

8-Bit

XC878CLM

8-Bit Single Chip Microcontroller

User's Manual V 1.1 2009-04

Microcontrollers

Edition 2009-04 Published by Infineon Technologies AG 81726 Munich, Germany © 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

8-Bit

XC878CLM

8-Bit Single Chip Microcontroller

User's Manual V 1.1 2009-04

Microcontrollers

XC878 Revision His	story: 2009-04 V 1.1	
Previous Ver		
Page	Subjects (major changes since last revision)	
Page 16-43	Table 16-4 is updated. NPCR1.RXSEL value for Port line P1.4/RXDC1_3 was changed from 001_B to 011_B .	
Page 19-27	Table 19-7 is updated. Address of the MultiCAN BSL parameters we changed. The value of 01 _H was changed from 6 MHz to 5 MHz.	re
Page 4-12	Table 4-4 is updated. Stack size required was changed from 4 to 5.	
Page 1-3	Temperature for the 3.3V automotive variant is updated in Table 1-2.	i
Page 17-3	Bit CTC at 00_B is available when f_{ADC} is 24 MHz. See Chapter 17.2.	
Page 7-11	Descriptions on the situation that causes loss of clock operation is updated.	
Page 8-5	Step 5 of the procedure to exit power down mode is modified. A note also added.	is
Page 12-16	The reset value of BCON register was changed from 00_{H} to 20_{H} .	
Page 12-36	Figure 12-14 is updated to remove connection of data and clock lines	S.
Page 13-19	Figure 13-7 is updated to remove path from RC2 to TF2.	
Page 3-6	Chapter 3.2.2.2 is added to describe a new function, External Data Memory Interface.	
Page 3-4	Chapter 3.2.2 and Chapter 3.2.2.1 are updated regarding accessing external Interface.	of
Page 1-7	Table 1-3 is updated to include the pin definition of External interface	•
Page 6-20, Page 6-28, Page 6-37, Page 6-44	Table 6-6, Table 6-8, Table 6-10 and Table 6-12 are updated to inclu the input/output functions of the External Interface.	de
Page 7-12, Page 7-13	The sequence to select external oscillator as PLL input or system clo are updated in Chapter 7.3.1.1.	ck
Page 12-26	Note to indicate UART1 does not support hardware LIN Break and Syn field detection is added.	nch
Page 12-29	Steps to clear the LIN status flags and reset the break detection are added to the baud rate detection initialisation sequence.	

XC878 Revision His	tory: 2009-04	V 1.1
Page 12-43	Note on the Baud Rate Error is updated in Chapter 12.3.1.7	
Page 1-2	Note on availability of LIN BSL is added to Table 1-1.	
Page 9-8	Footnote on the reset values are updated.	

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com

Page

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7	Introduction Feature Summary Pin Configuration Pin Definitions and Functions Chip Identification Number Text Conventions Reserved, Undefined and Unimplemented Terminology Acronyms	1-4 1-6 1-7 . 1-18 . 1-19 . 1-20
2 2.1 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.3 2.3.1 2.3.2 2.3.3 2.3.3 2.3.4	Processor Architecture Functional Description CPU Register Description Stack Pointer (SP) Data Pointer (DPTR) Accumulator (ACC) B Register Program Status Word Extended Operation (EO) Power Control (PCON) Memory Extension Memory Extension Stack Memory Extension Effects Memory Extension Registers Instruction Timing	. 2-1 . 2-3 . 2-3 . 2-3 . 2-3 . 2-3 . 2-3 . 2-3 . 2-3 . 2-5 . 2-5 . 2-6 . 2-7 . 2-7 . 2-7 . 2-7 . 2-9
3 3.1 3.2 3.2.1 3.2.2 3.2.2.1 3.2.2.2 3.3 3.3.1 3.3.2 3.4 3.4.1 3.4.1.1 3.4.2 3.4.2.1 3.4.3	Memory Organization Program Memory Data Memory Internal Data Memory External Data Memory Accessing External Data Memory Accessing External Data Memory External Data Memory Interface Memory Protection Strategy Flash Memory Protection Miscellaneous Control Register Special Function Registers Address Extension by Mapping System Control Register 0 Address Extension by Paging Page Register Page Register	. 3-3 . 3-3 . 3-4 . 3-4 . 3-4 . 3-6 . 3-8 . 3-8 . 3-11 . 3-12 . 3-12 . 3-12 . 3-14 . 3-15 . 3-17
3.4.3 3.4.4 3.4.4.1	Bit-Addressing	3-19

Page

3.4.5	XC878 Register Overview	
3.4.5.1	CPU Registers	
3.4.5.2	MDU Registers	
3.4.5.3	CORDIC Registers	
3.4.5.4	System Control Registers	3-26
3.4.5.5	WDT Registers	3-29
3.4.5.6	Port Registers	3-30
3.4.5.7	ADC Registers	3-32
3.4.5.8	Timer 2 Compare/Capture Unit Registers	. 3-36
3.4.5.9	Timer 21 Registers	3-38
3.4.5.10	CCU6 Registers	3-39
3.4.5.11	UART1 Registers	3-43
3.4.5.12	SSC Registers	3-43
3.4.5.13	MultiCAN Registers	3-44
3.4.5.14	OCDS Registers	3-45
3.4.5.15	Flash Registers	3-46
3.5	Boot ROM Operating Mode	. 3-46
3.5.1	User Mode	3-48
3.5.2	Bootstrap Loader Mode	3-49
3.5.3	OCDS Mode	3-49
3.5.4	User JTAG Mode	3-49
4	Fleeh Memory	1 1
4	Flash Memory	
4.1	Flash Memory Map	. 4-2
4.1 4.2	Flash Memory Map Flash Block Pagination	4-2 4-2
4.1 4.2 4.3	Flash Memory Map Flash Block Pagination Operating Modes Flash Block Pagination	4-2 4-2 4-3
4.1 4.2 4.3 4.3.1	Flash Memory Map Flash Block Pagination Operating Modes Read Operation	4-2 4-2 4-3 4-3
4.1 4.2 4.3 4.3.1 4.3.2	Flash Memory Map Flash Block Pagination Operating Modes Flash Block Pagination Read Operation Flash Block Pagination Program Operation Flash Block Pagination	4-2 4-2 4-3 4-3 4-3
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3	Flash Memory Map Flash Block Pagination Operating Modes Read Operation Program Operation Erase Operation	4-2 4-2 4-3 4-3 4-3 4-4
4.1 4.2 4.3 4.3.1 4.3.2 4.3.2 4.3.3 4.3.4	Flash Memory Map Flash Block Pagination Operating Modes Read Operation Program Operation Erase Operation Mass Erase Operation	4-2 4-2 4-3 4-3 4-3 4-4 4-4
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5	Flash Memory Map Flash Block Pagination Operating Modes Read Operation Program Operation Erase Operation Mass Erase Operation Abort Operation	4-2 4-3 4-3 4-3 4-3 4-4 4-4
4.1 4.2 4.3 4.3.1 4.3.2 4.3.2 4.3.3 4.3.4 4.3.5 4.4	Flash Memory Map Flash Block Pagination Operating Modes Read Operation Program Operation Erase Operation Mass Erase Operation Abort Operation Flash Timer	4-2 4-3 4-3 4-3 4-4 4-4 4-5 4-7
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.4 4.5	Flash Memory Map Flash Block Pagination Operating Modes Read Operation Program Operation Erase Operation Mass Erase Operation Abort Operation Flash Timer Error Detection and Correction	. 4-2 . 4-3 . 4-3 . 4-3 . 4-3 . 4-4 . 4-4 . 4-5 . 4-7 . 4-8
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.4 4.5 4.6	Flash Memory Map Flash Block Pagination Operating Modes Read Operation Program Operation Erase Operation Mass Erase Operation Abort Operation Flash Timer Error Detection and Correction In-System Programming	. 4-2 . 4-3 . 4-3 . 4-3 . 4-4 . 4-4 . 4-4 . 4-5 . 4-7 . 4-8 . 4-9
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.4 4.5 4.6 4.7	Flash Memory Map Flash Block Pagination Operating Modes Read Operation Program Operation Erase Operation Mass Erase Operation Abort Operation Flash Timer Error Detection and Correction In-System Programming	. 4-2 . 4-3 . 4-3 . 4-3 . 4-4 . 4-4 . 4-4 . 4-5 . 4-7 . 4-8 . 4-9 . 4-10
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.4 4.5 4.6 4.7 4.7.1	Flash Memory Map Flash Block Pagination Operating Modes Read Operation Program Operation Erase Operation Mass Erase Operation Abort Operation Flash Timer Error Detection and Correction In-System Programming In-Application Programming Flash Programming	. 4-2 . 4-3 . 4-3 . 4-3 . 4-4 . 4-4 . 4-4 . 4-5 . 4-7 . 4-8 . 4-9 . 4-10 . 4-10
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.4 4.5 4.6 4.7 4.7.1 4.7.2	Flash Memory Map Flash Block Pagination Operating Modes Read Operation Program Operation Erase Operation Mass Erase Operation Abort Operation Flash Timer Error Detection and Correction In-System Programming In-Application Programming Flash Programming Flash Page Erasing and Mass Erasing	4-2 4-3 4-3 4-3 4-3 4-4 4-4 4-4 4-5 4-7 4-7 4-8 4-9 4-10 4-10 4-11
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.4 4.5 4.6 4.7 4.7.1 4.7.2 4.7.3	Flash Memory Map Flash Block Pagination Operating Modes Read Operation Program Operation Erase Operation Mass Erase Operation Abort Operation Flash Timer Error Detection and Correction In-System Programming In-Application Programming Flash Programming Flash Page Erasing and Mass Erasing Get Chip Information	. 4-2 . 4-3 . 4-3 . 4-3 . 4-4 . 4-4 . 4-5 . 4-7 . 4-8 . 4-9 . 4-10 . 4-10 . 4-11 . 4-12
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.4 4.5 4.6 4.7 4.7.1 4.7.2 4.7.3 4.8	Flash Memory Map Flash Block Pagination Operating Modes Read Operation Program Operation Erase Operation Mass Erase Operation Abort Operation Flash Timer Error Detection and Correction In-System Programming In-Application Programming Flash Programming Flash Programming Register Map	. 4-2 . 4-3 . 4-3 . 4-3 . 4-4 . 4-4 . 4-4 . 4-5 . 4-7 . 4-8 . 4-9 . 4-10 . 4-10 . 4-11 . 4-12 . 4-14
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.4 4.5 4.6 4.7 4.7.1 4.7.2 4.7.3	Flash Memory Map Flash Block Pagination Operating Modes Read Operation Program Operation Erase Operation Mass Erase Operation Abort Operation Flash Timer Error Detection and Correction In-System Programming In-Application Programming Flash Programming Flash Page Erasing and Mass Erasing Get Chip Information	. 4-2 . 4-3 . 4-3 . 4-3 . 4-4 . 4-4 . 4-4 . 4-5 . 4-7 . 4-8 . 4-9 . 4-10 . 4-10 . 4-11 . 4-12 . 4-14
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.4 4.5 4.6 4.7 4.7.1 4.7.2 4.7.3 4.8 4.9	Flash Memory Map Flash Block Pagination Operating Modes Read Operation Program Operation Erase Operation Mass Erase Operation Abort Operation Flash Timer Flash Timer In-System Programming In-Application Programming Flash Programming Flash Programming Flash Programming Register Map Register Description	4-2 4-3 4-3 4-3 4-3 4-4 4-4 4-4 4-5 4-5 4-7 4-7 4-7 4-10 4-10 4-11 4-12 4-14
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.4 4.5 4.6 4.7 4.7.1 4.7.2 4.7.3 4.8	Flash Memory Map Flash Block Pagination Operating Modes Read Operation Program Operation Erase Operation Mass Erase Operation Abort Operation Flash Timer Error Detection and Correction In-System Programming In-Application Programming Flash Programming Flash Programming Register Map	. 4-2 . 4-3 . 4-3 . 4-3 . 4-4 . 4-4 . 4-4 . 4-5 . 4-7 . 4-8 . 4-9 . 4-10 . 4-10 . 4-11 . 4-12 . 4-14 . 4-14

5.1.1 5.1.2 5.1.2.1 5.2 5.3 5.4 5.5 5.6 5.6.1 5.6.2 5.6.3 5.6.4 5.6.4 5.7	Interrupt Structure 1 Interrupt Structure 2 System Control Register 0 Interrupt Source and Vector Interrupt Priority Interrupt Handling Interrupt Response Time Interrupt Registers Interrupt Registers Interrupt Node Enable Registers External Interrupt Control Registers Interrupt Flag Registers Interrupt Flag Registers Interrupt Flag Registers Interrupt Flag Overview	. 5-9 5-10 5-11 5-13 5-14 5-15 5-17 5-17 5-21 5-21 5-27 5-35
6	Parallel Ports	
6.1 6.1.1	General Description	
6.1.1.1	General Register Description	
6.1.1.2	Direction Register	
6.1.1.3	Open Drain Control Register	
6.1.1.4	Pull-Up/Pull-Down Device Register	
6.1.1.5	Alternate Input and Output Functions	6-8
6.1.1.6	Drive Strength Control Register	
6.2	Register Address Map	
6.3	Port 0	
6.3.1	Functions	
6.3.2 6.4	Register Description Port 1	
6.4.1	Functions	
6.4.2	Register Description	
6.5	Port 3	
6.5.1	Functions	
6.5.2	Register Description	6-32
6.6	Port 4	6-36
6.6.1	Functions	. 6-36
6.6.2	Register Description	
6.7	Port 5	
6.7.1	Functions	
6.7.2	Register Description	0-48
7	Power Supply, Reset and Clock Management	
7.1	Power Supply System with Embedded Voltage Regulator	
7.2	Reset Control	7-3

Page

		•
7.2.1 7.2.1.1 7.2.1.2 7.2.1.3 7.2.1.4 7.2.1.5 7.2.2 7.2.3 7.2.4 7.3 7.3.1 7.3.1 7.3.1 7.3.2 7.3.3 7.3.4	Types of Resets . Power-On Reset . Hardware Reset . Watchdog Timer Reset . Power-Down Wake-Up Reset . Brownout Reset . Module Reset Behavior . Booting Scheme . Register Description . Clock System . Clock Generation Unit . Functional Description . Clock Source Control . Clock Management . Register Description .	. 7-3 . 7-4 . 7-5 . 7-5 . 7-6 . 7-6 . 7-7 . 7-8 7-10 7-10 7-11 7-14 7-15
8 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.2	Power Saving Modes Functional Description Idle Mode Slow-Down Mode Power-down Mode Peripheral Clock Management Register Description	. 8-2 . 8-2 . 8-2 . 8-3 . 8-6
9 9.1 9.1.1 9.2 9.3	Watchdog Timer Functional Description Module Suspend Control Register Map Register Description	. 9-2 . 9-4 . 9-5
10 10.1 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 10.2 10.3 10.4 10.5 10.5.1 10.5.1 10.5.2 10.5.3	Multiplication/Division Unit Functional Description Division Operation Normalize Shift Busy Flag Error Detection Interrupt Generation Low Power Mode Register Description Operand and Result Registers Control Register 1 Status Register	10-2 10-3 10-3 10-4 10-4 10-4 10-5 10-6 10-7 10-9 0-11

