

Features

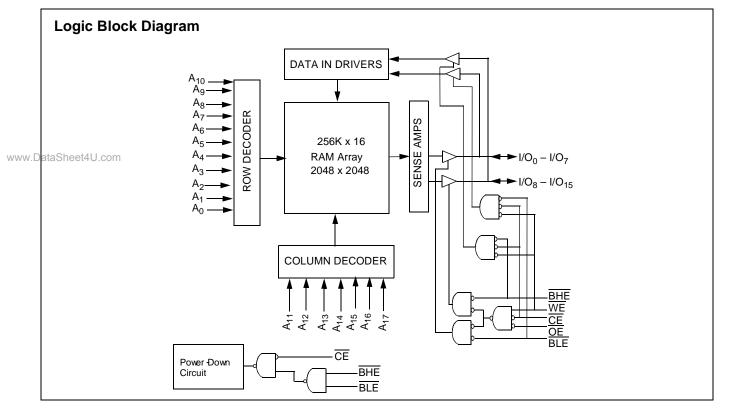
- Low Voltage range: — 2.7V-3.3V
- Ultra-low active power
 - Typical active current: 1.5 mA @ f = 1MHz

- Typical active current: 7 mA @ f = f_{max}

- · Low standby power
- Easy memory expansion with CE and OE features
- Automatic power-down when deselected
- CMOS for optimum speed/power

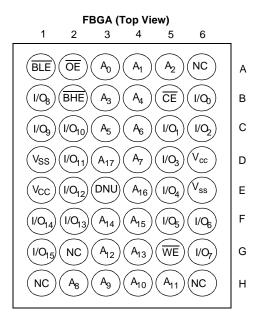
Functional Description

The WCMA4016U4X is a high-performance CMOS static RAMs organized as 256K words by 16 bits. These devices feature advanced circuit design to provide ultra-low active current. This device is ideal for portable applications such as cellular telephones. The devices also have an automatic power-down feature that significantly reduces power consumption by 80% when addresses are not toggling. The device can also be put into standby mode reducing power consumption by


256K x 16 Static RAM

more than 99% when deselected (\overline{CE} HIGH or both \overline{BLE} and \overline{BHE} are HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance_state when: deselected (\overline{CE} HIGH), outputs are disabled (\overline{OE} HIGH), both Byte High Enable and Byte Low Enable are disabled (\overline{BHE} , BLE HIGH), or during a write operation (\overline{CE} LOW and \overline{WE} LOW).

<u>Writing</u> to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (WE) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified on the address pins (A₀ through A₁₇). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₇).


Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (\overline{OE}) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the truth table at the back of this data sheet for a complete description of read and write modes.

The WCMA4016U4X is available in a 48-ball FBGA package.

Pin Configuration^[1, 2]

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied
Supply Voltage to Ground Potential–0.5V to V_{ccmax} + 0.5V
DC Voltage Applied to Outputs in High Z State ^[3] –0.5V to V_{CC} + 0.3V
www.DataSheet40.com/sec.eve.asv

Output Current into Outputs (LOW)...... 20 mA Static Discharge Voltage...... >2001V (per MIL-STD-883, Method 3015)

Operating Range

Device	Range	Ambient Temperature	v _{cc}
WCMA4016U4X	Industrial	-40°C to +85°C	2.7V to 3.3V

Product Portfolio

						Po	wer Dis	sipation	(Industr	ial)
Product	V _{CC} Range			Speed	Operating, I _{CC}			Standby (L.		
Floudet				Speed	f = 1 MHz		f = f _{max}		Standby (I _{SB2})	
	V _{CC(min.)}	V_{CC(typ.)} ^[4]	V _{CC(max.)}		Typ. ^[4]	Max.	Typ. ^[4]	Max.	Typ. ^[4]	Max.
WCMA4016U4X	2.7V	3.0V	3.3V	70 ns	1.5 mA	3 mA	7 mA	15 mA	7 μΑ	15 μA

Notes:

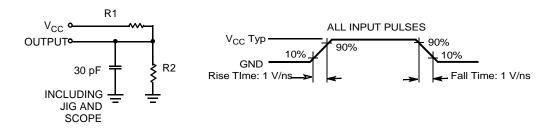
NC pins are not connected to the die.
 E3 (DNU) can be left as NC or Vss to ensure proper application.
 V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

