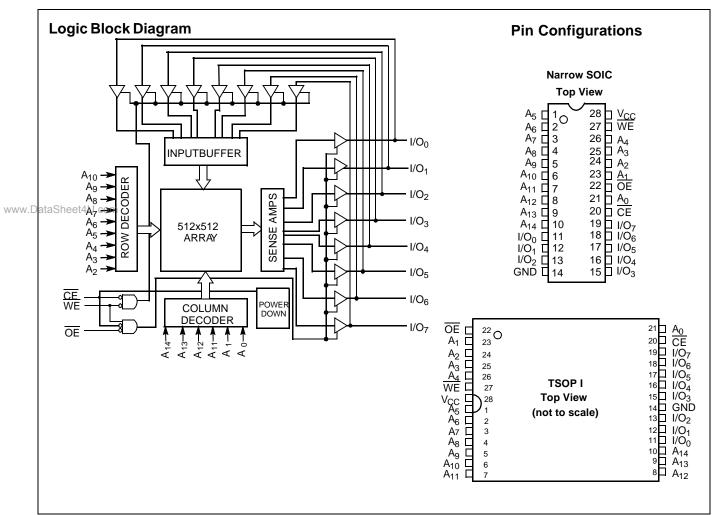


Features

- Low Voltage Range
 - -4.5V-5.5V Operation
- · Low active power
 - -275 mW (max.)
- · Low standby power
 - —28 μW (max.)
- Easy memory expansion with CE and OE features
- TTL-compatible inputs and outputs
- Automatic power-down when deselected
- · CMOS for optimum speed/power

Functional Description


The WCMS0808C1X is a high-performance CMOS static RAM organized as 32K words by 8 bits. Easy memory expansion is provided by an active LOW chip enable (CE) and active

32Kx8 Static RAM

LOW output enable (\overline{OE}) and three-state drivers. This device has an automatic power-down feature, reducing the power consumption by 99.9% when deselected. The WCMS0808C1X is in the standard 450-mil-wide (300-mil body width) SOIC and packages.

An active LOW write enable signal (WE) controls the writing/reading operation of the memory. When CE and WE inputs are both LOW, data on the eight data input/output pins (I/O0 through I/O7) is written into the memory location addressed by the address present on the address pins (A0 through A14). Reading the device is accomplished by selecting the device and enabling the outputs, CE and OE active LOW, while WE remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins are present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable (\overline{WE}) is HIGH.

Maximum Ratings

DC Input Voltage ^[1]	-0.5V to V _{CC} + 0.5V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

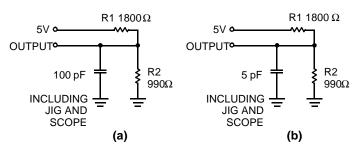
Range	Ambient Temperature	V _{CC}
Industrial	–40°C to +85°C	5V ± 10%

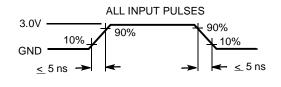
Electrical Characteristics Over the Operating Range

			WCMS0808C1X			
Parameter	Description	Test Conditions	Min.	Typ ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -1.0 \text{ mA}$	2.4			V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 2.1 \text{ mA}$			0.4	V
V _{IH}	Input HIGH Voltage		2.2		V _{CC} +0.5V	V
V _{IL}	Input LOW Voltage		-0.5		0.8	V
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$	-0.5		+0.5	μΑ
I _{OZ}	Output Leakage Current	$GND \leq V_{CC}, Output \; Dis$ abled	-0.5		+0.5	μΑ
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max.,$ $I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC}$		25	50	mA
I _{SB1}	Automatic CE Power-Down Current— TTL Inputs	$\begin{aligned} &\text{Max. } V_{CC}, \overline{CE} \geq V_{IH}, \\ &V_{IN} \geq V_{IH} \text{ or } \\ &V_{IN} \leq V_{IL}, f = f_{MAX} \end{aligned}$		0.3	0.5	mA
I _{SB2}	Automatic CE Power-Down Current— CMOS Inputs	$\begin{split} & \underbrace{\text{Max. V}_{CC},} \\ & \overbrace{\text{CE}} \geq \text{V}_{CC} - 0.3\text{V} \\ & \text{V}_{IN} \geq \text{V}_{CC} - 0.3\text{V} \\ & \text{or V}_{IN} \leq 0.3\text{V}, f = 0 \end{split}$		0.1	10	μΑ

www.DataSheet4U.com

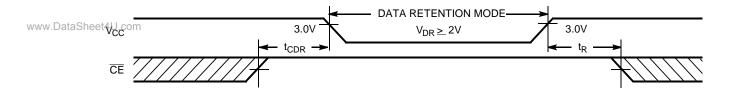
Capacitance^[3]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz,	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	8	pF


