Winstar Display Co., LTD

住址: **407** 台中市中清路 **163** 號 No.163 Chung Ching RD.**,** Taichune, Taiwan, R.O.C

WEB: http://www.winstar.com.tw
E-mail: sales@winstar.com.tw
Tel:886-4-24262208 Fax: 886-4-24262207

SPECIFICATION

CUSTOMER :			
MODULE NO.:	WG1	2232A-YY	H-V#A000
APPROVED BY:			
(FOR CUSTOMER USE ONLY	PCE	S VERSION:	DATA:
CALDO DV ADDDO		CHECKED D	

SALES BY	APPROVED BY	CHECKED BY	PREPARED BY

VERSION	DATE	REVISED PAGE NO.	SUMMARY
0	2009/10/9		First issue

MODLE NO:

REC	ORDS OF REV	ISION	DOC. FIRST ISSUE
VERSION	DATE	REVISED PAGE NO.	SUMMARY
0	2009/10/9		First issue

Contents

- 1. Module Classification Information
- 2. Precautions in Use of LCM
- 3. General Specification
- 4. Absolute Maximum Ratings
- 5. Electrical Characteristics
- 6. Optical Characteristics
- 7.Interface Pin Function
- 8. Contour Drawing & Block Diagram
- 9. Timing Characteristics
- 10.Function Description
- 11. Commands Description
- 12.Relability
- 13.Backlight Information
- 14. Inspection specification
- 15. Material List of Components for RoHs
- 16. Storage

1. Module Classification Information

① Brand: WINSTAR DISPLAY CORPORATION

② Display Type: H→Character Type, G→Graphic Type

3 Display Font : 122 * 32 dots

Model serials no.

 \bigcirc Backlight Type: N \rightarrow Without backlight T \rightarrow LED, White

 $B\rightarrow EL$, Blue green $A\rightarrow LED$, Amber

 $D\rightarrow EL$, Green $R\rightarrow LED$, Red

 $W\rightarrow EL$, White $O\rightarrow LED$, Orange

 $F \rightarrow CCFL$, White $G \rightarrow LED$, Green

Y→LED, Yellow Green

© LCD Mode : $B \rightarrow TN$ Positive, Gray $T \rightarrow FSTN$ Negative

N→TN Negative,

G→STN Positive, Gray

Y→STN Positive, Yellow Green

M→STN Negative, Blue

F→FSTN Positive

⑦ LCD Polarizer Type/ A→Reflective, N.T, 6:00 H→Transflective, W.T,6:00

Temperature range/ View direction

D→Reflective, N.T, 12:00 K→Transflectiv, W.T,12:00

G→Reflective, W. T, 6:00 C→Transmissive, N.T,6:00

J→Reflective, W. T, 12:00 F→Transmissive, N.T,12:00

B→Transflective, N.T,6:00 I→Transmissive, W. T, 6:00

E→Transflective, N.T.12:00 L→Transmissive,

W.T,12:00

Special Code
V : Built in negative voltage A:Avant IC

#:Fit in with the ROHS Directions and regulations

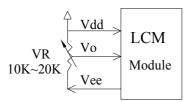
00: Sales code 0: Version

2. Precautions in Use of LCD Module

- (1) Avoid applying excessive shocks to the module or making any alterations or modifications to it.
- (2)Don't make extra holes on the printed circuit board, modify its shape or change the components of LCD Module.
- (3)Don't disassemble the LCM.
- (4)Don't operate it above the absolute maximum rating.
- (5)Don't drop, bend or twist LCM.
- (6) Soldering: only to the I/O terminals.
- (7)Storage: please storage in anti-static electricity container and clean environment.
- (8). Winstar have the right to change the passive components (Resistors, capacitors and other passive components will have different appearance and color caused by the different supplier.)
- (9). Winstar have the right to change the PCB Rev.

3. General Specification

Item	Dimension	Unit
Number of Characters	122 x 32 dots	_
Module dimension	84.0 x 44.0 x 13.7(MAX)	mm
View area	60.0 x 18.0	mm
Active area	53.64 x 15.64	mm
Dot size	0.4 x 0.45	mm
Dot pitch	0.44 x 0.49	mm
LCD type	STN Positive, Yellow Green Transflec (In LCD production, It will occur slightly guarantee the same color in the same bar	y color difference. We can only
Duty	1/32	,
View direction	6 o'clock	
Backlight Type	LED Yellow Green	

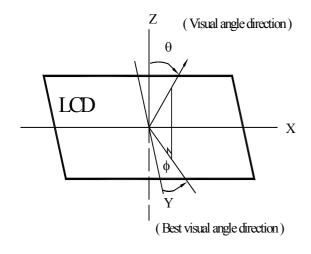

4. Absolute Maximum Ratings

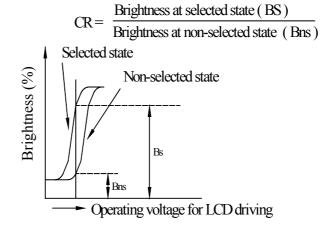
ITEM	SYMBOL	MIN.	TYP.	MAX.	UNNIT
Operating Temperature	T_{OP}	-20	_	+70	$^{\circ}\!\mathbb{C}$
Storage Temperature	T_{ST}	-30	_	+80	$^{\circ}\!\mathbb{C}$
Input Voltage	V _I	0	_	V_{DD}	V
Supply Voltage For Logic	V_{SS}	0	_	6.7	V
Supply Voltage For LCD	V_{DD} - V_{O}	0	_	10	V

