

AC / DC Sensing Current Module with Digital Data output

Feature:

- Continuous output and Modbus-RTU version
- Operating voltage DC5.0V
- 11 x 8 mm split through hole design
- Sensing current range :

AC: 0~17A (50Hz, 60Hz)

DC: 0~±25A

High accuracy:

 $AC: (0~5A) \pm 0.25A$

 $(5~17A) \pm 5\%$

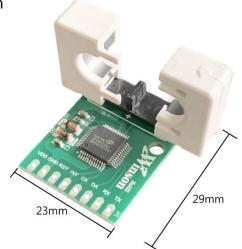
• DC: $\pm (0 \sim 5A) \pm 0.25A$

 $\pm (5\sim 25A) \pm 5\%$

High resolution : AC / DC : 18mA

UART, Baud Rate: 9600 bps, Parity bit: None, Data bit: 8, Stop bit: 1

- Temperature calibration
- Isolation Voltage 4KV
- Application note: http://www.winson.com.tw/Product/83


General Description:

The Winson WCM6800 provides economical and precise solution for both AC and DC current sensing in industrial, commercial and communications systems.

The WCM6800 consists of a current sensor, temperature sensor, a very high accuracy A/D converter and digital signal output of current.

The WCM6800 includes a current sensor with a 11x8 mm² split through hole, users can just use system's own electric wire by pass it through this hole to measure passing current without breaking original system, user's MCU can get the real data from DATA pin.

The WCM6800 provides temperature calibration of the internal current sensor and accurately measures the current of AC 50 / 60Hz and DC at temperature from -20°C~70°C. The WCM1800 also offers solutions for true RMS current measurement of various loads.

WCM6800

1.VDD 2.GND 3.RST 4.INT 5.CK 6.DA 7.RX 8.TX

ABSOLUTE MAXIMUM RATING

Supply Voltage, Vdd 6V
Pass Through Wire Diameter11x8mm
Basic Isolation Voltage 4000V
Operating Temperature Range, Ta
Storage Temperature Range, Ts

Selection Guide:

Model	Maximum	Current	Operating	mode	
Wodei	AC	DC	Voltage	mode	
WCM6800-AC50C	17A	-	5.0V	Continuous	
WCM6800-DC50C		±25A	5.0V	Continuous	
WCM6800-50C	17A	±25A	5.0V	Continuous	
WCM6800-50M	17A	±25A	5.0V	Modbus-RTU	

Pad Description:

Pad No	Pad Name	I/O	Description	
1	VDD	-	The positive power input pin	
2	GND	-	The system ground	
3	RST	I	The system reset	
4	INT	ı	Sampling control	
5	CK	I/O	System programming, reserve	
6	DA	I/O		
7	RX	I	The data of measured current output. Its output is UART	
8	TX	0	communication. The baud rate is 9.6K bits/sec.	

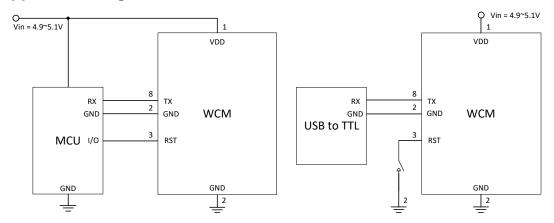
Electrical Characteristics:

Common Operating Characteristics

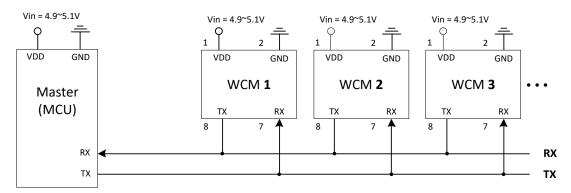
Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
VDD	Operation Voltage	-	4.9	5	5.1	٧
IDD	Operation Current	-	-	8	10	mA
-	Conductor Through Hole	-	-	11x8	-	mm
TOP	Operating Temperature	-	-20	-	70	°C

-AC50C $T_{OP} = 25 \, ^{\circ}\text{C}, \, V_{DD} = 5.000\text{V}$

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
IOP	AC Current Range	-	0	-	17	Α
		IOP=0~5A · TOP=25°C	-	±0.25	-	Α
ГТОТ	AC Current Total Output	IOP=5~17A · TOP=25°C	-	±5	-	%
ETOT	Error	IOP=0~17A ·		. 5		0/
		TOP=-20°C to 70°C	- ±5	±5	-	%


-DC50C $T_{OP} = 25 \, ^{\circ}\text{C}, \, V_{DD} = 5.000\text{V}$

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
IOP	DC Current Range	-	0	-	±25	Α
		IOP=±(0~5A) , TOP=25°C	-	±0.25	-	Α
ETOT	DC Current Total Output	IOP=±(5~25A) , TOP=25°C	-	±5	-	%
EIOI	Error	IOP=0~±25A ,				0/
		TOP=-20°C to 70°C	-	±5	-	%


Application Note:

Application Diagram:

APP. 1. Output UART signal with MCU

APP. 2. Output UART signal with USB to TTL

App. 3 Modbus Connection

Measured Current Data Output (Continuous Mode):

The measured current can be continuously transmitted by UART format.

