V               | For W79E633 version<br>For W79L633 version               |
|  | Operating Current                                        | I <sub>DD</sub>                 | -          | 30                   | mA              | No load<br>$V_{DD} = RST = 5.5V$                         |
|  | Idle Current                                             | I <sub>IDLE</sub>               | -          | 24                   | mA              | Idle mode<br>$V_{DD} = 5.5V$                             |
|  | Power Down Current                                       | I <sub>PWDN</sub>               | -          | 10                   | μA              | Power-down mode $V_{DD} = 5.5V$                          |
|  | Input Current<br>P0, P1, P2, P3, P4                      | I <sub>IN1</sub>                | -50        | +10                  | μA              | $V_{DD} = 5.5V$<br>$V_{IN} = 0V$ or VDD                  |
|  | Input Current RST <sup>[*1]</sup>                        | I <sub>IN2</sub>                | -          | 100                  | μA              | $V_{DD} = 5.5V$<br>0< $V_{IN}$ <vdd< td=""></vdd<>       |
|  | Input Leakage Current                                    | I <sub>LK</sub>                 | -10        | +10                  | μA              | $V_{DD} = 5.5V$<br>0V <v<sub>IN<v<sub>DD</v<sub></v<sub> |
|  | Logic 1 to 0 Transition<br>Current P0, P1, P2, P3,<br>P4 | I <sub>TL</sub> <sup>[*4]</sup> | -500       | -200                 | μA              | $V_{DD} = 5.5V$<br>$V_{IN} = 2.0V$                       |
|  | Input Low Voltage<br>P0, P1, P2, P3, P4 EA               | V <sub>IL1</sub>                | 0          | 0.8                  | V               | V <sub>DD</sub> = 4.5V                                   |
|  | Input Low Voltage<br>RST <sup>[*1]</sup>                 | V <sub>IL2</sub>                | 0          | 0.8                  | V               | V <sub>DD</sub> = 4.5V                                   |
|  | Input Low Voltage<br>XTAL1 <sup>[*3]</sup>               | V <sub>IL3</sub>                | 0          | 0.8                  | V               | V <sub>DD</sub> = 4.5V                                   |
|  | Input High Voltage<br>P0, P1, P2, P3, P4, EA             | V <sub>IH1</sub>                | 2.4        | V <sub>DD</sub> +0.2 | V               | V <sub>DD</sub> = 5.5V                                   |
|  | Input High Voltage RST                                   | V <sub>IH2</sub>                | 3.5        | V <sub>DD</sub> +0.2 | V               | V <sub>DD</sub> = 5.5V                                   |

#### DC Characteristics, continued

| PARAMETER                                               | SYMBOL           | S    | PECIFICATIO          | ON   | TEST CONDITIONS             |
|---------------------------------------------------------|------------------|------|----------------------|------|-----------------------------|
| FARAMETER                                               | STMBUL           | MIN. | MAX.                 | UNIT |                             |
| Input High Voltage<br>XTAL1 <sup>[*3]</sup>             | V <sub>IH3</sub> | 3.5  | V <sub>DD</sub> +0.2 | V    | V <sub>DD</sub> = 5.5V      |
| Sink current<br>P1, P3, P4                              | lsk1             | 4    | 8                    | mA   | VDD =4.5V<br>Vs = 0.45V     |
| Sink current<br>P0,P2, ALE, PSEN                        | lsk2             | 10   | 14                   | mA   | VDD =4.5V<br>Vol = 0.45V    |
| Source current<br>P1, P3, P4                            | lsr1             | -180 | -360                 | uA   | VDD =4.5V<br>Vol = 2.4V     |
| Source current<br>P0, P2, ALE, PSEN                     | lsr2             | -10  | -14                  | mA   | VDD =4.5V<br>Vol = 2.4V     |
| Output Low Voltage<br>P1, P3, P4                        | VOL1             | -    | 0.45                 | V    | VDD = 4.5V<br>IOL = +6 mA   |
| Output Low Voltage<br>P0, P2, ALE, PSEN <sup>[*2]</sup> | VOL2             | -    | 0.45                 | V    | VDD = 4.5V<br>IOL = +10 mA  |
| Output High Voltage<br>P1, P3, P4                       | VOH1             | 2.4  | -                    | V    | VDD = 4.5V<br>ΙΟΗ = -180 μΑ |
| Output High Voltage<br>P0, P2, ALE, PSEN [*2]           | VOH2             | 2.4  | -                    | V    | VDD = 4.5V<br>IOH = -10mA   |

#### Notes:


\*1. RST pin is a Schmitt trigger input.


\*2. P0, ALE and  $\overrightarrow{PSEN}$  are tested in the external access mode.

\*3. XTAL1 is a CMOS input.

\*4. Pins of P0, P1, P2, P3, P4 can source a transition current when they are being externally driven from 1 to 0. The transition current reaches its maximum value when VIN approximates to 2V.

