

WPMD2008

Dual P-Channel, -20 V, -4.1A, Power MOSFET

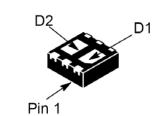
Description

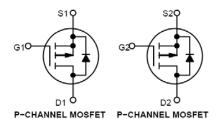
The WPMD2008 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. This device is suitable for use in DC-DC conversion applications. Standard Product WPMD2008 is Pb-free.

Features

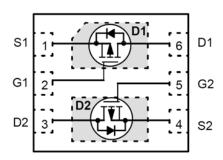
V _{(BR)DSS}	R _{DS(on)} MAX
	110m Ω @ -4.5V
−20 V	138m Ω @ -2.5V

- Lowest RDS(on) Solution in 2x2 mm Package
- 1.8 V RDS(on) Rating for Operation at Low Voltage Gate Drive Logic Level
- Low Profile (< 0.8 mm) for Easy Fit in Thin Environments
- Bidirectional Current Flow with Common Source Configuration
- DFN6 Package Provides Exposed Drain Pad for Excellent Thermal Conduction


Application


- Optimized for Battery and Load Management Applications in Portable Equipment
- Li-Ion Battery Charging and Protection Circuits
- High Power Management in Portable, Battery Powered Products
- High Side Load Switch

Order information


Part NumberPart NumberShippingWPMD2008-6/TRDFN 63000Tape&Reel

Http://www.willsemi.com

PIN CONNECTIONS

MARKING DIAGRAM

Absolute Maximum Ratings (T_A=25°C unless otherwise specified)

Parameter	Symbol			Value	Units
V_{DS}	Drain-Source	Drain-Source voltage			V
V_{GS}	Gate-Source	Gate-Source Voltage			V
I_{D}	Continuous	Steady-State	$T_A=25^{\circ}C$	-3	A
	Drain	Steady-State	$T_A=85^{\circ}C$	-2.3	
	Current ^A	t ≤ 5s	$T_A=25^{\circ}C$	-4.1	
$P_{\rm D}$	Steady-State		$T_A=25^{\circ}C$	1.45	W
	t ≤ 5 s			2.3	
I_D	Continuous	Steady-State	$T_A=25^{\circ}C$	-2.0	A
	Drain		T _A =85°C	-1.5	
	Current ^B				
P_{D}	Power Dissipation B		$T_A=25^{\circ}C$	0.7	W
I_{DM}	Pulse Drain Current B		tp=10us	-20	A
T_{J}	Operating Junction Temperature Range			55 150	°C
Tstg	Storage Temperature Range			-55~150	

A: Surface Mounted on FR4 Board using 1 in sq pad size, 2 oz Cu.

 $B\mbox{:}\ \mbox{Surface}$ Mounted on FR4 Board using the minimum pad size, 2oz Cu.

Thermal Resistance Ratings

Parameter	Symbol	Max	Unit
Junction to Ambient-Steady State ^C	$ m R_{ heta JA}$	86	°C/W
Junction to Ambient - t≤5 ^C	$ m R_{ heta JA}$	54	°C/W
Junction to Ambient-Steady State Min Pad ^D	$R_{ heta JA}$	175	°C/W

 $C \mbox{:}\ \mbox{Surface Mounted on FR4 Board using 1 in sq pad size, 2 oz Cu.}$

D: Surface Mounted on FR4 Board using the minimum pad size, 2oz Cu.