- (1) If the measured data is AC "1.23"A, then the output data is '~', '0', '1', '2', '3', '0', '\r', '\n', total of 8 bytes; the output data is ASCII code. If the measured data is "10.76" A, then the output data is '~', '1', '0', '7', '6', '0', '\r', '\n', total of 8 bytes.
- (2) If the measured data is +DC "1.23"A, then the output data is '+', '0', '1', '2', '3', '0', '\r', '\n', total of 8 bytes; the output data is ASCII code. If the measured data is "10.76" A, then the output data is '+', '1', '0', '7', '6', '0', '\r', '\n', total of 8 bytes.
- (3) If the measured data is -DC "1.23"A, then the output data is '-', '0', '1', '2', '3', '0', '\r', '\n', total of 8 bytes; the output data is ASCII code. If the measured data is "10.76" A, then the output data is '-', '1', '0', '7', '6', '0', '\r', '\n', total of 8 bytes.

Measured Current Data Output (Modbus-RTU Mode):

Modbus Parameter List

For example description, please refer to the "Current Module Application Note:

Modbus-RTU Data Format

Slave Address	Function Code	Data	Check Code (CRC16)
1 Byte	1 Byte	N x Byte	2 Byte (Low byte first)

Function Code

Function Code	Description
03H	Read up to 125 continuous memory words
06H	Write one memory word

Exception Code

Exception Code	Description
01H	Illegal function code
02H	Illegal data address
03H	Illegal data count

When responding to an exception, the MSB (Most Significant Bit) of the function code is automatically set to 1.

True RMS Current Measurement:

In order to calculate true RMS of AC current, you need to know "zero" value of AC current first. The "zero" value of symmetric AC current is the average value *Vo*(dc) of the current shown in Figure 1.

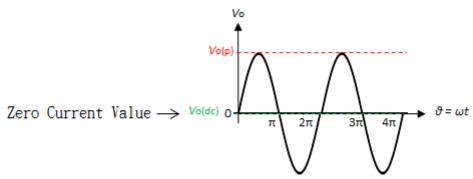


Figure 1 The zero current value of sine waveform

But in asymmetrical AC current, the "zero" value is not the average value Vo(dc) of the current. Based on this "zero" value and do RMS calculation. You will get wrong answer.

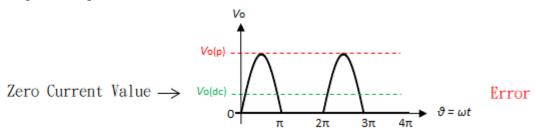


Figure 2 The zero current value of the asymmetric waveform (Error)

The WCM series offer a true RMS solution for both symmetric and asymmetric AC current. It can correctly detect "zero" current value, shown in Figure 3. and do perfect RMS calculation.

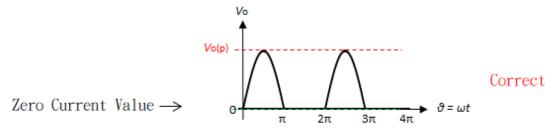
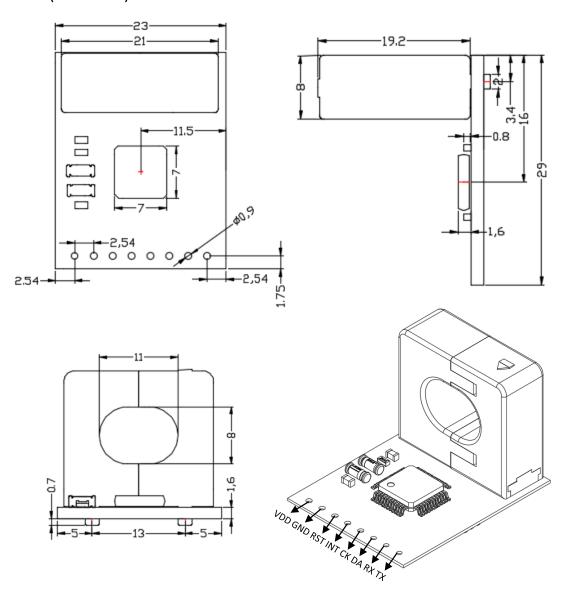
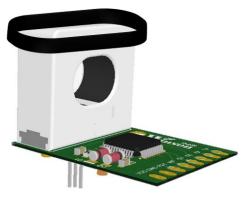



Figure 3 The zero current value of the asymmetric waveform (Correct)

Package:

(Unit: mm)



Application Note:

• Split type current sensor which the current error depends on the tightness of the opening. Typical error is 5%.

• If it is fixed with cable tie or other that measurement accuracy can be effectively improved, and the current error can be reduced to 2%.