Note:

- 1. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
- Typical specifications are the mean values measured over a large sample size across normal production process variations and are taken at nominal conditions (T_A = 25°C, V_{CC}). Parameters are guaranteed by design and characterization, and not 100% tested.
- Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms


Equivalent to:

THÉ/ENIN EQUIVALENT

Data Retention Characteristics

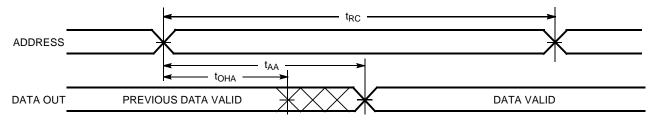
Parameter	Description	Conditions ^[4]	Min.	Typ. ^[2]	Max.	Unit
V_{DR}	V _{CC} for Data Retention	$\begin{split} &\frac{V_{CC}=3.0V,}{CE\geq V_{CC}-0.3V,}\\ &V_{IN}\geq V_{CC}-0.3V \text{ or }\\ &V_{IN}\leq 0.3V \end{split}$	2.0			V
I _{CCDR}	Data Retention Current			0.1	10	μΑ
t _{CDR} ^[3]	Chip Deselect to Data Retention Time		0			ns
t _R ^[3]	Operation Recovery Time		t _{RC}			ns

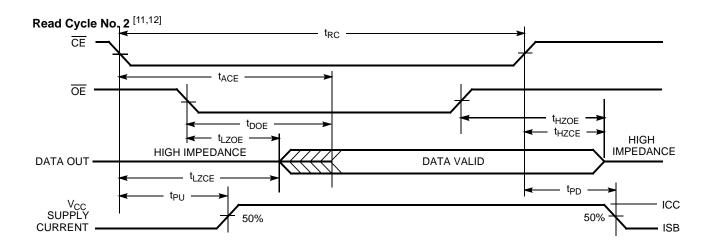
Data Retention Waveform

Note:

4. No input may exceed V_{CC}+0.5V.

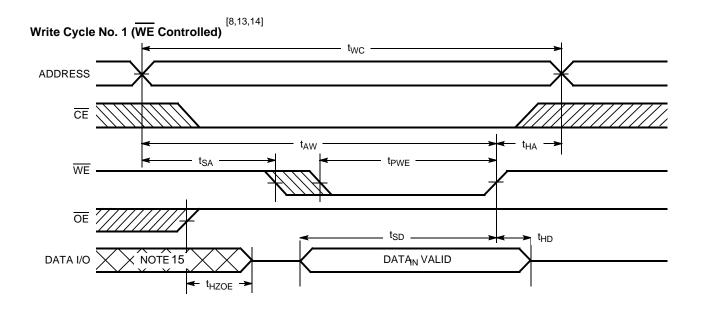
Switching Characteristics Over the Operating Range^[10]