11	CORDIC Coprocessor	1-1
11.1	Features	1-2
11.2	Functional Description1	1-3
11.2.1	Operation of the CORDIC Coprocessor1	1-3
11.2.2	Interrupt	1-4
11.2.3	Normalized Result Data1	1-4
11.2.4	CORDIC Coprocessor Operating Modes1	1-5
11.2.4.1	Domains of Convergence	
11.2.4.2	Overflow Considerations1	1-8
11.2.5	CORDIC Coprocessor Data Format1	1-8
11.2.6	Accuracy of CORDIC Coprocessor	1-9
11.2.7	Performance of CORDIC Coprocessor	-11
11.3	The CORDIC Coprocessor Kernel	
11.3.1	Arctangent and Hyperbolic Arctangent Look-Up Tables	
11.3.2	Linear Function Emulated Look-Up Table	
11.4	Low Power Mode	
11.5	Register Map	-15
11.6	Register Description	
11.6.1	Control Register	
11.6.2	Status and Data Control Register	
11.6.3	Data Registers	
	5	
		~ 1
12	Serial Interfaces	
12.1	UART	2-2
12.1 12.1.1	UART	2-2 2-2
12.1 12.1.1 12.1.1.1	UART	2-2 2-2 2-2
12.1 12.1.1 12.1.1.1 12.1.1.2	UART	2-2 2-2 2-2 2-3
12.1 12.1.1 12.1.1.1 12.1.1.2 12.1.1.3	UART 1 UART Modes 1 Mode 0, 8-Bit Shift Register, Fixed Baud Rate 1 Mode 1, 8-Bit UART, Variable Baud Rate 1 Mode 2, 9-Bit UART, Fixed Baud Rate 1	2-2 2-2 2-2 2-3 2-5
12.1 12.1.1 12.1.1.1 12.1.1.2 12.1.1.3 12.1.1.4	UART 1 UART Modes 1 Mode 0, 8-Bit Shift Register, Fixed Baud Rate 1 Mode 1, 8-Bit UART, Variable Baud Rate 1 Mode 2, 9-Bit UART, Fixed Baud Rate 1 Mode 3, 9-Bit UART, Variable Baud Rate 1 Mode 3, 9-Bit UART, Variable Baud Rate 1	2-2 2-2 2-3 2-5 2-5
12.1 12.1.1 12.1.1.1 12.1.1.2 12.1.1.3 12.1.1.4 12.1.2	UART 1 UART Modes 1 Mode 0, 8-Bit Shift Register, Fixed Baud Rate 1 Mode 1, 8-Bit UART, Variable Baud Rate 1 Mode 2, 9-Bit UART, Fixed Baud Rate 1 Mode 3, 9-Bit UART, Variable Baud Rate 1 Mode 3, 9-Bit UART, Variable Baud Rate 1 Multiprocessor Communication 1	2-2 2-2 2-3 2-5 2-5 2-5 2-7
12.1 12.1.1 12.1.1.1 12.1.1.2 12.1.1.3 12.1.1.4 12.1.2 12.1.3	UART 1 UART Modes 1 Mode 0, 8-Bit Shift Register, Fixed Baud Rate 1 Mode 1, 8-Bit UART, Variable Baud Rate 1 Mode 2, 9-Bit UART, Fixed Baud Rate 1 Mode 3, 9-Bit UART, Variable Baud Rate 1 Mode 3, 9-Bit UART, Variable Baud Rate 1 Multiprocessor Communication 1 UART Register Description 1	2-2 2-2 2-3 2-5 2-5 2-7 2-7
12.1 12.1.1 12.1.1.1 12.1.1.2 12.1.1.3 12.1.1.4 12.1.2 12.1.3 12.1.4	UART 1 UART Modes 1 Mode 0, 8-Bit Shift Register, Fixed Baud Rate 1 Mode 1, 8-Bit UART, Variable Baud Rate 1 Mode 2, 9-Bit UART, Fixed Baud Rate 1 Mode 3, 9-Bit UART, Variable Baud Rate 1 Multiprocessor Communication 1 UART Register Description 1 Baud Rate Generation 12	2-2 2-2 2-3 2-5 2-5 2-7 2-7 2-7
12.1 12.1.1 12.1.1.1 12.1.1.2 12.1.1.3 12.1.1.4 12.1.2 12.1.3 12.1.4 12.1.4	UART 1 UART Modes 1 Mode 0, 8-Bit Shift Register, Fixed Baud Rate 1 Mode 1, 8-Bit UART, Variable Baud Rate 1 Mode 2, 9-Bit UART, Fixed Baud Rate 1 Mode 3, 9-Bit UART, Variable Baud Rate 1 Multiprocessor Communication 1 UART Register Description 1 Baud Rate Generation 12 Fixed Clock 12	2-2 2-2 2-3 2-5 2-5 2-7 2-7 2-7 2-7 2-10
12.1 12.1.1 12.1.1.1 12.1.1.2 12.1.1.3 12.1.1.4 12.1.2 12.1.3 12.1.4 12.1.4 12.1.4.1 12.1.4.2	UART 1 UART Modes 1 Mode 0, 8-Bit Shift Register, Fixed Baud Rate 1 Mode 1, 8-Bit UART, Variable Baud Rate 1 Mode 2, 9-Bit UART, Fixed Baud Rate 1 Mode 3, 9-Bit UART, Variable Baud Rate 1 Multiprocessor Communication 1 UART Register Description 1 Baud Rate Generation 12 Fixed Clock 12 Dedicated Baud-rate Generator 12	2-2 2-2 2-3 2-5 2-5 2-7 2-7 2-7 2-10 2-10
12.1 12.1.1 12.1.1.1 12.1.1.2 12.1.1.3 12.1.1.4 12.1.2 12.1.3 12.1.4 12.1.4.1 12.1.4.1 12.1.4.2 12.1.4.3	UART1UART Modes1Mode 0, 8-Bit Shift Register, Fixed Baud Rate1Mode 1, 8-Bit UART, Variable Baud Rate1Mode 2, 9-Bit UART, Fixed Baud Rate1Mode 3, 9-Bit UART, Variable Baud Rate1Multiprocessor Communication1UART Register Description1Baud Rate Generation12Fixed Clock12Dedicated Baud-rate Generator12Timer 112	2-2 2-2 2-3 2-5 2-5 2-7 2-7 2-7 2-7 2-10 2-10 2-11 2-22
12.1 12.1.1 12.1.1.1 12.1.1.2 12.1.1.3 12.1.1.4 12.1.2 12.1.3 12.1.4 12.1.4 12.1.4.1 12.1.4.2 12.1.4.3 12.1.5	UART1UART Modes1Mode 0, 8-Bit Shift Register, Fixed Baud Rate1Mode 1, 8-Bit UART, Variable Baud Rate1Mode 2, 9-Bit UART, Fixed Baud Rate1Mode 3, 9-Bit UART, Variable Baud Rate1Multiprocessor Communication1UART Register Description1Baud Rate Generation12Fixed Clock12Dedicated Baud-rate Generator12Timer 112Port Control12	2-2 2-2 2-3 2-5 2-5 2-7 2-7 2-7 2-7 2-7 2-10 2-10 2-11 2-22 2-23
12.1 12.1.1 12.1.1.1 12.1.1.2 12.1.1.3 12.1.1.4 12.1.2 12.1.3 12.1.4 12.1.4.1 12.1.4.1 12.1.4.2 12.1.4.3	UART1UART Modes1Mode 0, 8-Bit Shift Register, Fixed Baud Rate1Mode 1, 8-Bit UART, Variable Baud Rate1Mode 2, 9-Bit UART, Fixed Baud Rate1Mode 3, 9-Bit UART, Variable Baud Rate1Multiprocessor Communication1UART Register Description1Baud Rate Generation12Fixed Clock12Dedicated Baud-rate Generator12Timer 112	2-2 2-2 2-3 2-5 2-5 2-7 2-7 2-7 2-7 2-7 2-10 2-10 2-11 2-22 2-23
12.1 12.1.1 12.1.1.1 12.1.1.2 12.1.1.3 12.1.1.4 12.1.2 12.1.3 12.1.4 12.1.4 12.1.4.1 12.1.4.2 12.1.4.3 12.1.5	UART1UART Modes1Mode 0, 8-Bit Shift Register, Fixed Baud Rate1Mode 1, 8-Bit UART, Variable Baud Rate1Mode 2, 9-Bit UART, Fixed Baud Rate1Mode 3, 9-Bit UART, Variable Baud Rate1Multiprocessor Communication1UART Register Description1Baud Rate Generation12Fixed Clock12Dedicated Baud-rate Generator12Timer 112Port Control12	2-2 2-2 2-3 2-5 2-5 2-7 2-7 2-7 2-7 2-7 2-10 2-11 2-22 2-23 2-24
12.1 12.1.1 12.1.1.1 12.1.1.2 12.1.1.3 12.1.1.4 12.1.2 12.1.3 12.1.4 12.1.4 12.1.4.1 12.1.4.1 12.1.4.2 12.1.4.3 12.1.5 12.1.6 12.1.7 12.2	UART1UART Modes1Mode 0, 8-Bit Shift Register, Fixed Baud Rate1Mode 1, 8-Bit UART, Variable Baud Rate1Mode 2, 9-Bit UART, Fixed Baud Rate1Mode 3, 9-Bit UART, Variable Baud Rate1Multiprocessor Communication1UART Register Description1Baud Rate Generation12Fixed Clock12Dedicated Baud-rate Generator12Timer 112Port Control12Low Power Mode12Register Map12LIN12	2-2 2-2 2-3 2-5 2-5 2-7 2-7 2-7 2-7 2-7 2-7 2-7 2-7 2-7 2-7
12.1 12.1.1 12.1.1.1 12.1.1.2 12.1.1.3 12.1.1.4 12.1.2 12.1.3 12.1.4 12.1.4.1 12.1.4.1 12.1.4.2 12.1.4.3 12.1.5 12.1.6 12.1.7 12.2 12.2.1	UART1UART Modes1Mode 0, 8-Bit Shift Register, Fixed Baud Rate1Mode 1, 8-Bit UART, Variable Baud Rate1Mode 2, 9-Bit UART, Fixed Baud Rate1Mode 3, 9-Bit UART, Variable Baud Rate1Multiprocessor Communication1UART Register Description1Baud Rate Generation12Fixed Clock12Dedicated Baud-rate Generator12Timer 112Port Control12Low Power Mode12Register Map12LIN12LIN12LIN12	2-2 2-2 2-3 2-5 2-5 2-7 2-7 2-7 2-7 2-7 2-7 2-7 2-7 2-7 2-7
12.1 12.1.1 12.1.1.1 12.1.1.2 12.1.1.3 12.1.1.4 12.1.2 12.1.3 12.1.4 12.1.4 12.1.4.1 12.1.4.1 12.1.4.2 12.1.4.3 12.1.5 12.1.6 12.1.7 12.2	UART1UART Modes1Mode 0, 8-Bit Shift Register, Fixed Baud Rate1Mode 1, 8-Bit UART, Variable Baud Rate1Mode 2, 9-Bit UART, Fixed Baud Rate1Mode 3, 9-Bit UART, Variable Baud Rate1Multiprocessor Communication1UART Register Description1Baud Rate Generation12Fixed Clock12Dedicated Baud-rate Generator12Timer 112Port Control12Low Power Mode12Register Map12LIN12	2-2 2-2 2-3 2-5 2-5 2-7 2-7 2-7 2-7 2-7 2-7 2-7 2-7 2-7 2-7
12.1 12.1.1 12.1.1.1 12.1.1.2 12.1.1.3 12.1.1.4 12.1.2 12.1.3 12.1.4 12.1.4.1 12.1.4.1 12.1.4.2 12.1.4.3 12.1.5 12.1.6 12.1.7 12.2 12.2.1	UART1UART Modes1Mode 0, 8-Bit Shift Register, Fixed Baud Rate1Mode 1, 8-Bit UART, Variable Baud Rate1Mode 2, 9-Bit UART, Fixed Baud Rate1Mode 3, 9-Bit UART, Variable Baud Rate1Multiprocessor Communication1UART Register Description1Baud Rate Generation12Fixed Clock12Dedicated Baud-rate Generator12Timer 112Port Control12Low Power Mode12Register Map12LIN12LIN12LIN12	2-2 2-2 2-3 2-5 2-5 2-7 2-7 2-7 2-7 2-7 2-7 2-7 2-7 2-7 2-7

Table of	Contents	Page
12.3	High-Speed Synchronous Serial Interface	. 12-31
12.3.1	General Operation	. 12-32
12.3.1.1	Operating Mode Selection	. 12-32
12.3.1.2	Full-Duplex Operation	. 12-33
12.3.1.3	Half-Duplex Operation	. 12-36
12.3.1.4	Continuous Transfers	
12.3.1.5	Port Control	. 12-38
12.3.1.6	Baud Rate Generation	. 12-40
12.3.1.7	Error Detection Mechanisms	. 12-42
12.3.2		. 12-44
12.3.3	Low Power Mode	. 12-46
12.3.4	Register Map	. 12-46
12.3.5	Register Description	. 12-47
12.3.5.1	Configuration Register	. 12-47
12.3.5.2	Baud Rate Timer Reload Register	. 12-52
12.3.5.3	Transmit and Receive Buffer Register	. 12-53
13	Timers	13-1
13.1	Timer 0 and Timer 1	13-2
13.1.1	Basic Timer Operations	13-2
13.1.2	Timer Modes	13-2
13.1.2.1	Mode 0	13-4
13.1.2.2	Mode 1	13-5
13.1.2.3	Mode 2	13-6
13.1.2.4	Mode 3	13-7
13.1.3	Port Control	13-8
13.1.4	Register Map	13-9
13.1.5	Register Description	. 13-10
13.2	Timer 2 and Timer 21	
13.2.1	Basic Timer Operations	
13.2.2	Auto-Reload Mode	
13.2.2.1	Up/Down Count Disabled	
13.2.2.2	Up/Down Count Enabled	
13.2.3	Capture Mode	
13.2.4	Count Clock	
13.2.5	External Interrupt Function	
13.2.6	Port Control	
13.2.7	Low Power Mode	
13.2.8		
13.2.9	Register Map	
13.2.10	Register Description	. 13-25
14	T2CCU	14-1

14.1	Features	
14.2	Requirements of Timer 2 14-	
14.3	Capture/Compare Timer of T2CCU 14-	
14.3.1	Synchronized Timer Starts 14-	
14.3.2	Cascading Timers For Flexible Count Rate	
14.3.3	Dead-time with CCT Timer 14-	
14.4	T2CCU Capture/Compare Channels 14-	-8
14.5	Capture/Compare Operation 14-1	
14.5.1	Compare Function	0
14.5.1.1	Compare Mode 0	3
14.5.1.2	Compare Mode 1	5
14.5.1.3	Concurrent Compare Mode 14-1	6
14.5.1.4	Using Interrupts in Combination with the Compare Function 14-1	8
14.5.2	Capture Function	9
14.6	T2CCU Registers	21
14.6.1	Register Mapping 14-2	22
14.6.2	T2CCU Registers Description	
15	Capture/Compare Unit 6	-1
15.1	Functional Description	
15.1.1	Timer T12	
15.1.1.1	Timer Configuration	
15.1.1.2	Counting Rules	
15.1.1.3	Switching Rules	
15.1.1.4	Compare Mode of T12	
15.1.1.5	Duty Cycle of 0% and 100%	
15.1.1.6	Dead-time Generation	
15.1.1.7	Capture Mode	
15.1.1.8	Single-Shot Mode	
15.1.1.9	Hysteresis-Like Control Mode	
10.1.1.0		10
1512		
15.1.2	Timer T13	12
15.1.2.1	Timer T13 15-1 Timer Configuration 15-1	2 2
15.1.2.1 15.1.2.2	Timer T13 15-1 Timer Configuration 15-1 Compare Mode 15-1	2 2 3
15.1.2.1 15.1.2.2 15.1.2.3	Timer T13 15-1 Timer Configuration 15-1 Compare Mode 15-1 Single-Shot Mode 15-1	2 2 3 3
15.1.2.1 15.1.2.2 15.1.2.3 15.1.2.4	Timer T13 15-1 Timer Configuration 15-1 Compare Mode 15-1 Single-Shot Mode 15-1 Synchronization of T13 to T12 15-1	2 2 3 3
15.1.2.1 15.1.2.2 15.1.2.3 15.1.2.4 15.1.3	Timer T13 15-1 Timer Configuration 15-1 Compare Mode 15-1 Single-Shot Mode 15-1 Synchronization of T13 to T12 15-1 Modulation Control 15-1	2 3 3 3
15.1.2.1 15.1.2.2 15.1.2.3 15.1.2.4 15.1.3 15.1.4	Timer T13 15-1 Timer Configuration 15-1 Compare Mode 15-1 Single-Shot Mode 15-1 Synchronization of T13 to T12 15-1 Modulation Control 15-1 Trap Handling 15-1	2 3 3 5 7
15.1.2.1 15.1.2.2 15.1.2.3 15.1.2.4 15.1.3 15.1.4 15.1.5	Timer T13 15-1 Timer Configuration 15-1 Compare Mode 15-1 Single-Shot Mode 15-1 Synchronization of T13 to T12 15-1 Modulation Control 15-1 Trap Handling 15-1 Multi-Channel Mode 15-1	2 3 3 3 5 7
15.1.2.1 15.1.2.2 15.1.2.3 15.1.2.4 15.1.3 15.1.4 15.1.5 15.1.6	Timer T13 15-1 Timer Configuration 15-1 Compare Mode 15-1 Single-Shot Mode 15-1 Synchronization of T13 to T12 15-1 Modulation Control 15-1 Trap Handling 15-1 Multi-Channel Mode 15-1 Hall Sensor Mode 15-2	12 13 13 13 15 17 19 21
15.1.2.1 15.1.2.2 15.1.2.3 15.1.2.4 15.1.3 15.1.4 15.1.5 15.1.6 15.1.6.1	Timer T1315-1Timer Configuration15-1Compare Mode15-1Single-Shot Mode15-1Synchronization of T13 to T1215-1Modulation Control15-1Trap Handling15-1Multi-Channel Mode15-1Hall Sensor Mode15-2Sampling of the Hall Pattern15-2	12 13 13 13 15 17 19 21 21
15.1.2.1 15.1.2.2 15.1.2.3 15.1.2.4 15.1.3 15.1.4 15.1.5 15.1.6 15.1.6.1 15.1.6.2	Timer T1315-1Timer Configuration15-1Compare Mode15-1Single-Shot Mode15-1Synchronization of T13 to T1215-1Modulation Control15-1Trap Handling15-1Multi-Channel Mode15-1Hall Sensor Mode15-2Sampling of the Hall Pattern15-2Brushless-DC Control15-2	 12 13 13 13 15 17 19 21 21 22
15.1.2.1 15.1.2.2 15.1.2.3 15.1.2.4 15.1.3 15.1.4 15.1.5 15.1.6 15.1.6.1	Timer T1315-1Timer Configuration15-1Compare Mode15-1Single-Shot Mode15-1Synchronization of T13 to T1215-1Modulation Control15-1Trap Handling15-1Multi-Channel Mode15-1Hall Sensor Mode15-2Sampling of the Hall Pattern15-2	 12 13 13 15 17 19 21 22 225

Page

	.
15.1.9 15.1.10 15.1.11 15.2 15.3 15.3.1 15.3.2 15.3.3 15.3.4 15.3.5 15.3.6 15.3.7	Module Suspend Control15-27Port Connection15-28Synchronous Start of Timers15-32Register Map15-33Register Description15-36System Registers15-38Timer 12 – Related Registers15-41Timer 13 – Related Registers15-52Capture/Compare Control Registers15-56Global Modulation Control Registers15-68Multi-Channel Modulation Control Registers15-74Interrupt Control Registers15-80
16	Controller Area Network (MultiCAN) Controller
16.1	MultiCAN Kernel Functional Description
16.1.1	Module Structure
16.1.2	Clock Control
16.1.3	CAN Node Control
16.1.3.1	Bit Timing Unit
16.1.3.2	Bitstream Processor
16.1.3.3	Error Handling Unit
16.1.3.4	CAN Frame Counter
16.1.3.5	CAN Node Interrupts
16.1.4	Message Object List Structure 16-13
16.1.4.1	Basics
16.1.4.2	List of Unallocated Elements
16.1.4.3	Connection to the CAN Nodes 16-14
16.1.4.4	List Command Panel
16.1.5	CAN Node Analysis Features
16.1.5.1	Analyze Mode
16.1.5.2	Loop-Back Mode
16.1.5.3	Bit Timing Analysis
16.1.6	Message Acceptance Filtering 16-21
16.1.6.1	Receive Acceptance Filtering
16.1.6.2	Transmit Acceptance Filtering 16-22
16.1.7	Message Postprocessing 16-23
16.1.7.1	Message Interrupts
16.1.7.2	Pending Messages
16.1.8	Message Object Data Handling 16-27
16.1.8.1	Frame Reception
16.1.8.2	Frame Transmission
16.1.9	Message Object Functionality 16-33
16.1.9.1	Standard Message Object 16-33

Ρ	a	a	e
	ы,	-	•

		_
16.1.9.2	Single Data Transfer Mode	
16.1.9.3	Single Transmit Trial	
16.1.9.4	Message Object FIFO Structure	
16.1.9.5 16.1.9.6	Receive FIFO 16-36 Transmit FIFO 16-37	
16.1.9.7	Gateway Mode	
16.1.9.8	Foreign Remote Requests	
16.1.10	Access Mediator	
16.1.11	Port Control	
16.1.12	Low Power Mode	
16.2	Registers Description	
16.2.1	Global Module Registers	
16.2.2	CAN Node Registers	
16.2.3	Message Object Registers 16-76	
16.2.4	MultiCAN Access Mediator Register 16-97	7
17	Analog-to-Digital Converter	1
17.1	Structure Overview	
17.2	Clocking Scheme	3
17.2.1	Conversion Timing	4
17.3	Low Power Mode	7
17.4	Functional Description	3
17.4.1	Request Source Arbiter	
17.4.2	Conversion Start Modes 17-10	
17.4.3	Channel Control	
17.4.4	Sequential Request Source	
17.4.4.1	Overview	
17.4.4.2	Request Source Control	
17.4.5	Parallel Request Source	
17.4.5.1	Overview	
17.4.5.2	Request Source Control	
17.4.5.3 17.4.5.4	External Trigger	
17.4.5.4	Autoscan	
17.4.5.5	Wait-for-Read Mode 17-10	
17.4.7	Result Generation	
17.4.7.1	Overview	
17.4.7.2	Limit Checking	
17.4.7.3	Data Reduction Filter	
17.4.7.4	Result Register View	
17.4.8	Interrupts	
17.4.8.1	Event Interrupts	
17.4.8.2	Channel Interrupts 17-2	

Table of	Contents	Page
17.4.9 17.5 17.6 17.7 17.7.1 17.7.2 17.7.3 17.7.4 17.7.5 17.7.6 17.7.7 17.7.8 17.7.9	External Trigger Inputs	17-29 17-31 17-34 17-34 17-39 17-40 17-41 17-42 17-50 17-54
18 18.1 18.2 18.3 18.3.1 18.3.1.1 18.3.1.2 18.3.1.3 18.3.2.1 18.3.2.1 18.3.2.2 18.4 18.5 18.5.1 18.5.2 18.6	On-Chip Debug Support Features Functional Description Debugging Debug Events Hardware Breakpoints Software Breakpoints External Breaks NMI-mode priority over Debug-mode Debug Actions Call the Monitor Program Activate the MBC pin Debug Suspend Control Register Description Monitor Work Register 2 Input Select Registers JTAG ID	. 18-1 . 18-1 . 18-2 . 18-3 . 18-3 . 18-5 . 18-5 . 18-5 . 18-5 . 18-6 . 18-6 . 18-6 . 18-7 . 18-8 . 18-9 18-10
19 19.1 19.1.1 19.1.1.1 19.1.1.2 19.1.2.3 19.1.2.1 19.1.2.2 19.1.2.3 19.1.2.4	Bootstrap Loader UART and LIN BSL Modes Communication Protocol UART Transfer Block Structure LIN Transfer Block Structure Response Code to the Host Bootstrap Loader via UART Communication Structure The Selection of Modes The Activation of Modes 0 and 2 The Activation of Modes 1, 3 and 15	. 19-2 . 19-3 . 19-3 . 19-4 . 19-6 . 19-9 . 19-10 . 19-10 . 19-11

19.1.2.5	The Activation of Mode 6
19.1.2.6	The Activation of Mode 10 19-13
19.1.2.7	The Activation of Mode 16 19-14
19.1.3	Bootstrap Loader via LIN
19.1.3.1	Communication Structure
19.1.3.2	The Selection of Modes 19-18
19.1.3.3	The Activation of Modes 0, 2 and 8 19-18
19.1.3.4	The Activation of Modes 1, 3 and 9 19-20
19.1.3.5	The Activation of Mode 6
19.1.3.6	The Activation of Mode 10 19-21
19.1.3.7	The Activation of Mode 16 19-21
19.1.3.8	LIN Response Protocol to the Host
19.1.3.9	Fast LIN BSL 19-22
19.1.3.10	User Defined Parameter for LIN BSL
19.2	MultiCAN BSL Mode 19-24
19.2.1	Communication protocol
19.2.2	CAN Message Object definition 19-25
19.2.3	User Defined Parameter for MultiCAN BSL
19.3	Alternate BSL Mode
20	Index
20.1	Keyword Index
20.2	Register Index

1 Introduction

The XC878 is a member of the high-performance XC800 family of 8-bit microcontrollers. It is based on the XC800 Core that is compatible with the industry standard 8051 processor.