### 23.3 AC Characteristics





### 23.3.1 External Clock Characteristics

| PARAMETER       | SYMBOL            | MIN. | TYP. | MAX. | UNITS | NOTES |
|-----------------|-------------------|------|------|------|-------|-------|
| Clock High Time | t <sub>CHCX</sub> | 12   |      | -    | nS    |       |
| Clock Low Time  | t <sub>CLCX</sub> | 12   |      | ×.   | nS    |       |
| Clock Rise Time | t <sub>CLCH</sub> | -    |      | 10   | nS    |       |
| Clock Fall Time | t <sub>CHCL</sub> | -    |      | 10   | nS    |       |

#### 23.3.2 AC Specification

 $(V_{DD} - V_{SS} = 5V \pm 10\%, TA = 25^{\circ}C, Fosc = 20 MHz, unless otherwise specified.)$ 

|      | PARAMETER                                 | SYMBOL              | VARIABLE<br>CLOCK<br>MIN. | VARIABLE<br>CLOCK<br>MAX. | UNITS |
|------|-------------------------------------------|---------------------|---------------------------|---------------------------|-------|
|      | Oscillator Frequency                      | 1/t <sub>CLCL</sub> | 0                         | 40 <sup>1</sup>           | MHz   |
|      | Oscillator Frequency                      | 1/t <sub>CLCL</sub> | 0                         | 33 <sup>2</sup>           | MHz   |
|      | ALE Pulse Width                           | t <sub>LHLL</sub>   | 1.5t <sub>CLCL</sub> - 5  |                           | nS    |
|      | Address Valid to ALE Low                  | t <sub>AVLL</sub>   | 0.5t <sub>CLCL</sub> - 5  |                           | nS    |
|      | Address Hold After ALE Low                | t <sub>LLAX1</sub>  | 0.5t <sub>CLCL</sub> - 5  |                           | nS    |
|      | Address Hold After ALE Low for MOVX Write | t <sub>LLAX2</sub>  | 0.5t <sub>CLCL</sub> - 5  |                           | nS    |
|      | ALE Low to Valid Instruction In           | t <sub>LLIV</sub>   |                           | 2.5t <sub>CLCL</sub> - 20 | nS    |
|      | ALE Low to PSEN Low                       | t <sub>LLPL</sub>   | 0.5t <sub>CLCL</sub> - 5  |                           | nS    |
|      | PSEN Pulse Width                          | t <sub>PLPH</sub>   | 2.0t <sub>CLCL</sub> - 5  |                           | nS    |
|      | PSEN Low to Valid Instruction In          | t <sub>PLIV</sub>   |                           | 2.0t <sub>CLCL</sub> - 20 | nS    |
| 8.   | Input Instruction Hold After PSEN         | t <sub>PXIX</sub>   | 0                         |                           | nS    |
| ~    | Input Instruction Float After PSEN        | t <sub>PXIZ</sub>   |                           | t <sub>CLCL</sub> - 5     | nS    |
| 1    | Port 0 Address to Valid Instr. In         | t <sub>AVIV1</sub>  |                           | 3.0t <sub>CLCL</sub> - 20 | nS    |
|      | Port 2 Address to Valid Instr. In         | t <sub>AVIV2</sub>  |                           | 3.5t <sub>CLCL</sub> - 20 | nS    |
| SZ - | PSEN Low to Address Float                 | t <sub>PLAZ</sub>   | 0                         |                           | nS    |
| X    | Data Hold After Read                      | t <sub>RHDX</sub>   | 0                         |                           | nS    |
|      | Data Float After Read                     | t <sub>RHDZ</sub>   |                           | t <sub>CLCL</sub> - 5     | nS    |
|      | RD Low to Address Float                   | t <sub>RLAZ</sub>   |                           | 0.5t <sub>CLCL</sub> - 5  | nS    |

Note: 1. CPU executes the program stored in the internal APFlash at  $V_{DD}$ =5.0V 2. CPU executes the program stored in the external memory at  $V_{DD}$ =5.0V

