

OVERVIEW

The 5075 series are miniature VCXO ICs that provide a wide frequency pulling range, even when using miniature crystal units for which a wide pulling range is difficult to provide. They employ a recently developed varicap diode fabrication process that provides a wide frequency pulling range and good linearity without any external components. Also, they employ a regulated voltage drive oscillator circuit that significantly reduces current consumption, crystal current, and oscillation characteristics supply voltage dependency. The 5075 series are ideal for miniature, wide pulling range, low power consumption, VCXO modules.

FEATURES

- VCXO with recently developed varicap diode built-in
- New fabrication process that significantly reduces parasitic capacitance and provides wide pulling range even when using miniature crystal units
- Regulated voltage drive oscillator circuit for reduced power consumption, crystal drive current, and oscillation characteristics voltage dependency
- Wide frequency pulling range
 - ± 190ppm (B1 version, f = 27MHz) (Crystal: γ = 300, C0 = 1.5pF)
- Operating supply voltage range: 2.25V to 3.63V
- Oscillation frequency range (for fundamental oscillation): 20MHz to 55MHz (varies with version)

- Low current consumption: 1.0mA (B1 version, f = 27MHz, no load, V_{DD} = 3.3V)
- Frequency divider built-in
 - Selectable by version: f_0 , $f_0/2$, $f_0/4$, $f_0/8$, $f_0/16$
 - Frequency divider output for 1.3MHz (min) low frequency output
- VC pin input resistance: $10M\Omega$ (min)
- CMOS output
- Two types of pad layout selectable by mounting method
 - A× version: for Flip Chip Bonding
 - B× version: for Wire Bonding
- Package: Wafer form (WF5075××) Chip form (CF5075××)

APPLICATIONS

■ 2.5 × 2.0mm, 3.2 × 2.5mm size miniature VCXO modules for digital mobile TV tuner, digital TV (PDP, LCD), PND (Personal Navigation Device), etc.

ORDERING INFORMATION

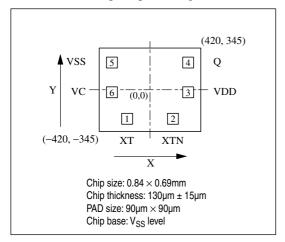
Device	Package
WF5075××-4	Wafer form
CF5075××-4	Chip form

SERIES CONFIGURATION

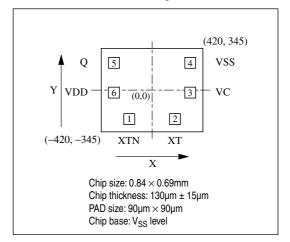
Operating		Recommended		Output frequency and version name ^{*2}					
supply voltage PAD layout range [V]	PAD layout	operating frequency range ^{*1} [MHz]	f _O output	f _O /2 output	f _O /4 output	f _O /8 output	f _O /16 output		
	Elin Chin Bonding	20 to 40	(5075A1)	(5075A2)	(5075A3)	(5075A4)	(5075A5)		
0.05 to 0.60	Flip Chip Bonding	Flip Chip Bonding	40 to 55	(5075AJ)	(5075AK)	(5075AL)	(5075AM)	(5075AN)	
2.25 to 3.63	Wire Bonding	20 to 40	5075B1	(5075B2)	(5075B3)	(5075B4)	(5075B5)		
		40 to 55	5075BJ	(5075BK)	(5075BL)	(5075BM)	(5075BN)		

^{*1.} The recommended operating frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. However, the oscillation frequency range is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

VERSION NAME


Device	Package	Version name		
WF5075××-4	Wafer form	<u>WF</u> 5075□□-4		
CF5075××-4	Chip form	Form WF: Wafer form — Oscillation frequency range, frequency divider function CF: Chip (Die) form — Pad layout type A: for Flip Chip Bonding B: for Wire Bonding		

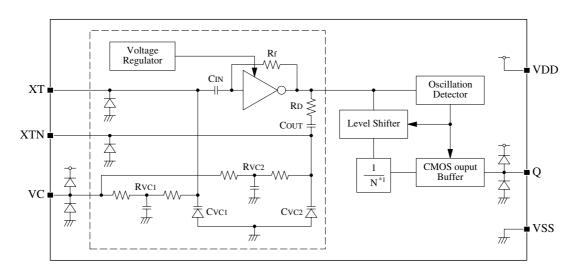
^{*2.} Versions in parentheses () are under development.


