

WP3891

Description

The WP3891 is OVP switch can disconnect the systems from its output pin in case wrong input operating conditions are detected. The system is positive overvoltage protected up to 28V.

When input (OVLO) is set lower than 0.2V. The overvoltage protection threshold is 5.9V. The overvoltage protection threshold can also be adjusted by external resistors when input (OVLO) is set higher than 0.3V.

The WP3891 provide Over Temperature Protection and also provide Reverse Current Blocking when the WP3891's switch is disabled.

The WP3891 provide OTG function allows OUT voltage to supply IN.

The device is packaged in advanced Full-Green compliant 2.1mmx1.6mm Wafer Level Chip Scale Packaging (WLCSP).


Features

- □ operating Range: 3V to 28V
- □ Absolute maximum voltage of VIN: 29V
- Low RDS(on): 60mΩ TYP at Vin=5V/0.3A
- □ 4.5A Maximum Continuous Current Capability
- □ Overvoltage Lockout :OVLO=5.9V (TYP)
- □ Debounce Time :20ms
- □ OTG Enable function
- \Box Surge immunity to $\pm 100V$
- □ CSP15 Package (1.6mm*2.1mm, ball pitch=0.4mm)
- □ Compliance to IEC61000-4-2 (Level 4): bypassed with a 1.0µF or larger capacitor 15kV(Air) 8kV (Contact); ESD Ratings: HBM >2kV

Applications

- □ Smartphones, Tablet PC
- □ HDD, Storage and Solid State Memory Devices
- D Portable Media Devices, Laptop & MID
- □ SLR Digital Cameras
- □ GPS and Navigation Equipment
- □ Industrial Handheld and Enterprise Equipment

Pin Configuration

Figure1:pin map

Pin Function

PIN	NAME	DESCRIPTION
A1,A2,A3,A4,B1	OUT	Overvoltage Protection Output when OTG_EN=low and OTG output when OTG_EN=high. Bypass OUT with a 1µF ceramic capacitor.
A5	OTG_EN	Enable Input for OTG Supply Operation or Overvoltage Protection
B2,C1,C2,C3,C4	IN	Overvoltage Protection Input when OTG_EN=low and OTG output when OTG_EN=high. If desired, bypass IN with a 0.1µF ceramic capacitor as close to the device as possible.
В3	ACOK	1.8V Logic Output. It is driven high after input voltage is stable between minimum VIN and VOVLO when OTG_EN = 0. Connect a pulldown resistor from ACOK to ground.
B4	OVLO	Overvoltage Lockout Input. Connect OVLO to GND to use internal OVLO threshold. Connect OVLO to a resistor-divider for a different voltage threshold.
В5	ACOK	Open-Drain Flag Output. It is driven low after input voltage is stable Between minimum VIN and VOVLO when OTG_EN = 0. Connect a pullup resistor from it to the logic I/O voltage of the host system.
C5	GND	Ground.

Absolute Maximum Ratings

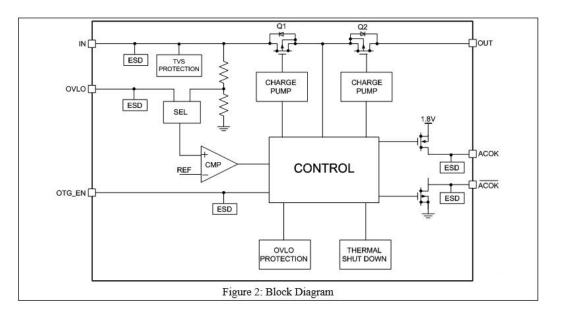
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Pa	rameters	Min.	Max.	Unit
V _{IN}	IN to GND		-0.3	29	V

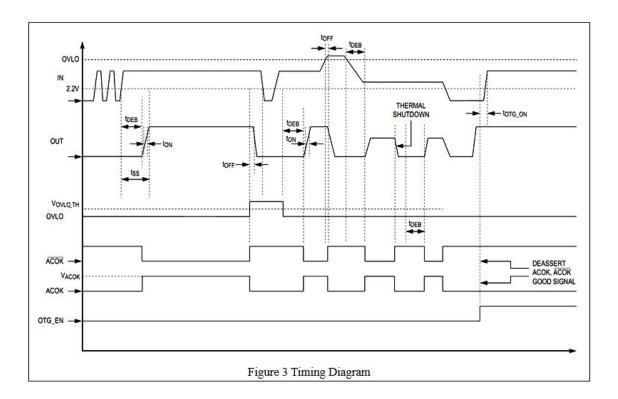
ifications are subject to change without notice

