EBRUARY, 1981

WESTERN DIGITAL

C O R P O R A T I O N

WD1983 (BOART) BUS ORIENTED ASYNCHRONOUS RECEIVER/TRANSMITTER

FEATURES

ASYNCHRONOUS MODE

- FULL DUPLEX OPERATION
- SELECTABLE 5,6,7, & 8 BIT CHARACTERS
- LINE BREAK DETECTION AND GENERATION
- 1, 1½, or 2 STOP BIT SELECTION
- FALSE START BIT DETECTION
- OVERRUN AND FRAMING ERROR DETECTION
- DC TO 36K BITS/SEC (16X)
- DC TO 600K BITS/SEC (1X)
- 8251/8251A ASYNCHRONOUS ONLY REPLACEMENT
- REQUIRES NO ASYNCHRONOUS SYSTEM CLOCK
- 28 PIN PLASTIC OR CERAMIC
- +5 VOLT ONLY

SYSTEM COMPATIBILITY

- DOUBLE BUFFERING OF DATA
- 8 BIT BI-DIRECTIONAL BUS FOR DATA, STATUS, AND CONTROL WORDS
- ALL INPUTS AND OUTPUTS TTL COMPATIBLE
- CHIP SELECT, RE, WE, C/D INTERFACE TO CPU
- ON-LINE DIAGNOSTIC CAPABILITY
- THREE STATE DATA BUS

BAUD RATE-DC TO 36K BITS/SEC (16X) SELECTABLE CLOCK RATES

- 1X, 16X, 64X, BAUD RATE CLOCK INPUTS
- UP TO 47% DISTORTION ALLOWANCE WITH 64X CLOCK

APPLICATIONS

ASYNCHRONOUS COMMUNICATIONS SERIAL/PARALLEL INTERFACE

GENERAL DESCRIPTION

The WD1983 is an N channel silicon gate MOS/LSI device that interfaces a digital asynchronous channel with a parallel channel. It is available in a ceramic or plastic standard 28 pin dual in line package.

The WD1983 is a fully programmable microprocessor I/O peripheral with two control registers and a status register. It is capable of full duplex operations.

PIN. NO.	PIN NAME	SYMBOL	FUNCTION				
4	POWER GND	VSS	Ground				
26	POWER SUPPLY	vcc	+5 Volts				
11	CHIP SELECT	टड	This input, when low, enables READ or WRITE operations.				
13	READ ENABLE	RE	This input, when low, accesses the contents of the addressed register.				
10	WRITE ENABLE	WE	This input, when low, writes the data on the DATA BUS into the addressed register.				
21	MASTER RESET	MR	This input, when high, initializes the device and clears the COMMAND and MODE REGISTERS.				
12	CONTROL/DATA	C/D	This input selects the CONTROL or DATA register. It is used in conjunction with a READ or WRITE enable.				
19	TRANSMIT DATA	ТХD	This output is the transmit serial data. When no data is being transmitted or after MASTER RESET, this output is high (a marking condition). COMMAND CONTROL word bit 3 is used to program a break condition by forcing the TXD output to a low (spacing condition).				
9	TRANSMIT CLOCK	TXC	This input is the source clock for transmission. MODE IN- STRUCTION word bits MR0 & MR1, control 1X, 16X, or 64X, times the transmitted bit rate.				
18	TRANSMIT EMPTY	TXE	This output is set high after MASTER RESET and is automat- ically reset when a character is written into the TRANSMIT- TER HOLDING REGISTER. It returns high at the end of a transmitted character indicating the end of transmission if the TRANSMIT HOLDING REGISTER has not been loaded.				
15	TRANSMIT READY	TXRDY	This output is set high after MASTER RESET. It indicates the transmitter is ready to accept a character and is autor cally reset whenever a character is written into the TRA MITTER HOLDING REGISTER.				