5. Electrical Characteristics

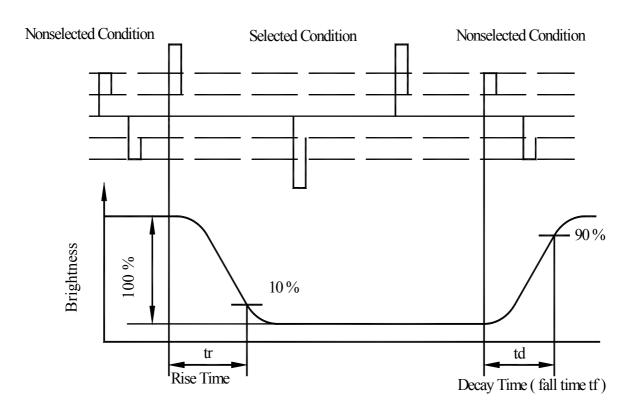
ITEM	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Voltage For Logic	V_{DD} - V_{SS}	_	2.7	3.0	3.3	V
Supply Voltage For LCD *Note	V_{DD} - V_{0}	Ta=-20°C Ta=25°C Ta=+70°C	- 4.3 3.8	4.4	5.8 4.6	V V V
Input High Vol	$ m V_{IH}$	_	2.0	_	$ m V_{DD}$	V
Input Low Vol	$ m V_{IL}$	_	0	_	0.7	V
Output High Vol	V_{OH}	_	V _{DD} -0.3	_	$V_{ m DD}$	V
Output Low Vol.	V_{OL}	_	0	_	0.3	V
Supply Current	I_{DD}	_	_	1.0	_	mA

^{*} Note: Please design the VOP adjustment circuit on customer's main board

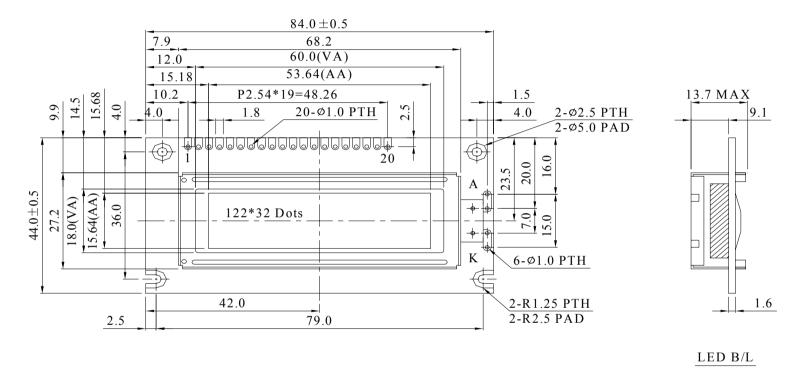



6.Optical Characteristics

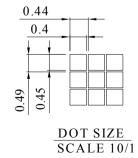
ITEM	SYMBAL	CONDITION	MIN	TYP	MAX	UNIT
XX: A 1	(V) θ	CR≧3	20	_	40	deg.
View Angle	(H) φ	CR≧3	- 30	_	30	deg.
Contrast Ratio	CR			3		_
	T rise	_		200	300	ms
Response Time	T fall	_		200	300	ms


■View Angles

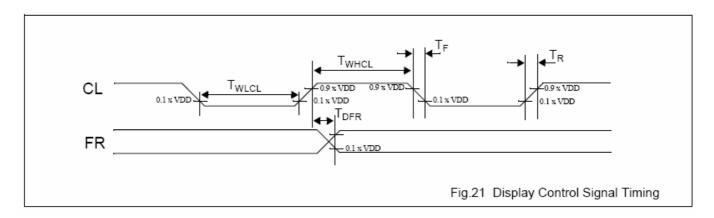
Contrast Ratio


Response time

7.Interface Description


Pin No.	Symbol	Level	Description
1	V_{ss}	0V	Ground
2	V_{dd}	3V	Power supply for logic
3	Vo	(Variable)	Operating voltage for LCD
4	A0	H/L	H: Data L: Instruction
5	CE1	H/L	Chip enable IC1
6	CE2	H/L	Chip enable IC2
7	NC	_	No connection
8	NC	_	No connection
9	R/W	H/L	H: Read; L: Write
10	DB0	H/L	Data bus line
11	DB1	H/L	Data bus line
12	DB2	H/L	Data bus line
13	DB3	H/L	Data bus line
14	DB4	H/L	Data bus line
15	DB5	H/L	Data bus line
16	DB6	H/L	Data bus line
17	DB7	H/L	Data bus line
18	RES	H/L	H -> L: The LCM be reset
19	Vee		Negative voltage output
20	NC		NC

8. Contour Drawing & Block diagram


1	Vss
2	Vdd
3	Vo
4	A 0
5	CE1
6	CE2
7	NC
8	NC
9	R/\overline{W}
10	DB0
11	DB1
12	DB2
13	DB3
14	DB4
15	DB5
16	DB6
17	DB7
18	RES
19	Vee
20	NC