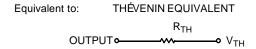
				N	/CMA4016U	4X	
Param- eter	Description	Test Con	ditions	Min.	Typ. ^[4]	Max.	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -1.0 mA	$V_{CC} = 2.7V$	2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1mA	$V_{CC} = 2.7V$			0.4	V
V _{IH}	Input HIGH Voltage			2.2		V _{CC} + 0.3V	V
VIL	Input LOW Voltage			-0.3		0.8	V
I _{IX}	Input Leakage Cur- rent	$GND \leq V_{I} \leq V_{CC}$	-1		+1	μA	
I _{OZ}	Output Leakage Cur- rent	$GND \leq V_O \leq V_{CC}, OU$	Itput Disabled	-1		+1	μA
	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = 3.3V$		7	15	_
ICC	Current	f = 1 MHz	I _{OUT} = 0 mA CMOS Levels		1.5	3	mA
I _{SB1}	Automatic CE Power-Down Cur- rent— CMOS Inputs	$\label{eq:cell} \begin{split} \overline{CE} &\geq V_{CC} - 0.2V \\ V_{IN} &\geq V_{CC} - 0.2V \text{ or } V \\ f &= f_{\underline{max}} \left(\underline{Address} \text{ and} f = 0 \right) (OE, WE, BHE and f = 0) \end{split}$		7	15	μΑ	
I _{SB2}	Automatic CE Power-Down Cur- rent— CMOS Inputs	$\label{eq:constraint} \begin{array}{ c c } \hline \hline CE \geq V_{CC} - 0.2V \\ V_{IN} \geq V_{CC} - 0.2V \text{ or } V \\ f = 0, \ Vcc = 3.3V \end{array}$	V _{IN} ≤ 0.2V,				

Capacitance^[5]

www.D	ataSheet Parameter	Description	Test Conditions	Max.	Unit
	C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
	C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ.)}$	8	pF

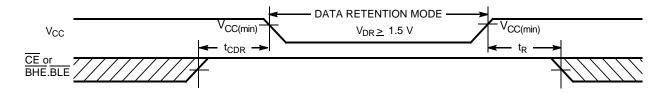
Thermal Resistance


Description	Test Conditions	Symbol	BGA	Units
Thermal Resistance (Junction to Ambient) ^[5]	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	Θ_{JA}	55	°C/W
Thermal Resistance (Junction to Case) ^[5]		Θ ^{JC}	16	°C/W


Note:

5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms



Parameters	3.0V	Unit
R1	1.105	KOhms
R2	1.550	KOhms
R _{TH}	0.645	KOhms
V _{TH}	1.75V	Volts

Data Retention Characteristics (Over the Operating Range)

	Parameter	Description	Conditions	Min.	Typ. ^[4]	Max.	Unit
	V _{DR}	V_{CC} for Data Retention		1.5		V _{ccmax}	V
	I _{CCDR}	Data Retention Current	$\label{eq:V_CC} \begin{split} & \frac{V_{CC}}{CE} = 1.5 V \\ & \overline{CE} \geq V_{CC} - 0.2 V, \\ & V_{IN} \geq V_{CC} - 0.2 V \text{ or } V_{IN} \leq 0.2 V \end{split}$		3	10	μA
t _{CDR} ^[5] www.DataSheet4U.com		Chip Deselect to Data Retention Time		0			ns
	t _R ^[6]	Operation Recovery Time		t _{RC}			ns

Data Retention Waveform^[7]

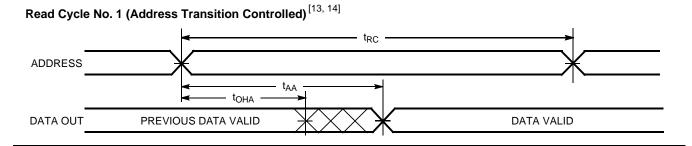
Note:

- 6. Full Device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} > 100\mu s$ or stable at $V_{CC(min.)} > 100 \mu s$. 7. BHE.BLE is the AND of both BHE and BLE. Chip can be deselected by either disabling the chip enable signals or by disabling both BHE and BLE.