V _{OUT}	OUT to GND		-0.3	26	V
V _{IN-OUT}	IN-OUT	IN-OUT		29	v
Votg_en	OTG_EN to GND		-0.3	6.0	v
Vacok	ACOK to GND		-0.3	6.0	v
V ACOK	ACOK to GND		-0.3	6.0	v
V _{OVLO}	OVLO to GND		-0.3	26	v
Isw1	Maximum Continuous Current of switch			4.5	A
PD	Power Dissipation at T _A =25°C			1.4	w
T _{STG}	Storage Junction Temperature		-65	+150	°C
T _A	Operating Temperature Range		-40	+85	°C
θ _{JA}	Thermal Resistance, Junction-to-Ambient			52	°⊂ /w
ESD	Electrostatic Discharge	Human Body Model, JESD22-A114	2.0		
	Capability	Charged Device Model, JESD22-C101	1.5		kV
Surge	IN to GND	IEC 61000-4-5, Surge Protection	-100	100	v

Electrical Characteristics


Unless otherwise noted, Typical values are at V_IN=5V and T_A=25 $^\circ\text{C}.$

SYMBOL	PARAMETERS	CONDITIONS	MIN.	TYP.	MAX.	UNITS
lα	IN Quiescent Current	V _{OVLO} = 0V, V _{IN} = 5V, ACOK is unconnected, I _{OUT} = 0mA		95	190	μΑ
Іоит	OUT Quiescent Current	$V_{OVLO} = 0V, V_{OUT} = 5V, I_{IN} = 0mA,$ $V_{OTG_EN} = 1.8V$		80	170	μA
lout_s	OUT Shutdown Current	$V_{OVLO} = 3V, V_{OUT} = 5V, V_{IN} = 0V,$ $V_{OTG_{EN}} = 0V$		5	12	μA
		V _{IN} =5.0V, I _{OUT} =0.1A		60	70	
R _{ON}	IN to OUT On-Resistance	V _{IN} =5.0V, I _{OUT} =2.0A		62	72	mΩ
VINBT	Input Startup Voltage			1.8	3	V
V _{INBU}	Input Sustaining Voltage	I _{OUT} = 0A		1.5	2.3	v
Voutbt	Output Startup Voltage			1.8	3	V
VOUTBU	Output Sustaining Voltage	I _{IN} = 0A		1.5	2.3	v
	IN Leakage Voltage	V _{OUT} =21V, IN unconnected,			0.1	V


Specifications are subject to change without notice

		V _{OTG_EN} = 0V				
	Internal Overvoltage Trip	V _{IN} rising	5.81	5.90	6.0	
V _{IN_OVLO}	Level	V _{IN} falling	0.01	5.80	0.0	V
Vovlo_th	OVLO Set Threshold		1.18	1.22	1.26	V
<u></u>	Adjustable OVLO					-
Vovlo_ext	Threshold Range		5		22	V
	External OVLO Select					
Vovlo_sel	Threshold		0.20	0.25	0.30	V
Vасок	ACOK Output High Voltage	I _{SOURCE} ≤100µA, V _{IN} > 3V	1.6	1.8	2.0	v
	9	Pull down to ground, Vout = 5V,				
	ACOK Leakage Current	OTG_EN=high, ACOK deasserted			1	μA
Vol	ACOK Suput Low Voltage	V _{IO} = 3.3V, I _{SINK} = 1mA			0.4	V
VIH	OTG_EN Input Logic High		1.6			V
VIL	OTG_EN Input Logic Low				0.4	V
Iotg_en	OTG_EN Input Leakage Current	$\label{eq:Votg_en} \begin{split} 0V \leq V_{\text{OTG}_{\text{EN}}} \leq V_{\text{IL}} \mbox{ and } V_{\text{IH}} \leq V_{\text{OTG}_{\text{EN}}} \\ \leq V_{\text{IN}}, \\ V_{\text{IN}} = 5.5V \end{split}$	-1		1	μA
	Thermal Shutdown			150		°C
	Thermal-shutdown					
	Hysteresis			20		°C
	Dy	namic Characteristics: see figure 3		1		
		V_{IN} = 5V to charge pump on (V _{OUT} =				
t _{DEB}	Debounce Time	10% of V _{IN}), R _{LOAD} = 100 Ω , C _{LOAD} =		20		ms
		10µF				
tss	Soft-start time	V_{IN} = 5V to V_{OUT} = 90% of $V_{\text{IN}},$		25		ms
100		R_{LOAD} = 100 Ω , C_{LOAD} = 10 μ F				113
	IN OVP Turn-On Time	V_{IN} = 5V, R_{LOAD} = 100 Ω , C_{LOAD} =				
t _{ON}	During Soft-Start	10µF, V_{OUT} = 20% of V_{IN} to 80% of		1.5		ms
		V _{IN}				
t _{OFF}	IN OVP Turn-Off Response	From $V_{IN} > V_{OVLO}$ to V_{OUT} = 80% of		1		μs
	Time	V _{IN} , R _{LOAD} = 100Ω				
totg_on	OTG Turn-On Time	Time from OTG_EN high to V_{IN} = 80% of V_{OUT} , V_{OUT} = 5V, C_{IN} = 10µF		1.4		ms
	In Discharge Duise	$V_{IN} = V_{OUT} = 5V$, current pulse				
	In-Discharge Pulse	duration after an OTG_EN transition		1.1		ms
	Duration	from high to low				

