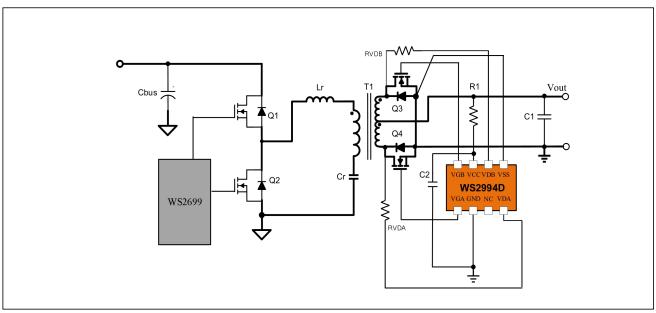


Description

WS2994D is a high performance dual channel synchronous rectifier controller, which is applied to the output side rectifier of half bridge LLC resonant converter, and can realize the optimal control of MOSFET. By detecting the Vds voltage of the rectified MOSFET, the MOSFET can be reliably switched on and off, thereby replacing Schottky diodes and improving the efficiency of the half-bridge LLC converter.

WS2994D Gate voltage can be regulated according to output load with different turn-on delay time, avoiding false turn-on because of capacitive current during light load.

The WS2994D is Green, when the load current reduce to a certain level, the gate drive is turned off, thus limiting the IC current to less than 140uA. The fast shutdown capability of the WS2994D supports continuous conduction mode (CCM) and discontinuous conduction mode (DCM) operation. It is highly-integrated with SOP8 package.

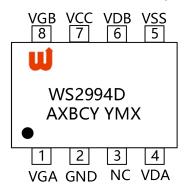

Features

- VDA, VDB can withstand 120V
- Wide VCC Operation Range, Support 4.83V ~ 35V
- 140uA Low Quiescent Current in Light Load
 Mode
- Fast Turn-Off ,Support CCM/CrCM/DCM
- High level up to 11.5V for Driver
- Interlock function for Channel A&B
- SOP8 Package

Typical Application

- AC/DC Adapters
- PC Power Supply
- LCD TV Power Supply
- Industry and Medical Power Supply

Typical Application Circuit



Note: VDA\VDB must be connected with resistance, recommended value: $200\Omega - 3.0k\Omega$, two resistance values can be different.

Pin Configuration and Marking Information

WS2994D is available in SOP8 package. The top marking is shown as below:

WS2994D: Product Code

A: Product CodeX: Internal Code

BCY: Internal QC Code

YMX: D/C

Ordering Information

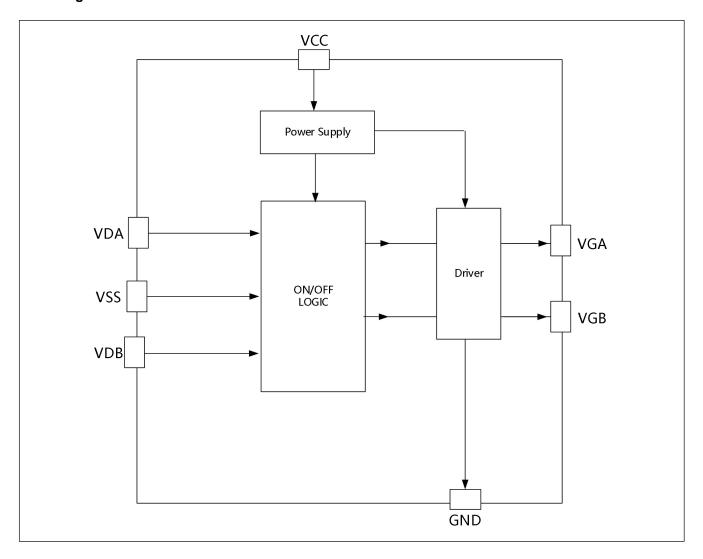
Package	Marking	Part Number	
8-Pin SOP8,Pb-free	WS2994D	WS2994D	

Absolute Maximum Ratings⁽¹⁾

Parameter	Limit	Unit
VCC to VSS	-0.3~38	V
GND to VSS	-0.3~0.3	V
VGA,VGB to GND	-0.3~20	V
VDA,VDB to to VSS	-0.8~120	V
Power Dissipation ⁽²⁾ (Ta=25 [°] C)	1.4	W
Operation Junction Temperature	150	$^{\circ}$
Lead Temperature (10s)	260	$^{\circ}$
Storage Temperature	-55~150	$^{\circ}$
θ_{JA}	90	°C/W
θ _{JC}	45	°C/W

Note 1: Stresses above those listed Absolute Maximum Ratings may cause permanent damage to the device.