PAD LAYOUT

(Unit: µm)

■ 5075A× (for Flip Chip Bonding)

■ 5075B× (for Wire Bonding)



PAD DIMENSIONS PIN DESCRIPTION

Pad No.	Pad dimensions [μm]				
rau No.	Х	Y			
1	-189	-240			
2	189	-240			
3	315	-21			
4	315	225			
5	-315	225			
6	-315	-21			

Pad	No.	Pin I/O		Description
5075A×	5075B×	PIII	1/0	Description
1	2	XT	ļ	Crystal connection pin (amplifier input)
2	1	XTN	0	Crystal connection pin (amplifier output)
3	6	VDD	-	(+) supply pin
4	5	Q	0	Clock output pin
5	4	VSS	-	(–) supply pin
6	3	VC	I	Oscillation frequency control voltage input pin (positive polarity) (frequency increases with increasing voltage)

BLOCK DIAGRAM

*1. N = 1, 2, 4, 8, 16

ABSOLUTE MAXIMUM RATINGS

$$V_{SS} = 0V$$

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage range	V _{DD}	Between VDD and VSS	-0.5 to 7.0	V
Input voltage range	V _{IN}	Input pins	-0.5 to V _{DD} + 0.5	V
Output voltage range	V _{OUT}	Output pins	-0.5 to V _{DD} + 0.5	V
Storage temperature range	T _{STG}	Wafer form, chip form	-65 to +150	°C
Output current	I _{OUT}	Q pin	20	mA

RECOMMENDED OPERATING CONDITIONS

$$V_{SS} = 0V$$

Parameter	Symbol	Co	nditiono		Rating		Unit
Parameter	Syllibol		Conditions		Тур	Max	Oilli
Operating supply voltage	V _{DD}	C _{LOUT} ≤ 15pF		2.25	-	3.63	V
Input voltage	V _{IN}	Input pins		V _{SS}	-	V _{DD}	V
Operating temperature	T _{OPR}			-40	-	+85	°C
Oscillation frequency*1	f	5075×1 to 5075×5		20	-	40	MHz
Oscillation frequency	f _O	5075×J to 5075×N		40	-	55	MHz
Output fraguency	, ,	0 45.5	5075×1 to 5075×5	1.25	-	40	MHz
Output frequency	fout	C _{LOUT} ≤ 15pF	5075×J to 5075×N	2.5	-	55	MHz

^{*1.} The oscillation frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. However, the oscillation frequency range is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

ELECTRICAL CHARACTERISTICS

5075×1 to 5075×5

 V_{DD} = 2.25 to 3.63V, V_{C} = 0.5 V_{DD} , V_{SS} = 0V, Ta = -40 to +85°C unless otherwise noted.

