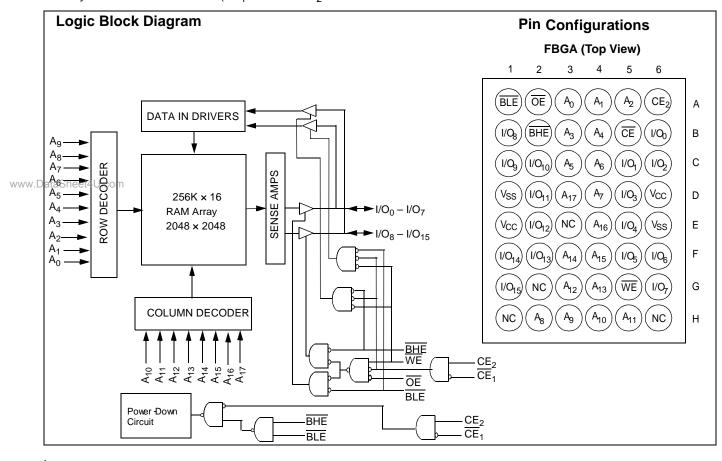
Preliminary

WCMA4016U1X

Features

- Low voltage range: 2.7V-3.6V
- Ultra-low active, standby power
- Easy memory expansion with $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$ and $\overline{\text{OE}}$ features
- TTL-compatible inputs and outputs
- Automatic power-down when deselected
- CMOS for optimum speed/power

Functional Description^[1]


The WCMA4016U1X is a high-performance CMOS static RAM organized as 262,144 words by 16 bits. This device features advanced circuit design to provide ultra-low active current and standby current. This is ideal for providing more battery life in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The <u>device</u> can also be put into standby mode when deselected (\overline{CE}_1 HIGH or CE_2 LOW or

256K x 16 Static RAM

both $\overline{\text{BHE}}$ and $\overline{\text{BLE}}$ are HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state wh<u>en</u>: deselected ($\overline{\text{CE}}_1$ HIGH or $\overline{\text{CE}}_2$ LOW), outputs are disabled ($\overline{\text{OE}}$ HIGH), both Byte High Enable and Byte Low Enable are disabled ($\overline{\text{BHE}}$, $\overline{\text{BLE}}$ HIGH), or during a write operation ($\overline{\text{CE}}_1$ LOW, $\overline{\text{CE}}_2$ HIGH and $\overline{\text{WE}}$ LOW).

<u>Writing</u> to the device is accomplished by taking Chip Enables $(\overline{CE}_1 LOW \text{ and } CE_2 \underline{HIGH})$ and Write Enable (WE) input LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified <u>on</u> the address pins (A₀ through A₁₈). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through address pins (A₀ through A₁₈).

Reading from the device is accomplished by taking Chip Enables (\overline{CE}_1 LOW and CE_2 HIGH) and Output Enable (\overline{OE}) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the truth table at the back of this datasheet for a complete description of read and write modes.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage to Ground Potential0.5V to +4.6V
DC Voltage Applied to Outputs in High Z State ^[1] –0.5V to V_{CC} + 0.5V
DC Input Voltage ^[1] 0.5V to V _{CC} + 0.5V

Output Current into Outputs (LOW)...... 20 mA Static Discharge Voltage...... >2100V (per MIL-STD-883, Method 3015)

Operating Range

Device	Range	Ambient Temperature	v _{cc}
WCMA4016U1X	Industrial	-40°C to +85°C	2.7V to 3.6V

Product Portfolio

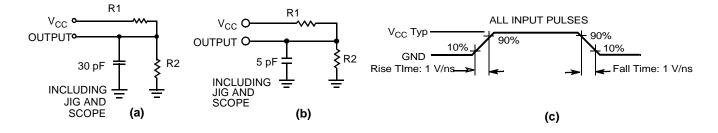
						Pov	ver Dissipati	on (Indus	trial)
	V _{CC} Range				Speed	Operat	ing (I _{CC})	Stand	oy (I _{SB2})
Product	V _{CC(min.)}	V _{CC(typ.)} ^[2]	V _{CC(max.)}	Power	(ns)	Typ. ^[2]	Maximum	Typ. ^[2]	Maximum
WCMA4016U1X	2.7V	3.0V	3.6V	LL	70	7 mA	15 mA	2 μΑ	20 µA