Note 2: The maximum allowable power dissipation is a function of the maximum junction temperature $T_{J(MAX)}$, the junction to ambient thermal resistance θ_{JA} , and the ambient temperature T_A . The maximum allowable continuous power dissipation at any ambient temperature is calculated by $P_{D(MAX)}=(T_{J(MAX)}-T_A)/\theta_{JA}$. Exceeding the maximum allowable power dissipation produces an excessive die temperature, causing the regulator to go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.


Recommended Operation Conditions⁽³⁾

Symbol	Value	Unit	
VCC to VSS	5~35	V	
Tj	-40~125	$^{\circ}$ C	

Note 3: The device is not guaranteed to function outside of its operating conditions.

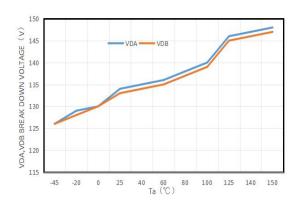
Block Diagram

Pin Definition

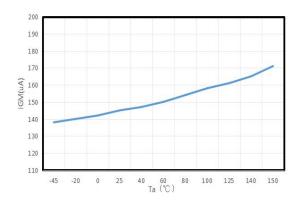
Pin No.	Pin Name	Function Description	
1	VGA	Gate Driver Output for Channel A.	
2	GND	IC Power Ground.	
3	NC	Not connected.	
4	VDA	Drain Sense Input for Channel A.	
5	VSS	Used as reference for VDA and VDB voltage sampling	
6	VDB	Drain Sense Input for Channel B.	
7	VCC	IC Power Supply, VCC up to 35V.	
8	VGB	Gate Driver Output for Channel B.	

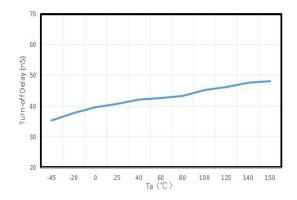
WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS 3/9 www.winsemi.com Tel: 0755-82506288 Fax: 0755-82506299 A1/14

Electrical Characteristics

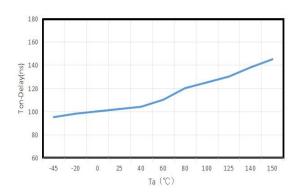

Condition: VCC=12V, T₁=25°C. (unless otherwise noted)

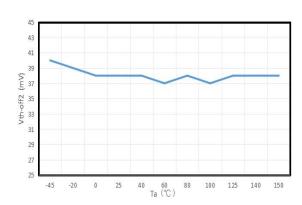
Parameter	Symbol	Test Conditions	Min	Тур.	Max	Unit
Supply Voltage(VCC)						
VCC voltage range	V _{CC-Range}		4.83		35	V
UVLO(OFF)	V _{CC-on}		4.37	4.6	4.83	V
UVLO Hysteresis	V _{CC-hys}		0.31	0.35	0.39	V
VCC Operating current	Icc	CLOAD = 4.7nF, FSW = 100kHz	12	15.5	19	mA
VCC Quiescent operation current	IQ	IC Enable without Gate Driver	1.8	2.3	2.8	mA
Light Load Mode Current	I _{GM}	Under Light Load Mode	110	150	190	uA
Control Circuitry(VDA,VDB, VSS))					
Turn on threshold	V _{th_on}	V _{CC} =12V	-320	-260	-200	mV
Vds Regulation threshold	V _{th-off2}		-44	-37	-29	mV
Turn off threshold	$V_{\text{th-off}}$		30	38	45	mV
Turn-on Delay@Heavy Load	T _{don}	T _{GM} <t<sub>GM_EXIT</t<sub>	72	100	130	ns
Turn-on blanking time	T _{bon}	C _{LOAD} =4.7nF	0.4	0.8	1.2	us
Turn-off blanking time	T_{boff}	C _{LOAD} =4.7nF	1.2	1.6	2	us
Inter lock time	T _{interlock}	Guaranteed by design		200		nS
Light Load Control						
Turn off threshold	$V_{\text{th-b}}$	Enable after T _{bon}	1.6	2	2.4	V
Entry Time for Light-Load	T _{GM-ENT}		34.5	45	56.5	us
Exit Time for Light-Load	T _{GM-EXIT}			1		Cycle
Gate Driver(GATE)						
Vg (high)		Vcc=12V~35V	10	11.5	13	V
V _G (low)		VG sink 100mA	0.035	0.06	0.085	V
Maximum source current	I _{SOURCE}	Guaranteed by design		200		mA
Pull-down impedance	I _{Sink}	VG sink 100mA	0.35	0.6	0.85	Ω
Turn-off total delay	T _D -Gateoff	V_{DA} = V_{SA} , C_{LOAD} =1nF, R_{GATE} =0 Ω , V_{GS} =2 V	20	30	40	
		V_{DA} =VSA, C_{LOAD} =4.7nF, R_{GATE} =0 Ω , V_{GS} =2V	30	45	60	ns
In-Chip OTP						
OTP Enter	T _{OTP}	Guaranteed by design	145	160	175	°C
OTP Exit	T _{OTP-hys}	Guaranteed by design	10	20	30	°C


WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS 4/9 www.winsemi.com Tel: 0755-82506288 Fax: 0755-82506299 A1/14


Typical Performance Characteristics VDA,VDB Breakdown Voltage vs. Temperature

Light Load Mode Current vs. Temperature (VCC=24V)


Turn-Off Delay vs. Temperature(CLOAD = 4.7nF)


VCC UVLO(OFF) vs. Temperature

Turn-On Delay vs. Temperature(CLOAD = 1nF)

Vds Regulation threshold (VSS - VD) vs. Temperature

www.winsemi.com Tel: 0755-82506288 Fax: 0755-82506299 A1/14 5/9

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS

Function Description

The WS2994D is a dual-channel controller for rectifier on the output side of the half-bridge LLC resonant converter, which supports CCM, CrCM and DCM and automatically realizes optimal control. The WS2994D has simple periphery and reliable protection. The following chapters introduce its various functional modules in detail.

Start-Up and Under-Voltage Lockout (UVLO)

The WS2994D VCC withstand up to 35V.When VCC voltage is under UVLO threshold,WS2994D enter in sleep mode and keep the VGA&VGB low. When VCC rises above UVLO threshold, IC starts operating.

First on-cycle blanking

After the IC is enabled, or when exiting the energy saving mode, in order to prevent the SR from being turned on during the body diode on and prevent the pass-through phenomenon caused by MOSFET, the IC will shield the first on-tube cycle, and the next on-off cycle will begin to enter the normal MOSFET on-off control.

MOSFET ON/OFF control

Vds drops blew V_{th_on} when current pass through parasitic body diode of MOSFET, IC will output driver signal after T_{don} delay, which is shown in Figure 1. When the MOSSFET is turned on, the Tbon will be maintained for a period of time, called the turn on shielding time (about 0.9us), to prevent false shutdown caused by ringing.

When the MOSFET Is turned on, the voltage Vds at both ends of the MOSFET follows the secondary current Is. As the current flowing through the switch decreases, when the Vds forward voltage drop exceeds $V_{th_off2}(\text{-}37\text{mV})$, a larger internal pull-down current source takes effect, and the driving voltage decreases with a larger slope. As the Vds forward

voltage drop continues to rise to the shutdown threshold V_{th_off} , the internal pull-down takes effect and the Gate drive voltage is pulled to 0V after a very short shutdown delay. During the Tbon time, the value of V_{th_off} will be adjusted to +90mV to ensure that the Gate driver can still be turned off during the Tbon time to ensure safety in some extreme cases.

In CCM mode, this feature keeps the gate voltage at a very low level when the SR MOSFET is turned off, increasing the turn-off speed.

When the Gate of driver is turned Off, the blanking time starting to be counted, the gate driver remains off for the Tboff time.

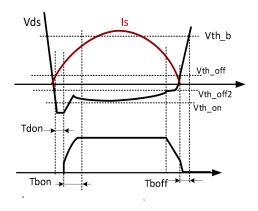


Figure 1 ON/OFF control logic

Burst-mode control

In order to avoid the pre-LLC system being in Burst-mode, which would cause the secondary synchronous rectifier controller to turn on incorrectly, the WS2994D has a patented control circuit built in. When WS2994D detects that the system enters Burst-mode, it will increase the drive delay and decrease the drive current. In addition to the two mechanisms mentioned above, WS2994D also adds that the system does not send driver signals in the first cycle after exiting from burst-mode, and outputs driver signals in the next cycle.

Channel Interlock

The WS2994D incorporates an interlock function. The interlock function avoids the turn on of both gate driver outputs at the same time.

winsemi microelectronics winsemi microelectronics winsemi microelectronics winsemi microelectronics winsemi microelectronics www.winsemi.com Tel: 0755-82506288 Fax: 0755-82506299 A1/14 6/9

After turn-off of one gate driver output, the IC waits typically 200 ns (T_{interlock}) before turning on the other gate driver output.