SUCT-OZ T

PIN NO.	PIN NAME	SYMBOL	FUNCTION					
3	RECEIVE DATA	RXD	This input is the received serial data.					
25	RECEIVE CLOCK	RXC	This input is the receiver clock. MODE INSTRUCTION word bits MR0 & MR1 control whether this input is 1X, 16X or 64X times the received bit rate.					
14	RECEIVER READY	RXRDY	This output is set low after MASTER RESET. When set high it indicates that the receiver has assembled a character and transferred it to the RECEIVER HOLDING REGISTER. It is automatically reset when the RECEIVER HOLDING REG- ISTER is read.					
16	BREAK DETECT	BRKDET	This output is reset after MASTER RESET. It is set high when the receiver detects a string of zeros equal to the pro grammed character length including start, parity and stop bits. Upon detecting a valid one data bit it's reset. Assembly of the next character is begun after detecting a valid start bit					
17	CLEAR TO SEND	CTS	This input is set low to enable the transmitter. When set high it disables transmission. If the transmitter is transmitting a character, it will terminate transmission after the TRANSMIT- TER REGISTER is empty.					
24	DATA TERMINAL READY	DTR	This is a general purpose output which is set and cleared by COMMAND word bit CR1. It is reset after MASTER RESET.					
23	REQUEST TO SEND	RTS	This is a general purpose output which is set and cleared by COMMAND word bit CR5. It is reset after MASTER RESET.					
1, 2, 5, 6, 7, 8, 27, 28	data bus	D0 THRU D7	These are input/output pins. Data on the DATA BUS is writ- ten into the selected register during a WRITE operation. Dur- ing a READ operation, the DATA BUS is <u>driven</u> by data in the selected register. When not selected, (CS high), these pins are in a high impedance state.					
22	DATA SET READY	DSR	This is a general purpose input which is sensed in STATUS REGISTER bit #7.					
20		NC	No internal connection, pin not used.					

ORGANIZATION

The WD1983 Block Diagram is illustrated on Page 1. The WD1983 (BOART) is an eight bit bus-oriented device. Communication between the BOART and the controlling CPU occurs via the 8 bit DATA BUS. There are 2 accessible DATA REGISTERS, which buffer Transmit and Receive DATA. They are the TRANSMIT HOLDING REGISTER and the RECEIVE HOLDING REGISTER. There is a parallel-to-serial shift register (the TRANSMIT REGISTER) and a serial-to-parallel shift register (the RECEIVE REGISTER).

Operational control and monitoring of the BOART is performed by two CONTROL REGISTERS (the COMMAND IN-STRUCTION REGISTER and the MODE INSTRUCTION REGISTER) and the STATUS REGISTER.

A READ/WRITE control circuit allows monitoring/programming or reading/loading in the CONTROL, STATUS or HOLD-ING REGISTERS by activating the appropriate control lines: Chip Select (\overline{CS}), Read Enable (\overline{RE}), Write Enable (\overline{WE}) and Control or Data Select (\overline{CD}).

Internal control of the BOART is by means of two internal MI-CROCONTROLLERS; one for transmit and one for receive. The CONTROL REGISTERS, MODEM CONTROL LOGIC, READ/WRITE CONTROL LOGIC and various counters provide inputs to the MICROCONTROLLERS, which generate the necessary control signals to send and receive serial data according to the programmed asynchronous format.

READ/WRITE OPERATIONS

The WD1983 must be initialized after a MASTER RESET pulse by first writing the MODE INSTRUCTION word and then the COMMAND INSTRUCTION word. Thereafter, every control write to the device is interpreted as a COMMAND word. If it is desired to re-program the MODE REGISTER, a COM-MAND REGISTER bit, INTERNAL RESET (CR6), allows the next control write data to be entered into the MODE REGISTER.

The WD1983 registers are accessed according to the following table:

cs c	D RE	WE	REGISTERS SELECTED
	- L	H	Read RECEIVE HOLDING REGISTER
	- H	L	Write TRANSMIT HOLDING REGISTER
	- L	H	Read STATUS REGISTER
	- H	L	Write CONTROL REGISTER
	- K	X	DATA BUS tri-stated

Note: "L" means V_{IL} at pins "H" means V_{IH} at pins "X" means don't care

OPERATING DESCRIPTION

The WD1983 (BOART) is primarily designed to operate in an 8 bit microprocessor environment, although other control logic schemes are easily implemented. The DATA BUS and the Interface Control Signals (\overline{CS} , $C\overline{D}$, \overline{RE} and \overline{WE}) should be connected to the microprocessor's data bus and system control bus. The appropriate \overline{TXC} and \overline{RXC} clock frequencies should be selected for the particular application using a programmable blaud rate generator such as the BR1941.

For typical data communication applications, the RXD and TXD input/outputs can be connected to RS-232C interface circuits or a modem.

The TXRDY, RXRDY, TXE and BRKDET Flags may be connected to the microprocessor system as interrupt inputs or the STATUS REGISTER can be periodically read in a polled environment to support BOART operations.