Electrical Characteristics Over the Operating Range

				V	VCMA4016L	J1X	
Parameter	Description	iption Test Conditions			Typ. ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -1.0 mA	V _{CC} = 2.7V	2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	V _{CC} = 2.7V			0.4	V
V _{IH}	Input HIGH Voltage		V _{CC} = 3.6V	2.2		V _{CC} +0.5V	V
V _{IL}	Input LOW Voltage		V _{CC} = 2.7V	-0.5		0.8	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$	·	-1	±1	+1	μΑ
I _{OZ}	Output Leakage Current	$GND \leq V_O \leq V_{CC}, 0$	Output Disabled	-1	+1	+1	μΑ
at <mark>9</mark> 9heet4U.cc	V _{CC} Operating Supply Current	bly $I_{OUT} = 0 \text{ mA}, $ $f = f_{MAX} = 1/t_{RC}, $ CMOS Levels $V_{CC} = 3.6V$			7	15	mA
		I _{OUT} = 0 mA, f = 1 CMOS Levels	MHz,		1	2	mA
I _{SB1}	Automatic CE Power-Down Current— CMOS Inputs	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			2	20	μA
I _{SB2}	Automatic CE Power-Down Current— CMOS Inputs	$\begin{array}{c} \overline{CE}_{1} \geq V_{CC} - 0.3V \\ 0.3V, \\ V_{IN} \geq V_{CC} - 0.3V \\ 0.3V, \\ f = 0, V_{CC} = 3.60V \end{array}$			2	20	μA

Notes:

V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.
Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.


Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ.)}$	8	pF

Thermal Resistance

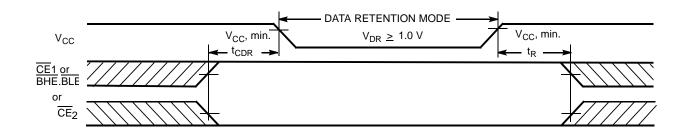
Description	Test Conditions	Symbol	BGA	Units
Thermal Resistance (Junction to Ambient) ^[3]	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	Θ_{JA}	55	°C/W
Thermal Resistance (Junction to Case) ^[3]		Θ_{JC}	16	°C/W

AC Test Loads and Waveforms

	Parameters	3.0V	Unit
www.D	ataSheet4U.com R1	1103	Ω
	R2	1554	Ω
	R _{TH}	645	Ω
	V _{TH}	1.75V	V

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions	Min.	Typ. ^[2]	Max.	Unit	
V _{DR}	V _{CC} for Data Retention			1.0		3.6	V
I _{CCDR}	Data Retention Current	<u>V_{CC}= 1.0V</u>	L		1	10	μA
		$\label{eq:constraint} \begin{split} & \underline{V_{CC}} = 1.0V \\ & \overline{CE}_1 \geq V_{CC} - 0.3V, \ CE_2 \leq 0.2V, \\ & V_{IN} \geq V_{CC} - 0.3V \ \text{or} \ V_{IN} \leq 0.3V \end{split}$	LL				
t _{CDR} ^[3]	Chip Deselect to Data Retention Time			0			ns
t _R ^[4]	Operation Recovery Time			70			ns


Note:

3. 4.

Tested initially and after any design or process changes that may affect these parameters. Full Device AC operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} > 10 μ s or stable at V_{CC(min.)} >10 μ s.

Data Retention Waveform^[5]

Switching Characteristics Over the Operating Range^[6]

