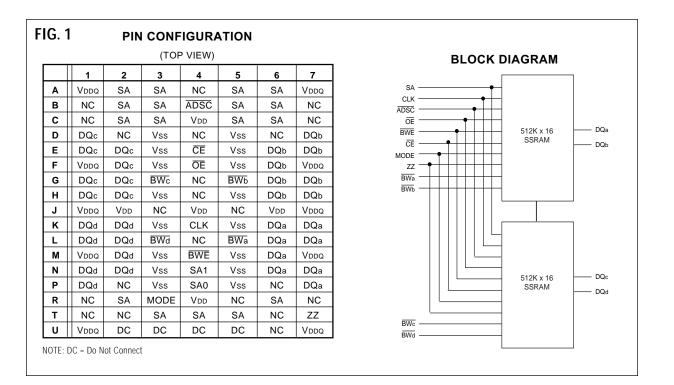
WED2DL32512V

WHITE ELECTRONIC DESIGNS

512Kx32 Synchronous Pipeline Burst SRAM preliminary*


FEATURES

- Fast clock speed: 200, 166, 150 & 133MHz
- Fast access times: 2.5ns, 3.5ns, 3.8ns & 4.0ns
- Fast OE access times: 2.5ns, 3.5ns, 3.8ns 4.0ns
- Single +3.3V power supply (VDD)
- Separate +3.3V or +2.5V isolated output buffer supply (VDDQ)
- Snooze Mode for reduced-power standby
- Single-cycle deselect
- Common data inputs and data outputs
- Individual Byte Write control and Global Write
- Clock-controlled and registered addresses, data I/Os and control signals
- Burst control (interleaved or linear burst)
- Packaging:
 - 119-bump BGA package
- Low capacitive bus loading

DESCRIPTION

The WEDC SyncBurst - SRAM family employs high-speed, lowpower CMOS designs that are fabricated using an advanced CMOS process. WEDC's 16Mb SyncBurst SRAMs integrate two 512K x 16 SRAMs into a single BGA package to provide 512K x 32 configuration. All synchronous inputs pass through registers controlled by a positive-edge-triggered single-clock input (CLK). The synchronous inputs include all addresses, all data inputs, active LOW chip enable (CE), burst control input (ADSC) and byte write enables (BW0-3). Asynchronous inputs include the output enable (\overline{OE}), clock (CLK) and snooze enable (ZZ). There is also a burst mode input (MODE) that selects between interleaved and linear burst modes. Write cycles can be from one to four bytes wide, as controlled by the write control inputs. Burst operation can be initiated with the address status controller (\overline{ADSC}) input.

* This data sheet describes a product under development, not fully characterized, and is subject to change without notice.

1

PIN DESCRIPTION

x36	Symbol	Туре	Description
CLK	Input	Pulse	The system clock input. All of the SSRAM inputs are sampled on the rising edge of the clock.
4P 4N 2A, 2C, 2R, 2B 3A, 3B, 3C, 3T 4T, 5A, 5B, 5C, 5T, 6A, 6B, 6C, 6R	SA0 SA1 SA	Input	Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK.
5L 5G 3G 3L	BWa BWb BWc BWd	Input	Synchronous Byte Write Enables: These active LOW inputs allow individual bytes to be written and must meet the setup and hold times around the rising edge of CLK. A byte write enable is LOW for a WRITE cycle and HIGH for a READ cycle. BWa controls DQa's and DQPa; BWb controls DQb's and DQPb; BWc controls DQc's and DQPc; BWd controls DQd's and DQPd.
4M	BWE	Input	Byte Write Enable: This active LOW input permits BYTE WRITE operations and must meet the setup and hold times around the rising edge of CLK.
4K	CLK	Input	Clock: This signal registers the address, data, chip enable, byte write enables and burst control inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge.
4E	CE	Input	Synchronous Chip Enable: This active LOW input is used to enable the device and conditions the internal use of ADSP. CE is sampled only when a new external address is loaded.
7T	ZZ	Input	Snooze Enable: This active HIGH, asynchronous input causes the device to enter a low-power standby mode in which all data in the memory array is retained. When active, all other inputs are ignored.
4F	OE	Input	Output Enable: This active LOW, asynchronous input enables the data I/O output drivers.
4B	ADSC	Input	Synchronous Address Status Controller: This active LOW input interrupts any ongoing burst, causing a new external address to be registered. A READ or WRITE is performed using the new address if CE is LOW. ADSC is also used to place the chip into power-down state when CE is HIGH.
3R	MODE	Input	Mode: This input selects the burst sequence. A LOW on MODE selects "linear burst." NC or HIGH on this input selects "interleaved burst." Do not alter input state while device is operating.
(a) 6K, 6L, 6M, 6N, 7K, 7L, 7N, 7P (b) 6E, 6F, 6G, 6H,	DQa DQb	Input/ Output	SRAM Data I/Os: Byte "a" is DQa's; Byte "b" is DQb's; Byte "c" is DQc's; Byte "d" is DQd's. Input data must meet setup and hold times around rising edge of CLK.
7D, 7E, 7G, 7H (c) 1D, 1E, 1G, 1H 2E, 2F, 2G, 2H	DQc		
(d) 1K, 1L, 1N, 1P, 2K, 2L, 2M, 2N	DQd		
2J, 4C, 4J, 4R, 5R, 6J	Vdd	Supply	Power Supply: See DC Electrical Characteristics and Operating Conditions for range.
1A, 1F, 1J, 1M 1U 7A, 7F, 7J, 7M, 7U	Vddq	Supply	Isolated Output Buffer Supply: See DC Electrical Characteristics and Operating Conditions for range.
3D, 3E, 3F, 3H, 3K, 3M, 3N, 3P, 5D, 5E, 5F, 5H, 5K, 5M, 5N, 5P	Vss	Supply	Ground: GND.
2U	TMS	Input	Scan Test Mode Select
3U	TDI	Input	Scan Test Data In
4U	TDO	Output	Scan Test Data Out

