

WCMA1008C1X

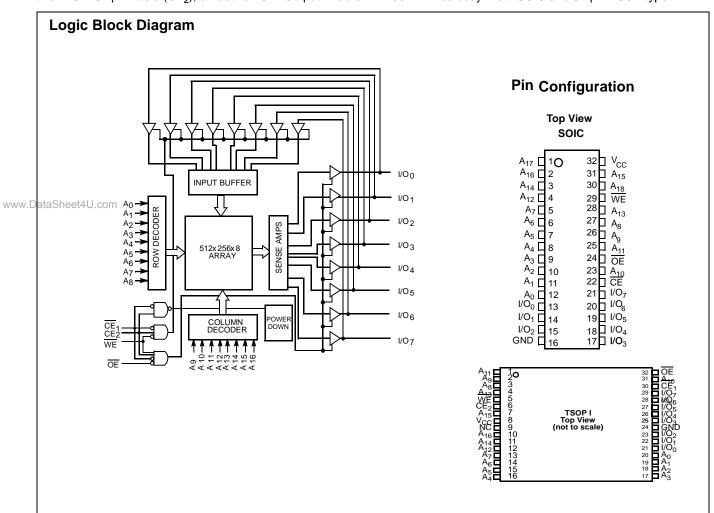
128K x 8 Static RAM

Features

- Voltage Range
 - -4.5V-5.5V
- · Low active power
 - Typical active current: 6 mA @ f = f_{max} (70 ns speed)
- · Low standby current
- · Automatic power-down when deselected
- · TTL-compatible inputs and outputs
- Easy memory expansion with CE₁, CE₂, and OE features
- CMOS for optimum speed/power

Functional Description

The WCMA1008C1X is a high-performance CMOS static RAM organized as 128K words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable (CE₁), an active HIGH Chip Enable (CE₂), an active LOW Output Enable


 (\overline{OE}) , and three-state drivers. This device has an automatic power-down feature that reduces power consumption by more than 75% when deselected.

Writing to the device is accomplished by taking Chip Enable 1 (\overline{CE}_1) and Write Enable (\overline{WE}) inputs LOW and Chip Enable 2 (CE_2) input HIGH. Data on the eight I/O pins (I/O $_0$ through I/O $_7$) is then written into the location specified on the address pins (A $_0$ through A $_{16}$).

Reading from the device is accomplished by taking Chip Enable 1 (CE_1) and Output Enable (OE) LOW while forcing Write Enable (WE) and Chip Enable 2 (CE_2) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected (\overline{CE}_1 HIGH or CE_2 LOW), the outputs are disabled (\overline{OE} HIGH), or during a write operation (\overline{CE}_1 LOW, CE_2 HIGH, and \overline{WE} LOW)

The WCMA1008C1X is available in a standard 32-pin 450-mil-wide body width SOIC and 32-pin TSOP type I.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......-55°C to +125°C Supply Voltage on V_{CC} to Relative GND -0.5V to +7.0V DC Voltage Applied to Outputs in High Z State $^{[1]}$ -0.5V to $^{[1]}$ +0.5V DC Input Voltage^[1].....-0.5V to V_{CC} +0.5V Current into Outputs (LOW)20 mA Static Discharge Voltage......2001V (per MIL-STD-883, Method 3015) Latch-Up Current>200 mA

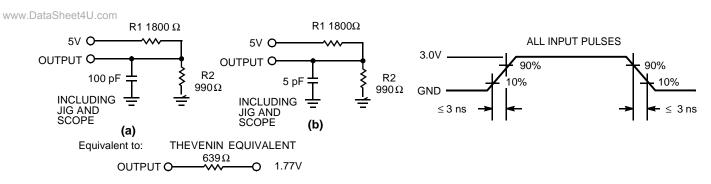
Product Portfolio

						Power Dissipation			
						Operating, Icc		Standb	y (I _{SB2})
		V _{CC} Range	•			f = f _{max}			
Product	Min.	Typ. ^[2]	Max.	Speed	Temp.	Typ. ^[2]	Max.	Typ. ^[2]	Max.
WCMA1008C1X	4.5 V	5.0V	5.5V	70 ns	Ind'l	6 mA	15 mA	4 μA	20 μΑ
WCWATOOCTA	4.5 V	3.0 v	3.5 V	55 ns	IIIGI	7.5 mA	20 mA	4 μΛ	20 μΑ

Operating Range

Range	Ambient Temperature	V _{CC}
Industrial	-40°C to +85°C	4.5V-5.5V

^{1.} V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns. www.DagaS Typical values are measured at V_{CC} = 5V, T_A = 25°C, and are included for reference only and are not tested or guaranteed.