MODEM CONTROL SIGNALS can be configured several ways as the DTR, RTS and DSR signals are controlled and sensed by the CPU through the COMMAND and STATUS REGISTERS. The CTS input is used to synchronize the transmitter to external events.

The SBRK bit of the COMMAND REGISTER (CR3) is used to send a Break Character. (A break character is defined as a start bit, and all zero data, parity and stop bits). When the CR3 bit is set to a "1", it causes the transmitter output, TXD, to be forced low after the last word is transmitted.

The receiver is equipped with logic to look for a break character. When a break character is received, the BREAK DE-TECT (BRKDET) FLAG and STATUS bit are set to logic "1". When the receiver input line goes high again for the least "one data bit time," the receiver resets the BREAK DETECT FLAG and resumes its search for a start bit.

TYPICAL DATA BLOCK TRANSFER

MODE INSTRUCTION CONTROL WORD FORMAT

COMMAND INSTRUCTION CONTROL WORD FORMAT

CR7	CR6	CR5	CR4	СЯЗ	CR2	CR1	CRO
DON'T CARE	INTERNAL RESET (IR)	REQUEST TO SEND (RTS):	ERROR RESET (ER):	SEND BREAK CHARACTER (SBRK):	RECEIVE ENABLE (RXE):	DATA TERMINAL READY (DTR):	TRANSMIT ENABLE TXEN:
	1 = returns WD1983 to mode instruction	1 = forces RTS output low	1 = resets PE, OE & FE error flags	1 = forces TXD output low	1 = enable receiver	1 = forces DTR output low	1 = enable transmitter
	word format	0 = forces RTS output high	0 = normal operation	0 = normal operation	0 = disable receiver	0 = forces	0 = disable transmitter

STATUS WORD FORMAT

SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0
DSR (SEE NOTE)	BRKDET (SEE NOTE)	FRAMING ERROR (FE): 1 = invalid stop bit detected at the end of the character 0 = No framing error detected (Reset by CR4)	OVERRUN ERROR (OE): 1 = CPU did not read the character before the next one became available 0 = No overrun error detocted (Reset by CR4)	PARITY ERROR (PE): 1 = parity error detected (Reset by CR4)	TXE (SEE NOTE)	RXRDY (SEE NOTE)	TXRDY (SEE NOTE)

FE, OE & PE FLAGS DO NOT INHIBIT OPERATION. THESE FLAGS ARE STATUS ONLY. NOTE: SR0, SR1, SR2, SR6, and SR7 HAVE IDENTICAL MEANINGS AS THE EXTERNAL OUTPUT PINS. SUCHOZ 1

ABSOLUTE MAXIMUM RATINGS

VDD with Respect to VSS (Ground)	+ 15 to -0.3V
Input with Respect to VSS	+ 20 to - 0.3V
Power Dissipation	1000 MW

Storage Temp.

Ceramic -65°C to + 150°C Plastic -55°C to + 125°C ('E' Package) ('F' Package)

OPERATING CHARACTERISTICS

 T_{A} = 0°C to 70°C, V_{CC} = + 5.0V \pm .25V, V_{SS} = 0V

SYMBOL	CHARACTERISTIC	MIN	түр	МАХ	UNITS	CONDITIONS
ILI	Input Leakage			10	μΑ	$v_{IN} = v_{CC}$
DL	Data Bus Leakage			50	μΑ	Data Bus is in high impedence state
ICC ^{AVE}	V _{CC} Supply Current		45	80	mA	5.25 VDC/f _{CLK} = 600 kHz No Loads.
ЧΗ	Input High Voltage	2.4		0.8	v	
VIL	Input Low Voltage (All Inputs)	-0.3			v	
VOH	Output High Voltage	2.4			v	$I_{O} = -100\mu A$
V _{OL}	Output Low Voltage			0.45	V	IO = 1.6 mA (sink)

TABLE 1 WD1983 DC CHARACTERISTICS

FIGURE 3 INPUT WAVEFORMS FOR AC TESTS

NOTE: ALL WAVEFORMS ARE MEASURED AT 2.0V IF RISING EDGE, AND 0.8V IF FALLING EDGE.