Electrical Characteristics

MOSFET ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	$\mathrm{BV}_{\mathrm{DSS}}$	$V_{GS} = 0 \text{ V}, I_D = -23$	50 uA	-20			V
Zana Cata Valta a Busin Communt	T	$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$	$T_J = 25$ °C			-1	uA
Zero Gate Voltage Drain Current	I_{DSS}	$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$	$T_J = 85^{\circ}C$			-10	
Gate-to-source Leakage Current	I_{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8.0 \text{ V}$				±100	nA
ON CHARACTERISTICS							•
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{GS} = V_{DS}, I_D = -2$	50 uA	-0.4	-0.6	-1	V
	_	$V_{GS} = -4.5V, I_D = -2.0A$ $V_{GS} = -2.5, I_D = -2.0A$			90	110	mΩ
Drain-to-source On-resistance	$R_{DS(on)}$				115	138	
Forward Transconductance	g_{FS}	$V_{DS} = -10 \text{ V}, I_{D} = -10 \text{ V}$	-2.7A		7.0		S
CHARGES, CAPACITANCES A	ND GATE RES	ISTANCE					•
Input Capacitance	C_{ISS}	$V_{GS} = 0 \text{ V, } f = 1.0 \text{ MHz, } V_{DS} = -15 \text{ V}$			480		pF
Output Capacitance	C _{oss}				46		
Reverse Transfer Capacitance	C_{RSS}				10		
Total Gate Charge	$Q_{G(TOT)}$	$VG_S = -4.5 \text{ V}, V_{DS} = -6 \text{ V}, I_D = -2.8 \text{ A}$			7.2		nC
Threshold Gate Charge	$Q_{G(TH)}$				2.2		1
Gate-to-Source Charge	Q_{GS}				2.2		1
Gate-to-Drain Charge	Q_{GD}				1.2		1
Gate Resistance	R_G				8.8		Ω
SWITCHING CHARACTERIST	SWITCHING CHARACTERISTICS						
Turn-On Delay Time	td(ON)	$V_{GS} = -4.5 \text{ V}, V_{Ds} = -6.0 \text{ V}, I_D = -2.8 \text{A},$ $R_G = 6 \Omega$			38		ns
Rise Time	tr				25		1
Turn-Off Delay Time	td(OFF)				43		1
Fall Time	tf				5		1
DRAIN-SOURCE DIODE CHARACTERISTICS							
Forward Recovery Voltage	V_{SD}	$V_{GS} = 0 \text{ V}, I_S = -1.0 \text{ A}$	$T_J = 25$ °C		-0.7		V

<u>http://www.willsemi.com</u> Page 3 Dec,2011Ver1.2

Typical Performance Characteristics

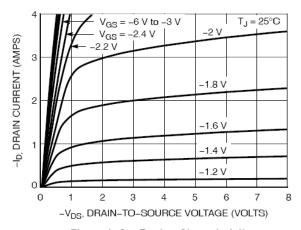


Figure 1. On-Region Characteristics

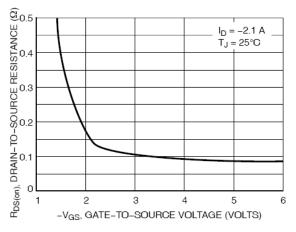
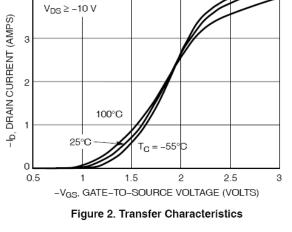