Electrical Characteristics Over the Operating Range

Param-			WCMA1008C1X-55			WCMA1008C1X-70			
eter	Description	Test Conditions	Min.	Typ . ^[2]	Max.	Min.	Typ . ^[2]	Max.	Units
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -1 mA$	2.4			2.4			V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 2.1 \text{ mA}$			0.4			0.4	V
V _{IH}	Input HIGH Voltage		2.2		V _{CC} +0.3	2.2		V _{CC} +0.3	V
V _{IL}	Input LOW Voltage		-0.3		0.8	-0.3		0.8	V
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$	-1		+1	-1		+1	μΑ
I _{OZ}	Output Leakage Current	$GND \leq V_I \leq V_{CC}, \ Output \ Disabled$	-1		+1	-1		+1	μА
I _{CC}	V _{CC} Operating Supply Current	$f=f_{MAX}=1/t_{RC}$ $I_{OUT}=0$ mA $V_{CC}=Max.,$		7.5	20		6	15	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\begin{aligned} &\text{Max. V}_{\text{CC}}, \overline{\text{CE}}_1 \geq \text{V}_{\text{IH}}, \text{CE}_2 < \text{V}_{\text{IH}} \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{IH}} \text{ or V}_{\text{IN}} \leq \text{V}_{\text{IL}}, \text{f} = \text{f}_{\text{MAX}} \end{aligned}$		0.1	2		0.1	1	mA
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs	$\begin{array}{l} \text{Max. V}_{CC}, \overline{CE}_1 \geq V_{CC} - \\ 0.3 \text{V}, \text{CE}_2 < 0.3 \\ \text{V}_{\text{IN}} \geq V_{CC} - 0.3 \text{V}, \text{or} \text{V}_{\text{IN}} \leq \\ 0.3 \text{V}, f = 0 \end{array}$		2.5	15			15	μА

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	9	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	9	pF

AC Test Loads and Waveforms

Note:

3. Tested initially and after any design or process changes that may affect these parameters.

Switching Characteristics^[4] Over the Operating Range

		5	55	7	70	
Parameter	Description	Min.	Max.	Min.	Max.	Uni
READ CYCLE					•	
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA} Data Hold from Address Change		5		5		ns
t _{ACE}	CE ₁ LOW to Data Valid, CE ₂ HIGH to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		20		35	ns
t _{LZOE}	OE LOW to Low Z ^[5]	0		0		ns
t _{HZOE}	OE HIGH to High Z ^[5, 6]		20		25	ns
t _{LZCE}	CE ₁ LOW to Low Z, CE ₂ HIGH to Low Z ^[5]	5		5		ns
t _{HZCE}	CE ₁ HIGH to High Z, CE ₂ LOW to High Z ^[5, 6]		20		25	ns
t _{PU}	CE ₁ LOW to Power-Up, CE ₂ HIGH to Power-Up	0		0		ns
t _{PD}	CE ₁ HIGH to Power-Down, CE ₂ LOW to Power-Down		55		70	ns
WRITE CYCLE ^[7]					•	
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE ₁ LOW to Write End, CE ₂ HIGH to Write End	45		60		ns
t _{AW}	Address Set-Up to Write End	45		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA} ataSheet4U.com	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	45		50		ns
t _{SD}	Data Set-Up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[5, 6]	5		5		ns
t _{HZWE}	WE LOW to High Z ^[6]		20		25	ns

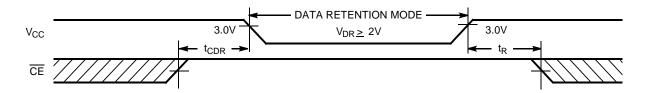
Notes:

Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{QL}I_{OH} and 100-pF load capacitance.

