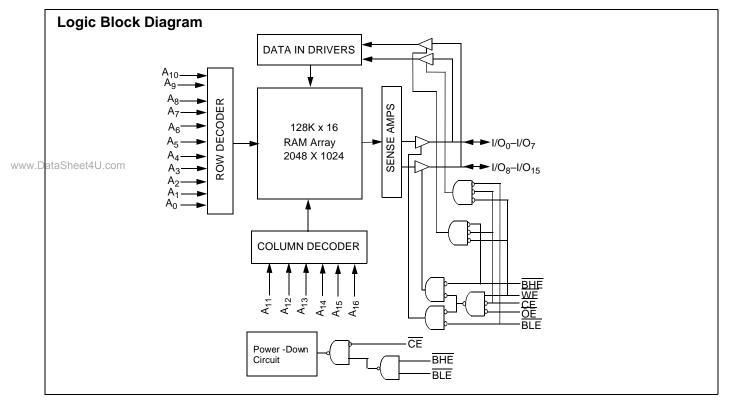


128K x 16 Static RAM

Features

- · Low voltage range:
 - -1.65V-1.95V
- · Ultra-low active power
 - Typical Active Current: 0.5 mA @ f = 1 MHz
 - Typical Active Current: 1.5 mA @ f = f_{max}
- · Low standby power
- Easy memory expansion with CE and OE features
- Automatic power-down when deselected
- · CMOS for optimum speed/power

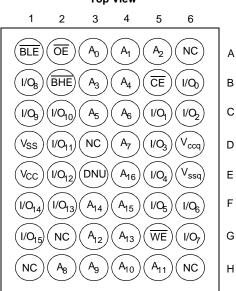
Functional Description


The WCMB2016R4X is a high-performance CMOS static RAM organized as 128K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This device is ideal for portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when deselected (CE HIGH or both BLE

and $\overline{\rm BHE}$ are HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected (CE HIGH), outputs are disabled ($\overline{\rm OE}$ HIGH), both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH), or during a write operation ($\overline{\rm CE}$ LOW, and $\overline{\rm WE}$ LOW).

Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O $_0$ through I/O $_7$), is written into the location specified on the address pins (A $_0$ through A $_{16}$). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O $_8$ through I/O $_{15}$) is written into the location specified on the address pins (A $_0$ through A $_{16}$).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O $_8$ to I/O $_{15}$. See the Truth Table at the back of this data sheet for a complete description of read and write modes.


The WCMB2016R4X is available in a 48-ball FBGA package.

Pin Configuration^[1, 2]

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Supply Voltage to Ground Potential-0.2V to +2.4V

DC Voltage Applied to Outputs in High Z State ^[3]	
DC Input Voltage ^[3]	$-0.2V$ to V_{CC} + $0.2V$
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

www.Doperating Range

Device	Range	Ambient Temperature	V _{CC}
WCMB2016R4X	Industrial	−40°C to +85°C	1.65V to 1.95V

Product Portfolio

					Power Dissipation (Industrial)						
Product	V _{CC} Range		V _{CC} Range		Speed		Operating (I _{CC})			Standby (I _{SB2})	
Froduct				Speeu	f = 1MHz		f =	f _{max}	Stariuby	('SB2)	
	V _{CC(min.)}	V _{CC(typ.)} ^[4]	V _{CC(max.)}		Typ. ^[4]	Max.	Typ. ^[4]	Max.	Typ. ^[4]	Max.	
WCMB2016R4X	1.65V	1.80V	1.95V	70 ns	0.5 mA	2 mA	1.5 mA	6 mA	1 μΑ	8 μΑ	

Notes:

- NC pins are not connected to the die. E3 (DNU) can be left as NC or Vss to ensure proper application. $V_{\rm IL}({\rm min})$ = -2.0V for pulse durations less than 20 ns.
- Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ)}$, $T_A = 25^{\circ}C$.