SUCT-OZ

FIGURE 4 READ TIMING

FIGURE 5 WRITE TIMING

NOTE:

8251A COMPATIBILITY

The WD1983 (BOART) is an asynchronous only device, which is compatible with the 8251A. However, in test evaluation and application, the following differences should be noted:

- (1) The WD1983 utilizes the transmit and receive baud clocks in their respective internal logic sections instead of the system clock normally applied to Pin 20 on the 8251A. This Pin on the WD1983 is not used.
- (2) As a result of the above condition, timings referenced to the system clock period in the 8251A specification are now specified in absolute time units or with respect to the transmit or receive baud clock.

AC Electrical Characteristics $T_{A}=0^{\circ}C\ to\ +\ 70^{\circ}C;\ V_{CC}=\ 5.0\ V\ \pm\ 5\%;\ GND=0\ V$

	T	· · · · · · · · · · · · · · · · · · ·						
SYMBOL	PARAMETER	MIN	МАХ	UNIT	TEST CONDITIONS			
BUS PARAMETERS READ CYCLE								
t _{AR}	Address Stable Before RE (CS,C/D)	50		ns				
^t RA	Address Hold Time for \overline{RE} (\overline{CS} ,C/ \overline{D})	5		ns				
^t RE	RE Pulse Width	350		ns				
t _{RD}	Data Delay from RE		200	ns	$C_L = 50 pF$			
t _{RDH}	RE to Data Floating		200	ns	$C_L = 50 pF$			
		25		ns	$C_L = 15pF$			
WRITE CYCLE	WRITE CYCLE							
^t aw	Address Stable Before WE	20		ns				
^t wa	Address Hold Time for WE	20		ns				
twe	WE Pulse Width	350		ns				
^t DS	Data Set-Up Time for \overline{WE}	200		ns				
^t WDH	Data Hold Time for \overline{WE}	40		ns				
OTHER TIMING	S				L			
^t dtx	TXD Delay from Falling Edge of TXC		200	ns	C _L = 100pF			
tSRX	RX Data Set-Up Time to Sampling Pulse	200		ns	$C_L = 100 pF$			
^t HRX	RX Data Hold Time to Sampling Pulse	100		ns	$C_L = 100 pF$			
f _{TX 1}	Transmitter Input Clock Frequency 1X Baud Rate 16X and 64X Baud Rate	DC DC	500 600	kHz kHz				
^t TPW	Transmitter Input Clock Pulse Width 1X Baud Rate 16X and 64X Baud Rate	1.0 500		μs ns				

SYMBOL PARAMETER MIN MAX UNIT TEST CONDITION Transmitter Input Clock Pulse Delay t_{TPD} 1X Baud Bate 1.0 μs 16X and 64X Baud Rate 800 ns Receiver Input Clock Frequency f_{BX} 1X Baud Rate DC 500 kHz 16X and 64X Baud Bate DC 600 kHz Receiver Input Clock Pulse Width ^tRPW 1X Baud Rate 1.0 μS 16X and 64X Baud Rate 500 ns tRPD Receiver Input Clock Pulse Delay 1X Baud Rate 1.0 μs 16X and 64X Baud Rate 800 ns TXRDY Delay from Center of Data Bit tтx 8 t_{RXC} $C_1 = 50 p F (16X)$ RXRDY Delay from Center of Data Bit tRX 1/2 tRXC tis Internal BRKDET Delay from Center of 1 texc Data Bit t_{TRD} TXRDY Delay from Falling Edge of WE 1 ^tTXC ^tTOD TXD Output from Falling Edge of WE 2 txc Control Delay from Rising Edge of WE (DTR, RTS) twc 400 ns tCR Control to RE Set-Up Time (DSR, CTS) 500 ns

TABLE 2 WD1983 AC CHARACTERISTICS

At f $_{TX}$ (max), the duty cycle should be 50%. At less than f $_{TX}$ (max), the minimum pulse width for the high or low half is 1 $\,$

Hence, at frequencies less than f $_{TX}$ (max), the required duty cycle will be less stringout than 50%.

FIGURE 6

TRANSMITTER OUTPUT TIMINGS WITH RESPECT TO TRANSMIT CLOCK

WD1983 E CERAMIC PACKAGE

WD1983 F PLASTIC PACKAGE

Information furnished by Western Digital Corporation is believed to be accurate and reliable. However, no responsibility is assumed by Western Digital Corporation for its use; nor any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Western Digital Corporation. Western Digital Corporation reserves the right to change said circuitry at anytime without notice.

3128 REDHILL AVENUE, BOX 2180 NEWPORT BEACH, CA 92663 (714) 557-3550,TWX 910-595-1139