The XC878 features both a CAN controller and LIN support integrated on a single chip to provide advance networking capabilities. The on-chip CAN module reduces the CPU load by performing most of the functions required by the networking protocol (masking, filtering and buffering of CAN frames).

The XC878 is equipped with embedded Flash memory to offer high flexibility in development and ramp-up. The XC878 memory protection strategy features read-out protection of user intellectual property (IP), along with Flash program and erase protection to prevent data corruption.

The Flash architecture supports In-Application Programming (IAP), allowing user program to modify Flash contents during program execution. In-System Programming (ISP) is available through the Boot ROM-based BootStrap Loader (BSL), enabling convenient programming and erasing of the embedded Flash via an external host (e.g., personal computer).

Other key features include a Capture/Compare Unit 6 (CCU6) for the generation of pulse width modulated signal with special modes for motor control; a 10-bit Analog-to-Digital Converter (ADC) with extended functionalities such as autoscan and result accumulation for anti-aliasing filtering or for averaging; a Multiplication/Division Unit (MDU) to support the XC800 Core in math-intensive computations in advanced motor control like Field Oriented Control; a CORDIC (COrdinate Rotation DIgital Computer) Coprocessor performing high-speed computation of trigonometric, linear or hyperbolic functions for vector rotation and transformations; and an On-Chip Debug Support (OCDS) unit for software development and debugging of XC800-based systems.

The XC878 also features an on-chip oscillator and an integrated voltage regulator to allow a single voltage supply of 3.3 or 5.0 V. For low power applications, various power saving modes are available for selection by the user. Control of the numerous on-chip peripheral functionalities is achieved by extending the Special Function Register (SFR) address range with an intelligent paging mechanism optimized for interrupt handling.

Flash 52K/64K x 8		On-Chip Debug Support		UART	SSC	Port 0	8-bit Digital VO
Boot ROM 8K x 8				Capture/Compare Unit 16-bit		Port 1	8-bit Digital VO
XRAM 3K x 8	XC800 Core			— — — — — — — — — — — — — — — — — — —		Port 3	8-bit Digital VO
RAM 256 x 8	Timer 0 16-bit	Timer 1 16-bit	Timer 21 16-bit	Timer 2 Capture/ Compare Unit 16-bit		Port 4	8-bit Digital VO
MDU	CORDIC	MultiCAN	Watchdog Timer	UART1	ADC 10-bit 8-channel	Port 5	8-bit Digital I/O
8-bit Analog Input							

Figure 1-1 shows the functional units of the XC878.

Figure 1-1	XC878 Functional Units
------------	------------------------

The XC878 product family features devices with different configurations and program memory sizes, power supply voltage, temperature and quality profiles (Automotive or Industrial), to offer cost-effective solutions for different application requirements.

The list of XC878 device configurations are summarized in **Table 1-1**. The type of package available is the LQFP-64.

Device Name	CAN Module	LIN BSL Support	MDU Module	
XC878	No	No	No	
XC878C	Yes	No	No	
XC878L	No	Yes	No	
XC878M	No	No	Yes	
XC878CM	Yes	No	Yes	

Table 1-1Device Configuration

Note: For variants with LIN BSL support, only LIN BSL is available regardless of the availability of the UART module.

From these 5 different combinations of configuration, each are further made available in many sales types, which are grouped according to device type, program memory sizes, power supply voltage, temperature and quality profiles (Automotive or Industrial), as shown in Table 1-2.

Table 1-2 Device FIUIIle	Table	1-2	Device I	Profile
--------------------------	-------	-----	----------	---------

Sales Type	Device Type	Program Memory (Kbytes)	Power Supply (V)	Temp- erature (°C)	Quality Profile
SAF-XC878-13FFI 5V	Flash	52	5.0	-40 to 85	Industrial
SAF-XC878M-13FFI 5V	Flash	52	5.0	-40 to 85	Industrial
SAF-XC878CM-13FFI 5V	Flash	52	5.0	-40 to 85	Industrial
SAF-XC878-16FFI 5V	Flash	64	5.0	-40 to 85	Industrial
SAF-XC878M-16FFI 5V	Flash	64	5.0	-40 to 85	Industrial
SAF-XC878CM-16FFI 5V	Flash	64	5.0	-40 to 85	Industrial
SAF-XC878-13FFI 3V3	Flash	52	3.3	-40 to 85	Industrial
SAF-XC878M-13FFI 3V3	Flash	52	3.3	-40 to 85	Industrial
SAF-XC878CM-13FFI 3V3	Flash	52	3.3	-40 to 85	Industrial
SAF-XC878-16FFI 3V3	Flash	64	3.3	-40 to 85	Industrial
SAF-XC878M-16FFI 3V3	Flash	64	3.3	-40 to 85	Industrial
SAF-XC878CM-16FFI 3V3	Flash	64	3.3	-40 to 85	Industrial
SAX-XC878-13FFA 5V	Flash	52	5.0	-40 to 105	Automotive
SAX-XC878L-13FFA 5V	Flash	52	5.0	-40 to 105	Automotive
SAX-XC878C-13FFA 5V	Flash	52	5.0	-40 to 105	Automotive
SAX-XC878CM-13FFA 5V	Flash	52	5.0	-40 to 105	Automotive
SAX-XC878-16FFA 5V	Flash	64	5.0	-40 to 105	Automotive
SAX-XC878L-16FFA 5V	Flash	64	5.0	-40 to 105	Automotive
SAX-XC878C-16FFA 5V	Flash	64	5.0	-40 to 105	Automotive
SAX-XC878CM-16FFA 5V	Flash	64	5.0	-40 to 105	Automotive
SAF-XC878-16FFA 3V3	Flash	64	3.3	-40 to 85	Automotive
SAF-XC878L-16FFA 3V3	Flash	64	3.3	-40 to 85	Automotive

The term "XC878" in this document refers to all devices of the XC878 family unless stated otherwise.

1.1 Feature Summary

The following list summarizes the main features of the XC878:

- High-performance XC800 Core
 - compatible with standard 8051 processor
 - two clocks per machine cycle architecture (for memory access without wait state)
 - two data pointers
- On-chip memory
 - 8 Kbytes of Boot ROM
 - 256 bytes of RAM
 - 3 Kbytes of XRAM
 - 52/64 Kbytes of Flash for program code and data; (includes memory protection strategy)
- I/O port supply at 3.3 or 5.0 V and core logic supply at 2.5 V (generated by embedded voltage regulator)
- Power-on reset generation
- Brownout detection for core logic supply
- On-chip OSC and PLL for clock generation
 - Loss-of-Clock detection
- Power saving modes
 - slow-down mode
 - idle mode
 - power-down mode with wake-up capability via RXD or EXINT0
 - clock gating control to each peripheral
- Programmable 16-bit Watchdog Timer (WDT)
- Five ports
 - Up to 40 pins as digital I/O
 - 8 dedicated analog inputs used as A/D converter input
- 8-channel, 10-bit ADC
- Four 16-bit timers
 - Timer 0 and Timer 1 (T0 and T1)
 - Timer 2 and Timer 21 (T2 and T21)
- Multiplication/Division Unit for arithmetic calculation (MDU)
- CORDIC Coprocessor for computation of trigonometric, hyperbolic and linear functions
- MultiCAN with 2 nodes, 32 message objects
- Two Capture/compare units
 - Capture/compare unit 6 for PWM signal generation (CCU6)
 - Timer 2 Capture/compare unit for vaious digital signal generation (T2CCU)
- Two full-duplex serial interfaces (UART and UART1)
- Synchronous serial channel (SSC)
- On-chip debug support
 - 1 Kbyte of monitor ROM (part of the 8-Kbyte Boot ROM)

- 64 bytes of monitor RAM
- PG-LQFP-64 pin package
- Temperature range T_A:
 - SAF (-40 to 85 °C)
 - SAX (-40 to 105 °C)

The block diagram of the XC878 is shown in Figure 1-2.

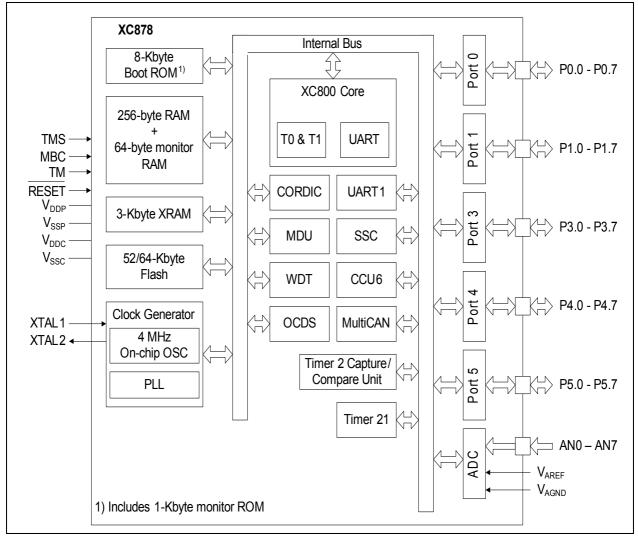


Figure 1-2 XC878 Block Diagram

1.2 Pin Configuration

The pin configuration of the XC878, which is based on the PG-LQFP-64 package, is shown in **Figure 1-3**.

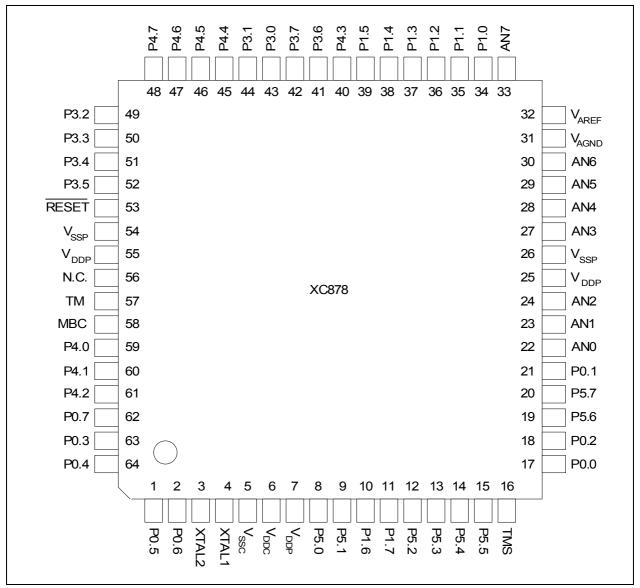


Figure 1-3 XC878 Pin Configuration, PG-LQFP-64 Package (top view)

1.3 Pin Definitions and Functions

After reset, all pins are configured as input with one of the following:

- Pull-up device enabled only (PU)
- Pull-down device enabled only (PD)
- High impedance with both pull-up and pull-down devices disabled (Hi-Z)

The functions and default states of the XC878 external pins are provided in Table 1.3.

Symbol	Pin Number (LQFP-64)	Туре	Reset State	Function	
P0		I/O		I/O port. It ca for the JTAG	B-bit bidirectional general purpose an be used as alternate functions 6, CCU6, UART, UART1, T2CCU, ultiCAN, SSC and External
P0.0	17		Hi-Z	TCK_0 T12HR_1 CC61_1 CLKOUT_0 RXDO_1	JTAG Clock Input CCU6 Timer 12 Hardware Run Input Input/Output of Capture/Compare channel 1 Clock Output UART Transmit Data Output
P0.1	21		Hi-Z	TDI_0 T13HR_1 RXD_1 RXDC1_0 COUT61_1 EXF2_1	JTAG Serial Data Input CCU6 Timer 13 Hardware Run Input UART Receive Data Input MultiCAN Node 1 Receiver Input Output of Capture/Compare channel 1 Timer 2 External Flag Output
P0.2	18		PU	CTRAP_2 TDO_0 TXD_1 TXDC1_0	CCU6 Trap Input JTAG Serial Data Output UART Transmit Data Output/Clock Output MultiCAN Node 1 Transmitter Output

 Table 1-3
 Pin Definitions and Functions

Introduction

Symbol	Pin Number (LQFP-64)	Туре	Reset State	Function	
P0.3	63		Hi-Z	SCK_1 COUT63_1	SSC Clock Input/Output Output of Capture/Compare channel 3
				RXDO1_0 A17	UART1 Transmit Data Output Address Line 17 Output
P0.4	64		Hi-Z	MTSR_1	SSC Master Transmit Output/ Slave Receive Input
				CC62_1	Input/Output of Capture/Compare channel 2
				TXD1_0	UART1 Transmit Data Output/Clock Output
				A18	Address Line 18 Output
P0.5	P0.5 1		Hi-Z	MRST_1 EXINT0_0 T2EX1 1	SSC Master Receive Input/Slave Transmit Output External Interrupt Input 0 Timer 21 External Trigger Input
				RXD1_0 COUT62_1	UART1 Receive Data Input Output of Capture/Compare channel 2
				A19	Address Line 19 Output
P0.6	2		PU	T2CC4_1 WR	Compare Output Channel 4 External Data Write Control Output
P0.7	62		PU	CLKOUT_1 T2CC5_1 RD	Clock Output Compare Output Channel 5 External Data Read Control Output

Introduction

Symbol	Pin Number (LQFP-64)	Туре	Reset State	Function	
P1		I/O		I/O port. It ca for the JTAG	B-bit bidirectional general purpose an be used as alternate functions 6, CCU6, UART, Timer 0, Timer 1, er 21, MultiCAN, SSC and erface.
P1.0	34		PU	RXD_0 T2EX_0 RXDC0_0 A8	UART Receive Data Input Timer 2 External Trigger Input MultiCAN Node 0 Receiver Input Address Line 8 Output
P1.1	35		PU	EXINT3_0 T0_1 TXD_0 TXDC0_0 A9	External Interrupt Input 3 Timer 0 Input UART Transmit Data Output/Clock Output MultiCAN Node 0 Transmitter Output Address Line 9 Output
P1.2	36		PU	SCK_0 A10	SSC Clock Input/Output Address Line 10 Output
P1.3	37		PU	MTSR_0 SCK_2 TXDC1_3 A11	SSC Master Transmit Output/Slave Receive Input SSC Clock Input/Output MultiCAN Node 1 Transmitter Output Address Line 11 Output
P1.4	38		PU	MRST_0 EXINT0_1 RXDC1_3 MTSR_2 A12	SSC Master Receive Input/ Slave Transmit Output External Interrupt Input 0 MultiCAN Node 1 Receiver Input SSC Master Transmit Output/Slave Receive Input Address Line 12 Output

Introduction

		State		
39		PU	CCPOS0_1 EXINT5_0 T1_1 MRST_2 EXF2_0 RXDO_0	•
10		PU	CCPOS1_1 T12HR_0 EXINT6_0 RXDC0_2 T21_1	CCU6 Hall Input 1 CCU6 Timer 12 Hardware Run Input External Interrupt Input 6 MultiCAN Node 0 Receiver Input Timer 21 Input
11		PU		CCU6 Timer 13 Hardware Run Input Timer 2 Input MultiCAN Node 0 Transmitter Output 6 can be used as a software chip
	10	10	10 PU	EXINT5_0 T1_1 MRST_2 EXF2_0 RXDO_0 10 PU CCPOS1_1 T12HR_0 EXINT6_0 RXDC0_2 T21_1 11 PU CCPOS2_1 T13HR_0 T2_1 TXDC0_2

Introduction

Symbol	Pin Number (LQFP-64)	Туре	Reset State	Function	
P3		I/O		I/O port. It ca for CCU6, U/	B-bit bidirectional general purpose an be used as alternate functions ART1, T2CCU, Timer 21, d External Interface.
P3.0	43		Hi-Z	CCPOS1_2 CC60_0 RXDO1_1 T2CC0_1/ EXINT3_2	CCU6 Hall Input 1 Input/Output of Capture/Compare channel 0 UART1 Transmit Data Output External Interrupt Input 3/T2CCU Capture/Compare Channel 0
P3.1	44		Hi-Z	CCPOS0_2 CC61_2 COUT60_0 TXD1_1	CCU6 Hall Input 0 Input/Output of Capture/Compare channel 1 Output of Capture/Compare channel 0 UART1 Transmit Data Output/Clock Output
P3.2	49		Hi-Z	CCPOS2_2 RXDC1_1 RXD1_1 CC61_0 T2CC1_1/ EXINT4_2	CCU6 Hall Input 2 MultiCAN Node 1 Receiver Input UART1 Receive Data Input Input/Output of Capture/Compare channel 1 External Interrupt Input 4/T2CCU Capture/Compare Channel 1
P3.3	50		Hi-Z	COUT61_0 TXDC1_1 T2CC2_1/ EXINT5_2 A13	Output of Capture/Compare channel 1 MultiCAN Node 1 Transmitter Output External Interrupt Input 5/T2CCU Capture/Compare Channel 2 Address Line 13 Output

