
www.DataSheet4U.com

www.DataSheet4U.com

www.DataSheetwww.DataSheetwww.DataSheetwww.DataSheet4U4U4U4U.com.com.com.com

XAPP512 (v1.0) April 4, 2005 www.xilinx.com 1

© 2005 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc.
All other trademarks are the property of their respective owners.

Summary This application note provides a functional description of Verilog source code for a keypad
scanner. The code is used to target the lowest density, 32-macrocell CoolRunnerTM-II
XC2C32A CPLD device in a CP56 package (6 mm x 6 mm). The keypad accommodated in this
design has 8 rows and 8 columns. The design can easily be scaled to target keypads with more
or less rows/columns. For instance, a keypad with 7 rows and 7 columns would allow the
design to fit in the smallest QFG32 package (5 mm x 5 mm). To obtain the Verilog source code
described in this document, see “Verilog Code,” page 4, for instructions.

Introduction As handheld devices such as cell phones pack more and more features into them, they require
more effective ways of entering data. Most cell phones, for example, use the standard DTMF
style keypad and a multi-tap process to enter alphanumeric data; however, for larger amounts
of data multi-tapping becomes cumbersome. More and more high-end phones are therefore
employing QWERTY keypads that make entering data easier and quicker.

Going from a DTMF to a QWERTY keypad requires more I/O. For instance, a DTMF keypad
might have 4 rows and 3 columns, where a QWERTY keypad might have 8 rows and 8
columns. This can vary depending on the requirements.

Typically, a processor (or ASIC) is used to interface to the keypad’s rows and columns. The
processor scans the rows and monitors the columns for a logic change. When a change
occurs, it indicates that one of the buttons in that column was pressed. By knowing which row
was being scanned, and which column changed state, the processor can deduce which
specific button was pushed. Additional functions such as debounce are also typically
employed. Figure 1 shows how a simple 4 x 4 keypad uses 8 GPIO of a processor.

Figure 1: Simple 4 x 4 Keypad Connected to a Processor Requiring 8 GPIO

Application Note: CoolRunner-II CPLD

XAPP512 (v1.0) April 4, 2005

Implementing Keypad Scanners with
CoolRunner-II

R

4 .comUDataSheet

http://www.xilinx.com

www.DataSheet4U.com

www.DataSheet4U.com

www.DataSheetwww.DataSheetwww.DataSheetwww.DataSheet4U4U4U4U.com.com.com.com

2 www.xilinx.com XAPP512 (v1.0) April 4, 2005

Expanding I/OR

Expanding I/O Designers faced with accommodating a keypad requiring more I/O might find their existing
processor (or ASIC) does not have enough GPIO ports. One solution is to use a CPLD as an
I/O expander that reduces the I/O requirement of the processor.

Figure 2 shows a CPLD interfacing to the keypad rows/columns on one side, and the
processor’s available GPIO on the other. In this example, an 8 x 8 keypad requires the same
number of processor GPIO ports as the 4 x 4 keypad (actually one less) when a CPLD is used.
Without a CPLD, the processor would require 16 GPIO ports instead of 7.

Figure 2: CPLD Expands I/O and Reduces the Processor’s GPIO

Scanning and
Encoding

Besides reducing the processor’s GPIO requirements, the CPLD also scans the rows and
monitors the columns for a change in state. When a key is pressed, the CPLD stops scanning
and immediately sends an encoded word out to the processor. The encoded word indicates
which key was pressed.

In the example shown in Figure 2, there are six bits used to represent the encoded word. Six
bits provides 26 or 64 different values each representing a different key. However, one value
needs to be used to represent the state when no keys are pressed. Therefore, only 63 keys can
be represented in this example.

All 64 keys most likely would not be needed in a typical application. If they were, there are many
options with a programmable CPLD. For instance, a CPLD could generate an enable signal to
the processor that would indicate when a key is being pressed (that is, when the encoded value
was valid). This would require one more GPIO on the processor.

The processor is still required to monitor for changes on its GPIO, only it would not have to
deduce which key was pressed since this information is encoded in the six bit word. Debounce
will also be required. This can be performed in the CPLD or the processor. Performing this in
the processor would keep the size of the CPLD to a minimum.

4 .comUDataSheet

http://www.xilinx.com

www.DataSheet4U.com

www.DataSheet4U.com

www.DataSheetwww.DataSheetwww.DataSheetwww.DataSheet4U4U4U4U.com.com.com.com

CPLD Design Details

XAPP512 (v1.0) April 4, 2005 www.xilinx.com 3

R

CPLD Design
Details

Note: The following details describe how the available Verilog reference design is
implemented. The concept and design are relatively simple. Additional functionality can be
added depending on specific design requirements.

To scan the keypad rows, a barrel shift register is initialized with all ones except for one bit
preset to a zero. Each bit of the shift register drives a CPLD output pin that is connected to a
row of the keypad. As the shift register is clocked the zero shifts through the barrel shifter and
scans the rows by driving them low one at a time.