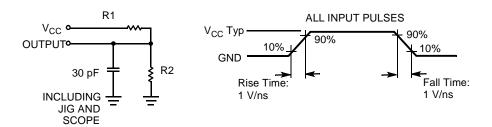
Electrical Characteristics Over the Operating Range

			V				
Param- eter	Description	Test Conditions		Min.	Typ. ^[4]	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -0.1 \text{ mA}$	V _{CC} = 1.65V	1.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA	V _{CC} = 1.65V			0.2	V
V _{IH}	Input HIGH Voltage			1.4		V _{CC} + 0.2V	V
V _{IL}	Input LOW Voltage			-0.2		0.4	V
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$	-1		+1	μΑ	
I _{OZ}	Output Leakage Cur- rent	$GND \leq V_O \leq V_CC, C$	-1		+1	μΑ	
	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = 1.95V$		1.5	6	mA
Icc	Current	f = 1 MHz	I _{OUT} = 0 mA CMOS levels		0.5	2	mA
I _{SB1}	Automatic CE Power-Down Current— CMOS Inputs	$\label{eq:control_control} \begin{split} \overline{CE} &\geq V_{CC} - 0.2 V, \\ V_{IN} &\geq V_{CC} - 0.2 V, \ V_{IN} \leq f \\ f &= f_{\begin{subarray}{c} MAX \\ E = 0 \end{subarray}} \underbrace{(Address\ and f = 0\ (OE, \begin{subarray}{c} WE, \begin{subarray}{c} BHE \ address \ add$		1	8	μΑ	
I _{SB2}	Automatic CE Power-Down Cur- rent— CMOS Inputs	$\overline{CE} \ge V_{CC} - 0.2V$ $V_{IN} \ge V_{CC} - 0.2V$ or $V_{CC} = 0$, $V_{CC} = 1.95V$	V _{IN} ≤ 0.2V,				·

Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25$ °C, f = 1 MHz,	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

Thermal Resistance

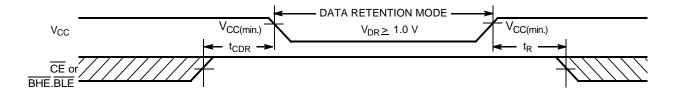

www.D	Description	Test Conditions	Symbol	BGA	Units
	re1 '	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	Θ_{JA}	55	°C/W
	Thermal Resistance (Junction to Case) ^[5]		Θ _{JC}	16	°C/W

Note:

^{5.} Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT


> OUTPUT -**⊸** ∨

Parameters	1.8V	UNIT
R1	13500	Ohms
R2	10800	Ohms
R _{TH}	6000	Ohms
V _{TH}	0.80	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions	Min.	Typ. ^[4]	Max.	Unit
V _{DR}	V _{CC} for Data Retention		1.0		1.95	V
I _{CCDR}	Data Retention Current	$\begin{aligned} & \frac{V_{CC}}{CE} = 1.0V \\ & \frac{E}{CE} \ge V_{CC} - 0.2V, \\ & V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V \end{aligned}$		0.5	5	μΑ
t _{CDR} ^[5]	Chip Deselect to Data Retention Time		0			ns
tp[6] v.DataSheet4U.com	Operation Recovery Time		t _{RC}			ns

$\ \, {\bf Data} \,\, {\bf Retention} \,\, {\bf Waveform}^{[7]} \\$

Notes:

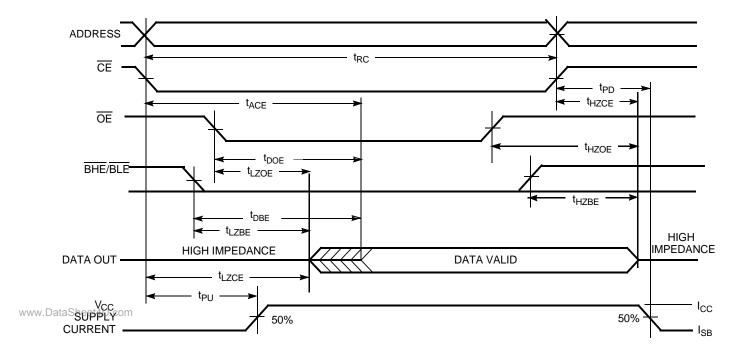
- Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 100~\mu s$ or stable at $V_{CC(min)} \ge 100~\mu s$.

 BHE is the AND of both BHE and BLE. Chip can be deselected by either disabling the chip enable signals or by disabling both BHE and BLE.