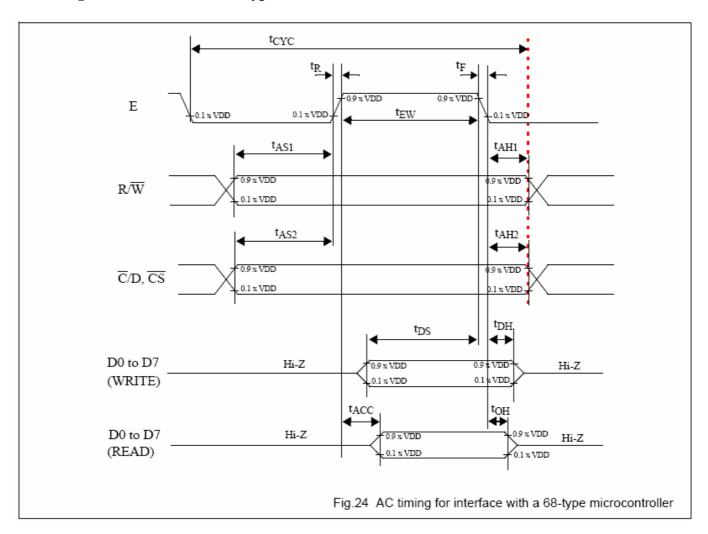
PIN NO. SYMBOL

9. Timing Characteristics

· CL and FR timing

CL and FR timing characteristics at VDD=5 volts

VDD = 5 V $\pm 10\%$; VSS = 0 V; all voltages with respect to VSS unless otherwise specified; Tamb = -20 to +75 °C.


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
T _{WHCL}	CL clock high pulse width		33			μS
T _{WLCL}	CL cock low pulse width		33			μS
T _R	CL clock rise time			28	120	ns
T _F	CL clock fall time			28	120	ns
T _{DFR(input)}	FR delay time (input)	When used as input in Slave Mode application	-2.0	0.2	1.6	μS
T _{DFR(output)}	FR delay time (output)	When used as output in Master Mode application, with CL= 100 pF.		0.2	0.36	μS

CL and FR timing characteristics at VDD=3 volts

VDD = 3 V $\pm 10\%$; VSS = 0 V; all voltages with respect to VSS unless otherwise specified; Tamb = -20 to +75 °C.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
T _{WHCL}	CL clock high pulse width		65			μs
T _{WLCL}	CL cock low pulse width		65			μs
T _R	CL clock rise time			50	220	ns
T _F	CL clock fall time			50	220	ns
T _{DFR(input)}	FR delay time (input)	When used as input in Slave Mode application	-3.6	0.36	3.6	μS
T _{DFR(output)}	FR delay time (output)	When used as output in Master Mode application, with CL= 100 pF.		0.32	0.6	μS

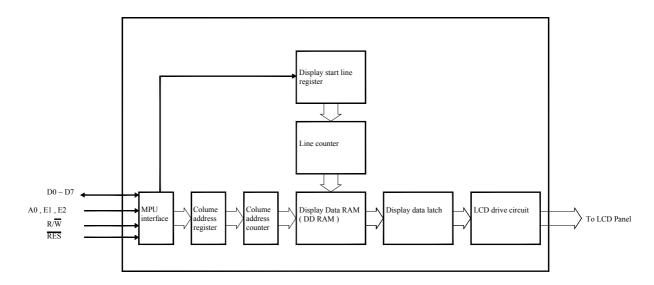
AC timing for interface with a 68-type microcontroller

AC timing for interface with a 68-type microcontroller at VDD=5 volts VDD = 5 V $\pm 10\%$; VSS = 0 V; Tamb = -20 °C to +75 °C.

symbol	parameter	min.	max.	test conditons	unit
t _{AS1}	Address set-up time with respect to R/W	20			ns
t _{AS2}	Address set-up time with respect to C/D, CS	20			ns
t _{AH1}	Address hold time with respect to R/W	10			ns
t _{AH2}	Address hold time respect with to C/D, CS	10			ns
t _F , t _R	Enable (E) pulse falling/rising time		15		ns
t _{CYC}	System cycle time	1000		Note 1	ns
t _{EWR}	Enable pulse width for READ	100			ns
t _{EWW}	Enable pulse width for WRITE	80			ns
t _{DS}	Data setup time	80			ns
t _{DH}	Data hold time	10			ns
t _{ACC}	Data access time		90	CL= 100 pF.	ns
tон	Data output hold time	10	60	Refer to Fig. 23.	ns

AC timing for interface with a 68-type microcontroller at VDD=3 volts VDD = 3 V $\pm 10\%$; VSS = 0 V; Tamb = -20 °C to +75 °C.

symbol	parameter	min.	max.	test conditons	unit
t _{AS1}	Address set-up time with respect to R/W	40			ns
t _{AS2}	Address set-up time with respect to C/D, CS	40			ns
t _{AH1}	Address hold time with respect to R/W	20			ns
t _{AH2}	Address hold time respect with to C/D, CS	20			ns
t _F , t _R	Enable (E) pulse falling/rising time		15		ns
t _{CYC}	System cycle time	2000		Note 1	ns
t _{EWR}	Enable pulse width for READ	200			ns
t _{EWW}	Enable pulse width for WRITE	160			ns
t _{DS}	Data setup time	160			ns
t _{DH}	Data hold time	20			ns
tACC	Data access time		180	CL= 100 pF.	ns
tон	Data output hold time	20	120	Refer to Fig. 23.	ns


Note:

1. The system cycle time(tCYC) is the time duration from the time when Chip Enable is enabled to the time when Chip Select is released.