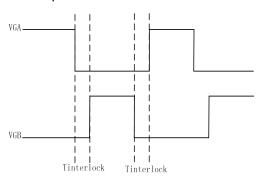
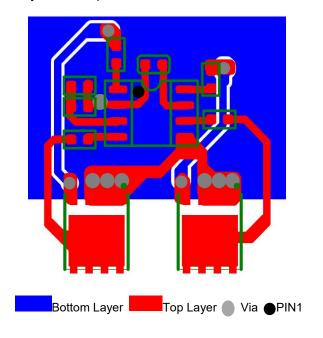


Figure 2 Interlock function

Thermal Shutdown

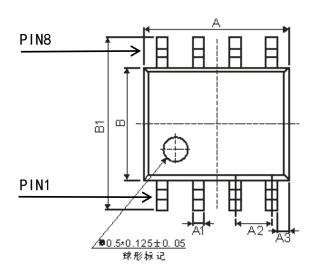
When the junction temperature of the IC is higher than the over-temperature protection threshold, the driver will be shutdown and enters in OTP mode. And IC will exit OTP mode when the junction temperature decrease 20 degree .

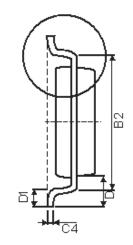

PCB Layout Guidelines:

1, VDA and VDB respectively form two detection loops with

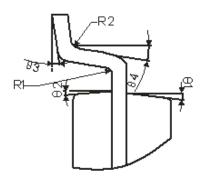
VSS,VDA/VSS, VDB/VSS as close as possible to each MOSFET (drain/source), the loop is as small as possible; The two detection loops are separated as far as possible and drawn as two independent small loops.

- 2. Place a decoupling capacitor no smaller than $1\mu F$ from VDD to PGND close to the IC for adequate filtering.
- 3, It is highly recommended to place the driver's sensing loop trace away from the power loop trace. The sensing loop trace and power loop trace can be placed on different layers to keep them separate from each other.Do not place the driver IC inside the power loop; this may affect MOSFET voltage sensing.
- 4. The VSS pin must be connected to the SR MOSFET source pin as much as possible. It minimizes errors caused by voltage difference on PCB tracks because of parasitic inductance in combination with large dI/dt values.

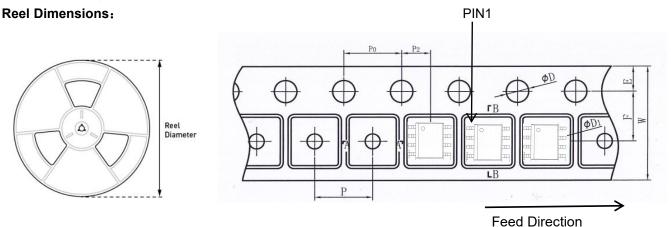

Layout Example:



winsemi microelectronics winsemi microelectron



SOP8 Package Dimension


	Winsemi					
Cumbal	Dimensions in Millimeters		Dimensions in Inches			
Symbol	Min	Max	Min	Max		
Α	4.70	5.10	0.185	0.201		
В	3.70	4.10	0.146	0.161		
С	1.30	1.50	0.051	0.059		
A1	0.35	0.48	0.014	0.019		
A2	1.27TYP		0.05TYP			
А3	0.345TYP		0.01	0.014TYP		
B1	5.80 6.20		0.228	0.244		
B2	5	5.00TYP		0.197TYP		
C1	0.55	0.70	0.022	0.028		
C2	0.55	0.70	0.022	0.028		
C3	0.05	0.225	0.002	0.009		
C4	0.203TYP		0.008TYP			
D	1.05TYP		0.041TYP			
D1	0.40	0.80	0.016	0.031		

8/9 www.winsemi.com A1/14 Tel: 0755-82506288 Fax: 0755-82506299

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS

Shipping Packing Information:

Reel Diameter	Carrier Tape Width	Carrier Tape Pitch
13in	12±0.1mm	8±0.1mm

Packing quantity specification

Part Number	Package Description	Quantity/Reel	Reel/Box	Box/Carton	Quantity/Carton
WS2994D	SOP-8	4000	2	5	40000

NOTES:

- 1. Please recognize the company's trademark when purchasing, and contact the company headquarters if you have any questions.
- 2. Please do not exceed the absolute maximum rating of the device during circuit design, otherwise it will affect the reliability of the whole machine.
- 3. This manual is subject to version change without further notice.

CONTACT:

Winsemi Microelectronics Co.,Ltd.

ADD:Room 3101-3102, 31F, Building 8A, Shenzhen International Innovation Valley, Nanshan District, Shenzhen, CN.

PostCode:518000

Tel:86-0755-82506288 WebSite:www.winsemi.com

winsemi microelectronics winsemi microelectron