

WP3899

E-mail: market@way-on.com Http://www.way-on.com

### Description

WP3899 integrated OVP switch1 and load switch2.

The OVP switch1 can disconnect the systems from its output pin(Vo) in case wrong input operating conditions are detected. The system is positive overvoltage protected up to 28V.

The load switch2 can disconnect the systems from its output pin(BAT) in case wrong input operating conditions are detected, the system is positive overvoltage protected up to 6.5V and under-voltage lockout is 2.2V. And this switch has Reverse Current Blocking(RCB) function blocking unwanted reverse current from BAT to VIF.

### Features

## OVP switch1

- □ VBUS operating Range: 2.1V to 28V
- □ Absolute maximum voltage of VBUS: 30V
- Low R<sub>DS(ON)</sub>: 30mΩ typ. at VBUS=5V/0.3A
- □ 3A Maximum Continuous Current Capability
- Overvoltage Lock-Out: OVLO=10.0V (TYP)
- $\Box$  Surge immunity to  $\pm 100V$

#### Load switch2

- □ 2.3V to 6.0V Input Voltage Operating Range
- □ Absolute maximum voltage of VIF: 6.5V
- Low RDS(on): 16 mΩ TYP @ VIF=3V/0.5A, 10mΩ TYP @VIF=4.5V/0.5A
- □ 6A Maximum Continuous Current Capability
- □ Overvoltage Lockout (OVLO=5.25V TYP)
- □ Under-Voltage Lockout: UVLO=2.2V TYP
- □ True Reverse Current Blocking (TRCB)
- $\Box$  Surge immunity to  $\pm 40V$
- All
- Compliance to IEC61000-4-2 (Level 4): With a  $1.0\mu$ F or larger bypass capacitor.

15kV(Air) 8kV (Contact); ESD Ratings: HBM >2kV.

□ CSP15 Package (1.6mm\*2.2mm, ball pitch=0.4mm)

### Applications

- □ Smartphones, Tablet PC
- □ HDD, Storage and Solid State Memory Devices
- D Portable Media Devices, Laptop & MID
- □ SLR Digital Cameras
- □ GPS and Navigation Equipment
- □ Industrial Handheld and Enterprise Equipment

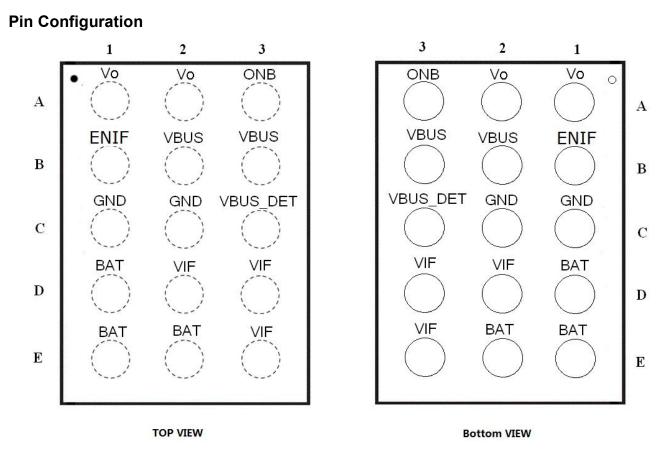




Figure 1 PIN MAP

## **Pin Function**

| Pin        | Name     | Pin Function                   |
|------------|----------|--------------------------------|
| A1, A2     | Vo       | Output of OVP switch1          |
| A3         | ONB      | OVP switch1 enable, active low |
| B1         | ENIF     | Enable of Load Switch2         |
| B2, B3     | VBUS     | Input of OVP switch1           |
| C1, C2 GND |          | Ground                         |
| C3         | VBUS_DET | Regulation output of VBUS      |
| D1, E1, E2 | BAT      | Output of switch2              |
| D2, D3, E3 | VIF      | Input of switch2               |