10. Function Description

◆Block Diagram

This 122x32 dots LCD Module built in two SBN1661G M18-D LSI controller.

◆MPU interface

The SBN1661G_M18-D controller transfers data via 8-bit bidirecional data buses (Do to D7), it can fit any MPU if it corresponds to SBN1661G_M18-D Read and Write Timing Characteristics.

◆Data transfer

The SBN1661G_M18-D driver uses the A0, E and R/W signals to transfer data between the system MPU and internal registers, The combinations used are given in the table below.

A0	R/W	Function
1	1	Read display data
1	0	Write display data
0	1	Read status
0	0	Write to internal register (command)

♦Busy flag

When the Busy flag is logical 1, the SBN1661G_M18-D series is executing its internal operations. Any command other than Status Read is rejected during this time. The Busy flag is output at pin D7 by the Status Read command. If an appropriate cycle time (t_{CYC}) is given, this flag needs not be checked at the beginning of each command and, therefore, the MPU processing capacity can greatly be enhanced.

♦Display Start Line and Line Count Registers

The contents of this register form a pointer to a line of data in display data RAM corresponding to the first line of the display (COM0), and are set by the Display Start Line command.

◆Column Address Counter

The column address counter is a 7-bit presettable counter that supplies the column address for MPU access to the display data RAM. See Figure 1. The counter is incremented by one every time the driver receives a Read or Write Display Data command. Addresses above 50H are invalid, and the counter will not increment past this value. The contents of the column address counter are set with the Set Column Address command.

♦Display Data RAM

The display data RAM stores the LCD display data, on a 1-bit per pixel basis. The relation-ship between display data, display address and the display is shown in Figure 1.

◆Page Register

The page register is a 2-bit register that supplies the page address for MPU access to the display data RAM. See Figure 1. The contents of the page register are set by the Set Page Register command.

Page address		DATA]														Line address	Common output
		D0																00H	COMO
		D1																01H	COM1
		D2																02H	COM2
D1, D2=		D3								\neg								03H	COM3
0,0		D4								\dashv								04H	COM4
		D5																05H	COM 5
		D6																06H	COM6
		D7																07H	COM7
		D0		T	П					\exists								08H	COM8
		D1								\neg								09H	COM9
		D2																HA0	COM 10
0,1		D3								\dashv								OBH	COM11
		D4			\Box													0CH	COM12
		D5																0DH	COM13
		D6																0EH	COM14
		D7								\neg								0FH	COM 15
		D0			\Box					\dashv								10H	COM 16
		D1																11H	COM17
		D2			\Box													12H	COM 18
1,0		D3			\Box					\dashv								13H	COM 19
		D4								\exists								14H	COM 20
		D5																15H	COM 21
		D6								\dashv								16H	COM 22
		D7																17H	COM 23
		D0			\Box					\dashv								18H	COM 24
		D1																19H	COM 25
		D2																1AH	COM 26
1,1		D3																1BH	COM 27
-,-		D4																1CH	COM 28
		D5																1DH	COM 29
		D6								\neg								1EH	COM 30
		D7			\Box				П	\dashv								1FH	COM31
	Ω		BA	H00	01H	02H	03H	04H	8	H30	T ₂	يوا ي	1 12		Д	4	A.		
	or	[I	王	ᄪᅵ	Ħ	Ħ	Ħ	Ħ	Ħ	— — š	24 E	i i	-	- 꿈	峊	ΨH		
	m E	ADC	8	4FH	4EH	4DH	4CH	4BH	4.6	49H		\top			_ 8	OH	H00		
	Coloum address	`*		\vdash	\vdash	\dashv	\neg			\dashv	_	+	+		_	\vdash	\vdash		
	<u>ω</u>		seg pin	ľ	2	ω	4	S	6	7	_P	8 2	9 2		- %	79	8		
				-						_	BN1661G — SBN1661G — SBN1661G		_	4					

Figure 1: page and column address

* The 122*32 dots display area is consist of two 61*32, The interface control pin E1 enable the left 61*32,E2 enable the right 61*32.

11. Commands Descriptions

The host microcontroller can issue commands to the SBN1661G_X. Table 27 lists all the commands. When issuing a command, the host microcontroller should put the command code on the data bus. The host microcontroller should also give the control bus C/D, E(RD), and R/W(WR) proper value and timing.