The columns are inputs to the CPLD. Each input is pulled up with an internal pull up resistor.
When no keys are pushed, all column inputs to the CPLD are passively pulled up to a logic high
state. All column inputs are NAND’d together. A logic zero at the output of the NAND gate
indicates no keys are pressed. The output of the NAND is used as an enable to the shift
register.

When a key is pressed, a connection between a row and column is made. The column with the
key being pressed will be driven low by the row associated with that key. The output of the
NAND will go low and disable the shift register for how ever long the key is pressed.

At this point the shift register is driving the row of the key being pressed to a low, and the
column of that key is also at a low. Two encoders are used, one for the row bits (outputs of the
shift register), and another for the column inputs. The outputs of the two encoders are grouped
together to form the resulting encoded word that is presented to the processor. Figure 3 shows
a block diagram of these functions.

Figure 3: Block Diagram

4 .comUDataSheet

http://www.xilinx.com

www.DataSheet4U.com

www.DataSheet4U.com

www.DataSheetwww.DataSheetwww.DataSheetwww.DataSheet4U4U4U4U.com.com.com.com

4 www.xilinx.com XAPP512 (v1.0) April 4, 2005

Implementation and VerificationR

Implementation
and Verification

The reference design is implemented in Verilog. A Xilinx ISETM software project is zipped up,
including the Verilog source file, Verilog testbench, and UCF file. If you do not have Xilinx
software, you can obtain ISE WebPACKTM for free from the Xilinx website. WebPACK will give
you all the tools you need to complete any CPLD project.

The UCF file shows how to initialize the barrel shifter with a pattern of ones and a zero. It also
shows how to program the column inputs with internal pull up resistors.

The testbench can be evoked from within Project Navigator, which will automatically run a
custom ModelSim .do file. The .do file will compile the source code, open a waveform window
to view signals, and run the simulation.

The testbench generates a clock for stimulus and also simulates the pressing of buttons by
periodically connecting a row with a column. This is done until all possible combinations of rows
and columns are simulated, and then repeats.

Verilog Code THIRD PARTIES MAY HAVE PATENTS ON THE CODE PROVIDED. BY PROVIDING THIS
CODE AS ONE POSSIBLE IMPLEMENTATION OF THIS DESIGN, XILINX IS MAKING NO
REPRESENTATION THAT THE PROVIDED IMPLEMENTATION OF THIS DESIGN IS FREE
FROM ANY CLAIMS OF INFRINGEMENT BY ANY THIRD PARTY. XILINX EXPRESSLY
DISCLAIMS ANY WARRANTY OR CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR
OTHERWISE, AND XILINX SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE,
THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY OR REPRESENTATION THAT THE IMPLEMENTATION IS FREE FROM
CLAIMS OF ANY THIRD PARTY. FURTHERMORE, XILINX IS PROVIDING THIS
REFERENCE DESIGN "AS IS" AS A COURTESY TO YOU.

XAPP512 - http://www.xilinx.com/products/xaw/coolvhdlq.htm

Conclusion Since the CPLD is reprogrammable, adding a control line, changing the mapping of the
encoded word, or accommodating different keypads is possible with the same device.
Additionally, other “glue” functions can be absorbed into the CPLD, such as voltage translators.

A specific CPLD device (ie, part number) can be used to accommodate different keypads and
even different applications because it's programmable. This helps boost the volume (lowers
cost), and reduces risk since changes can be made even after it's soldered down.

Coolrunner-II also is designed for low power, making it a good choice for battery powered
applications, such as cell phones, PDAs, and other portable devices. They also have additional
features that augment its low power. Multiple I/O banks can be used for voltage translation,
which is another typical application in devices with a mixture of technologies.

Additional
Information

CoolRunner-II Data Sheets, Application Notes, and White Papers

Access to all Xilinx Data Sheets, Application Notes, and White Papers

Device Packages
Online Store

Revision
History

The following table shows the revision history for this document.

Date Version Revision

04/04/05 1.0 Initial Xilinx release.

4 .comUDataSheet

http://www.xilinx.com/products/xaw/coolvhdlq.htm
http://www.xilinx.com/xlnx/xweb/xil_publications_display.jsp?BV_SessionID=@@@@2127949898.1083105846@@@@&BV_EngineID=cccfadclejekjfgcflgcefldfhndfmo.0&sGlobalNavPick=&sSecondaryNavPick=&category=-19214&iLanguageID=1
http://www.xilinx.com/literature/index.htm
http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp?iLanguageID=1&category=Package+Drawings&com.broadvision.session.new=Yes&BV_SessionID=@@@@2094320280.1083105893@@@@&BV_EngineID=cccfadclejekjfgcflgcefldfhndfmo.0
http://www.xilinx.com/xlnx/xebiz/onlinestore.jsp?sGlobalNavPick=PURCHASE
http://www.xilinx.com

	Implementing Keypad Scanners with CoolRunner-II
	Summary
	Introduction
	Expanding I/O
	Scanning and Encoding
	CPLD Design Details
	Implementation and Verification
	Verilog Code
	Conclusion
	Additional Information
	Revision History