Introduction

Symbol	Pin Number (LQFP-64)	Туре	Reset State	Function	
P3.4	51		Hi-Z	CC62_0 RXDC0_1 T2EX1_0 T2CC3_1/ EXINT6_3 A14	Input/Output of Capture/Compare channel 2 MultiCAN Node 0 Receiver Input Timer 21 External Trigger Input External Interrupt Input 6/T2CCU Capture/Compare Channel 3 Address Line 14 Output
P3.5	52		Hi-Z	COUT62_0 EXF21_0 TXDC0_1 A15	Output of Capture/Compare channel 2 Timer 21 External Flag Output MultiCAN Node 0 Transmitter Output Address Line 15 Output
P3.6	41		PU	CTRAP_0	CCU6 Trap Input
P3.7	42		Hi-Z	EXINT4_0 COUT63_0 A16	External Interrupt Input 4 Output of Capture/Compare channel 3 Address Line 16 Output

Introduction

Symbol	Pin Number (LQFP-64)	Туре	Reset State	Function	
P4		I/O		I/O port. It ca for CCU6, Ti	B-bit bidirectional general purpose an be used as alternate functions mer 0, Timer 1, T2CCU, Timer 21, d External Interface.
P4.0	59		Hi-Z	RXDC0_3 CC60_1 T2CC0_0/ EXINT3_1 D0	MultiCAN Node 0 Receiver Input Output of Capture/Compare channel 0 External Interrupt Input 3/T2CCU Capture/Compare Channel 0 Data Line 0 Input/Output
P4.1	60		Hi-Z	TXDC0_3 COUT60_1 T2CC1_0/ EXINT4_1 D1	MultiCAN Node 0 Transmitter Output Output of Capture/Compare channel 0 External Interrupt Input 4/T2CCU Capture/Compare Channel 1 Data Line 1 Input/Output
P4.2	61		PU	EXINT6_1 T21_0 D2	External Interrupt Input 6 Timer 21 Input Data Line 2 Input/Output
P4.3	40		Hi-Z	T2EX_1 EXF21_1 COUT63_2 D3	Timer 2 External Trigger Input Timer 21 External Flag Output Output of Capture/Compare channel 3 Data Line 3 Input/Output
P4.4	45		Hi-Z	CCPOS0_3 T0_0 CC61_4 T2CC2_0/ EXINT5_1 D4	CCU6 Hall Input 0 Timer 0 Input Output of Capture/Compare channel 1 External Interrupt Input 5/T2CCU Capture/Compare Channel 2 Data Line 4 Input/Output

Introduction

Symbol	Pin Number (LQFP-64)	Туре	Reset State	Function	
P4.5	46		Hi-Z	CCPOS1_3 T1 0	CCU6 Hall Input 1 Timer 1 Input
				COUT61_2	•
				T2CC3_0/ EXINT6_2 D5	External Interrupt Input 6/T2CCU Capture/Compare Channel 3 Data Line 5 Input/Output
P4.6	47		Hi-Z	CCPOS2_3 T2_0 CC62_2	CCU6 Hall Input 2 Timer 2 Input Output of Capture/Compare channel 2
				T2CC4_0 D6	Compare Output Channel 4 Data Line 6 Input/Output
P4.7	48		Hi-Z	CTRAP_3 COUT62_2	CCU6 Trap Input Output of Capture/Compare channel 2
				T2CC5_0 D7	Compare Output Channel 5 Data Line 7 Input/Output

Introduction

Symbol	Pin Number (LQFP-64)	Туре	Reset State	Function	
P5		I/O		I/O port. It ca	B-bit bidirectional general purpose an be used as alternate functions ART1, T2CCU, JTAG and External
P5.0	8		PU	EXINT1_1 A0	External Interrupt Input 1 Address Line 0 Output
P5.1	9		PU	EXINT2_1 A1	External Interrupt Input 2 Address Line 1 Output
P5.2	12		PU	RXD_2 T2CC2_2/ EXINT5_3 A2	UART Receive Data Input External Interrupt Input 5/T2CCU Capture/Compare Channel 2 Address Line 2 Output
P5.3	13		PU	CCPOS0_0 EXINT1_0 T12HR_2	CCU6 Hall Input 0 External Interrupt Input 1 CCU6 Timer 12 Hardware Run Input
				CC61_3 TXD 2	Input of Capture/Compare channel 1 UART Transmit Data
				T2CC5_2 A3	Output/Clock Output Compare Output Channel 5 Address Line 3 Output
P5.4	14		PU	CCPOS1_0 EXINT2_0 T13HR_2	CCU6 Hall Input 1 External Interrupt Input 2 CCU6 Timer 13 Hardware Run Input
				CC62_3	Input of Capture/Compare channel 2
				RXDO_2 T2CC4_2 A4	UART Transmit Data Output Compare Output Channel 4 Address Line 4 Output

Introduction

Symbol	Pin Number (LQFP-64)	Туре	Reset State	Function	
P5.5	15		PU	CCPOS2_0 CTRAP_1 CC60_3	CCU6 Hall Input 2 CCU6 Trap Input Input of Capture/Compare channel 0
				TDO_1 TXD1_2	JTAG Serial Data Output UART1 Transmit Data Output/ Clock Output
				T2CC0_2/ EXINT3_3 A5	External Interrupt Input 3/T2CCU Capture/Compare Channel 0 Address Line 5 Output
P5.6	19		PU	TCK_1 RXDO1_2 T2CC1_2/ EXINT4_3 A6	External Interrupt Input 4/T2CCU
P5.7	20		PU	TDI_1 RXD1_2 T2CC3_2/ EXINT6_4 A7	JTAG Serial Data Input UART1 Receive Data Input External Interrupt Input 6/T2CCU Capture/Compare Channel 3 Address Line 7 Output

Symbol	Pin Number (LQFP-64)	Туре	Reset State	Function
V _{DDP}	7, 25, 55	-	-	I/O Port Supply (3.3 or 5.0 V) Also used by EVR and analog modules. All pins must be connected.
V _{SSP}	26, 54	-	_	I/O Ground All pins must be connected.
V _{DDC}	6	_	_	Core Supply Monitor (2.5 V)
V _{SSC}	5	-	_	Core Supply Ground
V_{AREF}	32	_	_	ADC Reference Voltage
V _{AGND}	31	_	-	ADC Reference Ground
AN0	22	1	Hi-Z	Analog Input 0
AN1	23	1	Hi-Z	Analog Input 1
AN2	24	1	Hi-Z	Analog Input 2
AN3	27	1	Hi-Z	Analog Input 3
AN4	28	1	Hi-Z	Analog Input 4
AN5	29	1	Hi-Z	Analog Input 5
AN6	30	1	Hi-Z	Analog Input 6
AN7	33	1	Hi-Z	Analog Input 7
XTAL1	4	I	Hi-Z	External Oscillator Input (Feedback resistor required, normally NC)
XTAL2	3	0	Hi-Z	External Oscillator Output (Feedback resistor required, normally NC)
TMS	16	I	PD	JTAG Test Mode Select
RESET	53	1	PU	Reset Input
MBC	58	1	PU	Monitor & BootStrap Loader Control
ТМ	57	-	_	Test Mode (External pull down device required)
NC	56	-	_	No Connection

1.4 Chip Identification Number

Each device variant of XC878 is assigned an unique chip identification number to allow easy identification of one device variant from the others. The differentiation is based on the product, variant type and device step information.

Two methods are provided to read a device variant's chip identification number:

- In-application subroutine, see Chapter 4.7.3;
- Bootstrap loader (BSL) mode A, see Chapter 19.1.2.6 or Chapter 19.1.3.6.

1.5 Text Conventions

This document uses the following text conventions for named components of the XC878:

- Functional units of the XC878 are shown in upper case. For example: "The SSC can be used to communicate with shift registers."
- <u>Pins using negative logic are indicated by an overbar.</u> For example: "A reset input pin RESET is provided for the hardware reset."
- Bit fields and bits in registers are generally referenced as "Register name.Bit field" or "Register name.Bit". Most of the register names contain a module name prefix, separated by an underscore character "_" from the actual register name. In the example of "SSC_CON", "SSC" is the module name prefix, and "CON" is the actual register name).
- Function of the shaded bits are described in other chapters of the UM.
- Variables that are used to represent sets of processing units or registers appear in mixed-case type. For example, the register name "CC6xR" refers to multiple "CC6xR" registers with the variable x (x = 0, 1, 2). The bounds of the variables are always specified where the register expression is first used (e.g., "x = 0 2"), and is repeated as needed.
- The default radix is decimal. Hexadecimal constants have a suffix with the subscript letter "H" (e.g., C0_H). Binary constants have a suffix with the subscript letter "B" (e.g., 11_B).
- When the extents of register fields, groups of signals, or groups of pins are collectively named in the body of the document, they are represented as "NAME[A:B]", which defines a range, from B to A, for the named group. Individual bits, signals, or pins are represented as "NAME[C]", with the range of the variable C provided in the text (e.g., CFG[2:0] and TOS[0]).
- Units are abbreviated as follows:
 - MHz = Megahertz
 - μ**s** = Microseconds
 - **kBaud**, **kbit** = 1000 characters/bits per second
 - **MBaud**, **Mbit** = 1,000,000 characters/bits per second
 - Kbyte = 1024 bytes of memory
 - Mbyte = 1,048,576 bytes of memory
 - In general, the k prefix scales a unit by 1000 whereas the K prefix scales a unit by 1024. Hence, the Kbyte unit scales the expression preceding it by 1024. The kBaud unit scales the expression preceding it by 1000. The M prefix scales by 1,000,000 <u>or</u> 1048576, and μ scales by 0.000001. For example, 1 Kbyte is 1024 bytes, 1 Mbyte is 1024 × 1024 bytes, 1 kBaud/kbit are 1000 characters/bits per second, 1 MBaud/Mbit are 1,000,000 characters/bits per second, and 1 MHz is 1,000,000 Hz.
- Data format quantities are defined as follows:
 - **Byte** = 8-bit quantity

Introduction

1.6 Reserved, Undefined and Unimplemented Terminology

In tables where register bit fields are defined, the following conventions are used to indicate undefined and unimplemented function. Further, types of bits and bit fields are defined using the abbreviations shown in Table 1-4.

Function of Bits	Description
Unimplemented	Register bit fields named "0" indicate unimplemented functions with the following behavior. Reading these bit fields returns 0. Writing to these bit fields has no effect. These bit fields are reserved. When writing, software should always set such bit fields to 0 in order to preserve compatibility with future products. Setting the bit fields to 1 may lead to unpredictable results.
Undefined	Certain bit combinations in a bit field can be labeled "Reserved", indicating that the behavior of the XC878 is undefined for that combination of bits. Setting the register to undefined bit combinations may lead to unpredictable results. Such bit combinations are reserved. When writing, software must always set such bit fields to legal values as provided in the bit field description tables.
rw	The bit or bit field can be read and written.
r	The bit or bit field can only be read (read-only).
w	The bit or bit field can only be written (write-only). Reading always return 0.
h	The bit or bit field can also be modified by hardware (such as a status bit). This attribute can be combined with 'rw' or 'r' bits to 'rwh' and 'rh' bits, respectively.

Table 1-4Bit Function Terminology

1.7 Acronyms

 Table 1-5 lists the acronyms used in this document.

Table 1-5Acronyms

Acronym	Description
ADC	Analog-to-Digital Converter
ALU	Arithmetic/Logic Unit
BSL	BootStrap Loader

Introduction

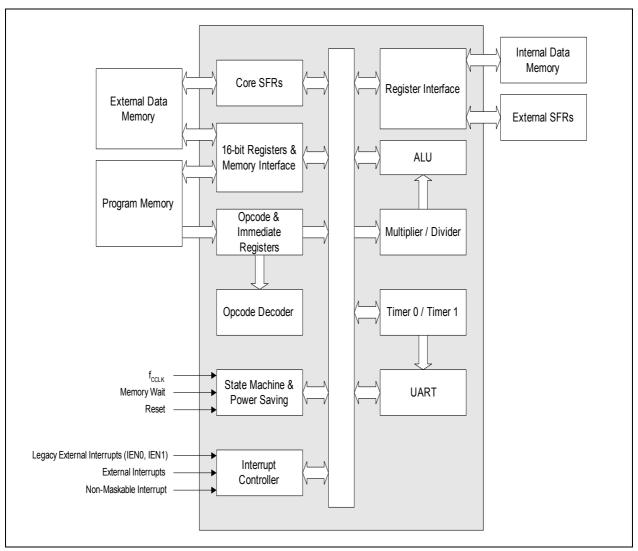
Table 1-5	Acronyms (cont'd)
Acronym	Description
CAN	Controller Area Network
CCU6	Capture/Compare Unit 6
CGU	Clock Generation Unit
CORDIC	Cordinate Rotation Digital Computer
CPU	Central Processing Unit
ECC	Error Correction Code
EVR	Embedded Voltage Regulator
FDR	Fractional Divider
GPIO	General Purpose I/O
IAP	In-Application Programming
I/O	Input/Output
ISP	In-System Programming
JTAG	Joint Test Action Group
LIN	Local Interconnect Network
MDU	Multiplication/Division Unit
NMI	Non-Maskable Interrupt
OCDS	On-Chip Debug Support
PC	Program Counter
POR	Power-On Reset
PLL	Phase-Locked Loop
PSW	Program Status Word
PWM	Pulse Width Modulation
RAM	Random Access Memory
ROM	Read-Only Memory
SFR	Special Function Register
SPI	Serial Peripheral Interface
SSC	Synchronous Serial Channel
T2CCU	Timer 2 Capture/Compare Unit
UART	Universal Asynchronous Receiver/Transmitter
WDT	Watchdog Timer

Introduction

2 **Processor Architecture**

The XC878 is based on a high-performance 8-bit Central Processing Unit (CPU) that is compatible with the standard 8051 processor. While the standard 8051 processor is designed around a 12-clock machine cycle, the XC878 CPU uses a 2-clock machine cycle. This allows fast access to ROM, RAM and Flash memories without wait state. The instruction set consists of 45% one-byte, 41% two-byte and 14% three-byte instructions.

The XC878 CPU provides a range of debugging features, including basic stop/start, single-step execution, breakpoint support and read/write access to the data memory, program memory and Special Function Registers (SFRs).


Features

- Two clocks per machine cycle architecture (for memory access without wait state)
- Program memory download option
- 15-source, 4-level interrupt controller
- Two data pointers
- Power saving modes
- Dedicated debug mode and debug signals
- Two 16-bit timers (Timer 0 and Timer 1)
- Full-duplex serial port (UART)

2.1 Functional Description

Figure 2-1 shows the CPU functional blocks. The CPU consists of the instruction decoder, the arithmetic section, and the program control section. Each program instruction is decoded by the instruction decoder. This instruction decoder generates internal signals that control the functions of the individual units within the CPU. The internal signals have an effect on the source and destination of data transfers and control the arithmetic/logic unit (ALU) processing.

Figure 2-1 CPU Block Diagram

The arithmetic section of the processor performs extensive data manipulation and consists of the ALU, ACC register, B register, and PSW register.

The ALU accepts 8-bit data words from one or two sources, and generates an 8-bit result under the control of the instruction decoder. The ALU performs both arithmetic and logic operations. Arithmetic operations include add, subtract, multiply, divide, increment, decrement, BCD-decimal-add-adjust, and compare. Logic operations include AND, OR, Exclusive OR, complement, and rotate (right, left, or swap nibble (left four)). Also included is a Boolean processor performing the bit operations such as set, clear, complement, jump-if-set, jump-if-not-set, jump-if-set-and-clear, and move to/from carry. The ALU can perform the bit operations of logical AND or logical OR between any addressable bit (or its complement) and the carry flag, and place the new result in the carry flag.

The program control section controls the sequence in which the instructions stored in program memory are executed. The 16-bit Program Counter (PC) holds the address of the next instruction to be executed. The conditional branch logic enables internal and external events to the processor to cause a change in the program execution sequence.

2.2 CPU Register Description

The CPU registers occupy direct Internal Data Memory space locations in the range $80_{\rm H}$ to FF_H.

2.2.1 Stack Pointer (SP)

The SP register contains the Stack Pointer (SP). The SP is used to load the Program Counter (PC) into Internal Data Memory during LCALL and ACALL instructions, and to retrieve the PC from memory during RET and RETI instructions. Data may also be saved on or retrieved from the stack using PUSH and POP instructions, respectively. Instructions that use the stack automatically pre-increment or post-decrement the stack pointer so that the stack pointer always points to the last byte written to the stack, i.e., the top of the stack. On reset, the SP is reset to $07_{\rm H}$. This causes the stack to begin at a location = $08_{\rm H}$ above register bank zero. The SP can be read or written under software control.

2.2.2 Data Pointer (DPTR)

The Data Pointer (DPTR) is stored in registers DPL (Data Pointer Low byte) and DPH (Data Pointer High byte) to form 16-bit addresses for External Data Memory accesses (MOVX A,@DPTR and MOVX @DPTR,A), for program byte moves (MOVC A,@A+DPTR), and for indirect program jumps (JMP @A+DPTR).

Two true 16-bit operations are allowed on the Data Pointer: load immediate (MOV DPTR,#data) and increment (INC DPTR).

2.2.3 Accumulator (ACC)

This register provides one of the operands for most ALU operations.

2.2.4 B Register

The B register is used during multiply and divide operations to provide the second operand. For other instructions, it can be treated as another scratch pad register.

2.2.5 **Program Status Word**

The Program Status Word (PSW) contains several status bits that reflect the current state of the CPU.

PSW

Program Status Word Register

7	6	5	4	3	2	1	0
СҮ	AC	FO	RS1	RS0	ov	F1	Р
rwh	rwh	rw	rw	rw	rwh	rw	rh

Field	Bits	Туре	Description				
P	0	rh	Parity Flag Set/cleared by hardware after each instruction to indicate an odd/even number of "one" bits in the accumulator, i.e., even parity.				
F1	1	rw	General Purpose Flag				
OV	2	rwh	Overflow Flag Used by arithmetic instructions				
RS1, RS0	4:3	rw	Register Bank SelectThese bits are used to select one of the four registerbanks.00Bank 0 selected, data address 00_{H} - 07_{H} 01Bank 1 selected, data address 08_{H} - $0F_{H}$ 10Bank 2 selected, data address 10_{H} - 17_{H} 11Bank 3 selected, data address 18_{H} - $1F_{H}$				
F0	5	rw	General Purpose Flag				
AC	6	rwh	Auxiliary Carry Flag Used by instructions that execute BCD operations				
СҮ	7	rwh	Carry Flag Used by arithmetic instructions				

2.2.6 Extended Operation (EO)

The instruction set includes an additional instruction MOVC @(DPTR++),A which allows program memory to be written. This instruction may be used to download code into the program memory when the CPU is initialized and subsequently, also to provide software updates. The instruction copies the contents of the accumulator to the code memory at the location pointed to by the current data pointer, and then increments the data pointer.