Figure 3. On-Resistance vs. Gate-to-Source Voltage

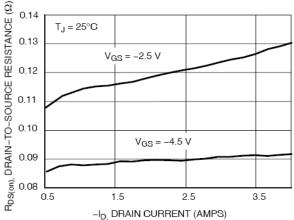


Figure 4. On–Resistance vs. Drain Current and Gate Voltage

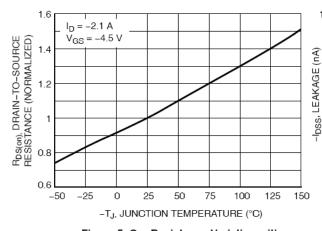


Figure 5. On–Resistance Variation with Temperature

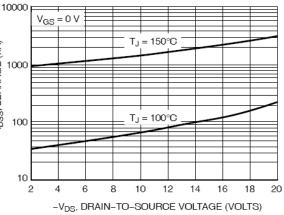


Figure 6. Drain-to-Source Leakage Current vs. Voltage

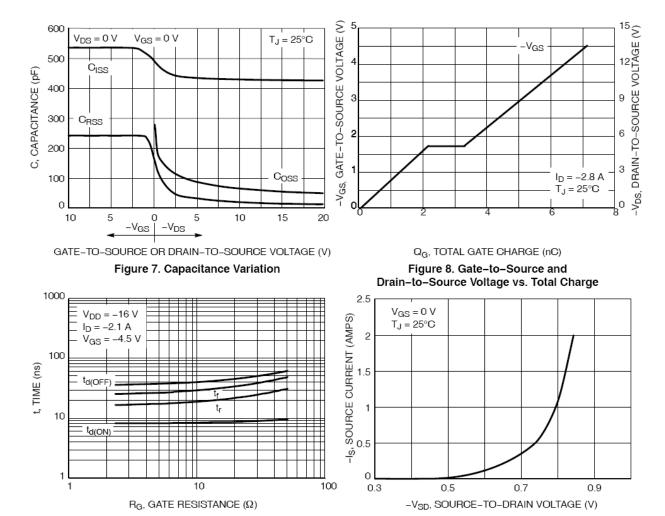
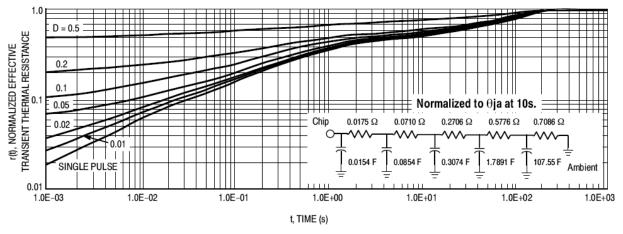
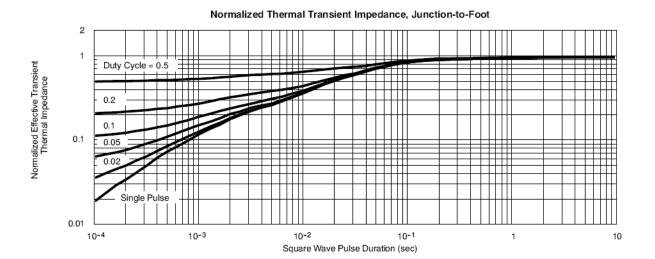
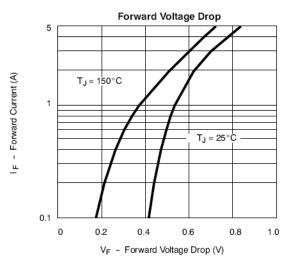
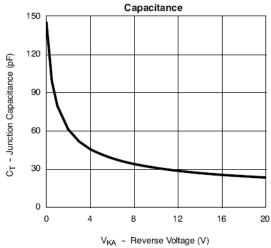


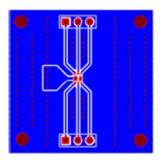
Figure 9. Resistive Switching Time Variation vs. Gate Resistance

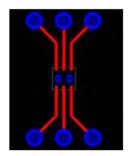
Figure 10. Diode Forward Voltage vs. Current



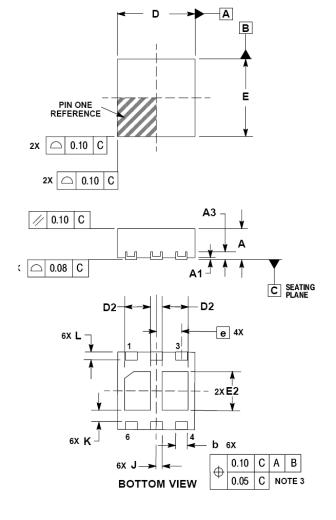

Figure 11. Thermal Response





Power Dissipation Characteristics

- 1. The package of WPMD2008 is DFN2x2-6L, surface mounted on FR4 Board using 1 in sq pad size, 2 oz Cu, R θ JA is 84 $^{\circ}$ C/W, surface mounted on FR4 Board using minimum pad size, 2 oz Cu, R θ JA is 175 $^{\circ}$ C /W.
- 2. The power dissipation PD is based on TJ(MAX)=150°C, and the relation between TJ $\,$ and Pd is TJ = Ta + R 0JA* PD , the maximum power dissipation is determined by R 0JA .
- 3. The R θJA is the thermal impedance from junction to ambient, using larger PCB pad size can get smaller R θJA and result in larger maximum power dissipation.


84 °C/W when mounted on a 1 in² pad of 2 oz copper

175 ℃/W when mounted on a minimum pad of 2 oz copper

Packaging Information

DFN 6 Package Outline Dimension

NOTES:

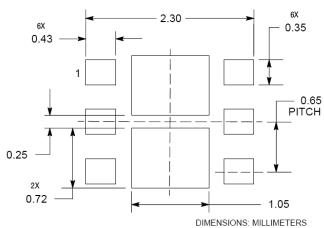
- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. DIMENSION 5 APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20mm FROM TERMINAL.

 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.


	MILLIMETERS		
DIM	MIN	MAX	
Α	0.70	0.80	
A1	0.00	0.05	
A3	0.20 REF		
b	0.25	0.35	
D	2.00 BSC		
D2	0.57	0.77	
Е	2.00 BSC		
E2	0.90	1.10	
е	0.65 BSC		
K	0.25 REF		
L	0.20	0.30	
J	0.15 REF		

STYLE 1: PIN 1. SOURCE1 GATE1

DRAIN2 SOURCE2

DRAIN1

SOLDERMASK DEFINED MOUNTING FOOTPRINT*