INTERLEAVED BURST TABLE (MODE = NC OR HIGH)

First Address External	Second Address Internal	Third Address Internal	Fourth Address Internal
XX00	XX01	XX10	XX11
XX01	XX00	XX11	XX10
XX10	XX11	XX00	XX01
XX11	XX10	XX01	XX00

INTERLEAVED BURST TABLE (MODE = LOW)

First Address External	Second Address Internal	Third Address Internal	Fourth Address Internal
XX00	XX01	XX10	XX11
XX01	XX10	XX11	XX00
XX10	XX11	XX00	XX01
XX11	XX00	XX01	XX10

TRUTH TABLE

Function	Address Used	CE	ZZ	ADSC	WRITE	ŌĒ	CLK	DQ
Deselected Cycle, Power-Down	None	Н	L	L	Х	Х	L-H	High-Z
Deselected Cycle, Power-Down	None	L	L	L	Х	Х	L-H	High-Z
SNOOZE MODE, Power-Down	None	Х	Н	Х	Х	Х	Х	High-Z
WRITE Cycle, Begin Burst	External	L	L	L	L	Х	L-H	D
READ Cycle, Begin Burst	External	L	L	L	Н	L	L-H	Q
READ Cycle, Begin Burst	External	L	L	L	Н	Н	L-H	High-Z
READ Cycle, Suspend Burst	Current	Х	L	Н	Н	L	L-H	Q
READ Cycle, Suspend Burst	Current	Х	L	Н	Н	Н	L-H	High-Z
READ Cycle, Suspend Burst	Current	Н	L	Н	Н	L	L-H	Q
READ Cycle, Suspend Burst	Current	Н	L	Н	Н	Н	L-H	High-Z
WRITE Cycle, Suspend Burst	Current	Х	L	Н	L	Х	L-H	D
WRITE Cycle, Suspend Burst	Current	Н	L	Н	L	Х	L-H	D

NOTES:

1. X means "Don't Care." — means active LOW. H means logic HIGH. L means logic LOW.

For WRITE, L means any one or more byte write enable signals (BWa, BWb, BWc or BWd) and BWE are LOW.
BWa enables WRITEs to DQa's and DQPa. BWb enables WRITEs to DQb's. BWc enables WRITEs to DQc's. BWd enables WRITEs to DQd's.

4. All inputs except OE and ZZ must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.

5. Wait states are inserted by suspending burst.

6. For a WRITE operation following a READ operation, OE must be HIGH before the input data setup time and held HIGH throughout the input data hold time.

7. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.

PARTIAL TRUTH TABLE - WRITE COMMANDS

Function	BWE	BWa	BWb	BWc	BWd
Read	Н	Х	Х	Х	Х
Read	L	Н	Н	Н	Н
Write Byte "a"	L	L	Н	Н	Н
Write All Bytes	L	L	L	L	L

NOTE: Using BWE and BWa through BWd, any one or more bytes may be written.