The instruction uses the opcode $A5_H$, which is the same as the software break instruction TRAP (see Table 2-1). Register bit EO.TRAP_EN is used to select the instruction executed by the opcode A5H. When TRAP_EN is 0 (default), the $A5_H$ opcode executes the MOVC instruction. When TRAP_EN is 1, the $A5_H$ opcode executes the software break instruction TRAP, which switches the CPU to debug mode for breakpoint processing.

EO Extended Operation Register

7	6	5	4	3	2	1	0
	0	1	TRAP_EN		0	I	DPSEL0
	r		rw		r		rw

Field	Bits	Туре	Description
DPSEL0	0	rw	Data Pointer Select0DPTR0 is selected1DPTR1 is selected
TRAP_EN	4	rw	TRAP Enable 0Select MOVC @(DPTR++),A1Select software TRAP instruction
0	[3:1], [7:5]	r	Reserved Returns 0 if read; should be written with 0.

2.2.7 Power Control (PCON)

The CPU has two power-saving modes: idle mode and power-down mode. The idle mode can be entered via the PCON register. In idle mode, the clock to the CPU is stopped while the timers, serial port and interrupt controller continue to run using a half-speed clock. In power-down mode, the clock to the entire CPU is stopped.

PCON Power Control Register

7	6	5	4	3	2	1	0
SMOD		0	1	GF1	GF0	0	IDLE
rw		r		rw	rw	r	rw

Field	Bits	Туре	Description
IDLE	0	rw	Idle Mode Enable0Do not enter idle mode1Enter idle mode
GF0	2	rw	General Purpose Flag Bit 0
GF1	3	rw	General Purpose Flag Bit 1
0	1, [6:4]	r	Reserved Returns 0 if read; should be written with 0.

2.3 Memory Extension

The standard amount of addressable program or external data memory (or a Bank) in an 8051 system is 64 Kbytes. The XC800 core supports memory expansion of up to 1 Mbyte and this is enabled by the availability of a Memory Management Unit (MMU) and a Memory Extension Stack. The MMU adds a set of Memory Extension registers (MEX1, MEX2, and MEX3) to control access to the extended memory space by different addressing modes. The Memory Extension Stack is used by the hardware to 'push' and 'pop' values of MEX1.

Program Code is always fetched from the 64-Kbyte block pointed to by the 4-bit Current Bank (CB) register bit field. It is updated from a 4-bit Next Bank (NB) bit field upon execution of long jump (LJMP) and call instructions. CB and NB together constitute the MEX1 register. The programmer simply writes the new bank number to NB before a jump or call instruction.

Interrupt service routines are always executed from code in the 64-Kbyte block pointed to by the Interrupt Bank (IB) register bit field. Further, memory constant data reads (in code space) and external data accesses may take place in banks other than the current bank. These banks are pointed to by the Memory Constant Bank pointer (MCB) and XRAM Bank pointer (MXB). These bit fields are located in MEX2 and MEX3 registers.

2.3.1 Memory Extension Stack

Interrupts and Calls in Memory Extension mode make use of a Memory Extension Stack, which is updated at the same time as the standard stack.

The Memory Extension Stack is addressed using the SFR Memory Extension Stack Pointer MEXSP. This read/write register provides for a stack depth of up to 128 bytes (Bit 7 is always 0). The SFR is pre-incremented by each call instruction that is executed, and post-decremented by return instructions. MEXSP is by default reset to $7F_H$ so that the first increment selects the bottom of the stack. No indication of stack overflow is provided.

2.3.2 Memory Extension Effects

The following instructions can change the 64-Kbyte block pointed to: MOVC, MOVX, LJMP, LCALL, ACALL, RET and RETI.

Relative jumps (e.g. SJMP), indirect jumps (JMP @A+DPTR) and absolute jumps within 2-Kbyte regions (AJMPs), however, will in no way change the current bank. In other words, these instructions do not deselect the active 64-Kbyte bank block.

Move Constant Instructions (MOVC)

MOVC instructions access data bytes in either the Current bank (CB19 – CB16) or a 'Memory Constant' bank, defined by the MCB19 – MCB16 bit field in MEX3 and MEX2. The bank selection is done by the MCM bit in MEX2 (MEX2.7).

Move External Data Instructions (MOVX)

MOVX instructions can either access data in the Current bank or a 'Data Memory' bank, defined by the MXB19 – MXB16 bits in MEX3. The bank selection is done by the MXM bit in MEX3 (MEX3.3).

Long Jump Instructions (LJMP)

When a jump to another bank of the Memory Extension is required, the Next Bank bits NB19 – NB16 in MEX1 (MEX1.3 – MEX1.0) must be set to the appropriate bank address before the LJMP instruction is executed. When the LJMP is encountered in the code, the Next Bank bits (NB19 – 16) are copied to the Current Bank bits CB19 – CB16 in MEX1 (MEX1.7 – MEX1.4) and appear on address bus at the beginning of the next program fetch cycle.

Note: The Next Bank Bits (NB19 – 16) are not changed by the jump.

CALL Instructions (LCALL and ACALL)

Whenever an LCALL occurs, the MMU carries out the following sequence of actions:

- 1. The Memory Extension Stack Pointer is incremented.
- 2. The MEX1 register bits are made available on data bus.
- 3. The MEXSP register bits [6:0] are made available on address lines.
- 4. The Memory Extension Stack read and write signals are set for a write operation.
- 5. A write is performed to the Memory Extension Stack.
- 6. The Next Bank bits NB19 NB16 (MEX1.3 MEX1.0) are copied to the CB19 CB16 bits (MEX1.7 MEX1.4).

Return Instructions (RET and RETI)


On leaving a subroutine, the MMU carries out the following sequence of actions:

- 1. The MEXSP register bits [6:0] are made available on address.
- 2. The Memory Extension Stack read and write signals are set for a read operation.
- 3. A read is performed on the Memory Extension Stack.
- 4. Memory Extension Stack data is written to the MEX1 register.
- 5. The Memory Extension Stack Pointer is decremented.

2.3.3 Memory Extension Registers

MEX1

Field	Bits	Туре	Description
NB[19:16]	[3:0]	rw	Next Bank Number
CB[19:16]	[7:4]	rh	Current Bank Number

MEX2

Memory Extension Register 2 Reset Value: 00_H 7 6 5 4 3 2 1 0 MCM MCB[18:16] IB[19:16] IB[19:16]

rw

rw

rw

Field	Bits	Туре	Description
IB[19:16]	[3:0]	rw	Interrupt Bank Number
MCB[18:16]	[6:4]	rw	Memory Constant Bank Number (with MEX3.7)
МСМ	7	rw	 Memory Constant Mode MOVC access data in the current bank MOVC access data in the Memory Constant bank

MEX3

Memory Extension Register 3 Reset Value								
7	6	5	4	3	2	1	0	
MCB19	()	MXB19	МХМ		MXB[18:16]		
rw		•	rw	rw		rw		

Field	Bits	Туре	Description	
MXB[19:16]	4, [2:0]	rw	XRAM Bank Number	
МХМ	3	rw	 XRAM Bank Selector MOVX access data in the current bank MOVX access data in the Memory XRAM bank 	
MCB19	7	rw	Memory Constant Bank Number MSB	
0	[6:5]	rw	Reserved Returns 0 if read; should be written with 0.	

MEXSP Memory Extension Stack Pointer Register Reset Value: 7F _H								
_	7	6	5	4	3	2	1	0
	0			1	MXSP			
-	r	1		I	rwh			<u> </u>

Field	Bits	Туре	Description
MXSP	[6:0]	rwh	Memory Extension Stack Pointer It provides for a stack depth of up to 128 bytes. It is pre-incremented by call instructions and post- decremented by return instructions.
0	7	r	Reserved Returns 0 if read; should be written with 0.

2.4 Instruction Timing

For memory access without wait state, a CPU machine cycle comprises two input clock periods referred to as Phase 1 (P1) and Phase 2 (P2) that correspond to two different CPU states. A CPU state within an instruction is denoted by reference to the machine cycle and state number, e.g., C2P1 is the first clock period within machine cycle 2. Memory accesses take place during one or both phases of the machine cycle. SFR writes only occur at the end of P2. An instruction takes one, two or four machine cycles to execute. Registers are generally updated and the next opcode read at the end of P2 of the last machine cycle for the instruction.

With each access to the Flash memory, instruction execution times are extended by one machine cycle (one wait state), starting from either P1 or P2.

Figure 2-2 shows the fetch/execute timing related to the internal states and phases. Execution of an instruction occurs at C1P1. For a 2-byte instruction, the second reading starts at C1P1.

Figure 2-2 (a) shows the timing diagrams for a 1-byte, 1-cycle ($1 \times$ machine cycle) instruction. The diagram shows the instruction being executed within one machine cycle since the opcode (C1P2) is fetched from a memory without wait state.

Figure 2-2 (b) shows the timing diagrams for a 2-byte, 1-cycle $(1 \times \text{machine cycle})$ instruction. The diagram shows the instruction being executed within one machine cycle since the second byte (C1P1) and the opcode (C1P2) are fetched from a memory without wait state.

Figure 2-2 (c) shows the timing diagrams of a 1-byte, 2-cycle ($2 \times$ machine cycle) instruction. The diagram shows the instruction being executed over two machine cycles with the opcode (C2P2) fetched from a memory without wait state.

Figure 2-2 CPU Instruction Timing

Instructions are 1, 2 or 3 bytes long as indicated in the "Bytes" column of **Table 2-1**. For the XC878, the time taken for each instruction includes:

- decoding/executing the fetched opcode
- fetching the operand/s (for instructions > 1 byte)
- fetching the first byte (opcode) of the next instruction (due to XC878 CPU pipeline)

Note: The XC878 CPU fetches the opcode of the next instruction while executing the current instruction.

Table 2-1 provides a reference for the number of clock cycles required by each instruction. This value applies to fetching operand(s) and opcode from fast program memory (e.g., Boot ROM and XRAM) without wait state. The instruction time for the standard 8051 processor is provided in the last column for performance comparison with the XC878 CPU. From these two sets of values, the XC878 CPU is able to executes instructions faster than the standard 8051 processor by a factor of six.

Mnemonic	Hex Code	Bytes	Number of f_{CCLK} Cycles		
			XC878 (no ws)	8051	
ARITHMETIC		·	·		
ADD A,Rn	28-2F	1	2	12	
ADD A,dir	25	2	2	12	
ADD A,@Ri	26-27	1	2	12	
ADD A,#data	24	2	2	12	
ADDC A,Rn	38-3F	1	2	12	
ADDC A,dir	35	2	2	12	
ADDC A,@Ri	36-37	1	2	12	
ADDC A,#data	34	2	2	12	
SUBB A,Rn	98-9F	1	2	12	
SUBB A,dir	95	2	2	12	
SUBB A,@Ri	96-97	1	2	12	
SUBB A,#data	94	2	2	12	
INC A	04	1	2	12	
INC Rn	08-0F	1	2	12	
INC dir	05	2	2	12	
INC @Ri	06-07	1	2	12	
DEC A	14	1	2	12	

Table 2-1 CPU Instruction Timing

XC878CLM

Processor Architecture

Table 2-1 CPU Instruction Timing (cont'd)

Mnemonic	Hex Code	Bytes	Number of f_{CCLK} Cycles		
			XC878 (no ws)	8051	
DEC Rn	18-1F	1	2	12	
DEC dir	15	2	2	12	
DEC @Ri	16-17	1	2	12	
INC DPTR	A3	1	4	24	
MUL AB	A4	1	8	48	
DIV AB	84	1	8	48	
DA A	D4	1	2	12	
LOGICAL				·	
ANL A,Rn	58-5F	1	2	12	
ANL A,dir	55	2	2	12	
ANL A,@Ri	56-57	1	2	12	
ANL A,#data	54	2	2	12	
ANL dir,A	52	2	2	12	
ANL dir,#data	53	3	4	24	
ORL A,Rn	48-4F	1	2	12	
ORL A,dir	45	2	2	12	
ORL A,@Ri	46-47	1	2	12	
ORL A,#data	44	2	2	12	
ORL dir,A	42	2	2	12	
ORL dir,#data	43	3	4	24	
XRL A,Rn	68-6F	1	2	12	
XRL A,dir	65	2	2	12	
XRL A,@Ri	66-67	1	2	12	
XRL A,#data	64	2	2	12	
XRL dir,A	62	2	2	12	
XRL dir,#data	63	3	4	24	
CLR A	E4	1	2	12	
CPL A	F4	1	2	12	
SWAP A	C4	1	2	12	

Table 2-1 CPU Instruction Timing (cont'd)

Mnemonic	Hex Code	Bytes	Number of f_{CCLK} Cycles		
			XC878 (no ws)	8051	
RL A	23	1	2	12	
RLC A	33	1	2	12	
RR A	03	1	2	12	
RRC A	13	1	2	12	
DATA TRANSFER				-	
MOV A,Rn	E8-EF	1	2	12	
MOV A,dir	E5	2	2	12	
MOV A,@Ri	E6-E7	1	2	12	
MOV A,#data	74	2	2	12	
MOV Rn,A	F8-FF	1	2	12	
MOV Rn,dir	A8-AF	2	4	24	
MOV Rn,#data	78-7F	2	2	12	
MOV dir,A	F5	2	2	12	
MOV dir,Rn	88-8F	2	4	24	
MOV dir,dir	85	3	4	24	
MOV dir,@Ri	86-87	2	4	24	
MOV dir,#data	75	3	4	24	
MOV @Ri,A	F6-F7	1	2	12	
MOV @Ri,dir	A6-A7	2	4	24	
MOV @Ri,#data	76-77	2	2	12	
MOV DPTR,#data	90	3	4	24	
MOVC A,@A+DPTR	93	1	4	24	
MOVC A,@A+PC	83	1	4	24	
MOVX A,@Ri	E2-E3	1	4	24	
MOVX A,@DPTR	E0	1	4	24	
MOVX @Ri,A	F2-F3	1	4	24	
MOVX @DPTR,A	F0	1	4	24	
PUSH dir	C0	2	4	24	
POP dir	D0	2	4	24	

2-15

Table 2-1 CPU Instruction Timing (cont'd)

Mnemonic	Hex Code	Bytes	Number of f_{CCLK} Cycles		
			XC878 (no ws)	8051	
XCH A,Rn	C8-CF	1	2	12	
XCH A,dir	C5	2	2	12	
XCH A,@Ri	C6-C7	1	2	12	
XCHD A,@Ri	D6-D7	1	2	12	
BOOLEAN					
CLR C	C3	1	2	12	
CLR bit	C2	2	2	12	
SETB C	D3	1	2	12	
SETB bit	D2	2	2	12	
CPL C	B3	1	2	12	
CPL bit	B2	2	2	12	
ANL C,bit	82	2	4	24	
ANL C,/bit	B0	2	4	24	
ORL C,bit	72	2	4	24	
ORL C,/bit	A0	2	4	24	
MOV C,bit	A2	2	2	12	
MOV bit,C	92	2	4	24	
BRANCHING					
ACALL addr11	11->F1	2	4	24	
LCALL addr16	12	3	4	24	
RET	22	1	4	24	
RETI	32	1	4	24	
AJMP addr 11	01->E1	2	4	24	
LJMP addr 16	02	3	4	24	
SJMP rel	80	2	4	24	
JC rel	40	2	4	24	
JNC rel	50	2	4	24	
JB bit,rel	20	3	4	24	
JNB bit,rel	30	3	4	24	

Mnemonic	Hex Code	Bytes	Number of f_{CCLK} Cycles		
			XC878 (no ws)	8051	
JBC bit,rel	10	3	4	24	
JMP @A+DPTR	73	1	4	24	
JZ rel	60	2	4	24	
JNZ rel	70	2	4	24	
CJNE A,dir,rel	B5	3	4	24	
CJNE A,#d,rel	B4	3	4	24	
CJNE Rn,#d,rel	B8-BF	3	4	24	
CJNE @Ri,#d,rel	B6-B7	3	4	24	
DJNZ Rn,rel	D8-DF	2	4	24	
DJNZ dir,rel	D5	3	4	24	
MISCELLANEOUS			·		
NOP	00	1	2	12	
ADDITIONAL INSTRUC	TIONS	•		•	
MOVC @(DPTR++),A	A5	1	4	-	
TRAP	A5	1	2	-	
	•				

Table 2-1 CPU Instruction Timing (cont'd)

3 Memory Organization

The XC878 CPU operates in the following five address spaces:

- 52/64 KBytes of Flash program memory
- 8 Kbytes of Boot ROM program memory
- 256 bytes of internal RAM data memory
- 3 Kbytes of XRAM memory (XRAM can be read/written as program memory or external data memory)
- a 128-byte Special Function Register area

Figure 3-1 illustrates the memory address spaces of the XC878 with 64K embedded Flash.

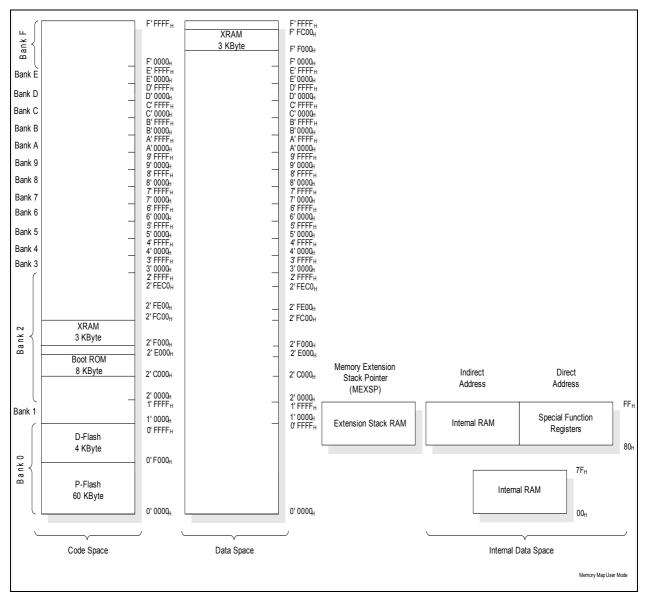


Figure 3-1 Memory Map of XC878 with 64K Flash Memory in user mode

Figure 3-2 illustrates the memory address spaces of the XC878 with 52K embedded Flash.