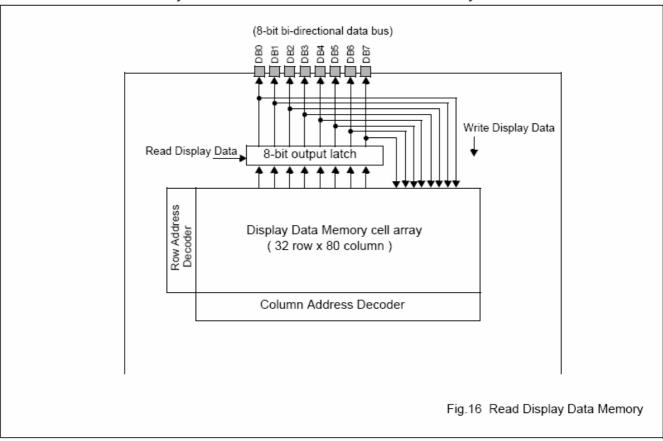
Commands

COMMAND			COMMAND CODE						FUNCTION		
COMMAND	D7	D6	D5	D4	D3	D2	D1	D0	PONCTION		
Write Display Data	Data Men		e writ	ten in	to the	Disp	lay D	ata	Write a byte of data to the Display Data Memory.		
Read Display Data	Data Men		from	the [Displa	ay Da	ta		Read a byte of data from the Display Data Memory.		
Read-Modify-Write	1	1	1	0	0	0	0	0	Start Read-Modify-Write operation.		
END	1	1	1	0	1	1	1	0	Stop Read-Modify-Write operation.		
Software Reset	1	1	1	0	0	0	1	0	Software Reset.		

Write Display Data

The Write Display Data command writes a byte (8 bits) of data to the Display Data Memory. Data is put on the data bus by the host microcontroller. The location which accepts this byte of data is pointed to by the Page Address Register and the Column Address Register. At the end of the command operation, the content of the Column Address Register is automatically incremented by 1.

The setting of the control bus for issuing Write Display Data command


C/D	E/(RD)	R/W(WR)
1	1	0

Read Display Data

The Read Display Data command starts a 3-step operation.

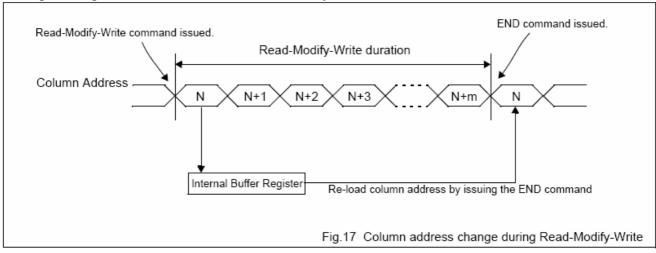
- 1. First, the current data of the internal 8-bit output latch of the Display Data Memory is read by the microcontroller, via the 8-bit data bus DB0~DB7.
- 2. Then, a byte of data of the Display Data Memory is transferred to the 8-bit output latch from a location specified by the Page Address Register and the Column Address Register,
- 3. Finally, the content of the Column Address Register is automatically incremented by one. Fig. 16 shows the internal 8-bit output latch located between the 8-bit I/O data bus and the Display Data Memory cell array. Because of this internal 8-bit output latch, a dummy read is needed to obtain correct data from the Display Data Memory. For Display Data Write operation, a dummy write **is not** needed,

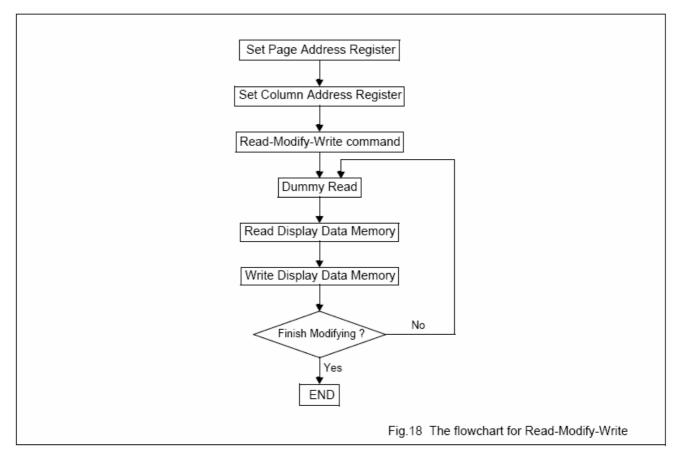
because data can be directly written from the data bus to internal memory cells.

The setting of the control bus for issuing Read Display Data command

C/D	E/(RD)	R/W(WR)
1	0	1

Read-Modify-Write


When the Read-Modify-Write command is issued, the SBN1661G_X enters into Read-Modify-Write mode. In normal operation, when a Read Display Data command or a Write Display Data command is issued, the content of the Column Address Register is automatically incremented by one after the command operation is finished. However, during Read-Modify-Write mode, the content of the Column Address Register is not incremented by one after a Read Display Data command is finished; only the Write Display Data command can make the content of the Column Address Register automatically incremented by one after the command operation is finished.


During Read-Modify-Write mode, any other registers, except the Column Address Register, can be modified. This command is useful when a block of the Display Data Memory needs to be repeatedly

read and updated.

Fig. 17 gives the change sequence of the Column Address Register during Read-Modify-Write mode.

Figure 18 gives the flow chart for Read-Modify-Write command.

The setting of the control bus for the Read-Modify-Write command

C/D	E/(RD)	R/W(WR)
0	1	0

The setting of the data bus for the Read-Modify-Write command

D7(MSB)	D6	D5	D4	D3	D2	D1	D0(LSB)
1	1	1	0	0	0	0	0

The END command

The END command releases the Read-Modify-Write mode and re-loads the Column Address Register with the value previously stored in the internal buffer (refer to Fig. 17) when the Read-Modify-Write command was issued.

The setting of the control bus for the END command

C/D	E/(RD)	R/W(WR)
0	1	0

The setting of the data bus for the END command

D7(MSB)	D6	D5	D4	D3	D2	D1	D0(LSB)
1	1	1	0	1	1	1	0

The command code is EE Hex.