Switching Characteristics Over the Operating Range^[8]

		WCMB2	2016R4X	
Parameter	Description	Min.	Max.	Unit
READ CYCLE				
t _{RC}	Read Cycle Time	70		ns
t _{AA}	Address to Data Valid		70	ns
t _{OHA}	Data Hold from Address Change	10		ns
t _{ACE}	CE LOW to Data Valid		70	ns
t _{DOE}	OE LOW to Data Valid		35	ns
t _{LZOE}	OE LOW to Low Z ^[9]	5		ns
t _{HZOE}	OE HIGH to High Z ^[9, 10]		25	ns
t _{LZCE}	CE LOW to Low Z ^[9]	10		ns
t _{HZCE}	CE HIGH to High Z ^[9, 10]		25	ns
t _{PU}	CE LOW to Power-Up	0		ns
t _{PD}	CE HIGH to Power-Down		70	ns
t _{DBE}	BLE / BHE LOW to Data Valid		70	ns
t _{LZBE}	BLE / BHE LOW to Low Z ^[9]	5		ns
t _{HZBE}	BLE / BHE HIGH to High Z ^[9, 10]		25	ns
WRITE CYCLE	[11]			
t _{WC}	Write Cycle Time	70		ns
t _{SCE}	CE LOW to Write End	60		ns
t _{AW}	Address Set-Up to Write End	60		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	50		ns
t _{BW}	BLE / BHE LOW to Write End	60		ns
ataSheet4U.com	Data Set-Up to Write End	30		ns
t _{HD}	Data Hold from Write End	0		ns
t _{HZWE}	WE LOW to High Z ^[9, 10]		25	ns
t _{LZWE}	WE HIGH to Low Z ^[9]	10		ns

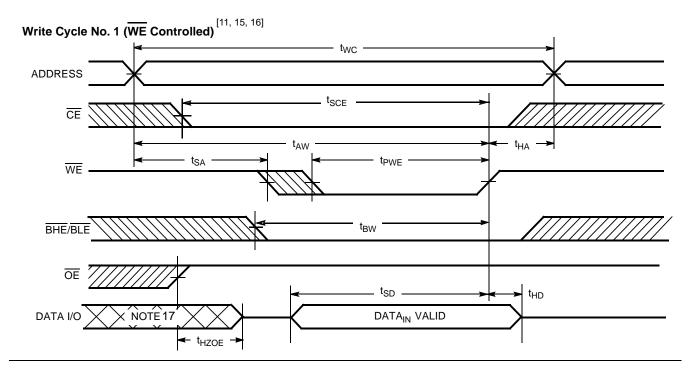
Note:

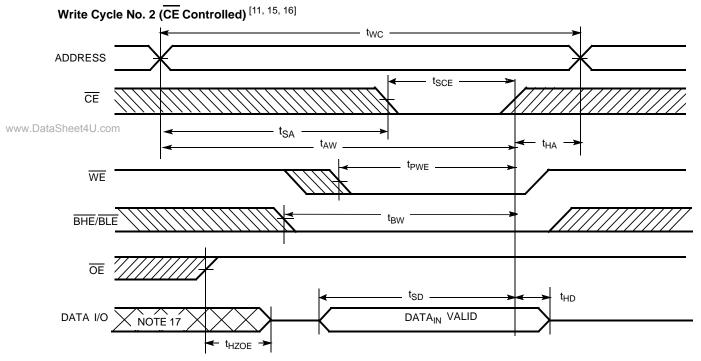

Test conditions assume signal transition time of 5 ns or less, timing reference levels of $V_{CC(typ)}/2$, input pulse levels of 0 to $V_{CC(typ)}$, and output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZBE} is less than t_{LZDE} , t_{HZCE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZDE} for any given device. t_{HZCE} , t_{HZDE} , t_{HZDE} and t_{HZWE} transitions are measured when the outputs enter a high impedence state. The internal write time of the memory is defined by the overlap of WE, $CE = V_{IL}$, BHE and/or BLE $= V_{IL}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.