		70		
Parameter	Description	Min.	Max.	Uni
READ CYCLE			•	
t _{RC}	Read Cycle Time	70		ns
t _{AA}	Address to Data Valid		70	ns
t _{OHA}	Data Hold from Address Change	10		ns
t _{ACE}	\overline{CE}_1 LOW and CE_2 HIGH to Data Valid		70	ns
t _{DOE}	OE LOW to Data Valid		35	ns
t _{LZOE}	OE LOW to Low Z ^[7, 9]	5		ns
t _{HZOE}	OE HIGH to High Z ^[9]		25	ns
t _{LZCE}	\overline{CE}_1 LOW and CE_2 HIGH to Low $Z^{[7]}$	10		ns
t _{HZCE}	\overline{CE}_1 HIGH and CE_2 LOW to High Z ^[7, 9]		25	ns
t _{PU}	CE ₁ LOW and CE ₂ HIGH to Power-Up	0		ns
aten aten aten aten aten aten aten aten	\overline{CE}_1 HIGH and CE_2 LOW to Power-Down		70	ns
t _{DBE}	BHE / BLE LOW to Data Valid		70	ns
t _{LZBE} ^[8]	BHE / BLE LOW to Low Z	5		ns
t _{HZBE}	BHE / BLE HIGH to High Z		25	ns
WRITE CYCLE ^[10, 11]				
t _{WC}	Write Cycle Time	70		ns
t _{SCE}	\overline{CE}_1 LOW and CE_2 HIGH to Write End	60		ns
t _{AW}	Address Set-Up to Write End	60		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	50		ns

Notes:

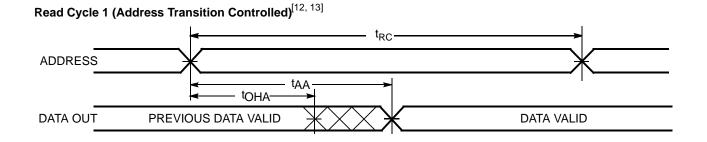
BHE.BLE is the AND of both BHE and BLE. Chip can be deselected by either disabling the chip enable signals or by disabling both BHE and BLE. 5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the 6. specified I_{OL}/I_{OH} and 30 pF load capacitance.

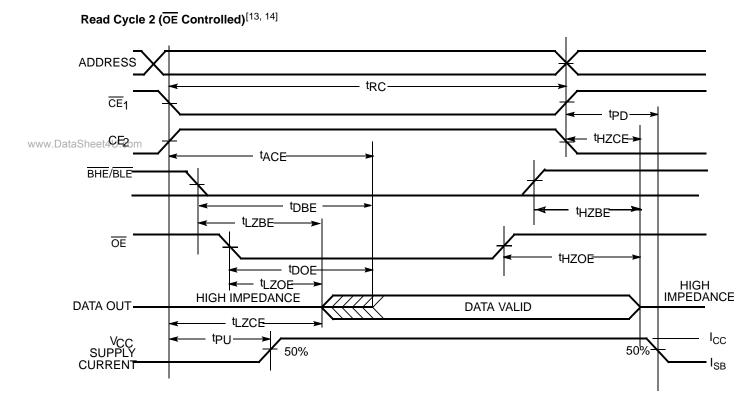
7.

8.

9.

specified I_{OL}/I_{OH} and 30 pF load capacitance. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given device. If both byte enables are toggled together this value is 10ns t_{HZOE} , t_{HZCE} , and t_{HZWE} are specified with $C_L = 5$ pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write. The minimum write cycle time for Write Cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD} . 10.

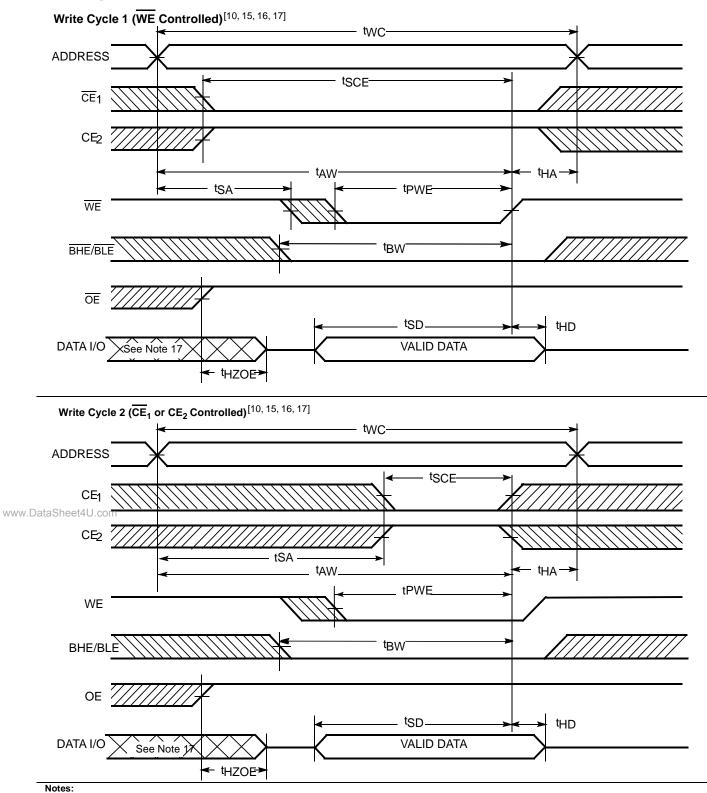

11.