| PARAMETER                                                   | SYMBOL             | VARIABLE<br>CLOCK<br>MIN.                            | VARIABLE<br>CLOCK<br>MAX.                                                     | UNITS | STRECH                         |
|-------------------------------------------------------------|--------------------|------------------------------------------------------|-------------------------------------------------------------------------------|-------|--------------------------------|
| Data Access ALE Pulse<br>Width                              | t <sub>LLHL2</sub> | 1.5t <sub>CLCL</sub> - 5<br>2.0t <sub>CLCL</sub> - 5 |                                                                               | nS    | $t_{MCS} = 0$ $t_{MCS} > 0$    |
| Address Hold After ALE Low for MOVX write                   | t <sub>LLAX2</sub> | 0.5t <sub>CLCL</sub> - 5                             | 1 Contra                                                                      | nS    |                                |
| RD Pulse Width                                              | t <sub>RLRH</sub>  | 2.0t <sub>CLCL</sub> - 5<br>t <sub>MCS</sub> - 10    | S. Con                                                                        | nS    | $t_{MCS} = 0$ $t_{MCS} > 0$    |
| WR Pulse Width                                              | t <sub>WLWH</sub>  | 2.0t <sub>CLCL</sub> - 5<br>t <sub>MCS</sub> - 10    | 255                                                                           | nS    | $t_{MCS} = 0$ $t_{MCS} > 0$    |
| RD Low to Valid Data In                                     | t <sub>RLDV</sub>  |                                                      | 2.0t <sub>CLCL</sub> - 20<br>t <sub>MCS</sub> - 20                            | nS    | $t_{MCS} = 0$ $t_{MCS} > 0$    |
| Data Hold after Read                                        | t <sub>RHDX</sub>  | 0                                                    |                                                                               | nS    | 6.9                            |
| Data Float after Read                                       | t <sub>RHDZ</sub>  |                                                      | t <sub>CLCL</sub> - 5<br>2.0t <sub>CLCL</sub> - 5                             | nS    | $t_{MCS} = 0$ $t_{MCS} > 0$    |
| ALE Low to Valid Data In                                    | t <sub>LLDV</sub>  |                                                      | $\begin{array}{c} 2.5t_{CLCL} - 5 \\ t_{MCS} + 2t_{CLCL} - \\ 40 \end{array}$ | nS    | $t_{MCS} = 0$ $t_{MCS} > 0$    |
| Port 0 Address to Valid Data<br>In                          | t <sub>AVDV1</sub> |                                                      | 3.0t <sub>CLCL</sub> - 20<br>2.0t <sub>CLCL</sub> - 5                         | nS    | $t_{MCS} = 0$ $t_{MCS} > 0$    |
| ALE Low to RD or WR Low                                     | t <sub>LLWL</sub>  | 0.5t <sub>CLCL</sub> - 5<br>1.5t <sub>CLCL</sub> - 5 | 0.5t <sub>CLCL</sub> + 5<br>1.5t <sub>CLCL</sub> + 5                          | nS    | $t_{MCS} = 0$ $t_{MCS} > 0$    |
| Port 0 Address to RD or WR<br>Low                           | t <sub>AVWL</sub>  | t <sub>CLCL</sub> - 5<br>2.0t <sub>CLCL</sub> - 5    |                                                                               | nS    | $t_{MCS} = 0$ $t_{MCS} > 0$    |
| Port 2 Address to $\overline{RD}$ or $\overline{WR}$<br>Low | t <sub>AVWL2</sub> | 1.5t <sub>CLCL</sub> - 5<br>2.5t <sub>CLCL</sub> - 5 |                                                                               | nS    | $t_{MCS} = 0$<br>$t_{MCS} > 0$ |
| Data Valid to WR Transition                                 | t <sub>QVWX</sub>  | -5<br>1.0t <sub>CLCL</sub> - 5                       |                                                                               | nS    | $t_{MCS} = 0$ $t_{MCS} > 0$    |
| Data Hold after Write                                       | t <sub>WHQX</sub>  | t <sub>CLCL</sub> - 5<br>2.0t <sub>CLCL</sub> - 5    |                                                                               | nS    | $t_{MCS} = 0$ $t_{MCS} > 0$    |
| RD Low to Address Float                                     | t <sub>RLAZ</sub>  |                                                      | 0.5t <sub>CLCL</sub> - 5                                                      | nS    |                                |
| RD or WR high to ALE high                                   | t <sub>WHLH</sub>  | 0<br>1.0t <sub>CLCL</sub> - 5                        | 10<br>1.0t <sub>CLCL</sub> + 5                                                | nS    | $t_{MCS} = 0$<br>$t_{MCS} > 0$ |

### 23.3.3 MOVX Characteristics Using Stretch Memory Cycle

Note:  $t_{MCS}$  is a time period related to the Stretch memory cycle selection. The following table shows the time period of  $t_{MCS}$  for each selection of the Stretch value.

# nuvoTon

| M2 | M1 | MO | MOVX CYCLES      | T <sub>MCS</sub>     |
|----|----|----|------------------|----------------------|
| 0  | 0  | 0  | 2 machine cycles | 0                    |
| 0  | 0  | 1  | 3 machine cycles | 4 t <sub>CLCL</sub>  |
| 0  | 1  | 0  | 4 machine cycles | 8 t <sub>CLCL</sub>  |
| 0  | 1  | 1  | 5 machine cycles | 12 t <sub>CLCL</sub> |
| 1  | 0  | 0  | 6 machine cycles | 16 t <sub>CLCL</sub> |
| 1  | 0  | 1  | 7 machine cycles | 20 t <sub>CLCL</sub> |
| 1  | 1  | 0  | 8 machine cycles | 24 t <sub>CLCL</sub> |
| 1  | 1  | 1  | 9 machine cycles | 28 t <sub>CLCL</sub> |

Explanation of Logics Symbols

In order to maintain compatibility with the original 8051 family, this device specifies the same parameter for each device, using the same symbols. The explanation of the symbols is as follows.

| t | Time                    | А | Address         |
|---|-------------------------|---|-----------------|
| С | Clock                   | D | Input Data      |
| Н | Logic level high        | L | Logic level low |
| I | Instruction             | Р | PSEN            |
| Q | Output Data             | R | RD signal       |
| V | Valid                   | W | WR signal       |
| Х | No longer a valid state | Z | Tri-state       |

### 23.4 The ADC Converter DC ELECTRICAL CHARACTERISTICS

( $V_{DD}-V_{SS} = 3.0 \sim 5V \pm 10\%$ ,  $T_A = -40 \sim 85^{\circ}C$ , Fosc = 20MHz, unless otherwise specified.)