### Figure 2 Block Diagram

## **Absolute Maximum Ratings**

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

| SYMBOL                                                    | PARAMETERS                                         | MIN. | MAX.     | UNIT |
|-----------------------------------------------------------|----------------------------------------------------|------|----------|------|
| V <sub>BUS</sub>                                          | V <sub>BUS</sub> VBUS to GND                       |      | 30       | V    |
| V <sub>IF1</sub>                                          | VIF1 VIF to GND                                    |      | 7        | V    |
| V <sub>IF2</sub>                                          | VIF to GND, BAT<4.5V, 100mS                        | -2.0 | 4.5      | V    |
| V <sub>BAT</sub>                                          | BAT to GND                                         | -0.3 | 6.5      | V    |
| V <sub>ONB</sub>                                          | ONB to GND                                         | -0.3 | 6.5      | V    |
| Vout                                                      | Vout to GND                                        | -0.3 | VBUS+0.3 | V    |
| Isw1                                                      | Maximum Continuous Current of switch VBUS          |      | 3        | А    |
| I <sub>SW2</sub> Maximum Continuous Current of switch VIF |                                                    |      | 6        | А    |
| I <sub>SW3</sub>                                          | Maximum Peak VBUS, Vo Current(10mS)                |      | 6        | А    |
| I <sub>SW4</sub>                                          | Maximum Peak VIF, BAT Current(5mS)                 |      | 12       | А    |
| PD                                                        | Power Dissipation at T_A=25 $^\circ\!\!\mathbb{C}$ |      | 1.6      | W    |
| T <sub>STG</sub> Storage Junction Temperature             |                                                    | -65  | +150     | °C   |
| T <sub>A</sub>                                            | Operating Temperature Range                        | -40  | +85      | °C   |
| θ <sub>JA</sub> Thermal Resistance, Junction-to-Ambient   |                                                    |      | 65       | °C/W |

Specifications are subject to change without notice

| ESD   | Electrostatic Discharge | Human Body Model,<br>JESD22-A114     | 2.0    |     | kV |  |
|-------|-------------------------|--------------------------------------|--------|-----|----|--|
| ESD   | Capability              | Charged Device Model,<br>JESD22-C101 | 1.5    |     | ĸv |  |
| Surgo | VBUS to GND             | IEC 61000-4-5, Surge<br>protection   | -100   | 100 | V  |  |
| Surge | VIF to GND              | IEC 61000-4-5, Surge<br>protection   | -40 40 |     |    |  |

## **Recommended Operating Conditions**

| SYMBOL           | PARAMETERS                    | MIN. | MAX. | UNIT |
|------------------|-------------------------------|------|------|------|
| V <sub>BUS</sub> | VBUS Input Voltage            | 2.1  | 28   | V    |
| VIF              | VIF input voltage             | 2.3  | 6.0  | V    |
| TA               | Ambient Operating Temperature | -40  | +85  | °C   |

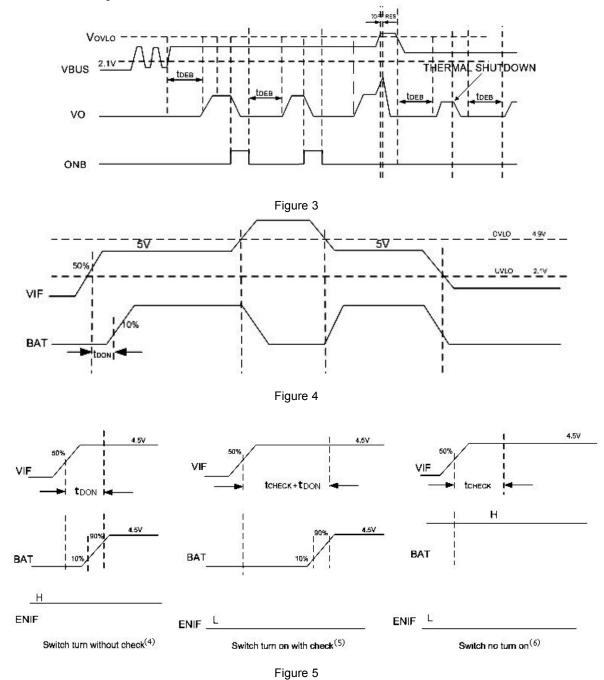
## **Electrical Characteristics**

## **OVP Switch**

Unless otherwise noted, typical values are at  $V_{IN}$ =5V and  $T_A$ =25°C.