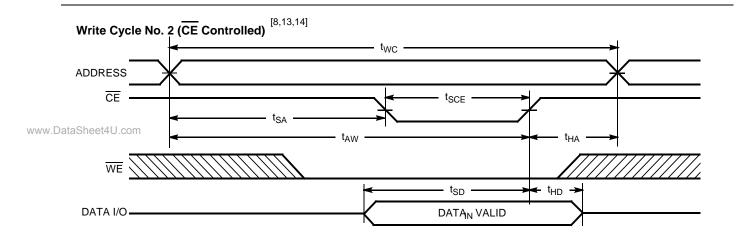

		WCMS		
Parameter	Description	Min.	Max.	Unit
READ CYCLE		1	1	
t _{RC}	Read Cycle Time	70		ns
t _{AA}	Address to Data Valid		70	ns
t _{OHA}	Data Hold from Address Change	5		ns
t _{ACE}	CE LOW to Data Valid		70	ns
t _{DOE}	OE LOW to Data Valid		35	ns
t _{LZOE}	OE LOW to Low Z ^[6]	5		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		25	ns
t _{LZCE}	CE LOW to Low Z ^[6]	5		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		25	ns
t _{PU}	CE LOW to Power-Up	0		ns
t _{PD}	CE HIGH to Power-Down		70	ns
WRITE CYCLE ^{[8,}	9]	1	1	
t _{WC}	Write Cycle Time	70		ns
t _{SCE}	CE LOW to Write End	60		ns
t _{AW}	Address Set-Up to Write End	60		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	50		ns
t _{SD}	Data Set-Up to Write End	30		ns
t _{HD}	Data Hold from Write End	0		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		25	ns
t _{LZWE}	WE HIGH to Low Z ^[6]	5		ns


- Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 100-pF load capacitance.
 At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.
 t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
 The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
 The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}

Switching Waveforms

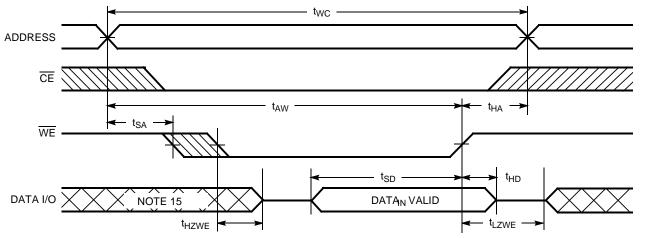
Read Cycle No. $\mathbf{1}^{[10,11]}$




Notes:

- Device is continuously selected. OE, CE = V_{IL}.
 WE is HIGH for read cycle.
 Address valid prior to or coincident with CE transition LOW.

Switching Waveforms (continued)


Notes:

^{13.} Data I/O is high impedance if OE = V_{IJ}.
14. If OE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

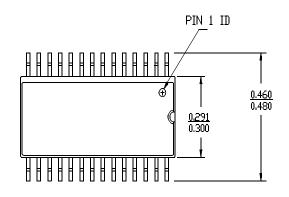
Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) $^{[9,14]}$

Note:

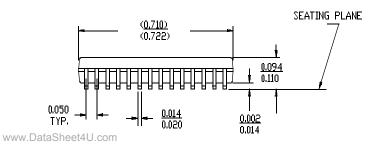
15. During this period, the I/Os are in output state and input signals should not be applied.

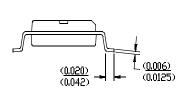
Truth Table

CE	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Deselect, Output Disabled	Active (I _{CC})



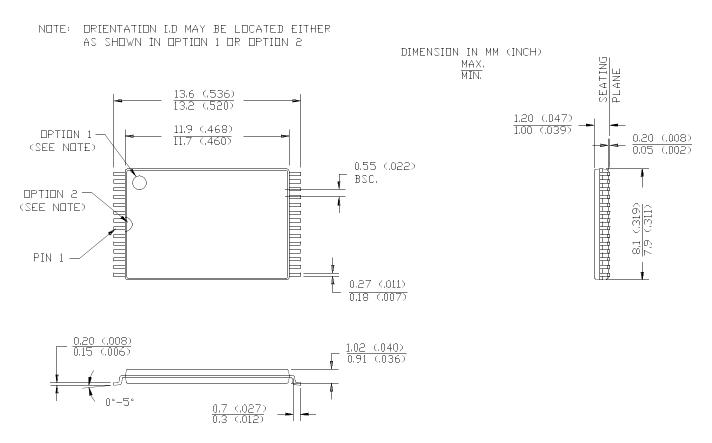
Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	WCMS0808C1X-NF70	N28	28-Lead 450-Mil (300-Mil Body Width) Narrow SOIC	Industrial
	WCMS0808C1X-TF70	T28	28-Lead Thin Small Outiline Package (TSOP)	


Package Diagrams

28-Lead 450-Mil (300-Mil Body Width) SOIC, N28

DIMENSIONS IN INCHES $\frac{\text{MIN.}}{\text{MAX.}}$ LEAD COPLANARITY 0.004 MAX.



Package Diagrams (continued)

28-Lead Thin Small Outline Package, T28

WCMS0808C1X

32Kx8 Static RAM

Document Title: WCMS0808C1X, 32K x 8 Static RAM							
REV.	Spec #	Orig. of Change	Description of Change				
**	38-14010	115225	1/17/02	MGN	New Datasheet		