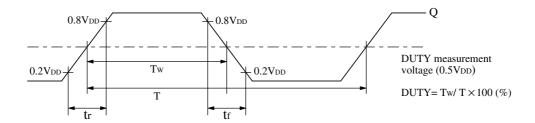
Damamatan	Cumbal	Conditions			Rating		I I m i A
Parameter	Symbol			Min	Тур	Max	Unit
		5075×1 (f _O), Measurement circuit 1,	V _{DD} = 2.5V	_	0.7	1.4	mA
		no load, f _O = 27MHz, f _{OUT} = 27MHz	V _{DD} = 3.3V	-	1.0	1.0 2.0 mA 0.6 1.2 mA 0.8 1.6 mA 0.5 1.0 mA 0.5 1.0 mA 0.5 1.0 mA 0.6 1.2 mA 0.6 1.2 mA 0.6 1.2 mA 0.4 0.8 mA 0.6 1.2 mA 0.6 1.2 MA 0.7 mA 0.8 mA 0.9 mA 0.0 mA 0.	
		5075×2 (f _O /2), Measurement circuit 1,	V _{DD} = 2.5V	-	0.6	1.2	mA
		no load, $f_0 = 27MHz$, $f_{OUT} = 13.5MHz$	V _{DD} = 3.3V	-	0.8	1.6	mA
Command assessmention		5075×3 (f _O /4), Measurement circuit 1,	V _{DD} = 2.5V	-	0.5	1.0	mA
Current consumption	I _{DD}	no load, $f_0 = 27MHz$, $f_{OUT} = 6.75MHz$	V _{DD} = 3.3V	-	0.7	1.4	mA
		5075×4 (f _O /8), Measurement circuit 1,	V _{DD} = 2.5V	-	0.5	1.0	mA
		no load, $f_0 = 27MHz$, $f_{OUT} = 3.38MHz$	V _{DD} = 3.3V	-	0.6	1.2	mA
		5075×5 (f _O /16), Measurement circuit 1,	V _{DD} = 2.5V	-	0.4	0.8	mA
			V _{DD} = 3.3V	_	0.6	1.2	mA
HIGH-level output voltage	V _{OH}	Q pin, Measurement circuit 2, I _{OH} = -2.8	3mA	V _{DD} - 0.4	-	-	٧
LOW-level output voltage	V _{OL}	Q pin, Measurement circuit 2, I _{OL} = 2.8r	mA	-	-	0.4	٧
Oscillator block built-in	R _{VC1}	- Measurement circuit 3		210	420	840	kΩ
resistance	R _{VC2}			210	420	840	kΩ
			V _C = 0.3V	-	5.6	-	pF
	C _{VC1}	Design value (a monitor pattern on a wafer is tested), Excluding parasitic	V _C = 1.65V	-	3.1	-	pF
Oscillator block built-in			V _C = 3.0V	-	1.5	-	pF
capacitance		capacitance.	V _C = 0.3V	-	8.4	_	pF
	C _{VC2}		V _C = 1.65V	-	4.7	_	pF
			V _C = 3.0V	-	2.3	_	pF
VC input resistance	R _{VIN}	Measurement circuit 4, Ta = 25°C	Measurement circuit 4, Ta = 25°C		-	_	MΩ
VC input impedance	Z _{VIN}	Measurement circuit 5, $V_C = 0V$, $f = 10kHz$, $Ta = 25^{\circ}C$ (a monitor pattern on a wafer is tested)		-	450	_	kΩ
VC input capacitance	C _{VIN}	Measurement circuit 5, V _C = 0V, f = 10kl (a monitor pattern on a wafer is tested)	-	37	-	pF	
Modulation characteristics*1	fm	Measurement circuit 6, -3 dB frequency, $V_C = 3.3$ Vp-p, $T_C = 25$ °C, $T_C = 27$ MHz	V _{DD} = 3.3V,	-	25	-	kHz

^{*1.} The modulation characteristics may vary with the crystal used.

5075×J to 5075×N

 V_{DD} = 2.25 to 3.63V, V_{C} = 0.5 V_{DD} , V_{SS} = 0V, Ta = -40 to +85°C unless otherwise noted.