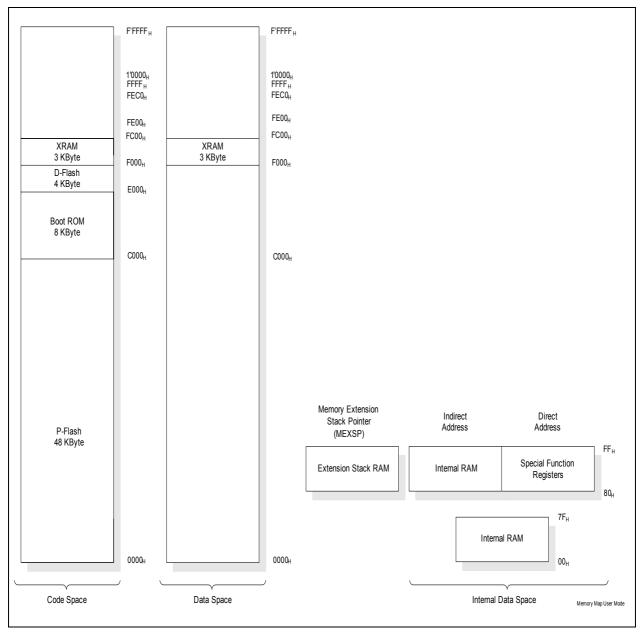


Figure 3-2 Memory Map of XC878 with 52K Flash Memory in user mode

3.1 **Program Memory**

The performance of the CPU is optimized with a dedicated interface for direct interfacing with the program memory without using any port pin. This means that a code fetch can occur on every rising edge of the clock. In XC878, program memory extension is accomplished with a 4-bit Current Bank pointer (CB) or the 4-bit Memory Constant Bank pointer (MC), selected by the MCM bit. The data is fetched from the 64-Kbyte block pointed to by CB or MC as described in **Chapter 2.3**. The program code is fetched from the 64-Kbyte block pointed to by CB or MC.

3.2 Data Memory

The data memory space consists of an internal and external memory space. The labels 'internal' and 'external' for data memory are used to distinguish between the register memory and the data space accessed using 'MOVX' instructions. They do not imply that the external data memory is located off-chip. In XC878, there is a 3-Kbyte of on-chip external data memory, XRAM. The internal data memory area is addressed using 8-bit addresses. The on-chip XRAM data memory are addressable by 8-bit or 16-bit indirect address with 'MOVX', additionally with up to 4-bit for selection of extended memory bank.

3.2.1 Internal Data Memory

The internal data memory is divided into three physically separate and distinct blocks: the 256-byte RAM, the 128-byte special function register (SFR) area and the 128-byte extension memory stack RAM. While the upper 128 bytes of RAM, the SFR area and the 128-byte extension memory stack RAM share the same address locations, they are accessed through different addressing modes. The lower 128 bytes of RAM can be accessed through direct or register indirect addressing, while the upper 128 bytes of RAM can be accessed through register indirect addressing only. The special function registers are accessible through direct addressing. As for the 128-byte extension memory stack RAM, they are not accessible directly. Its address is indicated via MEXSP register.

The 16 bytes of RAM that occupy addresses from $20_{\rm H}$ to $2F_{\rm H}$ are bit addressable. RAM occupying direct addresses from $30_{\rm H}$ to $7F_{\rm H}$ can be used as scratch pad registers or for used for the stack.

3.2.2 External Data Memory

The 3-Kbyte XRAM is mapped to both the external data memory area and the program memory area. It can be accessed using both 'MOVX' and 'MOVC' instructions.

The 'MOVX' instructions for XRAM access use either 8-bit or 16-bit indirect addresses. While the DPTR register is used for 16-bit addressing, either register R0 or R1 is used to form the 8-bit address. The upper byte of the XRAM address during execution of the 8-bit accesses is defined by the value stored in register XADDRH. Hence, the write instruction for setting the higher order XRAM address in register XADDRH must precede the 'MOVX' instruction.

To access on-chip XRAM and external data memory, the bank where the memories resides must also be selected with the 4-bit XRAM Bank pointer in MEX3.MXB (XRAM bank) or the 4-bit Current Bank pointer in MEX1.CB (current bank), depending on bit MXM. The data is fetched from the 64-Kbyte block pointed to by CB or MXB. It is further described in **Chapter 2.3**.

3.2.2.1 Accessing External Data Memory

Access to External Data Memory using the DPTR (16-bit addressing Mode)

The external data memory can be accessed by the 16-bit DPTR for indirect addressing. These instructions are:

- MOVX A, @DPTR (Read)
- MOVX @DPTR, A (Write)

If the address is pointing to the on-chip XRAM, the physically on-chip XRAM will be accessed. External data memory which is located in this address range, cannot be accessed because no external bus cycles will be generated. Before the execution of these instructions, corresponding bank must be set correctly.

Access to External Data Memory using the Register R0/R1 (8-bit addressing Mode)

The XC878 provides also instructions for accesses to external data memory and on-chip XRAM, which use the 8-bit address (indirect addressing with registers R0 or R1). These instructions are:

- MOVX A, @Ri (Read)
- MOVX @Ri, A (Write)

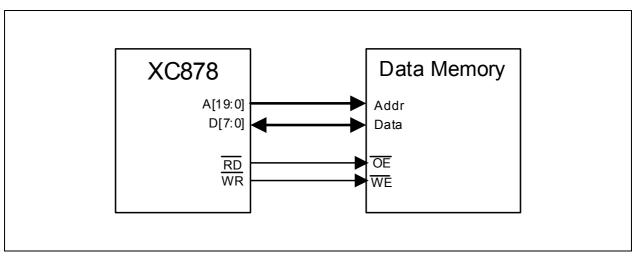
The contents of R0 or R1 in the current register bank provide an 8-bit address on the lowbyte address port. These eight bits are sufficient for external I/O expansion decoding or a relatively small RAM array. For somewhat larger arrays, any number of port pins can be used to output higher-order address bits. These pins would be controlled by an output instruction preceding the MOVX.

To differentiate between accesses of on-chip XRAM and external data memory, register XADDRH must be initialized. The upper byte of the address during execution of the 8-bit accesses is defined by the value stored in register XADDRH. If the content of the register points to the range FO_H to FB_H , and the correct bank is selected, on-chip XRAM (in the address range of $FOOO_H$ to $FBFF_H$) is accessed with the higher order address byte taking the value of the register content on the MOVX instruction. Hence, the write instruction for setting the higher order address in register XADDRH must precede the 'MOVX' instruction. External data memory which is located in this address range, cannot be accessed because no external bus cycles will be generated (address, data and control lines are held at high).

Otherwise outside of this range, the on-chip XRAM will not be accessed on MOVX instruction. Instead, external data memory can be accessed if the corresponding port pins (read, write, address pins etc.) are enabled for the alternate function.

Before these instructions execute, corresponding bank must be set correctly.

XADDRH


On-Chip X	(RAM Add	Reset	Value: F0 _H					
7	6	5	4	3	2	1	0	
ADDRH								
	<u> </u>							

Field	Bits	Туре	Description
ADDRH	7:0	rw	Higher Order of On-chip XRAM Address Enable The range of on-chip XRAM for XC878 is from $F0_H$ to FB_H . If the value written to this register is outside the range $F0_H$ to FB_H , there is no access to on-chip XRAM. Instead, external data memory can be accessed.

3.2.2.2 External Data Memory Interface

An external interface was provided in XC878 to expand data memory externally. The standard connection is shown in **Figure 3-3**. In XC878, only external data access is supported but not external code access. In addition, this interface only support memory access without wait state. If the application only access on-chip XRAM, the external interface ports can be used for other alternate function or as general purpose I/O. No external bus cycles are generated for on-chip XRAM access.

Register EINTCON is used to control the External Interface. When enabled by bit GLOBEN, the corresponding port pins are enabled for the external memory address (if enabled by bit ENAX/ENAH), data and control; regardless of the port's alternate select ALTSEL setting. The 8-bit data bus direction is controllable by the global bit DDIR, regardless of the port direction DIR setting. The contents of the corresponding port control bits ALTSEL and DIR remain unchanged by the setting in register EINTCON. Other port settings such as pull select and enable, drive strength, open drain is controlled by the standard port control registers. Please refer to Chapter 6 for more description regarding the port control registers.

EINTCON

External Interface Control Register Reset Value: 00_H 7 6 5 4 3 2 1 0 **ENA19 ENA18 ENA17 ENA16** ENAH DDIRW DDIR **GLOBEN** rw rw rw rw rw rw rw rw

Field	Bits	Туре	Description	
GLOBEN	0	rw	External Interface Global Enable0External interface is disabled1External interface is enabled	
DDIR	1	rw	 External Data Direction Select 0 Set data port as input 1 Set data port as output Can be switched dynamically in the application. 	
DDIRW	2	rw	 Enable Write Bit DDIR Only All bits of EINTCON can be written Only the bit DDIR can be written. The other bits of the register remain unchanged. 	
ENAH	3	rw	External Address High Byte Enable0Address lines A8 to A15 disabled1Address lines A8 to A15 enabled	
ENAx(x = 16-19)	[7:4]	rw	External Address Ax Individual Enable0Address line Ax disabled1Address line Ax enabled	

3.3 Memory Protection Strategy

The XC878 memory protection strategy includes:

- Basic Protection: The user is able to block any external access via the boot option to any memory. The OCDS functionality and the functions to download code to XRAM and Flash will be disabled.
- Read-out protection: The user is able to protect the contents in the Flash memory from being read. It is used to supplement the basic protection.
- Flash program and erase protection: The user is able to protect the contents in the Flash memory from accidental erasing and programming. This feature is used together with the read-out protection.

These protection strategies are enabled by programming a valid password (16-bit nonone value) via Bootstrap Loader (BSL) mode 6.

3.3.1 Flash Memory Protection

As long as a valid password is available, all external access to the device, including the Flash, will be blocked.

For additional security, the Flash hardware protection can be enabled to implement a second layer of read-out protection, as well as to enable program and erase protection.

Flash hardware protection is available and comes in two modes:

- Mode 0: Only the P-Flash is protected; the D-Flash is unprotected.
- Mode 1: Both the P-Flash and D-Flash are protected.

The selection of each protection mode and the restrictions imposed are summarized in **Table 3-1**.

Table 3-1 Flash Protection Modes								
Flash Protection	Without hardware protection	With hardware protect	lion					
Hardware Protection Mode	-	0	1					
Activation	Program a valid passw	ord via BSL mode 6						
Selection	Bit 13 of password = 0	Bit 13 of password = 1 MSB of password = 0	Bit 13 of password = 1 MSB of password = 1					
P-Flash contents can be read by	Read instructions in any P-Flash	Read instructions in the P-Flash	Read instructions in the P-Flash or D-Flash					
External access to P- Flash	Not possible	Not possible	Not possible					
P-Flash program and erase	Possible	Possible only on the condition that (MSB - 1) of password is set to 1	Possible only on the condition that (MSB - 1) of password is set to 1					
D-Flash contents can be read by	Read instructions in any P-Flash	Read instructions in any P-Flash	Read instructions in the P-Flash or D-Flash					
External access to D- Flash	Not possible	Not possible	Not possible					
D-Flash program	Possible	Possible	Possible, on the condition that (MSB - 1) of password is set to 1					
D-Flash erase	Possible	 Possible, on these conditions: MISC_CON.DFLASH EN bit is set to 1 prior to each erase operation; or the (MSB - 1) of password is set to 1 	to 1					

Table 3-1 Flash Protection Modes

In Flash hardware protection mode 0, an erase operation on the D-Flash block can proceed only if bit DFLASHEN in register MISC_CON is set to 1. At the end of each erase operation, DFLASHEN is cleared automatically by hardware. Hence, it is necessary to set DFLASHEN before each D-Flash erase operation. While the setting of DFLASHEN is taken care by the Bootstrap Loader (BSL) routine during D-Flash insystem erasing, DFLASHEN must be set by the user application code before starting each D-Flash in-application erasing. The extra step serves to prevent inadvertent destruction of the D-Flash contents.

The user programmable password must be of the format shown in Table 3-2.

Bits	Size	Usage	Value
15	1-bit	Flash hardware protection mode selection bit	 Flash hardware protection mode 0 is selected. Flash hardware protection mode 1 is selected.
14	1-bit	Flash memory program and erase selection bit	 Flash memory programming and erasing is blocked. Flash memory programming and erasing is not blocked.
13	1-bit	Flash hardware protection enable bit	 Flash hardware protection will not be activated. Flash hardware protection will be activated.
12	1-bit	Select field for Flash memory blocks to be erased during unprotection	 Only P-Flash are erased during unprotection. Both P-Flash and D-Flash are erased durng unprotection.
11:0	12-bit	User-defined password field	This password field can be of any value that the user desire with only one condition that bit 8 to bit 11 of this password must at least contain a zero value.

 Table 3-2
 User Programmable Password Bit Fields

BSL mode 6, which is used for enabling Flash protection, can also be used for disabling Flash protection. Here, the programmed password must be provided by the user. To disable the flash protection, a password match is required. A password match triggers an automatic erase of the protected P-Flash and D-Flash contents, including the programmed password. With a valid password, the Flash hardware protection is then enabled or disabled upon next reset. For the other protection strategies, no reset is necessary.

Although no protection scheme can be considered infallible, the XC878 memory protection strategy provides a very high level of protection for a general purpose microcontroller.

3.3.2 Miscellaneous Control Register

The MISC_CON register contains the DFLASHEN bit to enable the erase of a D-Flash block. This bit has no effect if the Flash hardware protection is not enabled or protection mode 1 is enabled.

MISC_CON

Miscellaneous Control Register

7	6	5	4	3	2	1	0
ADCETR0 _MUX	ADCETR1 _MUX		1	0	1	1	DFLASH- EN
r	r			r			rwh

Field	Bits	Туре	Description	
DFLASHEN	0	rwh	 D-Flash Block Enable 0 D-Flash block cannot be erased 1 D-Flash block can be erased This bit is reset by hardware after each D-Flash erase operation. <i>Note: Superfluous setting of this bit has no adverse effect on the XC878 system operation.</i> 	
0	[5:1]	r	Reserved Returns 0 if read; should be written with 0.	

3.4 Special Function Registers

The Special Function Registers (SFRs) occupy direct internal data memory space in the range 80_{H} to FF_H. All registers, except the program counter, reside in the SFR area. The SFRs include pointers and registers that provide an interface between the CPU and the on-chip peripherals. As the 128-SFR range is less than the total number of registers required, address extension mechanisms are required to increase the number of addressable SFRs. The address extension mechanisms include:

- Mapping
- Paging

3.4.1 Address Extension by Mapping

Address extension is performed at the system level by mapping. The SFR area is extended into two portions: the standard (non-mapped) SFR area and the mapped SFR area. Each portion supports the same address range 80_H to FF_H, bringing the number of addressable SFRs to 256. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit RMAP in the system control register SYSCON0 at address $8F_H$. To access SFRs in the mapped area, bit RMAP in SFR SYSCON0 must be set. However, the SFRs in the standard area can be accessed by clearing bit RMAP. Figure 3-4 shows how the SFR area can be selected.

As long as bit RMAP is set, the mapped SFR area can be accessed. This bit is not cleared automatically by hardware. Thus, before standard/mapped registers are accessed, bit RMAP must be cleared/set, respectively, by software.

XC878CLM

Memory Organization

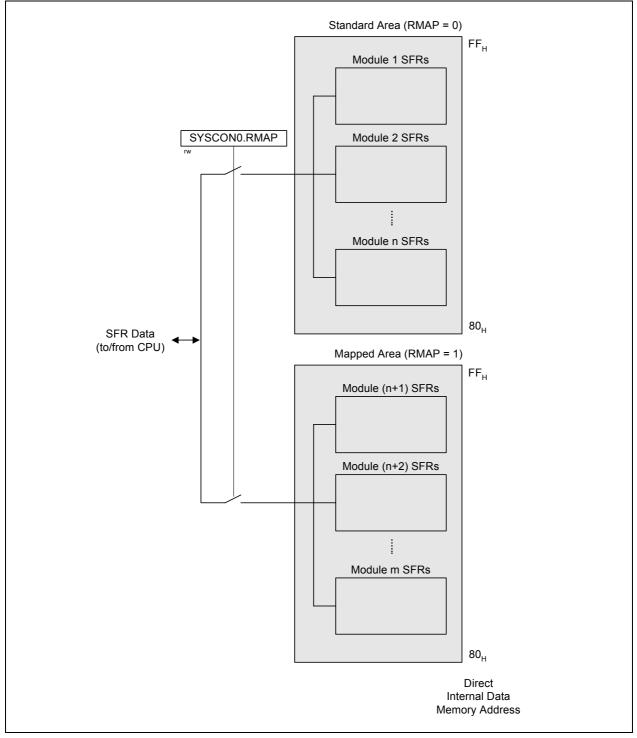


Figure 3-4 Address Extension by Mapping

3.4.1.1 System Control Register 0

The SYSCON0 register contains bits to select the SFR mapping and interrupt structure 2 mode.

SYSCON0

System Control Register 0

Reset Value: 04_H

7	6	5	4	3	2	1	0
	0	1	IMODE	0	1	0	RMAP
	r		rw	r	r	r	rw

Field	Bits	Туре	Description	
RMAP	0	rw	 Special Function Register Map Control 0 The access to the standard SFR area is enabled. 1 The access to the mapped SFR area is enabled. 	
0	2	r	Reserved Returns 1 if read; should be written with 1.	
0	[7:5], 3,1	r	Reserved Returns 0 if read; should be written with 0.	

Note: The RMAP bit should be cleared/set using ANL or ORL instructions.

3.4.2 Address Extension by Paging

Address extension is further performed at the module level by paging. With the address extension by mapping, the XC878 has a 256-SFR address range. However, this is still less than the total number of SFRs needed by the on-chip peripherals. To meet this requirement, some peripherals have a built-in local address extension mechanism for increasing the number of addressable SFRs. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit field PAGE in the module page register MOD_PAGE. Hence, the bit field PAGE must be programmed before accessing the SFRs of the target module. Each module may contain a different number of pages and a different number of SFRs per page, depending on the specific requirement. Besides setting the correct RMAP bit value to select the SFR area, the user must also ensure that a valid PAGE is selected to target the desired SFRs. Figure 3-5 shows how a page inside the extended address range can be selected.

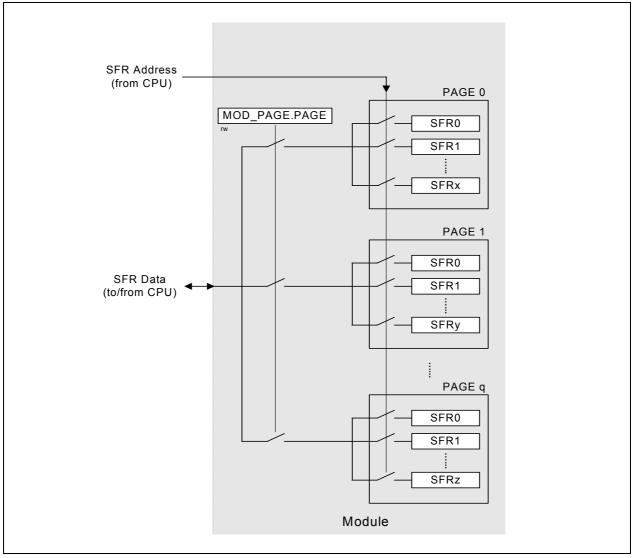


Figure 3-5 Address Extension by Paging

In order to access a register located in a page other than the current one, the current page must be exited. This is done by reprogramming the bit field PAGE in the page register. Only then can the desired access be performed.