| SYMBOL           | PARAMETERS                                | CONDITIONS                                                                 | MIN. | TYP. | MAX. | UNITS |  |  |
|------------------|-------------------------------------------|----------------------------------------------------------------------------|------|------|------|-------|--|--|
| Basic Operation  |                                           |                                                                            |      |      |      |       |  |  |
| V <sub>BUS</sub> | Input Voltage                             |                                                                            | 2.1  |      | 28   | V     |  |  |
| I <sub>Q1</sub>  | VBUS Quiescent<br>Current                 | $V_{\text{ONB}}$ =low, no load                                             |      | 140  |      | μΑ    |  |  |
| R <sub>ON1</sub> | VBUS On-Resistance                        | V <sub>BUS</sub> =5.0V, I <sub>OUT</sub> =0.3A                             |      | 30   |      | mΩ    |  |  |
| VIH              | ONB Input Logic High<br>Voltage           | $V_{BUS}$ =2.1V to 28V                                                     | 1.5  |      |      | V     |  |  |
| VIL              | ONB Input Logic Low<br>Voltage            | $V_{BUS}$ =2.1V to 28V                                                     |      |      | 0.5  | V     |  |  |
| R <sub>PD</sub>  | Pull-Down Resistance<br>at ONB pin        |                                                                            |      | 1    |      | MΩ    |  |  |
| Vovlo1           | Overvoltage protect of<br>VBUS            | V <sub>BUS</sub> rise up                                                   | 9.8  | 10.0 | 10.2 | V     |  |  |
|                  | Overvoltage protect<br>hysteresis of VBUS |                                                                            |      | 0.1  |      | V     |  |  |
| Vuvlo1           | Under-Voltage protect<br>of VBUS          | VBUS fall down                                                             |      | 2.0  |      | V     |  |  |
| V <sub>DET</sub> | regulation output of<br>VBUS_DET          | ONB=low                                                                    | 6    |      | 9.5  | V     |  |  |
|                  | Thermal Shutdown                          |                                                                            |      | 150  |      | °C    |  |  |
|                  | Thermal-shutdown<br>Hysteresis            |                                                                            |      | 20   |      | ĉ     |  |  |
| Dynamic Cha      | racteristics: see figure 3                |                                                                            | 1    |      |      |       |  |  |
| t <sub>DEB</sub> | Debounce Time                             | Time from 2.1V <v<sub>BUS&lt;9.9V to<br/>Vo=10% of V<sub>BUS</sub></v<sub> |      | 21   |      | ms    |  |  |
| tss              | Soft-start time                           | Vo=10% of V <sub>BUS</sub> to soft-start off                               |      | 1.2  |      | ms    |  |  |
| toff_res         | Load Switch turn-off                      | $R_L {=} 100 \Omega,  No \; C_L,  V_{IF} > V_{OVLO2}  to$                  |      |      | 150  | ns    |  |  |
|                  | response time                             | VBAT stop rising                                                           |      |      | 150  | 113   |  |  |

|  |  | Crosstalk | VBUS to BAT | V <sub>BUS</sub> =5V, V <sub>IS</sub> =1V RMS,<br>f <sub>VBUS</sub> =0~100MHZ.C <sub>BAT</sub> =20µF |  | -50 |  | dB |
|--|--|-----------|-------------|------------------------------------------------------------------------------------------------------|--|-----|--|----|
|--|--|-----------|-------------|------------------------------------------------------------------------------------------------------|--|-----|--|----|