Software RESET command

The Software Reset command is different from the hardware reset and can not be used to replace hardware reset.

When Software Reset is issued by the host microcontroller,

- the content of the Display Start Line Register is cleared to zero(A4~A0=00000),
- the Page Address Register is set to 3 (A1 A0 = 11),
- the content of the Display Data Memory remains unchanged.
- the content of all other registers remains unchanged.

The setting of the control bus for Software RESET

C/D	E/(RD)	R/W(WR)
0	1	0

The setting of the data bus for Software RESET

D7(MSB)	D6	D5	D4	D3	D2	D1	D0(LSB)
1	1	1	0	0	0	1	0

The command code is E2 Hex.

12.RELIABILITY

Content of Reliability Test (wide temperature, -20°c~70°C)

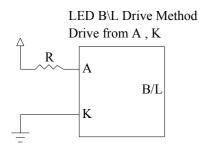
Environmental Test					
Test Item	Content of Test	Test Condition	Note		
High Temperature storage	Endurance test applying the high storage temperature for a long time.	80°C 200hrs	2		
Low Temperature storage	Endurance test applying the high storage temperature for a long time.	-30°C 200hrs	1,2		
High Temperature Operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	70°C 200hrs			
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	-20°C 200hrs	1		
High Temperature/ Humidity Operation	The module should be allowed to stand at 60°C,90%RH max For 96hrs under no-load condition excluding the polarizer, Then taking it out and drying it at normal temperature.	60°C,90%RH 96hrs	1,2		
Thermal shock resistance	The sample should be allowed stand the following 10 cycles of operation -20°C 25°C 70°C 30min 5min 30min 1 cycle	-20°C/70°C 10 cycles			
Vibration test	Endurance test applying the vibration during transportation and using.	Total fixed amplitude: 1.5mm Vibration Frequency: 10~55Hz One cycle 60 seconds to 3 directions of X,Y,Z for Each 15 minutes	3		
Static electricity test	Endurance test applying the electric stress to the terminal.	VS=800V,RS=1.5kΩ CS=100pF 1 time			

Note1: No dew condensation to be observed.

Note2: The function test shall be conducted after 4 hours storage at the normal

Temperature and humidity after remove from the test chamber.

Note3: Vibration test will be conducted to the product itself without putting it in a container.


13. Backlight Information

Specification

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	TEST CONDITION
Supply Current	ILED	96	120	180	mA	V=4.5V
Supply Voltage	V	4.0	4.5	5.0	V	
Reverse Voltage	VR	_	_		V	
Luminous	IV	157.8	197.3	_	CD/M ²	ILED=120mA
Intensity						
Wave Length	λр	565	570	575	nm	ILED=120mA
Life Time		_	100000	_	Hr.	ILED≦120mA
Color				,	Yellow G	reen

Note: The LED of B/L is drive by current only, drive voltage is for reference only.

drive voltage can make driving current under safety area (current between minimum and maximum).

14. Inspection specification

NO	Item			Criterion		AQL	
01	Electrical Testing	 1.1 Missing vertical, horizontal segment, segment contrast defect. 1.2 Missing character, dot or icon. 1.3 Display malfunction. 1.4 No function or no display. 1.5 Current consumption exceeds product specifications. 1.6 LCD viewing angle defect. 1.7 Mixed product types. 1.8 Contrast defect. 					
	Black or white	2.1 White and bl	ack spots o	on display ≤0.25m	m, no more than		
0.2	spots on	three white o	r black spo	ots present.		2.5	
02	LCD(displa	2.2 Densely space	ed: No mo	ore than two spots of	or lines within 3mm	2.5	
	y only)						
		3.1 Round type:	3.1 Round type : As following drawing				
		$\Phi = (x + y)$)/2	SIZE	Acceptable Q TY		
		→ ^X ← <u>·</u>		Φ≤0.10		2.5	
	LCD black	• -	¥ Y	$0.10 < \Phi \le 0.20$			
	spots, white			$0.20 < \Phi \le 0.25$	5 1		
0.2	spots,			0.25 < Ф	0		
03	contaminati	3.2 Line type : (As following drawing)					
	on (non-display	o /¥w	Length	Width	Acceptable Q TY		
)	→ L +		W≤0.02	Accept no dense		
	,		L≦3.0	$0.02 < W \le 0.03$		2.5	
			L≦2.5	$0.03 < W \le 0.05$	2		
				0.05 < W	As round type		
				a: -			
		If bubbles are vis	sible,	Size Φ	Acceptable Q TY	2.5	
	Polarizer	judge using bla	ack spot	Φ ≤ 0.20	Accept no dense		
04	bubbles	specifications,	not easy	$0.20 < \Phi \le 0.50$	3		
	bubbles	to find, must cl	heck in	$0.50 < \Phi \le 1.00$	2		
		specify direction	on.	1.00 < Φ	0		
				Total Q TY	3		

NO	Item	Criterion A				
05	Scratches	Follow NO.3 LCD blace	ck spots, white spots, con	tamination		
05	Scratches	Symbols Define: x: Chip length y k: Seal width t: L: Electrode pad length 6.1 General glass chip	: Chip width z: Chi Glass thickness a: LCl	p thickness D side length		
06	Chipped glass	z: Chip thickness $Z \le 1/2t$ $1/2t < z \le 2t$	y: Chip width Not over viewing area	x: Chip length $x \le 1/8a$ $x \le 1/8a$	2.5	
glass $1/2t < z \le 2t$ Not exceed $1/3k$ x OIf there are 2 or more chips, x is total length of each chip 6.1.2 Corner crack:						
		z: Chip thickness	y: Chip width	x: Chip length		
		Z≤1/2t	Not over viewing area	x≤1/8a		
		$1/2t < z \le 2t$	Not exceed 1/3k	x≤1/8a		
		⊙ If there are 2 or more	chips, x is the total length	of each chip.		