If an interrupt routine is initiated between the page register access and the module register access, and the interrupt needs to access a register located in another page, the current page setting can be saved, the new one programmed, and the old page setting restored. This is possible with the storage fields STx (x = 0 - 3) for the save and restore action of the current page setting. By indicating which storage bit field should be used in parallel with the new page value, a single write operation can:

- Save the contents of PAGE in STx before overwriting with the new value (this is done at the beginning of the interrupt routine to save the current page setting and program the new page number); or
- Overwrite the contents of PAGE with the contents of STx, ignoring the value written to the bit positions of PAGE
 (this is done at the and of the interrupt resting to restore the restore the restore to the second section).

(this is done at the end of the interrupt routine to restore the previous page setting before the interrupt occurred)

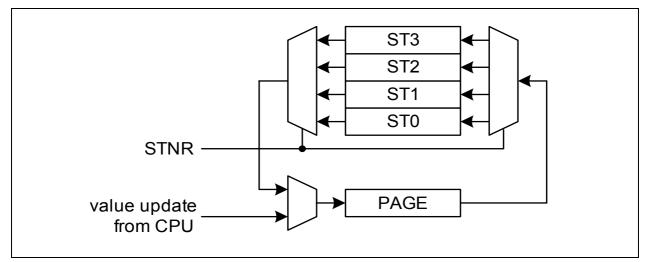


Figure 3-6 Storage Elements for Paging

With this mechanism, a certain number of interrupt routines (or other routines) can perform page changes without reading and storing the previously used page information. The use of only write operations makes the system simpler and faster. Consequently, this mechanism significantly improves the performance of short interrupt routines.

The XC878 supports local address extension for:

- Parallel Ports
- Analog-to-Digital Converter (ADC)
- Capture/Compare Unit 6 (CCU6)
- System Control Registers
- Timer 2 Capture/Compare Unit (T2CCU)

3.4.2.1 Page Register

The page register has the following definition:

MOD_PAGE

Page Register for module MOD

Reset Value: 00_H

7	6	5	4	3	2	1	0
0	P	STNR		0		PAGE	
L V	W		1	r		rwh	<u> </u>

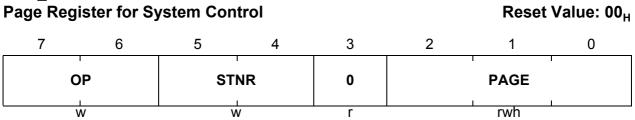
Field	Bits	Туре	Description
PAGE	[2:0]	rwh	Page Bits When written, the value indicates the new page. When read, the value indicates the currently active page.
STNR	[5:4]	W	Storage NumberThis number indicates which storage bit field is the target of the operation defined by bit field OP.If $OP = 10_B$, the contents of PAGE are saved in STx before being overwritten with the new value.If $OP = 11_B$, the contents of PAGE are overwritten by the contents of STx. The value written to the bit positions of PAGE is ignored.00ST0 is selected.01ST1 is selected.10ST2 is selected.11ST3 is selected.

XC878CLM

Memory Organization

Field	Bits	Туре	Description
OP	[7:6]	W	 Operation Manual page mode. The value of STNR is ignored and PAGE is directly written. New page programming with automatic page saving. The value written to the bit positions of PAGE is stored. In parallel, the previous contents of PAGE are saved in the storage bit field STx indicated by STNR. Automatic restore page action. The value written to the bit positions of PAGE is ignored and instead, PAGE is overwritten by the contents of the storage bit field STx indicated by STNR.
0	3	r	Reserved Returns 0 if read; should be written with 0.

3.4.3 Bit-Addressing


SFRs that have addresses in the form of $1XXXX000_B$ (e.g., 80_H , 88_H , 90_H , ..., $F0_H$, $F8_H$) are bitaddressable.

3.4.4 System Control Registers

The system control SFRs are used to control the overall system functionalities, such as interrupts, variable baud rate generation, clock management, bit protection scheme, oscillator and PLL control. The SFRs are located in the standard memory area (RMAP = 0) and are organized into 2 pages. The SCU_PAGE register is located at BF_{H} . It contains the page value and page control information.

SCU_PAGE

Field	Bits	Туре	Description
PAGE	[2:0]	rwh	Page Bits When written, the value indicates the new page. When read, the value indicates the currently active page.
STNR	[5:4]	W	Storage Number This number indicates which storage bit field is the target of the operation defined by bit field OP. If $OP = 10_B$, the contents of PAGE are saved in STx before being overwritten with the new value. If $OP = 11_B$, the contents of PAGE are overwritten by the contents of STx. The value written to the bit positions of PAGE is ignored.
			 ST0 is selected. ST1 is selected. ST2 is selected. ST3 is selected.

XC878CLM

Memory Organization

Field	Bits	Туре	Description
OP	[7:6]	W	 Operation Manual page mode. The value of STNR is ignored and PAGE is directly written. New page programming with automatic page saving. The value written to the bit positions of PAGE is stored. In parallel, the previous contents of PAGE are saved in the storage bit field STx indicated by STNR. Automatic restore page action. The value written to the bit positions of PAGE is overwritten by the contents of the storage bit field STx indicated by STNR.
0	3	r	Reserved Returns 0 if read; should be written with 0.

3.4.4.1 Bit Protection Scheme

The bit protection scheme prevents direct software writing of selected bits (i.e., protected bits) using the PASSWD register. When the bit field MODE is 11_B , writing 10011_B to the bit field PASS opens access to writing of all protected bits, and writing 10101_B to the bit field PASS closes access to writing of all protected bits. In both cases, the value of the bit field MODE is not changed even if PASSWD register is written with 98_H or $A8_H$. It can only be changed when bit field PASS is written with 11000_B , for example, writing D0_H to PASSWD register disables the bit protection scheme.

Note that access is opened for maximum 32 CCLKs if the "close access" password is not written. If "open access" password is written again before the end of 32 CCLK cycles, there will be a recount of 32 CCLK cycles. The protected bits include the N-, P- and K-Divider bits, NDIV, PDIV and KDIV; the PLL output bypass control, PLLBYP; the XTAL power down control, XPD; the oscillator source select, OSCSS; the PLL power down control, PLLPD; the Watchdog Timer enable bit, WDTEN; and the power-down and slow-down enable bits, PD and SD.

PASSWD **Password Register** Reset Value: 07_H 7 6 5 4 3 2 1 0 PROTECT MODE PASS _S rh rw w

Field	Bits	Туре	Description
MODE	[1:0]	rw	 Bit Protection Scheme Control bits 00 Scheme disabled - direct access to the protected bits is allowed. 11 Scheme enabled - the bit field PASS has to be written with the passwords to open and close the access to protected bits. (default) Others: Scheme Enabled These two bits cannot be written directly. To change the value between 11_B and 00_B, the bit field PASS must be written with 11000_B; only then, will the MODE[1:0] be registered.

XC878CLM

Memory Organization

Field	Bits	Туре	Description
PROTECT_S	2	rh	 Bit Protection Signal Status bit This bit shows the status of the protection. 0 Software is able to write to all protected bits. 1 Software is unable to write to any protected bits.
PASS	[7:3]	w	Password bitsThe Bit Protection Scheme only recognizes threepatterns. 11000_B Enables writing of the bit field MODE. 10011_B Opens access to writing of all protected bits. 10101_B Closes access to writing of all protected bits.

3.4.5 XC878 Register Overview

The SFRs of the XC878 are organized into groups according to their functional units. The contents (bits) of the SFRs are summarized in **Chapter 3.4.5.1** to **Chapter 3.4.5.15**.

Note: The addresses of the bitaddressable SFRs appear in bold typeface.

3.4.5.1 CPU Registers

The CPU SFRs can be accessed in both the standard and mapped memory areas (RMAP = 0 or 1).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
RMAP =	= 0 or 1											
81 _H	SP Reset: 07 _H	Bit Field	Field SP									
	Stack Pointer Register	Туре	rw									
82 _H	DPL Reset: 00 _H	Bit Field	DPL7	DPL6	DPL5	DPL4	DPL3	DPL2	DPL1	DPL0		
	Data Pointer Register Low	Туре	rw	rw	rw	rw	rw	rw	rw	rw		
83 _H	DPH Reset: 00 _H	Bit Field	DPH7	DPH6	DPH5	DPH4	DPH3	DPH2	DPH1	DPH0		
	Data Pointer Register High	Туре	rw	rw	rw	rw	rw	rw	rw	rw		
87 _H	PCON Reset: 00 _H	Bit Field	SMOD		0		GF1	GF0	0	IDLE		
	Power Control Register	Туре	rw		r		rw	rw	r	rw		
⁸⁸ H	TCON Reset: 00 _H	Bit Field	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0		
	Timer Control Register	Туре	rwh	rw	rwh	rw	rwh	rw	rwh	rw		
89 _H	H TMOD Reset: 00_H Timer Mode Register	Bit Field	GATE 1	T1S	T1M		GATE 0	TOS	ТОМ			
		Туре	rw	rw	r	w	rw	rw	r	W		
8A _H	TL0 Reset: 00 _H	Bit Field				V	AL					
	Timer 0 Register Low	Туре				rv	vh					
8B _H	TL1 Reset: 00 _H	Bit Field	VAL									
	Timer 1 Register Low	Туре	rwh									
8C _H	THO Reset: 00 _H	Bit Field				V	AL					
	Timer 0 Register High	Туре				rv	vh					
8D _H	TH1 Reset: 00 _H	Bit Field				V	AL					
	Timer 1 Register High	Туре				rv	vh					
94 _H	MEX1 Reset: 00 _H	Bit Field		C	В			N	IB			
	Memory Extension Register 1	Туре			r			r	w			
95 _H	MEX2 Reset: 00 _H	Bit Field	MCM MCB					I	В			
	Memory Extension Register 2	Туре	rw		rw			r	w			
96 _H	MEX3 Reset: 00 _H Memory Extension Register 3	Bit Field	MCB1 9	(0	MXB1 9	MXM		MXB			
		Туре	rw	r	w	rw	rw		rw			

Table 3-3 CPU Register Overview

Table 3-3CPU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
97 _H	MEXSP Reset: 7F _H	Bit Field	0		•		MXSP	•	•	•
	Memory Extension Stack Pointer Register	Туре	r rwh							
98 _H	SCON Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
	Serial Channel Control Register	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh
99 _H	SBUF Reset: 00 _H	Bit Field				V	4L			
	Serial Data Buffer Register	Туре				rv	/h			
A2 _H	H EO Reset: 00 _H Extended Operation Register			0		TRAP_ EN	0			DPSE L0
		Туре		r		rw		r		rw
A8 _H	IEN0 Reset: 00 _H	Bit Field	EA	0	ET2	ES	ET1	EX1	ET0	EX0
	Interrupt Enable Register 0	Туре	rw	r	rw	rw	rw	rw	rw	rw
B8 _H	IP Reset: 00 _H	Bit Field	0		PT2	PS	PT1	PX1	PT0	PX0
	Interrupt Priority Register	Туре	r		rw	rw	rw	rw	rw	rw
в9 _Н	⊣ IPH Reset: 00 _H	Bit Field	()	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
	Interrupt Priority High Register	Туре	1	r	rw	rw	rw	rw	rw	rw
D0 _H	PSW Reset: 00 _H	Bit Field	CY	AC	F0	RS1	RS0	OV	F1	Р
	Program Status Word Register	Туре	rwh	rwh	rw	rw	rw	rwh	rw	rh
E0 _H	ACC Reset: 00 _H	Bit Field	ACC7	ACC6	ACC5	ACC4	ACC3	ACC2	ACC1	ACC0
	Accumulator Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
E8 _H	IEN1 Reset: 00 _H Interrupt Enable Register 1	Bit Field	ECCIP 3	ECCIP 2	ECCIP 1	ECCIP 0	EXM	EX2	ESSC	EADC
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
F0 _H	B Reset: 00 _H	Bit Field	B7	B6	B5	B4	B3	B2	B1	B0
	B Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
F8 _H	IP1 Reset: 00 _H Interrupt Priority 1 Register	Bit Field	PCCIP 3	PCCIP 2	PCCIP 1	PCCIP 0	PXM	PX2	PSSC	PADC
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
F9 _H	IPH1 Reset: 00 _H Interrupt Priority 1 High Register	Bit Field	PCCIP 3H	PCCIP 2H	PCCIP 1H	PCCIP 0H	PXMH	PX2H	PSSC H	PADC H
		Туре	rw	rw	rw	rw	rw	rw	rw	rw

3.4.5.2 MDU Registers

The MDU SFRs can be accessed in the mapped memory area (RMAP = 1).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
RMAP =	= 1											
B0 _H	MDUSTAT Reset: 00 _H	Bit Field			0		BSY	IERR	IRDY			
	MDU Status Register	Туре			r		rh	rwh	rwh			
в1 _Н	MDUCON Reset: 00 _H MDU Control Register	Bit Field	IE	IR	RSEL	STAR T		OPC	ODE	•		
		Туре	rw rw rw rwh rw									
B2 _H	MD0 Reset: 00 _H	Bit Field	DATA									
	MDU Operand Register 0					r	w					
B2 _H	MR0 Reset: 00 _H	Bit Field				DA	TA					
	MDU Result Register 0	Туре				r	'n					
вз _Н	MD1 Reset: 00 _H	Bit Field				DA	ΤA					
	MDU Operand Register 1	Туре	rw									
вз _Н	MR1 Reset: 00 _H	Bit Field	DATA									
	MDU Result Register 1	Туре	rh									
B4 _H	MD2 Reset: 00 _H	Bit Field	DATA									
	MDU Operand Register 2	Туре	rw									
B4 _H	MR2 Reset: 00 _H	Bit Field	DATA									
	MDU Result Register 2	Туре	rh									
B5 _H	MD3 Reset: 00 _H	Bit Field	DATA									
	MDU Operand Register 3	Туре	rw									
B5 _H	MR3 Reset: 00 _H	Bit Field				DA	ΔTA					
	MDU Result Register 3	Туре				r	'n					
B6 _H	MD4 Reset: 00 _H	Bit Field				DA	ΤA					
	MDU Operand Register 4	Туре				r	w					
B6 _H	MR4 Reset: 00 _H	Bit Field				DA	ΤA					
	MDU Result Register 4	Туре	rh									
в7 _Н	MD5 Reset: 00 _H	Bit Field				DA	ΤA					
	MDU Operand Register 5	Туре				r	W					
в7 _Н	MR5 Reset: 00 _H	Bit Field				DA	ΔTA					
	MDU Result Register 5	Туре				r	'n					

Table 3-4 MDU Register Overview

0

BSY

rh ST

rwh

Memory Organization

CORDIC Registers 3.4.5.3

The CORDIC SFRs can be accessed in the mapped memory area (RMAP = 1).

Table	e 3-5 CORDIC Reg	jister O	vervie	W						
Addr	Register Name	Bit	7 6 5 4 3 2 1							
RMAP =	= 1							•		
9A _H	CD_CORDXL Reset: 00 _H	Bit Field				DA	TAL			
	CORDIC X Data Low Byte	Туре				r	W			
9B _H	CD_CORDXH Reset: 00 _H	Bit Field				DA	TAH			
	CORDIC X Data High Byte	Туре				r	w			
9CH	CD_CORDYL Reset: 00 _H	Bit Field				DA	TAL			
	CORDIC Y Data Low Byte	Туре		rw						
9D _H	CD_CORDYH Reset: 00 _H CORDIC Y Data High Byte	Bit Field	DATAH							
		Туре	rw							
9E _H	CD_CORDZL Reset: 00 _H	Bit Field	DATAL							
	CORDIC Z Data Low Byte	Туре	rw							
9F _H	CD_CORDZH Reset: 00 _H	Bit Field				DA	TAH			
	CORDIC Z Data High Byte	Туре				r	W			
А0 _Н	CD_STATC Reset: 00 _H CORDIC Status and Data Control Register	Bit Field	KEEP Z	KEEP Y	KEEP X	DMAP	INT_E N	EOC	ERRO R	
		Туре	rw	rw	rw	rw	rw	rwh	rh	
А1 _Н	CD_CON Reset: 00 _H CORDIC Control Register	Bit Field	М	PS	X_USI GN	ST_M ODE	ROTV EC	МС	MODE	
		Туре	r	w	rw	rw	rw	r	w	

-----. .

System Control Registers 3.4.5.4

The system control SFRs can be accessed in the mapped memory area (RMAP = 0).