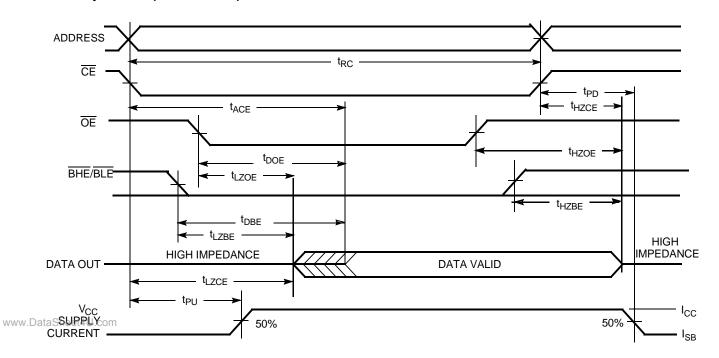
Switching Characteristics Over the Operating Range^[8]

		70	ns	
Parameter	Description	Min	Max	Uni
READ CYCLE				
t _{RC}	Read Cycle Time	70		ns
t _{AA}	Address to Data Valid		70	ns
t _{OHA}	Data Hold from Address Change	10		ns
t _{ACE}	CE LOW to Data Valid		70	ns
t _{DOE}	OE LOW to Data Valid		35	ns
t _{LZOE}	OE LOW to Low Z ^[9]	5		ns
t _{HZOE}	OE HIGH to High Z ^[9, 11]		25	ns
t _{LZCE}	CE LOW to Low Z ^[9]	10		ns
t _{HZCE}	CE HIGH to High Z ^[9, 11]		25	ns
t _{PU}	CE LOW to Power-Up	0		ns
t _{PD}	CE HIGH to Power-Down		70	ns
t _{DBE}	BHE / BLE LOW to Data Valid		70	ns
t _{LZBE} ^[10]	BHE / BLE LOW to Low Z ^[9]	5		ns
t _{HZBE}	BHE / BLE HIGH to High Z ^[9, 11]		25	ns
WRITE CYCLE ^[12]				
t _{WC}	Write Cycle Time	70		ns
t _{SCE}	CE LOW to Write End	60		ns
t _{AW}	Address Set-Up to Write End	60		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	50		ns
t _{BW}	BHE / BLE Pulse Width	60		ns
a t aSheet4U.com SD	Data Set-Up to Write End	30		ns
t _{HD}	Data Hold from Write End	0		ns
t _{HZWE}	WE LOW to High Z ^[9, 11]		25	ns
t _{LZWE}	WE HIGH to Low Z ^[9]	5		ns

Notes:

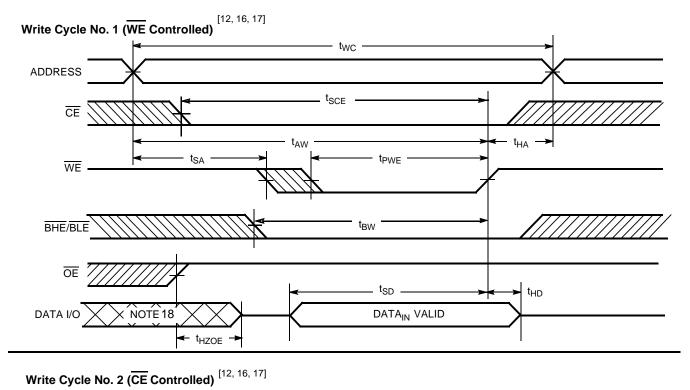

8. Test conditions assume signal transition time of 5 ns or less, timing reference levels of V_{CC(typ.)}/2, input pulse levels of 0 to V_{CC(typ.)}, and

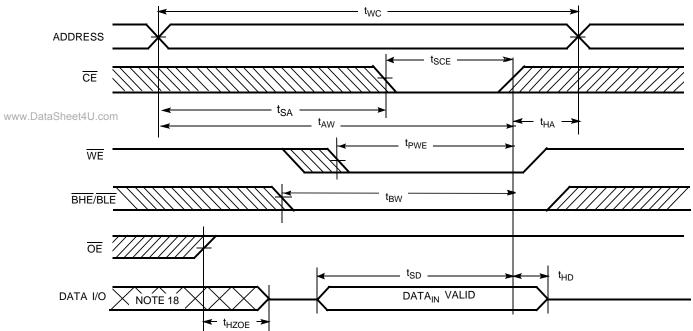
output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZBE} is less than t_{LZBE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less 9.


At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZBE}, t_{HZOE} is less than t_{LZDE}, and t_{HZWE} is less than t_{LZDE}, t_{HZDE} for any given device.
 If both byte enables are toggled together this value is 10ns
 t_{HZOE}, t_{HZCE}, t_{HZBE}, and t_{HZWE} transitions are measured when the outputs enter a high impedance state.
 The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE and/or BLE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.