NO	Item	Criterion							
		Symbols:							
		x: Chip length	y: Chip width z: Ch	nip thickness					
		k: Seal width	t: Glass thickness a: Lo	CD side length					
		L: Electrode pad length							
		6.2 Protrusion over terminal :							
		6.2.1 Chip on electr	rode pad :						
	1								
			A. C.	X]				
		v. Chin width	x: Chip length	z: Chip thickness					
		y: Chip width							
		y ≤0.5mm	x≤1/8a	$0 < z \le t$					
			•	$0 < z \le t$					
	Glass	y ≦ 0.5mm	•	0 < z ≦ t	L				
06	Glass	y ≦ 0.5mm	•	0 < z ≦ t	L 2.5				
06		y ≦ 0.5mm	•	0 < z ≦ t	L 2.5				
06	cra	y ≦ 0.5mm	re portion:	$0 < z \le t$	<u>L</u> 2.5				
06	cra	y≤0.5mm 6.2.2 Non-conductiv	re portion:	1 2 X	2.5				
06	cra	y≤0.5mm 6.2.2 Non-conductiv	vidth x: Chip length	1 2 X	2.5				
06	cra	$y \le 0.5 \text{mm}$ 6.2.2 Non-conductive $y = 0.5 \text{mm}$	vidth x: Chip length	z : Chip thickness $0 < z \le t$					
06	cra	$y \le 0.5 \text{mm}$ 6.2.2 Non-conductive $y = 0.5 \text{mm}$ $y = 0.$	re portion: $ \begin{array}{c cccc} & & & & \\ \hline & & $	z : Chip thickness $0 < z \le t$ minal, over 2/3 of the ITO	must				
06	cra	$y \le 0.5 \text{mm}$ 6.2.2 Non-conductive $y = 0.5 \text{mm}$	re portion: $ \begin{array}{cccccccccccccccccccccccccccccccccc$	z : Chip thickness $0 < z \le t$ minal, over 2/3 of the ITO electrode terminal specific	must cations.				
06	cra	$y \le 0.5 \text{mm}$ 6.2.2 Non-conductive $y = 0.5 \text{mm}$	re portion: The portion is a constant of	z : Chip thickness $0 < z \le t$ minal, over 2/3 of the ITO electrode terminal specific	must cations.				
06	cra	y≤0.5mm 6.2.2 Non-conductive y y: Chip w y≤ I ⊙ If the chippy remain ar ⊙ If the productive not be data	re portion: The portion is a constant of	z : Chip thickness $0 < z \le t$ minal, over 2/3 of the ITO electrode terminal specific	must cations.				
06	cra	y≤0.5mm 6.2.2 Non-conductive y y: Chip w y≤ I ⊙ If the chippy remain ar ⊙ If the productive not be data	re portion: I	z : Chip thickness $0 < z \le t$ minal, over 2/3 of the ITO electrode terminal specific	must cations.				

NO	Item	Criterion	AQL
07	Cracked glass	The LCD with extensive crack is not acceptable.	2.5
08	Backlight elements	8.1 Illumination source flickers when lit.8.2 Spots or scratched that appear when lit must be judged. Using LCD spot, lines and contamination standards.	0.65
		8.3 Backlight doesn't light or color wrong.	0.65
09	Bezel	9.1 Bezel may not have rust, be deformed or have fingerprints, stains or other contamination.9.2 Bezel must comply with job specifications.	2.5 0.65
		10.1 COB seal may not have pinholes larger than 0.2mm or contamination. 10.2 COB seal surface may not have pinholes through to the IC.	2.5
		10.3 The height of the COB should not exceed the height indicated in the assembly diagram.10.4 There may not be more than 2mm of sealant outside the seal area on	2.5 0.65
		the PCB. And there should be no more than three places. 10.5 No oxidation or contamination PCB terminals.	2.5
		10.6 Parts on PCB must be the same as on the production characteristic	
10	PCB、COB	chart. There should be no wrong parts, missing parts or excess parts. 10.7 The jumper on the PCB should conform to the product	2.5
		characteristic chart.	
		10.8 If solder gets on bezel tab pads, LED pad, zebra pad or screw hold pad, make sure it is smoothed down.	0.65
		10.9 The Scraping testing standard for Copper Coating of PCB	2.5
		Y X * Y <= 2mm ²	2.5
		11.1 No un-melted solder paste may be present on the PCB.	2.5
	~	11.2 No cold solder joints, missing solder connections, oxidation or icicle.	2.5
11	Soldering	11.3 No residue or solder balls on PCB.	2.5
		11.4 No short circuits in components on PCB.	0.65