At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZCE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.

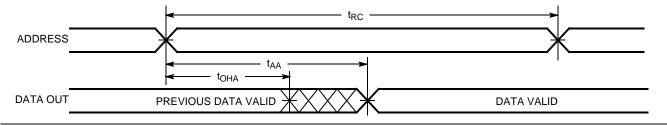
t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.

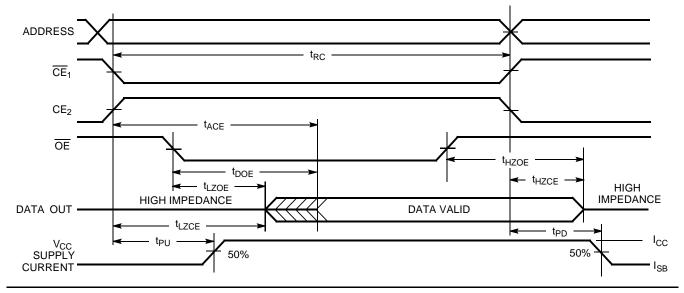
The internal write time of the memory is defined by the overlap of CE₁ LOW and CE₂ HIGH, and WE LOW. CE₁ and WE must be LOW and CE₂ HIGH to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write that terminates the write.



Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions	Min.	Typ. ^[2]	Max.	Unit
V_{DR}	V _{CC} for Data Retention		2.0			V
I _{CCDR}	Data Retention Current	$\begin{split} & \frac{V_{CC}}{CE_1} = V_{DR} = 3.0V, \\ & CE_1 \geq V_{CC} - 0.3V, \\ & CE_2 < 0.3V \\ & V_{IN} \geq V_{CC} - 0.3V \text{ or,} \\ & V_{IN} \leq 0.3V \end{split}$		1.5	20	μА
t _{CDR} ^[3]	Chip Deselect to Data Retention Time		0			ns
t _R ^[8]	Operation Recovery Time		70			ns

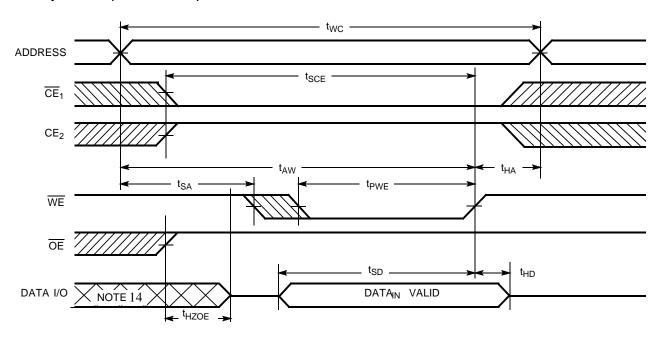

Data Retention Waveform



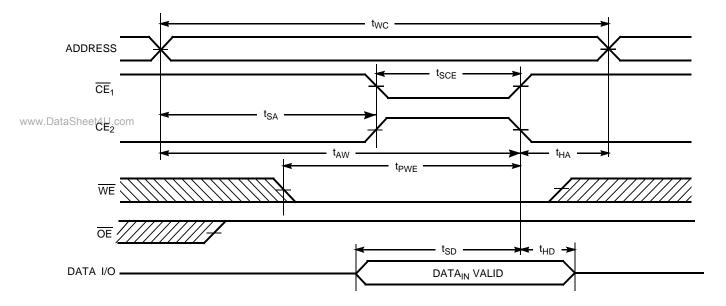
Switching Waveforms

Read Cycle No.1^[9, 10]

Read Cycle No. 2 (OE Controlled)[10, 11]


Notes:

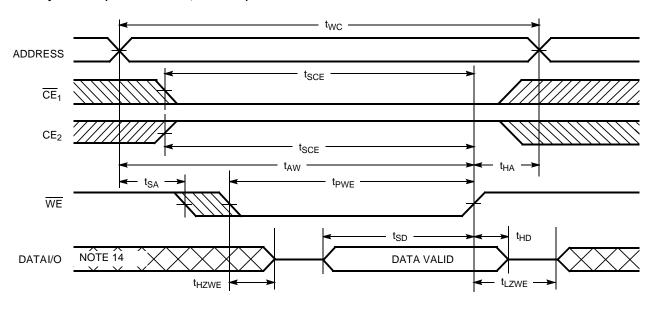
- 8. Full Device operatin requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 100 μs or stable at V_{cc(min)} ≥ 100 μs.
 9. Device is continuously selected. OE, CE₁ = V_{IL}, CE₂ = V_{IH}
 www.Datao.hem WE is HIGH for read cycle.
 11. Address valid prior to or coincident with CE₁ transition LOW and CE₂ transition HIGH.