Switching Waveforms

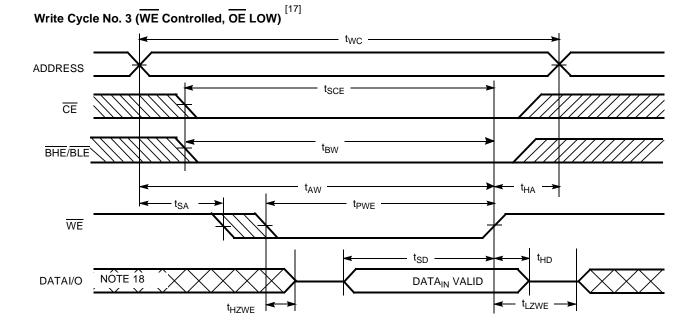
Read Cycle No. 2 (OE Controlled)^[14, 15]

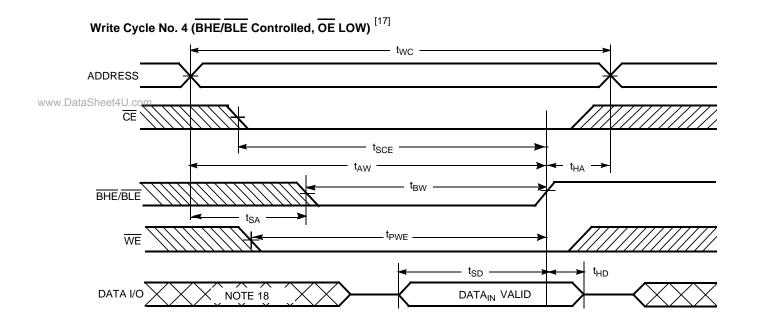



Notes:

- 13. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{1L}$, \overline{BHE} and/or $\overline{BLE} = V_{1L}$.14. WE is HIGH for read cycle.15. Address valid prior to or coincident with \overline{CE} , \overline{BHE} , \overline{BLE} transition LOW.

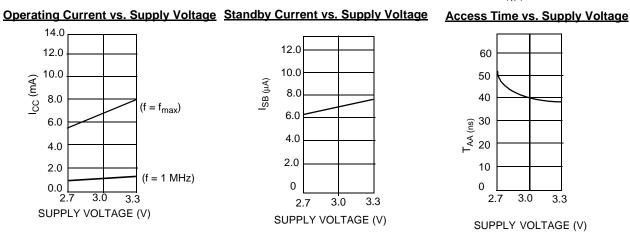
Switching Waveforms (continued)




Notes:

- 16. Data I/O is high-impedance if OE = V_{IH}.
 17. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
 18. During this period, the I/Os are in output state and input signals should not be applied.

Switching Waveforms (continued)



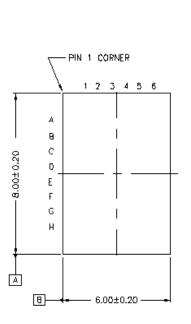
Typical DC and AC Parameters

(Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ.)}$, $T_A = 25^{\circ}C$.)

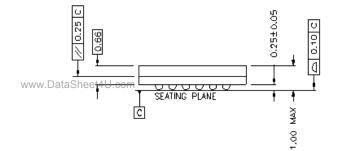
Truth Table

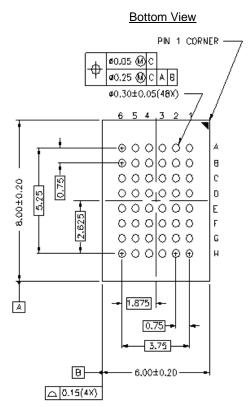
	CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
www.D	ataSheet4	U.com	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
	Х	Х	Х	Н	Н	High Z	Deselect/Power-Down	Standby (I _{SB})
	L	Н	L	L	L	Data Out (I/O _O -I/O ₁₅)	Read	Active (I _{CC})
	L	Н	L	Н	L	Data Out (I/O _O –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Read	Active (I _{CC})
	L	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read	Active (I _{CC})
	L	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
	L	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
	L	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
	L	L	Х	L	L	Data In (I/O _O -I/O ₁₅)	Write	Active (I _{CC})
	L	L	Х	Н	L	Data In (I/O _O –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Write	Active (I _{CC})
	L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write	Active (I _{CC})

Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	WCMA4016U4X-FF70	FB48A	48-Ball Fine Pitch BGA	Industrial

www.DataSheet4U.com




Package Diagrams

48-Ball (6.0 mm x 8.0 mm x 1.0 mm) Fine Pitch BGA, FB48A

Top View

Document Title: WCMA4016U4X 256K x 16 STATIC RAM										
REV.	Spec #	ECN #	Issue Date	Orig. of Change	Description of Change					
**	38-14013	115230	4/24/2002	MGN	New Datasheet					

www.DataSheet4U.com