Switching Characteristics Over the Operating Range^[6] (continued)

		70 ns		
Parameter	Description	Min.	Max.	Unit
t _{BW}	BHE / BLE Pulse Width	60		ns
t _{SD}	Data Set-Up to Write End	30		ns
t _{HD}	Data Hold from Write End	0		ns
t _{HZWE}	WE LOW to High Z ^[7, 9]		25	ns
t _{LZWE}	WE HIGH to Low Z ^[7]	10		ns

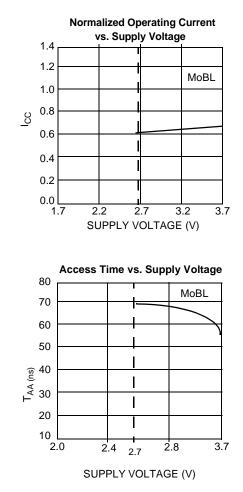
Switching Waveforms


Notes:

12. The device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, \overline{BHE} and/or $\overline{BLE} = V_{IL}$, and $CE_2 = V_{IH}$.

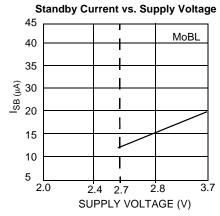
WE is HIGH for read cycle.
Address valid prior to or coincident with CE₁, BHE, BLE transition LOW and CE₂ transition HIGH.

Switching Waveforms (continued)


15. Data I/O is high impedance if $\overline{OE} = V_{IH}$.

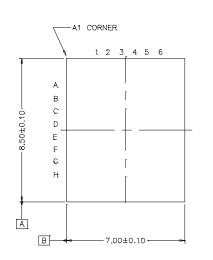
16. If \overline{CE}_1 goes HIGH and CE_2 goes LOW simultaneously with $\overline{WE} = V_{IH}$, the output remains in a high-impedance state.

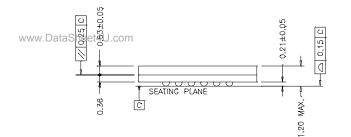
17. During this period, the I/Os are in output state and input signals should not be applied.

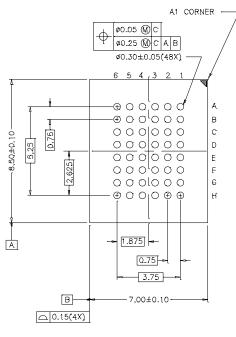


Typical DC and AC Characteristics

CE ₁	CE ₂	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
Х	L	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
Х	Х	Х	Х	Н	Н	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	Н	L	L	L	Data Out (I/O0 – I/O15)	Read	Active (I _{CC})
L	Н	Н	L	Н	L	Data Out (I/O0 – I/O7); High Z (I/O8 – I/O15)	Read	Active (I _{CC})
L	Н	Н	L	L	Н	High Z (I/O0 – I/O7); Data Out (I/O8 – I/O15)	Read	Active (I _{CC})
L	Н	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
L	Н	L	Х	L	L	Data In (I/O0 – I/O15)	Write	Active (I _{CC})
L	Н	L	Х	Н	L	Data In (I/O0 – I/O7); High Z (I/O8 – I/O15)	Write	Active (I _{CC})


Ordering Information


Spee (ns		Ordering Code	Package Name	Package Type	Operating Range
70)	WCMA4016U1X-FF70	BA48	48-Ball Fine Pitch BGA	Industrial


Package Diagrams

48-Ball (7.00 mm x 8.5 mm x 1.2 mm) FBGA BA48B

TOP VIEW

BOTTOM VIEW

51-85106-*D

Document History Page

Document Title: WCMA4016U1X 256K x 16 STATIC RAM Document Number:				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**		See ECN	AJU	New Data Sheet

www.DataSheet4U.com