Block Diagram

Timing Diagram

Functional Description

The OVP switch with overvoltage protection include a low $60m\Omega(TYP)$ on-resistance(R_{ON}) internal FET and protect low-voltage systems against voltage faults up to 28V DC. When the input voltage(VIN) exceeds the overvoltage protection threshold, the internal FET is quickly turned off to prevent damage to the protected downstream components, the pin ACOK/ \overline{ACOK} is deasserted. When IN drops below V_{IN_OVLO} OUT follows IN again and ACOK / \overline{ACOK} is asserted. When OTG_EN is high, ACOK and \overline{ACOK} is also deasserted.

When input (OVLO) is set lower than 0.2V. The overvoltage protection threshold is 5.9V.

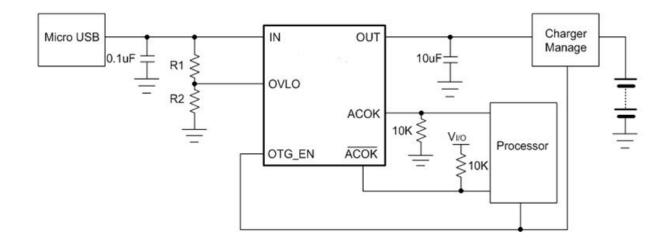
The overvoltage protection threshold can also be adjusted by external resistors when input (OVLO) is set higher than 0.3V.

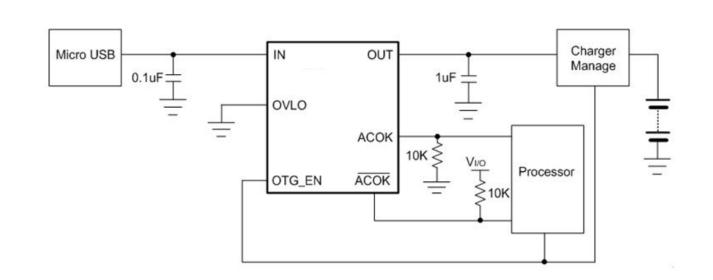
VIN_OVLO = VOVLO_TH * (1+R1/R2)* VOVLO_TH = 1.22 V(TYP)

If OTG_EN is high and OUT voltage is high than the V_{OUTBT} (Output Startup Voltage), The WP3891 allows OUT voltage to supply IN. When the input voltage (VIN) exceeds the overvoltage protection threshold, the switch will be closed.

The WP3891 also provide Reverse Current Blocking when the switch is disabled.

When the junction temperature exceeds $150 \,^{\circ}$ C, the internal thermal sense circuit turns off the FET and allows the device to cool down. When the device's junction temperature cools by $20\,^{\circ}$ C, the internal thermal sense circuit will enable the device, resulting in a pulsed output during continuous thermal protection. Thermal protection is designed to protect the IC in the event of over temperature conditions.

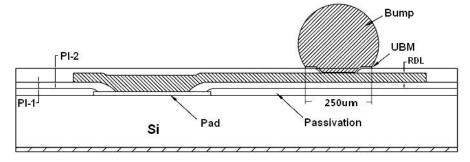

Input Capacitor


To limit the voltage drop on the input supply caused by transient inrush current when the switch turns on into a discharged load capacitor or short-circuit, a capacitor 1µF must be placed between the IN and GND pins.

Output Capacitor

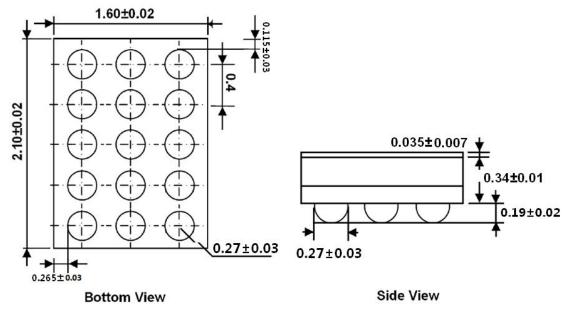
A 1.0µF or lager capacitor should be placed between the OUT and GND pins

Application Circuits



Note1: R1 and R2 are only required for adjustable OVLO; otherwise connect OVLO to GND.

Note2: Recommend 30K≤R2≤51K


*: This circuit only supplies for reference.

UBM Structure

Package

WCSP15(Unit :mm)