Switching Waveforms

[12, 13] Read Cycle No. 1(Address Transition Controlled) t_{RC} **ADDRESS** t_{OHA} DATA OUT PREVIOUS DATA VALID DATA VALID

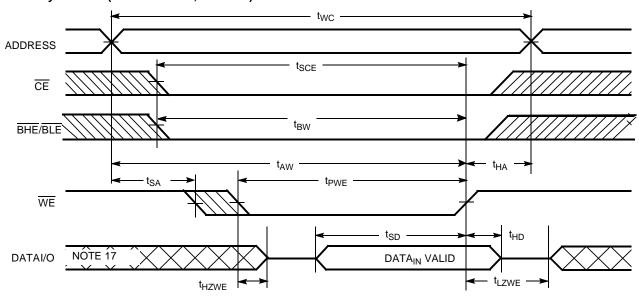
Read Cycle No. 2 (OE Controlled) [13, 14]



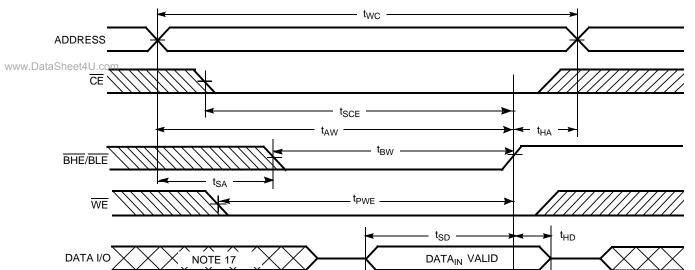

Notes:

- Device is continuously selected. OE, CE = V_{IL}, BHE and/or BLE = V_{IL}.
 WE is HIGH for read cycle.
 Address valid prior to or coincident with CE, BHE, BLE, transition LOW.

Switching Waveforms

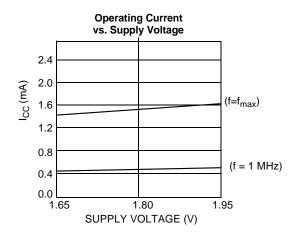


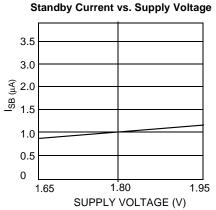
- 15. Data I/O is high impedance if OE = V_{IH}.
 16. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
 17. During this period, the I/Os are in output state and input signals should not be applied.

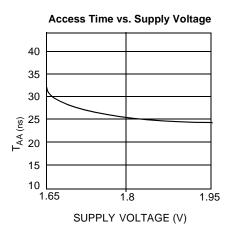


Switching Waveforms

Write Cycle No. 3 (WE Controlled, OE LOW) [16]


Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)[16]





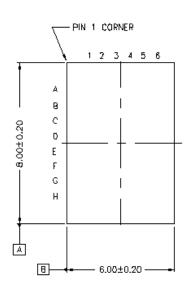
Typical DC and AC Characteristics

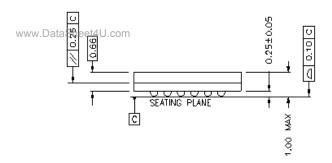
(Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ)}$ Typ, $T_A = 25^{\circ}C$.)

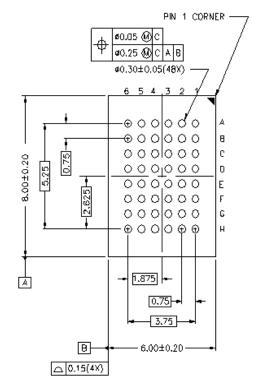
www.DataSheet4U.com

Truth Table

CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
Х	Х	Х	Н	Н	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	L	L	L	Data Out (I/O _O -I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O _O –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read	Active (I _{CC})
L	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O _O -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O _O –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ -I/O ₁₅); I/O ₀ -I/O ₇ in High Z	Write	Active (I _{CC})


Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	WCMB2016R4X-FF70	FB48A	48-Ball Fine Pitch BGA	Industrial


Package Diagrams

48-Ball (6.0 mm x 8.0 mm x 1.0 mm) Fine Pitch BGA, FB48A

<u>Top View</u> <u>Bottom View</u>

WCMB2016R4X

Document Title: WCMB2016R4X, 128K x 16 Static RAM								
REV.	Spec #	ECN#	Issue Date	Orig. of Change	Description of Change			
**	38-14011	115226	4/24/2002	MGN	New Data Sheet			

www.DataSheet4U.com