| PARAMETER                  | SYMBOL         | SPECIFICATION                     |                      |      | TEST CONDITIONS            |  |
|----------------------------|----------------|-----------------------------------|----------------------|------|----------------------------|--|
|                            | STMBOL         | MIN.                              | MAX.                 | UNIT | TEST CONDITIONS            |  |
| Analog input               | AVin           | V <sub>SS</sub> -0.2              | V <sub>DD</sub> +0.2 | V    |                            |  |
| ADC clock                  | ADCCLK         | 200KHz                            | 5MHz                 | Hz   | ADC circuit input<br>clock |  |
| Conversion time            | t <sub>C</sub> | 52t <sub>ADC</sub> <sup>[1]</sup> |                      | us   |                            |  |
| Differential non-linearity | DNL            | -1                                | +1                   | LSB  |                            |  |
| Integral non-linearity     | INL            | -2                                | +2                   | LSB  | Fosc=20MHz                 |  |
| integral non-intearity     |                | -5                                | +5                   | LSB  | Fosc=40MHz                 |  |
| Offset error               | Ofe            | -1.5                              | +1.5                 | LSB  | Fosc=20MHz                 |  |
| Oliset endi                | Ole            | -2.5                              | +2.5                 | LSB  | Fosc=40MHz                 |  |
| Gain error                 | Ge             | -1                                | +1                   | %    |                            |  |
| Abaaluta valtaga arror     | Ae             | -5                                | +5                   | LSB  | Fosc=20MHz                 |  |
| Absolute voltage error     | Ae             | -11                               | +11                  | LSB  | Fosc=40MHz                 |  |

**Notes:** 1.  $t_{ADC}$ : The period time of ADC input clock.

| DADAMETER                                                                                   | EVMDOL              | STANDARD N | STANDARD MODE I2C BUS |      |  |
|---------------------------------------------------------------------------------------------|---------------------|------------|-----------------------|------|--|
| PARAMETER                                                                                   | SYMBOL              | MIN.       | MAX.                  | UNIT |  |
| SCL clock frequency                                                                         | f <sub>SCL</sub>    | 0          | 100                   | kHz  |  |
| bus free time between a STOP and START condition                                            | t <sub>BUF</sub>    | 4.7        | -                     | uS   |  |
| Hold time (repeated) START condition. After this period, the first clock pulse is generated | t <sub>Hd;STA</sub> | 4.0        | 0                     | uS   |  |
| Low period of the SCL clock                                                                 | t <sub>LOW</sub>    | 4.7        | b Co.                 | uS   |  |
| HIGH period of the SCL clock                                                                | t <sub>HIGH</sub>   | 4.0        | s-h                   | uS   |  |
| Set-up time for a repeated START condition                                                  | t <sub>SU;STA</sub> | 4.7        | 2010                  | uS   |  |
| Data hold time                                                                              | t <sub>HD;DAT</sub> | 5.0        | 0                     | uS   |  |
| Data set-up time                                                                            | t <sub>SU;DAT</sub> | 250        | 62-                   | nS   |  |
| Rise time of both SDA and SCL signals                                                       | t <sub>r</sub>      | -          | 1000                  | nS   |  |
| Fall time of both SDA and SCL signals                                                       | t <sub>f</sub>      | -          | 300                   | nS   |  |
| Set-up time for STOP condition                                                              | t <sub>su;sto</sub> | 4.0        | -                     | uS 🧹 |  |
| Capacitive load for each bus line                                                           | Cb                  | -          | 400                   | pF   |  |

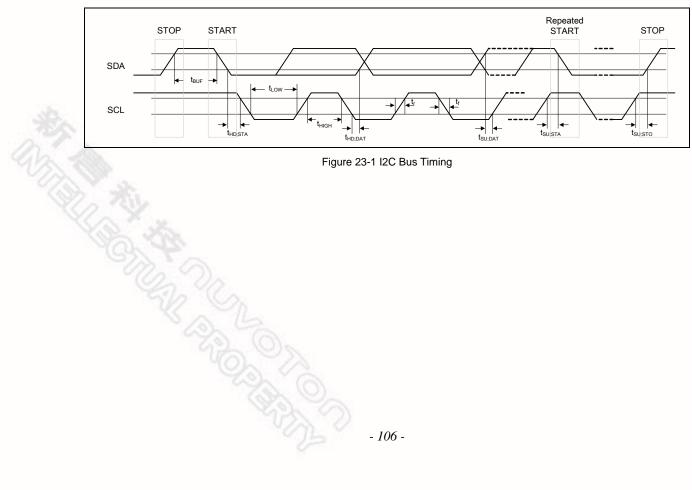
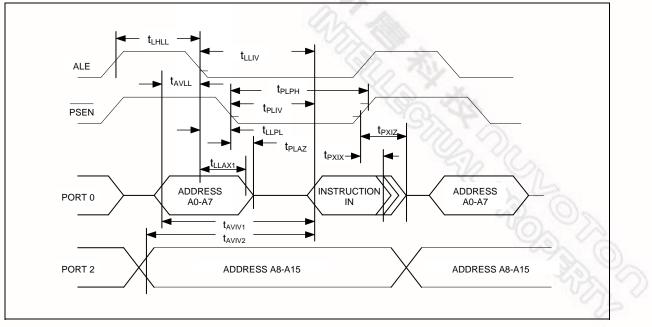
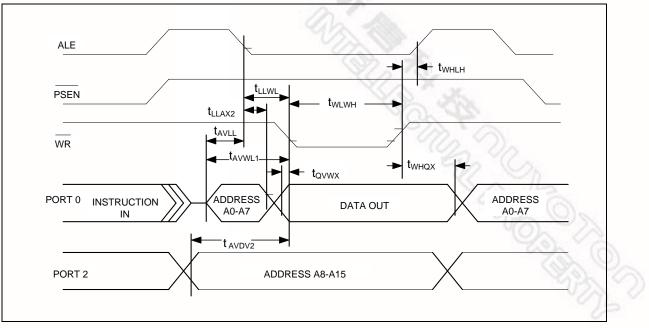