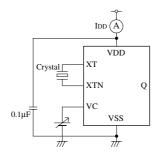
Dawanatan	Combal	Conditions			Rating		Unit
Parameter	Symbol	Conditions		Min	Min Typ Max		
		5075×J (f _O), Measurement circuit 1,	V _{DD} = 2.5V	-	1.2	2.4	mA
		no load, f _O = 48MHz, f _{OUT} = 48MHz	V _{DD} = 3.3V	-	1.6	3.2	mA
		5075×K (f _O /2), Measurement circuit 1,	V _{DD} = 2.5V	_	0.9	1.8	mA
		no load, $f_0 = 48MHz$, $f_{OUT} = 24MHz$	V _{DD} = 3.3V	-	1.3	2.6	mA
Current consumption		5075×L (f _O /4), Measurement circuit 1,	V _{DD} = 2.5V	-	0.8	1.6	mA
Current consumption	I _{DD}	no load, $f_0 = 48MHz$, $f_{OUT} = 12MHz$	V _{DD} = 3.3V	-	1.0	2.0	mA
		5075×M (f _O /8), Measurement circuit 1,	V _{DD} = 2.5V	-	0.7	1.4	mA
		no load, $f_0 = 48MHz$, $f_{OUT} = 6MHz$	V _{DD} = 3.3V		1.8	mA	
		5075×N (f _O /16), Measurement circuit 1,	V _{DD} = 2.5V	-	0.7	1.4	mA
		no load, $f_0 = 48MHz$, $f_{OUT} = 3MHz$	V _{DD} = 3.3V	-	- 0.9 1.8	1.8	mA
HIGH-level output voltage	V _{OH}	Q pin, Measurement circuit 2, I _{OH} = -2.8mA		V _{DD} - 0.4	-	-	V
LOW-level output voltage	V _{OL}	Q pin, Measurement circuit 2, I _{OL} = 2.8m	A	-	-	0.4	V
Oscillator block built-in	R _{VC1}	Management sirasit O		210	420	840	kΩ
resistance	R _{VC2}	- Measurement circuit 5	asurement circuit 3		420	840	kΩ
	C _{VC1}	Design value (a monitor pattern on a wafer is tested), Excluding parasitic	V _C = 0.3V	-	5.6	-	pF
			V _C = 1.65V	-	3.1	-	pF
Oscillator block built-in			V _C = 3.0V	-	1.5	-	pF
capacitance		capacitance.	V _C = 0.3V	-	8.4	_	pF
	C _{VC2}		V _C = 1.65V	-	4.7	_	pF
			V _C = 3.0V	-	2.3	_	pF
VC input resistance	R _{VIN}	Measurement circuit 4, Ta = 25°C		10	-	_	MΩ
VC input impedance	Z _{VIN}	Measurement circuit 5, $V_C = 0V$, $f = 10kHz$, $Ta = 25^{\circ}C$ (a monitor pattern on a wafer is tested)		_	450	_	kΩ
VC input capacitance	C _{VIN}	Measurement circuit 5, V _C = 0V, f = 10kH (a monitor pattern on a wafer is tested)	z, Ta = 25°C	-	37	-	pF
Modulation characteristics*1	fm	Measurement circuit 6, –3dB frequency, V _C = 3.3Vp-p, Ta = 25°C, f _O = 48MHz	/ _{DD} = 3.3V,	-	23	-	kHz


^{*1.} The modulation characteristics may vary with the crystal used.

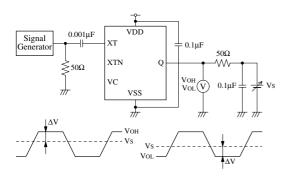
SWITCHING CHARACTERISTICS

 V_{DD} = 2.25 to 3.63V, V_{C} = 0.5 V_{DD} , V_{SS} = 0V, Ta = -40 to +85°C unless otherwise noted.

Parameter Symbol		Conditions		Unit		
Parameter	Symbol	Conditions	Min	Тур	Max	Oill
Output rise time	t _r		_	2.1	4.0	ns
Output fall time	t _f		_	2.1	4.0	ns
Output duty cycle	Duty	Measurement circuit 7, Ta = 25°C, C_{LOUT} = 15pF, V_{DD} = 3.3V	45	50	55	%


Switching Time Measurement Waveform

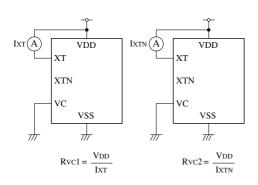
MEASUREMENT CIRCUITS


Measurement Circuit 1

Measurement parameter: I_{DD}

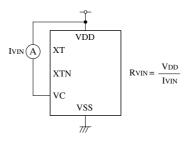
Measurement Circuit 2

Measurement parameter: V_{OH} , V_{OL}

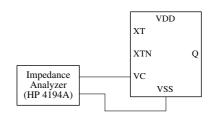

 V_S adjusted such that $\Delta V = 50 \times I_{OH}$.

 V_S adjusted such that $\Delta V = 50 \times I_{OL}$.