NO	Item	Criterion	AQL
		12.1 No oxidation, contamination, curves or, bends on interface Pin (OLB) of TCP.	2.5
		12.2 No cracks on interface pin (OLB) of TCP.	0.65
		12.3 No contamination, solder residue or solder balls on product.	2.5
		12.4 The IC on the TCP may not be damaged, circuits.	2.5
		12.5 The uppermost edge of the protective strip on the interface pin	2.5
		must be present or look as if it cause the interface pin to	
	C1	sever.	2.5
12	General	12.6 The residual rosin or tin oil of soldering (component or chip	
	appearance	component) is not burned into brown or black color.	2.5
		12.7 Sealant on top of the ITO circuit has not hardened.	0.65
		12.8 Pin type must match type in specification sheet.	0.65
		12.9 LCD pin loose or missing pins.	0.65
		12.10 Product packaging must the same as specified on packaging	
		specification sheet.	0.65
		12.11 Product dimension and structure must conform to product	
		specification sheet.	

15. Material List of Components for RoHs

1. WINSTAR Display Co., Ltd hereby declares that all of or part of products (with the mark "#"in code), including, but not limited to, the LCM, accessories or packages, manufactured and/or delivered to your company (including your subsidiaries and affiliated company) directly or indirectly by our company (including our subsidiaries or affiliated companies) do not intentionally contain any of the substances listed in all applicable EU directives and regulations, including the following substances.

Exhibit A: The Harmful Material List

Material	(Cd)	(Pb)	(Hg)	(Cr6+)	PBBs	PBDEs
Limited	100	1000	1000	1000	1000	1000
Value	ppm	ppm	ppm	ppm	ppm	ppm

Above limited value is set up according to RoHS.

- 2. Process for RoHS requirement:
- (1) Use the Sn/Ag/Cu soldering surface; the surface of Pb-free solder is rougher than we used before.
- (2) Heat-resistance temp. :

Reflow: 250° C, 30 seconds Max.;

Connector soldering wave or hand soldering : 320°C, 10 seconds max.

(3) Temp. curve of reflow, max. Temp. : $235\pm5^{\circ}$ C;

Recommended customer's soldering temp. of connector : 280°C, 3 seconds.

<u> 16. Storage</u>

- 1. Place the panel or module in the temperature 25°C±5°C and the humidity below 65% RH
- 2. Do not place the module near organics solvents or corrosive gases.
- 3. Do not crush, shake, or jolt the module.

winstar <u>LCM Sample Estimate Feedback Sheet</u>

Module Number:			Page: 1		
1 \ <u>Pa</u>	nnel Specification:				
1.	Panel Type:	Pass	□ NG ,		
2.	View Direction:	Pass	□ NG ,		
3.	Numbers of Dots:	Pass	□ NG ,		
4.	View Area:	Pass	□ NG ,		
5.	Active Area:	Pass	□ NG ,		
6.	Operating Temperature:	Pass	☐ NG ,		
7.	Storage Temperature:	Pass	☐ NG ,		
8.	Others:				
2 · <u>M</u>	echanical Specification:				
1.	PCB Size:	Pass	□ NG ,		
2.	Frame Size:	Pass	□ NG ,		
3.	Materal of Frame:	Pass	□ NG ,		
4.	Connector Position:	Pass	□ NG ,		
5.	Fix Hole Position:	Pass	□ NG ,		
6.	Backlight Position:	Pass	□ NG ,		
7.	Thickness of PCB:	Pass	□ NG ,		
8.	Height of Frame to PCB:	Pass	□ NG ,		
9.	Height of Module:	Pass	□ NG ,		
10.	Others:	Pass	□ NG ,		
3 \ <u>R</u>	elative Hole Size :				
1.	Pitch of Connector:	Pass	□ NG ,		
2.	Hole size of Connector:	Pass	□ NG ,		
3.	Mounting Hole size:	Pass	□ NG ,		
4.	Mounting Hole Type:	Pass	□ NG ,		
5.	Others:	Pass	□ NG ,		
4 \ <u>Ba</u>	cklight Specification:				
1.	B/L Type:	Pass	□ NG ,		
2.	B/L Color:	Pass	□ NG ,		
3.	B/L Driving Voltage (Refere	ence for LE	D Type): Pass NG,		
4.	B/L Driving Current:	Pass	□ NG ,		
5.	Brightness of B/L:	Pass	□ NG ,		
6.	B/L Solder Method:	Pass	□ NG ,		
7.	Others:	Pass	□ NG ,		

 $>> \,$ Go to page 2 $\,<<$

Module Number :			Page: 2		
5 · <u>I</u>	Electronic Characteristics of M	Module :			
1.	Input Voltage:	☐ Pass	□ NG ,		
2.	Supply Current:	☐ Pass	□ NG ,		
3.	Driving Voltage for LCD:	☐ Pass	□ NG ,		
4.	Contrast for LCD:	☐ Pass	□ NG ,		
5.	B/L Driving Method:	☐ Pass	□ NG ,		
6.	Negative Voltage Output:	☐ Pass	□ NG ,		
7.	Interface Function:	☐ Pass	□ NG ,		
8.	LCD Uniformity:	☐ Pass	□ NG ,		
9.	ESD test:	☐ Pass	□ NG ,		
10.	Others:	☐ Pass	□ NG ,		
6 . 5	Summary :				
	Sales signature:		<u> </u>		
	Customer Signature :		Date : / /		