### Load Switch

Unless otherwise noted, typical values are at V<sub>IN</sub>=5V and T<sub>A</sub>=25°C.

| Symbol                               | Parameters                                      | Conditions                                                                                                                   | Min. | Тур. | Max. | Units |
|--------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------|------|------|-------|
| Basic Operati                        | on                                              |                                                                                                                              |      | 1    |      | 1     |
| VIF                                  | VIF Input Voltage                               |                                                                                                                              | 2.3  |      | 6.0  | V     |
| lq                                   | VIF Quiescent Current                           | No load                                                                                                                      |      | 25   | 30   | μΑ    |
| _                                    |                                                 | V <sub>IF</sub> =4.5V, I <sub>O</sub> =0.5A                                                                                  |      | 10   |      |       |
| R <sub>ON</sub>                      | On-Resistance                                   | V <sub>IF</sub> =3.0V, I <sub>O</sub> =0.5A,                                                                                 |      | 16   |      | mΩ    |
| V <sub>OVLO2</sub>                   | Overvoltage protect of VIF                      | V <sub>I</sub> ⊧ rise up                                                                                                     | 5    | 5.25 | 5.5  | v     |
|                                      | Overvoltage protect<br>hysteresis of VIF        |                                                                                                                              |      | 0.3  |      | v     |
| V <sub>UVLO2</sub>                   | Under-Voltage protect of<br>VIF                 | V <sub>IF</sub> fall down                                                                                                    |      | 2.2  |      | v     |
| V <sub>IH2</sub>                     | ENIF Input Logic High<br>Voltage                | V <sub>IF</sub> =5.0V                                                                                                        | 1.5  |      |      | v     |
| VIL2                                 | ENIF Input Logic Low<br>Voltage                 | V <sub>IF</sub> =5.0V                                                                                                        |      |      | 0.4  | v     |
| VBATH                                | BAT Logic High Voltage                          | V <sub>IF</sub> =5.0V                                                                                                        | 2.5  |      |      | v     |
| VBATL                                | BAT Logic Low Voltage                           | V <sub>IF</sub> =5.0V                                                                                                        |      |      | 1.0  | v     |
| I <sub>ENIF</sub>                    | ENIF Input Leakage                              | V <sub>ENIF</sub> =V <sub>IF</sub> =5.0V                                                                                     |      |      | 1.0  | μA    |
| True Reverse                         | Current Blocking                                |                                                                                                                              | •    |      |      |       |
| V <sub>T_RCB</sub>                   | RCB Protection Trip Point                       | V <sub>BAT</sub> - V <sub>IF</sub>                                                                                           |      | 15   |      | mV    |
| Vr_rcb                               | RCB Protection Release<br>Trip Point            | Vif - Vbat                                                                                                                   |      | 45   |      | mV    |
|                                      | RCB Hysteresis                                  |                                                                                                                              |      | 60   |      | mV    |
| Isd_out                              | Vo Shutdown Current                             | V <sub>BAT</sub> =5.0V,<br>V <sub>IF</sub> =Short to GND                                                                     |      |      | 2    | μΑ    |
| T <sub>RCB_OFF</sub>                 | RCB Response Time<br>Device OFF                 | V <sub>BAT</sub> - V <sub>IF</sub> =100mV                                                                                    |      | 4    |      | μs    |
| Dynamic Cha                          | racteristics: see figure 4                      |                                                                                                                              |      |      |      |       |
| t <sub>don+</sub> t <sub>check</sub> | Turn-On Delay (1,2) +<br>Power on check Time(3) | $V_{IF}$ = 4.5V(power on),R <sub>L</sub> =100 $\Omega$ ,<br>C <sub>L</sub> =22µF,V <sub>ENIF</sub> =GND,T <sub>A</sub> =25°C |      | 4    |      | ms    |
| t <sub>R</sub>                       | V <sub>OUT</sub> Rise Time (1,2)                | $V_{IF} = 4.5V, R_L = 100\Omega,$<br>$C_L = 22\mu F, V_{ENIF} = GND, T_A = 25^{\circ}C$                                      |      | 0.6  |      | ms    |
| toff_res1                            | Load Switch turn-off response time              | $R_L$ =100 $\Omega$ , No $C_L$ , $V_{IF} > V_{OVLO2}$ to VBAT stop rising                                                    |      |      | 150  | ns    |