XT input signal: 1Vp-p, sine wave

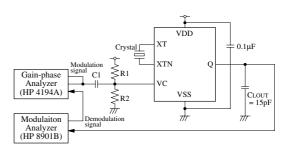

Measurement Circuit 3

Measurement parameter: R_{VC1} , R_{VC2}


Measurement Circuit 4

Measurement parameter: R_{VIN}

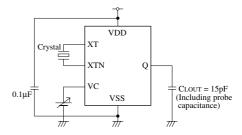
Measurement Circuit 5


Measurement parameter: C_{VIN}, Z_{VIN}

VC input signal: 100Hz to 10kHz, 0.1Vp-p

Measurement Circuit 6

Measurement parameter: fm



C1 = $33\mu F$, R1 = R2 = $1M\Omega$

VC modulation signal: 100Hz to 100kHz, 0 to V_{DD}p-p

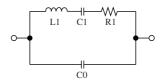
Measurement Circuit 7

Measurement parameter: Duty, t_r, t_f

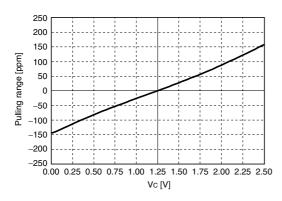
FUNCTIONAL DESCRIPTION

Oscillation Start-up Detector Function

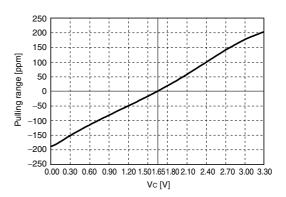
The devices also feature an oscillation start-up detector circuit. This circuit functions to disable the outputs until the oscillation starts. This prevents unstable oscillator output at oscillator start-up when power is applied.


TYPICAL PERFORMANCE (5075B1)

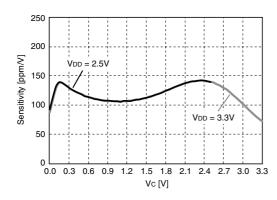
The following characteristics measured using the crystal below. Note that the characteristics will vary with the crystal used.


■ Crystal used for measurement

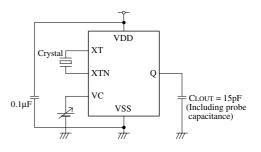
Parameter	f _O = 27MHz
C0 [pF]	1.5
γ (= C0/C1)	300


Crystal parameters

Frequency Pulling Range



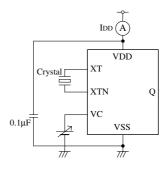
 V_{DD} = 2.5V, f_{OUT} = 27MHz, Ta = R.T.



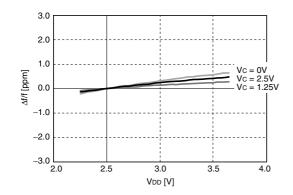
 V_{DD} = 3.3V, f_{OUT} = 27MHz, Ta = R.T.

Pulling Sensitivity

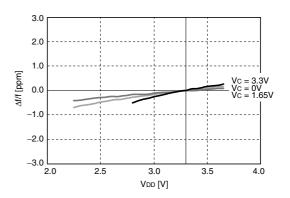
 V_{DD} = 2.5V, 3.3V, f_{OUT} = 27MHz, Ta = R.T.

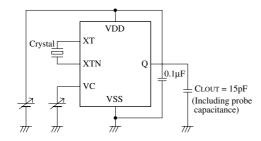


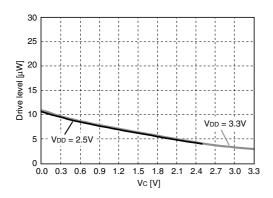
Current Consumption


5 4 CLOUT = 15pF VC = 0V VC = VDD VC = VDD

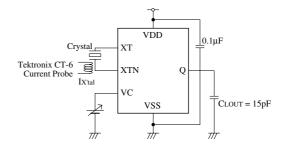
 $f_{OUT} = 27MHz$, Ta = R.T.


Measurement circuit


Frequency Stability by Supply Voltage Change


 f_{OUT} = 27MHz, \pm 0ppm at V_{DD} = 2.5V

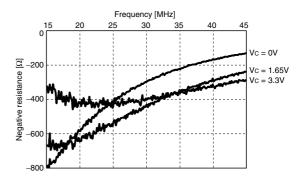
 f_{OUT} = 27MHz, \pm 0ppm at V_{DD} = 3.3V



Drive Level

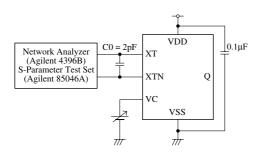
 V_{DD} = 2.5V, 3.3V, f_{OUT} = 27MHz, Ta = R.T.