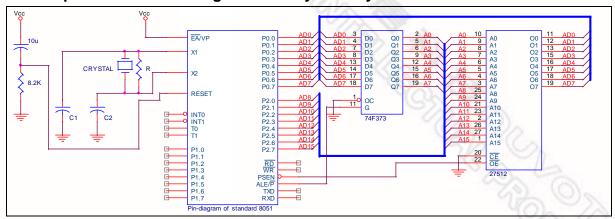

Figure 23-1 I2C Bus Timing

- 106 -


### 23.6 Program Memory Read Cycle



### 23.7 Data Memory Read Cycle



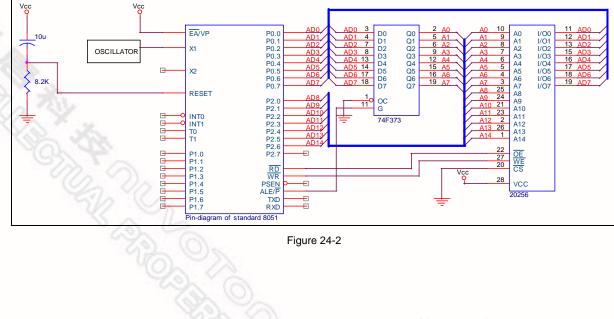

### 23.8 Data Memory Write Cycle





# 24. Typical Application Circuits24.1 Expanded External Program Memory and Crystal

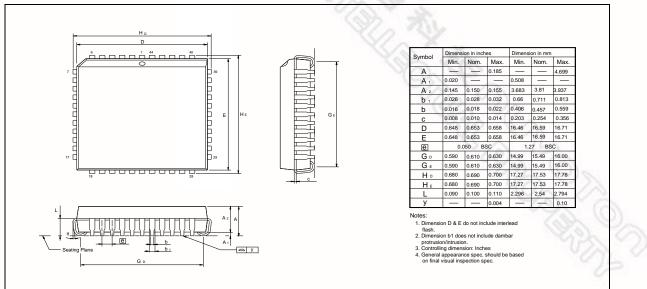



| Figure 24-1 |
|-------------|
|-------------|

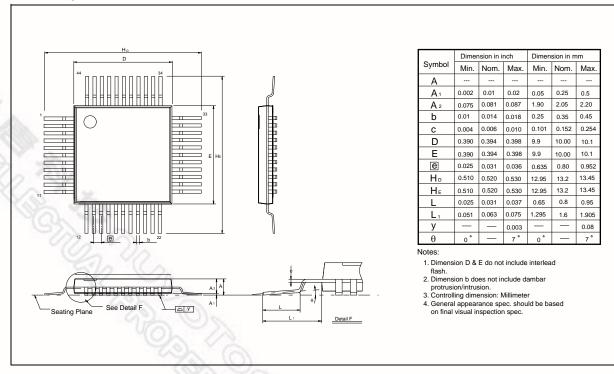
| CRYSTAL | C1  | C2  | R     |
|---------|-----|-----|-------|
| 16 MHz  | 20P | 20P | - 201 |
| 24 MHz  | 12P | 12P | - 9   |
| 33 MHz  | 10P | 10P | 3.3K  |
| 40 MHz  | 1P  | 1P  | 3.3K  |

The above table shows the reference values for crystal applications.

Note: C1, C2, R components refer to Figure A.


### 24.2 Expanded External Data Memory and Oscillator




# nuvoTon

### 25. Package Dimensions

### 25.1 44-pin PLCC



### 25.2 44-pin QFP



## nuvoTon

#### 26. Application Note

#### In-system Programming Software Examples

This application note illustrates the in-system programmability of the Nuvoton W79E(L)633 Flash EPROM microcontroller. In this example, microcontroller will boot from APFlash0 bank and waiting for a key to enter in-system programming mode for re-programming the contents of APFlash. While entering in-system programming mode, microcontroller executes the loader program in 4KB LDFlash bank. The loader program erases the 64 KB APFlash0 then reads the new code data from external SRAM buffer (or through other interfaces) to update the APFlash0.