Specifications are subject to change without notice

- 1. This parameter is guaranteed by design and characterization.
- 2.  $t_{DON}$  and  $t_R$  are defined in Figure 4.
- 3.  $t_{CHECK}$  are defined in figure 5.



4.ENIF is high, the VIF power on, normally open switch;

5.ENIF if low and VBAT<1V, the VIF power on, open switch automatically;

6.ENIF if low and VBAT>2.5V, the VIF power on ,the switch remains off.

## **Functional Description**

The WP3899 integrated two switches.

The OVP switch1 with overvoltage protection include a low  $30m\Omega(typ.)$  on-resistance( $R_{ON}$ ) internal FET and protect low-voltage systems against voltage faults up to 28V DC. When the input voltage(VBUS) exceeds 10.0V, the internal FET is quickly turned off to prevent damage to the protected downstream components. The active low pin ONB can turn off switch

Specifications are subject to change without notice

when add a voltage exceeds 1.5V on this pin.

The load switch2 is a  $10m\Omega$  P-channel load switch with TRCB (True Reverse Current Blocking) between VIF and BAT.

When ENIF is low, VIF power on, the circuit will check the voltage of the BAT pin with a 300ohm pull down resistor after

3ms. If BAT is lower than 1.0V, the switch2 will turn on, and if BAT is higher than 2.5V, the switch2 will keep off.

When ENIF is high, the switch2 will turn on.

This switch is quickly turned off when the voltage of VIF exceeds 5.25V(typ.) or VIF lower than 2.2V.

### **Input Capacitor**

To limit the voltage drop on the input supply caused by transient inrush current when the switch turns on into a discharged load capacitor or short-circuit, a capacitor  $1.0\mu$ F or lager must be placed between the VBUS and GND pins. Another capacitor  $1.0\mu$ F or lager must be placed between the VIF and GND pins.

#### **Output Capacitor**

A  $1.0\mu$ F or lager capacitor should be placed between the Vo and GND pins, anther  $1.0\mu$ F or lager capacitor should be placed between the BAT and GND pins. C<sub>OUT</sub> greater than C<sub>IN</sub> is highly recommend.

## **Application Circuit**

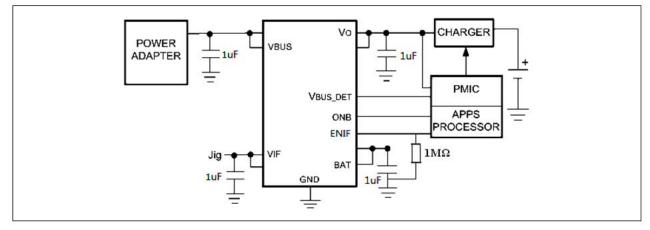
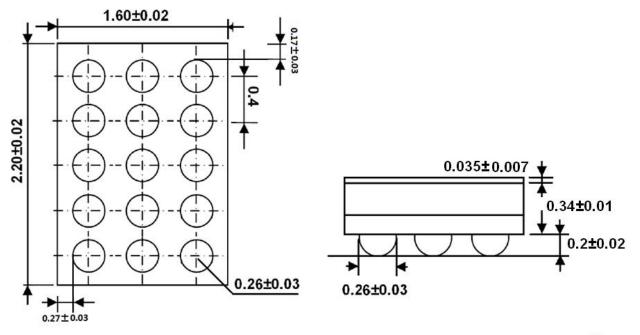




Figure 6 Typical Application

\*: This electric circuit only supplies for reference

# Package





Side View

Unit:mm