Measurement circuit

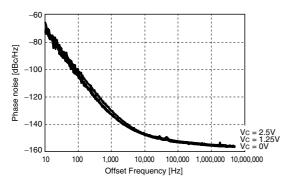

 $DL = (I_{X'tal})^2 \times Re$ DL: drive level

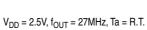
I_{X'tal}: current flowing to crystal (RMS value) Re: crystal effective resistance

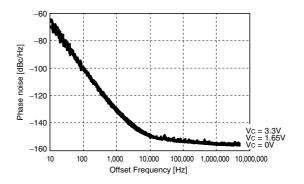
Negative Resistance



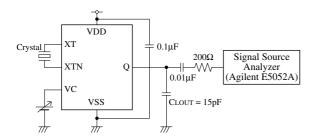
 $V_{DD} = 2.5V$, C0 = 2pF, Ta = R.T.

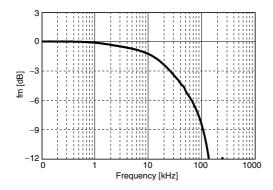

 V_{DD} = 3.3V, C0 = 2pF, Ta = R.T.

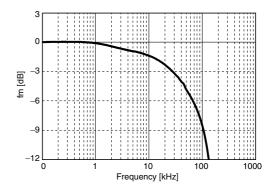

Measurement circuit



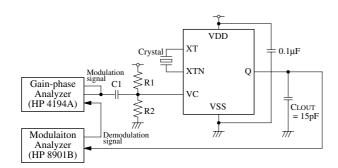
Note. "C0" value is set, concerning the actual crystal characteristics connected between XT and XTN. The data is measured with Agilent 4396B using NPC's original measurement jig. The values may vary with measurement jig and conditions.


Phase Noise



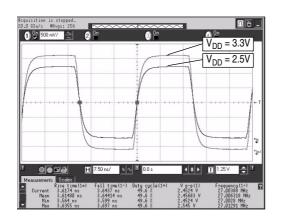

 V_{DD} = 3.3V, f_{OUT} = 27MHz, Ta = R.T.

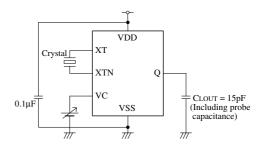
Modulation Characteristics



 V_{DD} = 2.5V, f_{OUT} = 27MHz, Ta = R.T.

 V_{DD} = 3.3V, f_{OUT} = 27MHz, Ta = R.T.


Measurement circuit


C1 = 33 μ F, R1 = R2 = 1M Ω VC modulation signal: 100Hz to 100kHz, 0 to V_{DD}p-p

Output Waveform

Measurement equipment: Oscilloscope; DSO80604B (Agilent)

$$\begin{split} V_{DD} = 2.5 \text{V, } 3.3 \text{V, } f_{OUT} = 27 \text{MHz, } V_{C} = 0.5 V_{DD}, \\ C_{LOUT} = 15 \text{pF, } \text{Ta} = \text{R.T.} \end{split}$$

Please pay your attention to the following points at time of using the products shown in this document.

The products shown in this document (hereinafter "Products") are not intended to be used for the apparatus that exerts harmful influence on human lives due to the defects, failure or malfunction of the Products. Customers are requested to obtain prior written agreement for such use from SEIKO NPC CORPORATION (hereinafter "NPC"). Customers shall be solely responsible for, and indemnify and hold NPC free and harmless from, any and all claims, damages, losses, expenses or lawsuits, due to such use without such agreement. NPC reserves the right to change the specifications of the Products in order to improve the characteristic or reliability thereof. NPC makes no claim or warranty that the contents described in this document dose not infringe any intellectual property right or other similar right owned by third parties. Therefore, NPC shall not be responsible for such problems, even if the use is in accordance with the descriptions provided in this document. Any descriptions including applications, circuits, and the parameters of the Products in this document are for reference to use the Products, and shall not be guaranteed free from defect, inapplicability to the design for the mass-production products without further testing or modification. Customers are requested not to export or re-export, directly or indirectly, the Products to any country or any entity not in compliance with or in violation of the national export administration laws, treaties, orders and regulations. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

SEIKO NPC CORPORATION

15-6, Nihombashi-kabutocho, Chuo-ku, Tokyo 103-0026, Japan Telephone: +81-3-6667-6601 Facsimile: +81-3-6667-6611 http://www.npc.co.jp/ Email: sales@npc.co.jp

NC0810AE 2009.02