If the customer uses the reboot mode to update his program, please enable this b3 or b4 of security bits from the writer. Please refer security bits for detail description

#### EXAMPLE 1:

| chip 8052<br>RAMCHK OFI<br>symbols | =          |                        |  |
|------------------------------------|------------|------------------------|--|
| CHPCON                             | EQU        | 9FH                    |  |
| TA                                 | EQU        | C7H                    |  |
| SFRAL                              | EQU        | ACH                    |  |
| SFRAH                              | EQU        | ADH                    |  |
| SFRFD<br>SFRCN                     | EQU<br>EQU | AEH<br>AFH             |  |
| ORG                                | 0H         |                        |  |
| LJMP                               | 100H       | ; JUMP TO MAIN PROGRAM |  |
| * TIMER0 SE                        | RVICE VECT | OR ORG = 000BH         |  |
| MOV                                |            | ; TR0 = 0, STOP TIMER0 |  |
| RETI                               | *****      | *********              |  |
|                                    | AIN PROGRA | М                      |  |



|                      | .PFlash:<br>MOV A,P1                    | ; SCAI                    | N P1 0                                                  |
|----------------------|-----------------------------------------|---------------------------|---------------------------------------------------------|
|                      | ANL A,#01H                              | , 004                     | 11.0                                                    |
|                      | CJNE A,#01H,PROG                        | RAM_APFlash               | ; IF P1.0 = 0, ENTER IN-SYSTEM PROGRAMMING<br>; MODE    |
|                      | JMP NORMAL_MOD                          | E                         | A AL                                                    |
| PROGR                | AM_64:                                  |                           |                                                         |
|                      | MOV TA, #AAH                            | ; CHP                     | CON register is written protect by TA register.         |
|                      | MOV TA, #55H                            |                           |                                                         |
|                      |                                         | H; CHPCON = 0             | 03H, ENTER IN-SYSTEM PROGRAMMING MODE                   |
|                      | MOV SFRCN, #0H                          |                           |                                                         |
|                      | MOV TCON, #00H                          | ; TR = 0 TIME             | R0 STOP                                                 |
|                      | MOV IP, #00H                            | ; IP = 00H                |                                                         |
|                      | MOV IE, #82H                            |                           | ERRUPT ENABLE FOR WAKE-UP FROM IDLE MOD                 |
|                      | MOV R6, #F0H                            | ,                         |                                                         |
|                      | MOV R7, #FFH                            | ; TH0                     | = FFH                                                   |
|                      | MOV TL0, R6                             |                           |                                                         |
|                      | MOV TH0, R7                             |                           |                                                         |
|                      | MOV TMOD, #01H                          |                           | , SET TIMER0 A 16-BIT TIMER                             |
|                      | MOV TCON, #10H                          |                           |                                                         |
|                      | MOV PCON, #01H                          | ; ENTER IDLE<br>;PROGRAMM | MODE FOR LAUNCHING THE IN-SYSTEM                        |
| .*******<br>,        | ***** ******************                | ***************           | *****************                                       |
| ;* Norma             | al mode APFlash prog                    |                           |                                                         |
| •********<br>,       |                                         | **********************    | ******************                                      |
| NORMA                | L_MODE:                                 |                           |                                                         |
|                      |                                         | ; User's applic           | ation program                                           |
|                      |                                         | , User's applica          | ation program                                           |
|                      |                                         |                           |                                                         |
|                      |                                         |                           |                                                         |
|                      |                                         |                           |                                                         |
| EXAMP                | LE 2:                                   |                           |                                                         |
| •********<br>,       | *************************************** | **********************    | ***************************************                 |
|                      |                                         |                           | er program will erase the APFlash first, then reads the |
| ; new ;*<br>;******* | code from external SR                   | AM and program            | them into APFlash bank. XTAL = 24 MHz                   |
| .chip 80             | 52                                      |                           |                                                         |
| .RAMCH               | IK OFF                                  |                           |                                                         |
| .symbol              |                                         |                           |                                                         |
| CHPCO                | N EQU                                   | 9FH                       |                                                         |
| TA                   | EQU                                     | C7H                       |                                                         |
|                      | LGO                                     | S III                     |                                                         |
| IA                   |                                         |                           |                                                         |
| IA                   |                                         |                           |                                                         |