ABSOLUTE MAXIMUM RATINGS*

Voltage on VDD Supply relative to Vss	-0.5V to +4.6V
Voltage on VDDQ Supply relative to Vss	-0.5V to +4.6V
Vin (DQx)	-0.5V to VDDQ +0.5V
VIN (Inputs)	-0.5V to VDD +0.5V
Storage Temperature (BGA)	-55°C to +125°C
Short Circuit Output Current	100 mA

*Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS

Description	Symbol	Conditions	Min	Max	Units	Notes
Input High (Logic 1)Voltage	Vih		2.0	VDD +0.3	V	1
Input Low (Logic 0) Voltage	VIL		-0.3	0.8	V	1
Input Leakage Current	lu	$0V \le VIN \le VDD$	-1.0	1.0	mA	2
Ouptut Leakage Current	Ilo	Output(s) disabled, $0V \le V_{IN} \le V_{DD}$	-1.0	1.0	mA	
Output High Voltage	Vон	Iон = -4.0mA	2.4	_	V	1
Output Low Voltage	Vol	Iol = 8.0mA	—	0.4	V	1
Supply Voltage	Vdd		3.135	3.6	V	1
Isolated Output Buffer SupplyVodo		3.134	3.6	V		

NOTES:

1. All voltages referenced to Vss (GND).

2. MODE has an internal pull-up, and input leakage = $\pm 10 \mu A$.

DC CHARACTERISTICS

Description	Symbol	Conditions	Тур	200* MHz	166 MHz	150 MHz	133 MHz	Units	Notes
Power Supply Current: Operating	DD	Device selected; All inputs \leq VIL or 3 VIH; Cycle time 3 tkc MIN; VDD = MAX; Outputs open		950	800	740	600	mA	1,2,3
CMOS Standby	ISB2	Device deselected; VDD = MAX; All inputs \leq Vss + 0.2 or VDD - 0.2; All inputs static; CLK frequency = 0	10	20	20	20	20	mA	2,3
TTL Standby	ISB3	Device deselected; VDD = MAX; All inputs \leq VIL or VIH; All inputs static; CLD frequency = 0	20	40	40	40	40	mA	2,3
Clock Running	ISB4	Device deselected; Vbb = MAX; All inputs \leq Vss + 0.2 or Vbb -0.2; Cycle time 3 tkc MIN	80	220	180	160	140	mA	2,3

* Advanced Information

NOTES:

1. Ibb is specified with no output current and increases with faster cycle times. IDD increases with faster cycle times and greater output loading.

2. "Device deselected" means device is in power-down mode as defined in the truth table. "Device selected" means device is active (not in power-down mode).

3. Typical values are measured at 3.3V, 25°C and 133MHz.

BGA CAPACITANCE

Description	Conditions	Symbol	Тур	Max	Units	Notes
Control Input Capacitance	Ta = 25°C; f = 1MHz	Сі	3	6	pF	1
Input/Output Capacitance (DQ)	Ta = 25°C; f = 1MHz	Co	4	5	pF	1
Address Capacitance	Ta = 25°C; f = 1MHz	Са	3	5	pF	1
Clock Capacitance	Ta = 25°C; f = 1MHz	Сск	2.5	4	pF	1

NOTES:

1. This parameter is sampled.

WHITE ELECTRONIC DESIGNS

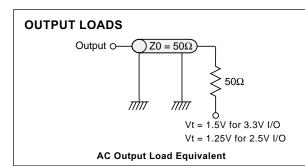
AC CHARACTERISTICS

	Symbol	200	MHz	<u>166</u>	MHz	<u>150</u>	MHz	133	BMHz	
Parameter		Min	Max	Min	Max	Min	Max	Min	Max	Units
Clock										
Clock Cycle Time	tкc	5.0		6.0		6.6		7.5		ns
Clock Frequency	t KF		200		166		150		133	MHz
Clock HIGH Time	tкн	2.0		2.4		2.6		2.6		ns
Clock LOW Time	tĸ.	2.0		2.4		2.6		2.6		ns
Output Times										
Clock to output valid	tκα		2.5		3.5		3.8		4.0	ns
Clock to output invalid (2)	tκαx	1.5		1.25		1.25		1.5		ns
Clock to output on Low-Z (2,3,4)	tkolz	0		0		0		0		ns
Clock to output in High-Z (2,3,4)	tконz		3.0		3.5		3.8		4.0	ns
OE to output valid (5)	toeq		2.5		3.5		3.8		4.0	ns
OE to output in Low-Z (2,3,4)	toelz	0		0		0		0		ns
OE to output in High Z (2,3,4)	tоенz		2.5		3.5		3.8		4.0	ns
Setup Times										
Address (6,7)	tas	1.5		1.5		1.5		1.5		ns
Address status (ADSC) (6,7)	tadss	1.5		1.5		1.5		1.5		ns
Write signals (BWa-BWd, BWE) (6,7)	tws	1.5		1.5		1.5		1.5		ns
Data-in (6,7)	tos	1.5		1.5		1.5		1.5		ns
Chip enables (CE) (6,7)	tces	1.5		1.5		1.5		1.5		ns
Hold Times										
Address (6,7)	tан	0.5		0.5		0.5		0.5		ns
Address status (ADSC) (6,7)	tadsh	0.5		0.5		0.5		0.5		ns
Write Signals (BWa-BWd, BWE) (6,7)	twн	0.5		0.5		0.5		0.5		ns
Data-in (6,7)	tdн	0.5		0.5		0.5		0.5		ns
Chip Enables (CE) (6,7)	tceн	0.5		0.5		0.5		0.5		ns

NOTES:

1. Test conditions as specified with the output loading as shown in Figure 1 for 3.3V 1/0 and Figure 3 for 2.5V 1/0 unless otherwise noted.

2. This parameter is measured with output load as shown in Figure 2 for 3.3V 1/0 and Figure 4 for 2.5V 1/0.


3. This parameter is sampled.

4. Transition is measured ±500mV from steady state voltage.

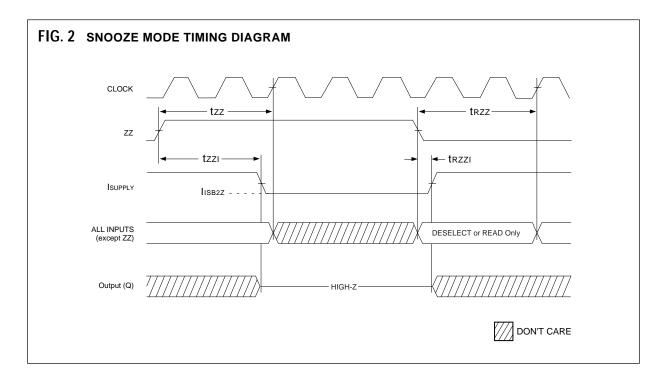
5. OE is a "Don't Care" when a byte write enable is sampled LOW.

6. A WRITE cycle is defined by at least one byte write enable LOW for the required setup and hold times. A READ cycle is defined by all byte write enables HIGH and ADSC LOW for the required setup and hold times.

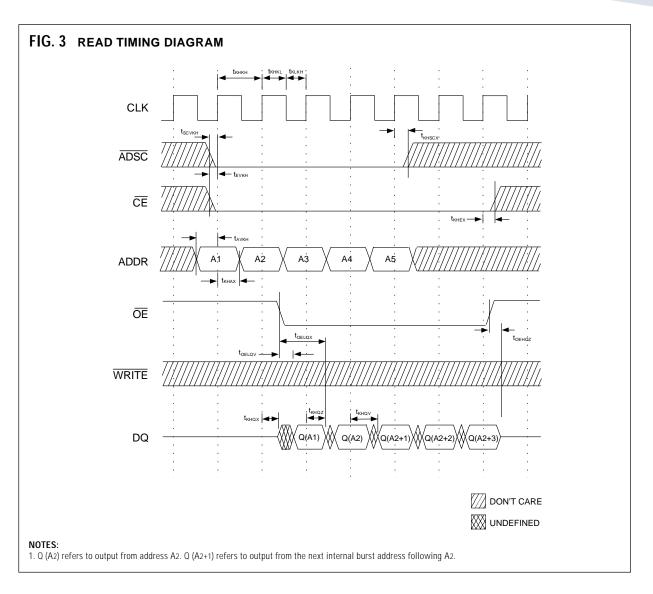
7. This is a synchronous device. All addresses must meet the specified setup and hold times for all rising edges of CLK when ADSC is LOW and chip enabled. All other synchronous inputs must meet the setup and hold times with stable logic levels for all rising edges of clock (CLK) when the chip is enabled. Chip enable must be valid at each rising edge of CLK when ADSC is LOW to remain enabled.