Switching Waveforms (continued)

Write Cycle No. 1 (WE Controlled)^[7. 12, 13]

Write Cycle No. 2 ($\overline{\text{CE}}_1$ or CE_2 Controlled)^[7, 12, 13]


Notes:

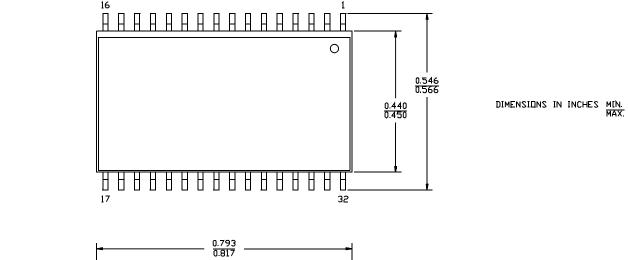
- 12. If CE₁ goes HIGH and CE₂ LOW simultaneously with WE going HIGH, the output remains in a high-impedance state.
 13. Data I/O is high-impedance if OE = V_{IH}.
 14. During this period the I/Os are in the output state and input signals should not be applied.

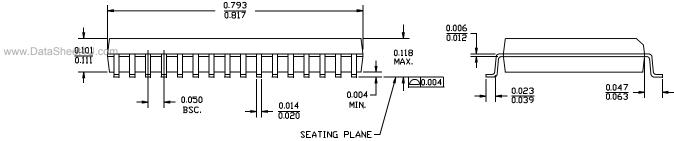
Switching Waveforms (continued)

Write Cycle No.3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[12]

Truth Table

CE ₁	CE ₂	OE	WE	I/O ₀ – I/O ₇	Mode	Power
Н	Х	Х	Х	High Z	Power-Down	Standby (I _{SB})
Х	L	Х	Х	High Z	Power-Down	Standby (I _{SB})
L	Н	L	Н	Data Out	Read	Active (I _{CC})
L	Н	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

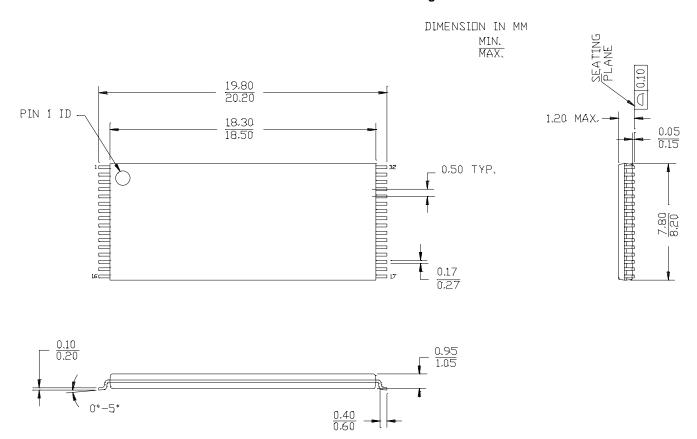



Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	WCMA1008C1X-GF70	G32	32-Lead (450-Mil) Molded SOIC	
70	WCMA1008C1X-TF70	T32	32-Lead TSOP	Industrial
55	WCMA1008C1X-GF55	G32	32-Lead (450-Mil) Molded SOIC	muusmai
33	WCMA1008C1X-TF55	T32	32-Lead TSOP	

Package Diagrams

32-Lead (450 MIL) Molded SOIC, G32



Package Diagrams (continued)

32-Lead Thin Small Outline Package T32

Document Title: WCMA1008C1X, 128K x 8 Static RAM								
REV.	REV. Spec # ECN # Issue Date Orig. of Change Description of Change							
**	38-14022	115241	4/24/2002	MGN	New Datasheet			