# nuvoTon

| SFRAL<br>SFRAH<br>SFRFD | FQU    | EQU<br>EQU                                  | AEH                 | ACH<br>ADH                                                                                     |
|-------------------------|--------|---------------------------------------------|---------------------|------------------------------------------------------------------------------------------------|
| SFRCN                   |        |                                             | AFH                 |                                                                                                |
|                         |        |                                             |                     |                                                                                                |
|                         |        | 000H<br>100H                                |                     | ; JUMP TO MAIN PROGRAM                                                                         |
|                         |        |                                             | *******             |                                                                                                |
| ;* 1. TIM               | IER0   | SERVICE                                     | VECTO               | DR ORG = 0BH                                                                                   |
| .*******<br>,           | ****** | *******                                     | *******             | ***************************************                                                        |
|                         | CLR    | 000BH<br>TR0<br>TL0, R6                     |                     | ; TR0 = 0, STOP TIMER0                                                                         |
|                         |        | TH0, R7                                     |                     |                                                                                                |
|                         | RETI   | <u>ــــــــــــــــــــــــــــــــــــ</u> | • * * * * * * * * * | ***************************************                                                        |
| ,                       |        | sh MAIN I                                   |                     |                                                                                                |
| ,                       |        |                                             |                     | <u> </u>                                                                                       |
|                         | ORG    | 100H                                        |                     |                                                                                                |
| MAIN_4                  | K:     |                                             |                     |                                                                                                |
|                         |        | TA,#AAH                                     |                     |                                                                                                |
|                         |        | TA,#55H                                     |                     |                                                                                                |
|                         |        | CHPCO                                       |                     | ; CHPCON = 03H, ENABLE IN-SYSTEM PROGRAMMING.                                                  |
|                         |        | SFRCN,i<br>TCON,#(                          |                     | ; TCON = 00H, TR = 0 TIMER0 STOP                                                               |
|                         |        | TMOD,#                                      |                     | ; TMOD = 01H, SET TIMERO A 16BIT TIMER                                                         |
|                         |        | IP,#00H                                     | 0111                | ; $IP = 00H$                                                                                   |
|                         |        | IE,#82H                                     |                     | ; IE = 82H, TIMER0 INTERRUPT ENABLED                                                           |
|                         |        | R6,#F0H                                     | I                   | , <u> </u>                                                                                     |
|                         |        | R7,#FF⊦                                     |                     |                                                                                                |
|                         | MOV    | TL0,R6                                      |                     |                                                                                                |
| S                       | MOV    | TH0,R7                                      |                     |                                                                                                |
| 2                       | MOV    | TCON,#                                      | 10H                 | ; TCON = 10H, TR0 = 1, GO                                                                      |
| (~)                     | MOV    | PCON,#                                      | 01H                 | ; ENTER IDLE MODE                                                                              |
| UPDAT                   |        | Elach.                                      |                     |                                                                                                |
|                         |        | TCON,#                                      | юн                  | ; TCON = 00H , TR = 0 TIM0 STOP                                                                |
|                         |        | IP,#00H                                     |                     | ; $IP = 00H$                                                                                   |
|                         |        | IE,#82H                                     |                     | ; IE = 82H, TIMER0 INTERRUPT ENABLED                                                           |
|                         |        | TMOD,#                                      |                     | ; TMOD = 01H, MODE1                                                                            |
|                         |        | R6,#D0H                                     |                     | ; SET WAKE-UP TIME FOR ERASE OPERATION, ABOUT 15 ms<br>;DEPENDING ON USER'S SYSTEM CLOCK RATE. |
|                         | MOV    | R7,#8A⊢                                     | res.                |                                                                                                |
|                         |        |                                             |                     |                                                                                                |

# nuvoTon

| MOV TL0,R6                             |                                                              |  |  |  |
|----------------------------------------|--------------------------------------------------------------|--|--|--|
| MOV TH0,R7                             |                                                              |  |  |  |
| ERASE_P_4K:                            |                                                              |  |  |  |
| MOV SFRCN,#22H                         | ; SFRCN = 22H, ERASE APFlash0                                |  |  |  |
|                                        | ; SFRCN = A2H, ERASE APFlash1                                |  |  |  |
| MOV TCON,#10H                          | ; TCON = 10H, TR0 = 1,GO                                     |  |  |  |
| MOV PCON,#01H                          | ; ENTER IDLE MODE (FOR ERASE OPERATION)                      |  |  |  |
| •************************************* | *****                                                        |  |  |  |
| * BLANK CHECK                          |                                                              |  |  |  |
| •************************************* | *******************************                              |  |  |  |
| MOV SFRCN,#0H                          | ; SFRCN = 00H, READ APFlash0<br>; SFRCN = 80H, READ APFlash1 |  |  |  |
| MOV SFRAH,#0H                          | ; START ADDRESS = 0H                                         |  |  |  |
| MOV SFRAL,#0H                          |                                                              |  |  |  |
| MOV R6,#FDH                            | ; SET TIMER FOR READ OPERATION, ABOUT 1.5 μS.                |  |  |  |
| MOV R7,#FFH                            |                                                              |  |  |  |
| MOV TL0,R6                             |                                                              |  |  |  |
| MOV TH0,R7                             |                                                              |  |  |  |
| blank_check_loop:                      |                                                              |  |  |  |
| SETB TRO                               | ; enable TIMER 0                                             |  |  |  |
| MOV PCON,#01H                          | ; enter idle mode                                            |  |  |  |
| MOV A,SFRFD                            | ; read one byte                                              |  |  |  |
| CJNE A,#FFH,blank_                     | _check_error                                                 |  |  |  |
| INC SFRAL                              | ; next address                                               |  |  |  |
| MOV A,SFRAL                            |                                                              |  |  |  |
| JNZ blank_check_lo                     | op                                                           |  |  |  |
| INC SFRAH                              |                                                              |  |  |  |
| MOV A,SFRAH                            |                                                              |  |  |  |
|                                        | heck_loop ; end address = FFFFH                              |  |  |  |
| JMP PROGRAM_APFlashROM                 |                                                              |  |  |  |
| blank_check_error:                     |                                                              |  |  |  |
| JMP \$                                 |                                                              |  |  |  |
|                                        |                                                              |  |  |  |
| .************************************* |                                                              |  |  |  |
| ;* RE-PROGRAMMING APFlash BANK         |                                                              |  |  |  |
| ,<br>PROGRAM_APFlashROM:               |                                                              |  |  |  |
| MOV R2,#00H                            | ; Target low byte address                                    |  |  |  |
| MOV R1,#00H                            | ; TARGET HIGH BYTE ADDRESS                                   |  |  |  |
| MOV DPTR,#0H                           |                                                              |  |  |  |
|                                        |                                                              |  |  |  |
|                                        |                                                              |  |  |  |