AC TEST CONDITIONS

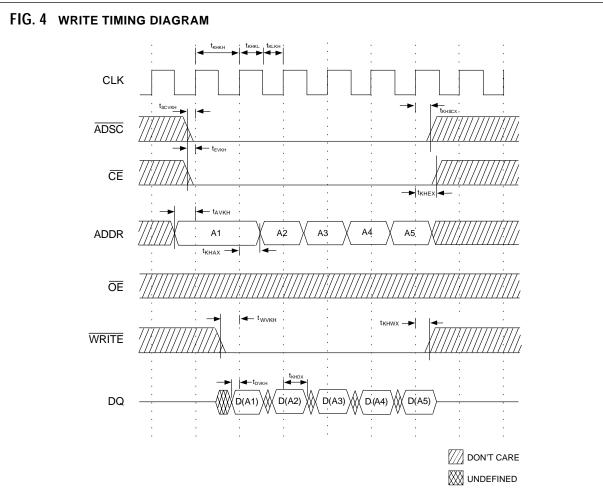
Parameter	3.3V I/O	2.5V I/O	Unit
Input Pulse Levels	Vss to 3.0	Vss to 2.5	V
Input Rise and Fall Times	1	1	ns
Input Timing Reference Levels	1.5	1.25	V
Output Timing Reference Levels	1.5	1.25	V
Output Load	See figu	re, at left	


SNOOZE MODE

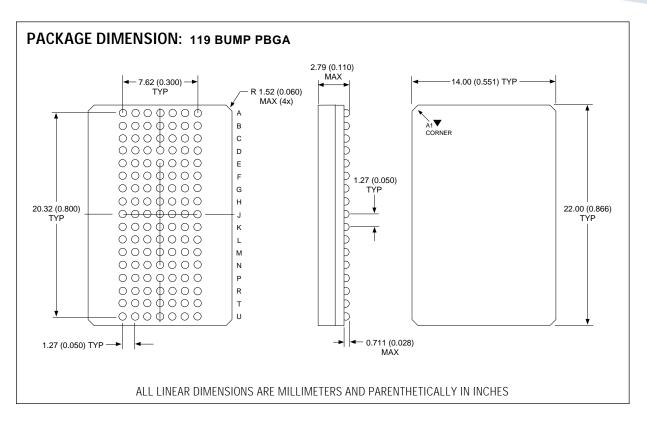
SNOOZE MODE is a low-current, "power-down" mode In which the device is deselected and current is reduced to IsB2Z. The duration of SNOOZE MODE is dictated by the length of time ZZ is in a HIGH state. After the device enters SNOOZE MODE, all inputs except ZZ become gated inputs and are ignored. ZZ is an asynchronous, active HIGH


input that causes the device to enter SNOOZE MODE. When ZZ becomes a logic HIGH, ISB2Z is guaranteed after the setup time tzz is met. Any READ or WRITE operation pending when the device enters SNOOZE MODE is not guaranteed to complete successfully. Therefore, SNOOZE MODE must not be initiated until valid pending operations are completed.

SNOOZE MODE


Description	Conditions	Symbol	Min	Max	Units	Notes
Current during SNOOZE MODE	$ZZ \ge VIH$	ISB2Z		10	mA	
ZZ active to input ignored		tzz		2(tкс)	ns	1
ZZ inactive to input sampled		trzz	2(tĸc)		ns	1
ZZ active to snooze current		tzzi		2(tкс)	ns	1
ZZ inactive to exit snooze current		trzzi			ns	1

WHITE ELECTRONIC DESIGNS



NOTES:

- 1. D(A2) refers to output from address A2. D (A2+1) refers to output from the next internal burst address following A2.
- 2. OE must be HIGH before the input data setup and held HIGH throughout the data hold time. This prevents input/output data content in for the time period prior to the byte write enable inputs being sampled. 3. Full-width WRITE can be initiated by BWE, BWa, - BWd LOW. Timing is shown assuming that the device was not enabled before entering into its sequence.
- OE does not cause Q to be driven until after the following clock rising edge.

ORDERING INFORMATION

512Kx32				
Part Number	Config.	tкo	Clock	Package
		(ns)	(MHz)	No.
Commercial Temp Range (0°C to 70°C)				
WED2DL32512V25BC	512Kx32	2.5	200	435
WED2DL32512V35BC	512Kx32	3.5	166	435
WED2DL32512V38BC	512Kx32	3.8	150	435
WED2DL32512V40BC	512Kx32	4.0	133	435
Industrial Temp Range (-40°C to +85°C)*				
WED2DL32512V38BI	512Kx32	3.8	150	435
WED2DL32512V40BI	512Kx32	4.0	133	435

* Advanced Information