# nuvoTon

| MOV SFRAH,R1<br>MOV SFRCN,#21H<br>MOV R6,#9CH<br>MOV R7,#FFH<br>MOV TL0,R6<br>MOV TH0,R7 | ; SFRAH, Target high address<br>; SFRCN = 21H, PROGRAM APFlash0<br>; SFRCN = A1H, PROGRAM APFlash1<br>; SET TIMER FOR PROGRAMMING, ABOUT 50 μS.                                                |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                          | ; SFRAL = LOW BYTE ADDRESS<br>ROM_PC_TO_ACC ; THIS PROGRAM IS BASED ON USER'S<br>; CIRCUIT.                                                                                                    |
|                                                                                          | ; SAVE DATA INTO SRAM TO VERIFY CODE.                                                                                                                                                          |
| CJNE R2,#0H,PROG<br>INC R1<br>MOV SFRAH,R1<br>CJNE R1,#0H,PROG                           |                                                                                                                                                                                                |
| ,<br>; * VERIFY APFlash BANK                                                             | *****                                                                                                                                                                                          |
| ,<br>MOV R4,#03H<br>MOV R6,#FDH<br>MOV R7,#FFH<br>MOV TL0,R6<br>MOV TH0,R7               |                                                                                                                                                                                                |
| MOV THO,R7<br>MOV DPTR,#0H<br>MOV R2,#0H<br>MOV R1,#0H<br>MOV SFRAH,R1<br>MOV SFRCN,#00H | ; The start address of sample code<br>; Target low byte address<br>; Target high byte address<br>; SFRAH, Target high address<br>; SFRCN = 00H, Read APFlash0<br>; SFRCN = 80H , Read APFlash1 |
| READ_VERIFY_APFlash:<br>MOV SFRAL,R2<br>MOV TCON,#10H<br>MOV PCON,#01H<br>INC R2         | ; SFRAL = LOW ADDRESS<br>; TCON = 10H, TR0 = 1,GO                                                                                                                                              |
|                                                                                          | Publication Release Date: Oct 07, 2010                                                                                                                                                         |

Revision A6.0

# nuvoTon

MOVX A,@DPTR INC DPTR CJNE A,SFRFD,ERROR\_APFlash CJNE R2,#0H,READ\_VERIFY\_APFlash INC R1 MOV SFRAH,R1 CJNE R1,#0H,READ\_VERIFY\_APFlash

;\* PROGRAMMING COMPLETLY, SOFTWARE RESET CPU

MOV TA,#AAH MOV TA,#55H MOV CHPCON,#83H

; SOFTWARE RESET. CPU will restart from APFlash0

#### ERROR\_APFlash:

DJNZ R4,UPDATE\_APFlash ; IF ERROR OCCURS, REPEAT 3 TIMES.

; IF ERROR OCCURS, REPEAT 3 TIMES. ; IN-SYST PROGRAMMING FAIL, USER'S PROCESS TO ; DEAL WITH IT.



### 27. Version History

| VERSION | DATE                | PAGE             | DESCRIPTION                                                                                                                                                                               |
|---------|---------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A1.0    | April 20, 2007      | -                | Initial Issued                                                                                                                                                                            |
| A2.0    | December<br>27,2007 | 6<br>21,74<br>99 | <ol> <li>Revise the description of P4 mode1</li> <li>Revise the content of UART mode select table.<br/>(SM0, SM1) is exchanged.</li> <li>Separate exercting voltage to 2 items</li> </ol> |
| A3.0    | January 6, 2009     | 4                | <ol> <li>Separate operating voltage to 2 items.</li> <li>Add a note for V<sub>DD</sub> during power on/off.</li> </ol>                                                                    |
| A4.0    | May 14, 2009        | 5,6,7<br>110     | <ol> <li>Add QFP44 package parts.</li> <li>Add QFP44 package dimension diagram.</li> </ol>                                                                                                |
| A5.0    | March 03, 2010      | 7<br>100         | <ol> <li>Revise the I/O structure description of Port0.</li> <li>Revise the "DC Characteristics" value.</li> </ol>                                                                        |
| A6.0    | Oct 07, 2010        | 5,101            | <ol> <li>Remove the preliminary character.</li> <li>Rename the W79E633 to W79E(L)633.</li> <li>Revise the operating voltage from 3.0V~5.5V to 3.0V~4.5V for W79L633.</li> </ol>           |

### **Important Notice**

Nuvoton products are not designed, intended, authorized or warranted for use as components in systems or equipment intended for surgical implantation, atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, or for other applications intended to support or sustain life. Further more, Nuvoton products are not intended for applications wherein failure of Nuvoton products could result or lead to a situation wherein personal injury, death or severe property or environmental damage could occur.

Nuvoton customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Nuvoton for any damages resulting from such improper use or sales.

Please note that all data and specifications are subject to change without notice. All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.