Table 3-6	SCU Register Overviev	V
-----------	-----------------------	---

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0 or 1									1
8F _H	SYSCON0 Reset: 04 _H System Control Register 0	Bit Field		0		IMOD E	0	1	0	RMAP
		Туре		r		rw	r	r	r	rw
RMAP =	= 0									
bf _h	SCU_PAGE Reset: 00 _H	Bit Field	0	Р	ST	NR	0		PAGE	
	Page Register	Туре	v	1	,	N	r		rwh	
RMAP =	= 0, PAGE 0	•			•			•		

Table 3-6SCU Register Overview (cont'd)

	Bit	7	6	5	4	3	2	1	0
MODPISEL Reset: 00 _H Peripheral Input Select Register	Bit Field	0	URRIS H	JTAGT DIS	JTAGT CKS	EXINT2 IS	EXINT 1IS	EXINT 0IS	URRI S
	Туре	r	rw	rw	rw	rw	rw	rw	rw
IRCON0 Reset: 00 _H Interrupt Request Register 0	Bit Field	0	EXINT 6	EXINT 5	EXINT 4	EXINT3	EXINT 2	EXINT 1	EXINT 0
	Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh
IRCON1 Reset: 00 _H Interrupt Request Register 1	Bit Field	0	CANS RC2	CANS RC1	ADCS R1	ADCSR 0	RIR	TIR	EIR
	Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh
IRCON2 Reset: 00 _H Interrupt Request Register 2	Bit Field		0		CANS RC3		0		CANS RC0
	Туре		r		rwh		r		rwh
EXICON0 Reset: F0 _H	Bit Field	EXI	NT3	EXI	NT2	EXI	NT1	EXI	NT0
Register 0	Туре	r	W	r	w	n	N	n	N
EXICON1 Reset: 3F _H	Bit Field	()	EXI	NT6	EXI	NT5	EXI	NT4
External Interrupt Control Register 1	Туре	I	r	r	w	n	N	n	N
NMICON Reset: 00 _H NMI Control Register	Bit Field	0	NMI ECC	NMI VDDP	0	NMI OCDS	NMI FLASH	NMI PLL	NMI WDT
	Туре	r	rw	rw	r	rw	rw	rw	rw
NMISR Reset: 00 _H NMI Status Register	Bit Field	0	FNMI ECC	FNMI VDDP	0	FNMI OCDS	FNMI FLASH	FNMI PLL	FNMI WDT
	Туре	r	rwh	rwh	r	rwh	rwh	rwh	rwh
BCON Reset: 20 _H Baud Rate Control Register	Bit Field	BG	SEL	NDOV EN	BRDIS		BRPRE		R
	Туре	r	N	rw	rw		rw		rw
BG Reset: 00 _H	Bit Field				BR_\	/ALUE			
Register	Туре				n	wh			
FDCON Reset: 00 _H Fractional Divider Control	Bit Field	BGS	SYNE N	ERRS YN	EOFS YN	BRK	NDOV	FDM	FDEN
Register	Туре	rw	rw	rwh	rwh	rwh	rwh	rw	rw
FDSTEP Reset: 00 _H	Bit Field				ST	ΓEP			
Fractional Divider Reload Register	Туре				r	W			
FDRES Reset: 00 _H	Bit Field				RES	SULT			
Fractional Divider Result Register	Туре				I	rh			
0, PAGE 1									
ID Reset: 49 _H	Bit Field			PRODID				VERID	
Identity Register	Туре			r				r	
PMCON0 Reset: 80 _H	Bit Field	VDDP	WDT	WKRS	WK	SD	PD	W	/S
Power Mode Control Register 0		WARN	RST		SEL				
	Peripheral Input Select Register IRCON0 Reset: 00H Interrupt Request Register 0 IRCON1 Reset: 00H Interrupt Request Register 1 IRCON2 Reset: 00H Interrupt Request Register 1 IRCON2 Reset: 00H Interrupt Request Register 2 EXICON0 Reset: F0H External Interrupt Control Register 0 EXICON1 Reset: 3FH External Interrupt Control Register 1 NMICON Reset: 00H NMI Control Register NMI Control Register NMI Status Register Baud Rate Control Register Baud Rate Timer/Reload Register FDCON Reset: 00H Fractional Divider Control Register FDSTEP Reset: 00H Fractional Divider Reload Register FDRES Reset: 00H Fractional Divider Result Register O, PAGE 1 ID Reset: 49H	Peripheral Input Select Register Type Type IRCON0 Reset: 00H Interrupt Request Register 0 IRCON1 Reset: 00H Interrupt Request Register 1 Interrupt Request Register 1 INTUP IRCON2 Reset: 00H Interrupt Request Register 2 INUP INTUP INTUP Register 0 Reset: 00H External Interrupt Control Register 1 INTUP INTUP Reset: 00H INTUP	Peripheral Input Select Register TypeTyperIRCON0 Interrupt Request Register 0Bit Field0IRCON1 Interrupt Request Register 10Bit Field0IRCON2 Interrupt Request Register 2Bit Field0IRCON2 Interrupt Request Register 2Bit Field0Interrupt Request Register 2Bit Field0Interrupt Request Register 2Bit Field0Interrupt Request Register 2Bit FieldEXICInterrupt Request Register 3Bit FieldEXIReset: 50-H Register 0Bit FieldCOEXICON1 Reset: 3FH Reset: 00-H NMI Control RegisterBit Field0INICON NMI Status RegisterBit Field0NMISR Baud Rate Control RegisterBit Field0SCON Reset: 00-H Baud Rate Timer/Reload RegisterBit FieldBGFDCON RegisterReset: 00-H TypeBit FieldBGFDCON RegisterReset: 00-H TypeBit FieldBGFDCON RegisterReset: 00-H TypeBit FieldBGSFDCON RegisterReset: 00-H TypeBit FieldBGSFDCON RegisterReset: 00-H TypeBit FieldCOFDSTEP Reset: 00-H Fractional Divider ReloadBit FieldCOFDRES Reset: 00-H Fractional Divider ReloadBit FieldCOFDRES Reset: 00-H Fractional Divider ReloadBit FieldCOTypeTypeTypeTypeFDRES Reset: 00-H Frac	Peripheral Input Select Register Image: margeneric margeneri	Peripheral Input Select Register H DIS Type r rw rw rw IRCON0 Reset: 00H Bit Field 0 EXINT EXINT IRCON1 Reset: 00H Bit Field 0 CANS CANS Interrupt Request Register 0 Bit Field 0 CANS RC1 Type r rwh rwh RC1 Interrupt Request Register 0 Bit Field 0 CANS CANS Interrupt Request Register 0 Bit Field EXUNT3 EXI Reset: 00H Bit Field EXUNT3 EXI Register 0 Pit rw r Register 1 Type rw r NMICON Reset: 00H Bit Field 0 NMI NMIS Status Register Pit Field NO NMI NMI Status Register Pit Field BG NO NMI Register Type r rw NW	$\begin{array}{ c c c c c c } \mbox{Peripheral Input Select Register} \\ \hline Type & r & rw & rw & rw \\ \hline Type & r & rw & rw & rw \\ \hline Type & r & rw & rw & rw \\ \hline Type & r & rw & rw & rw \\ \hline Type & r & rwh & rwh & rwh \\ \hline Type & r & rwh & rwh & rwh \\ \hline Type & r & rwh & rwh & rwh \\ \hline Type & r & rwh & rwh & rwh \\ \hline Type & r & rwh & rwh & rwh \\ \hline Type & r & rwh & rwh & rwh \\ \hline Type & r & rwh & rwh & rwh \\ \hline Type & r & rwh & rwh & rwh \\ \hline Type & r & rwh & rwh & rwh \\ \hline Type & r & rwh & rwh & rwh \\ \hline Type & r & rwh & rwh & rwh \\ \hline Type & r & rwh & rwh & rwh \\ \hline Type & r & rwh & rwh & rwh \\ \hline Type & r & rwh & rwh & rwh \\ \hline Type & r & rwh & rwh & rwh \\ \hline Type & rwh & rwh & rwh \\ \hline Type & rwh & rwh & rwh & rwh \\ \hline Type & rwh & rwh & rwh & rwh \\ \hline Type & rwh & rwh & rwh & rwh \\ \hline Type & rwh & rwh & rwh & rwh \\ \hline Type & rwh & rwh & rwh & rwh \\ \hline Type & rwh & rwh & rwh & rwh \\ \hline Type & rwh & rwh & rwh & rwh \\ \hline Type & rwh & rwh & rwh & rwh \\ \hline Type & rwh & rwh & rwh & $	$\begin{array}{ c c c c c c } \mbox{Peripheral Input Select Register} \\ \hline Type & r & rw & rw & rw & rw \\ \hline Type & r & rw & rw & rw & rw \\ \hline Type & r & rw & rw & rw & rw \\ \hline Type & r & rw & rw & rw & rw \\ \hline Type & r & rwh & rwh & rwh & rwh \\ \hline Type & r & rwh & rwh & rwh \\ \hline Type & r & rwh & rwh & rwh \\ \hline Type & r & rwh & rwh & rwh \\ \hline Type & rwh & rwh & rwh & rwh \\ \hline Type & rwh & rwh & rwh & rwh \\ \hline Type & rwh & rwh & rwh & rwh \\ \hline Type & rwh & rwh & rwh & rwh \\ \hline Type & rwh & rwh & rwh & rwh \\ \hline Type & rwh & rwh & rwh & rwh \\ \hline Type & rwh & rwh & rwh & rwh \\ \hline Type & rwh & rwh & rwh & rwh & rwh \\ \hline Type & rwh & rwh & rwh & rwh \\ \hline Type & rwh & rwh & rwh & rwh & rwh \\ \hline Type & rwh & rwh & rwh & rwh & rwh \\ \hline Type & rwh & rwh & rwh & rwh & rwh \\ \hline Type & rwh \\ \hline Type & rwh &$	$\begin{split} \begin{tabular}{ c c c c c c } \hline Peripheral Input Select Register $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Table 3-6SCU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
в5 _Н	PMCON1 Reset: 00 _H Power Mode Control Register 1	Bit Field	0	CDC_ DIS	CAN_ DIS	MDU_ DIS	T2CCU _DIS	CCU_ DIS	SSC_ DIS	ADC_ DIS
		Туре	r	rw	rw	rw	rw	rw	rw	rw
в6 _Н	OSC_CON Reset: XX _H OSC Control Register	Bit Field	PLLRD RES	PLLBY P	PLLPD	0	XPD	OSC SS	EORD RES	EXTO SCR
		Туре	rwh	rwh	rw	r	rw	rwh	rwh	rh
в7 _Н	PLL_CON Reset: 18 _H PLL Control Register	Bit Field			N	DIV			PLLR	PLL_L OCK
		Туре			1	ſW			rh	rh
ва _Н	CMCON Reset: 10 _H Clock Control Register	Bit Field	KE	DIV	0	FCCF G		CLKI	REL	
		Туре	r	w	r	rw		rv	v	
вв _Н	PASSWD Reset: 07 _H Password Register	Bit Field			PASS			PROT ECT_S	МС	DE
		Туре			w	-		rh	r	N
ве _Н	COCON Reset: 00 _H	Bit Field	CO	UTS	TLEN	0		COF	REL	
	Clock Output Control Register	Туре	rw rw r rw				V			
E9 _H	MISC_CON Reset: 00 _H Miscellaneous Control Register	Bit Field	ADCE ADCE TR0_ TR1_ MUX MUX			0			DFLA SHEN	
		Туре	rw rw r				rwh			
EA _H	PLL_CON1 Reset: 20 _H	Bit Field		NDIV				PDIV		1
	PLL Control Register 1	Туре		rw						
EB _H	CR_MISC Reset: 00 _H or 01 _H Reset Status Register	Bit Field	CCCF G	MDUC CFG	CCUC CFG	T2CCF G		0		HDRS T
		Туре	rw	rw	rw	rw		r		rwh
RMAP =	: 0, PAGE 3									
B3 _H	XADDRH Reset: F0 _H	Bit Field				AD	DRH			
	On-chip XRAM Address Higher Order	Туре				I	w			
B4 _H	IRCON3 Reset: 00 _H Interrupt Request Register 3	Bit Field	()	CANS RC5	CCU6 SR1	()	CANS RC4	CCU6 SR0
		Туре		r	rwh	rwh		r	rwh	rwh
в5 _Н	IRCON4 Reset: 00 _H Interrupt Request Register 4	Bit Field	0		CANS RC7	CCU6 SR3	()	CANS RC6	CCU6 SR2
		Туре	r		rwh	rwh	I	r	rwh	rwh
в6 _Н	MODIEN Reset: 07 _H Peripheral Interrupt Enable	Bit Field	0			CM5E N	CM4EN	RIREN	TIREN	EIREN
	Register	Туре	r			rw rw		rw	rw	rw
в7 _Н	MODPISEL1 Reset: 00 _H Peripheral Input Select Register	Bit Field		EXINT6IS	6	UR1RIS T21EX S				
	1	Туре		rw		rw rw			w r	

Table 3-6	SCU Register Overview (cont'd)
-----------	--------------------------------

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
ba _h	MODPISEL2 Reset: 00 _H Peripheral Input Select Register	Bit Field	0			T2EXI S	T21IS	T2IS	T1IS	TOIS
	2	Туре	r		rw		rw	rw	rw	rw
вв _Н	PMCON2 Reset: 00 _H Power Mode Control Register 2	Bit Field				0			UART 1_DIS	T21_D IS
		Туре				r			rw	rw
вd _Н	MODSUSP Reset: 01 _H Module Suspend Control	Bit Field		0	CCTS USP	T21SU SP	T2SUS P	T13SU SP	T12SU SP	WDTS USP
	Register	Туре		r	rw	rw	rw	rw	rw	rw
be _h	MODPISEL3 Reset: 00 _H	Bit Field		0	С	IS	S	S	М	IS
	Peripheral Input Select Register 3	Туре	r		r	w	rw		n	N
EA _H	MODPISEL4 Reset: 00 _H	Bit Field	0		EXINT5IS		IS EXINT4IS		EXIN	T3IS
	Peripheral Input Select Register 4	Туре		r rw rw		rw		n	N	

3.4.5.5 WDT Registers

The WDT SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 3-7WDT Register Overview

	-										
Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	• 1										
вв _Н	WDTCON Reset: 00 _H Watchdog Timer Control	Bit Field		0	WINB EN	WDTP R	0	WDTE N	WDTR S	WDTI N	
	Register	Туре		r	rw	rh	r	rw	rwh	rw	
вс _Н	WDTREL Reset: 00 _H	Bit Field	WDTREL								
	Watchdog Timer Reload Register	Туре	rw								
вd _Н	WDTWINB Reset: 00 _H	Bit Field				WDT	WINB				
	Watchdog Window-Boundary Count Register	Туре				r	W				
be _H	WDTL Reset: 00 _H	Bit Field				W	DT				
	Watchdog Timer Register Low	Туре	rh								
bf _H	WDTH Reset: 00 _H	Bit Field	d WDT								
	Watchdog Timer Register High	Туре	rh								

3.4.5.6 Port Registers

The Port SFRs can be accessed in the standard memory area (RMAP = 0).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0									
B2 _H	PORT_PAGE Reset: 00 _H	Bit Field	C)P	ST	NR	0 PAGE		PAGE	
	Page Register	Туре	Ņ	w	١	N	r		rwh	
RMAP =	= 0, PAGE 0									
⁸⁰ H	P0_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Data Register	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
86 _H	P0_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Direction Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
90 _H	P1_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Data Register	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
91 _H	P1_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Direction Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
92 _H	P5_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Data Register	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
93 _H	P5_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Direction Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
B0 _H	P3_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Data Register	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
B1 _H	P3_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Direction Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
C8 _H	P4_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Data Register	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
C9 _H	P4_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Direction Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
RMAP =	= 0, PAGE 1									
⁸⁰ H	P0_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Pull-Up/Pull-Down Select Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
86 _H	P0_PUDEN Reset: C4 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Pull-Up/Pull-Down Enable Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
90 _H	P1_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Pull-Up/Pull-Down Select Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
91 _H	P1_PUDEN Reset: FF _H P1 Pull-Up/Pull-Down Enable	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw

Table 3-8 Port Register Overview

Table 3-8 Port Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
92 _H	P5_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Pull-Up/Pull-Down Select Register	Туре	rw							
93 _H	P5_PUDEN Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Pull-Up/Pull-Down Enable Register	Туре	rw							
B0 _H	P3_PUDSEL Reset: BF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Select Register	Туре	rw							
в1 _Н	P3_PUDEN Reset: 40 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Enable Register	Туре	rw							
C8 _H	P4_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Pull-Up/Pull-Down Select Register	Туре	rw							
C9 _H	P4_PUDEN Reset: 04 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Pull-Up/Pull-Down Enable Register	Туре	rw							
RMAP =	= 0, PAGE 2				•		•	•	•	
80 _H	P0_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Alternate Select 0 Register	Туре	rw							
86 _H	P0_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Alternate Select 1 Register	Туре	rw							
90 _H	P1_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Alternate Select 0 Register	Туре	rw							
91 _H	P1_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Alternate Select 1 Register	Туре	rw							
92 _H	P5_ALTSEL0 Reset: 00 _H P5 Alternate Select 0 Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	F 5 Alternate Select 0 Register	Туре	rw							
93 _H	P5_ALTSEL1 Reset: 00 _H P5 Alternate Select 1 Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	F 5 Alternate Select T Register	Туре	rw							
в0 _Н	P3_ALTSEL0 Reset: 00 _H P3 Alternate Select 0 Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	F5 Allemale Select 0 Register	Туре	rw							
B1 _H	P3_ALTSEL1 Reset: 00 _H P3 Alternate Select 1 Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	PS Allemale Select T Register	Туре	rw							
C8 _H	P4_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Alternate Select 0 Register	Туре	rw							
C9 _H	P4_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Alternate Select 1 Register	Туре	rw							
RMAP =	= 0, PAGE 3									
⁸⁰ H	P0_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Open Drain Control Register	Туре	rw							

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
86 _H	P0_DS Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Drive Strength Control Register	Туре	rw							
90 _H	P1_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Open Drain Control Register	Туре	rw							
91 _H	P1_DS Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Drive Strength Control Register	Туре	rw							
92 _H	P5_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Open Drain Control Register	Туре	rw							
93 _H	P5_DS Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Drive Strength Control Register	Туре	rw							
в0 _Н	P3_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Open Drain Control Register	Туре	rw							
в1 _Н	P3_DS Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Drive Strength Control Register	Туре	rw							
C8 _H	P4_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Open Drain Control Register	Туре	rw							
C9 _H	P4_DS Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Drive Strength Control Register	Туре	rw							

Table 3-8 Port Register Overview (cont'd)

3.4.5.7 ADC Registers

The ADC SFRs can be accessed in the standard memory area (RMAP = 0).

Table 3-9 ADC Register Overview

	•											
Addr	Register Name	Bit	7	6	5	4	3	3 2 1 0				
RMAP =	= 0				•	•						
D1 _H	ADC_PAGE Reset: 00 _H	Bit Field	C	P	ST	NR	0		PAGE			
	Page Register	Туре	N	N	,	w		rwh				
RMAP =	= 0, PAGE 0											
CAH	ADC_GLOBCTR Reset: 30 _H	Bit Field	ANON	DW	C.	тс	0					
	Global Control Register	Туре	rw	rw	rw			r				
св _Н	ADC_GLOBSTR Reset: 00 _H Global Status Register	Bit Field	(0		CHNR		0	SAMP LE	BUSY		
		Туре	l	r		rh		r	rh	rh		
cc ^H	ADC_PRAR Reset: 00 _H Priority and Arbitration Register	Bit Field	ASEN 1	ASEN 0	0	ARBM	CSM1	PRIO1	CSM0	PRIO0		
		Туре	rw rw r rw			rw	/ rw rw r					
CD _H	ADC_LCBR Reset: B7 _H	Bit Field	BOUND1			BOUND0						
	Limit Check Boundary Register	Туре	rw			rw						

Table 3-9 ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
Ceh	ADC_INPCR0 Reset: 00 _H	Bit Field			1	S	тс			
	Input Class 0 Register	Туре				r	W			
CF _H	ADC_ETRCR Reset: 00 _H External Trigger Control	Bit Field	SYNE N1	SYNE N0		ETRSEL	1		ETRSEL	0
	Register	Туре	rw	rw		rw			rw	
RMAP =	0, PAGE 1									
CA _H	ADC_CHCTR0 Reset: 00 _H	Bit Field	0		LCC		(0	RES	RSEL
	Channel Control Register 0	Туре	r		rw			r	r	W
св _Н	ADC_CHCTR1 Reset: 00 _H	Bit Field	0		LCC			0	RES	RSEL
	Channel Control Register 1	Туре	r		rw			r	r	w
сс _Н	ADC_CHCTR2 Reset: 00 _H	Bit Field	0		LCC		(0	RES	RSEL
	Channel Control Register 2	Туре	r		rw			r	r	W
CD _H	ADC_CHCTR3 Reset: 00 _H	Bit Field	0		LCC		(0	RES	RSEL
	Channel Control Register 3	Туре	r		rw			r	r	W
CEH	ADC_CHCTR4 Reset: 00 _H	Bit Field	0		LCC			0	RES	RSEL
	Channel Control Register 4	Туре	r		rw			r	r	W
CF _H	ADC_CHCTR5 Reset: 00 _H	Bit Field	0		LCC			0	RES	RSEL
	Channel Control Register 5	Туре	r	rw		r		rw		
D2 _H	ADC_CHCTR6 Reset: 00 _H	Bit Field	0		LCC			0	RES	RSEL
	Channel Control Register 6	Туре	r		rw			r rw		W
D3 _H	ADC_CHCTR7 Reset: 00 _H	Bit Field	0		LCC			0	RES	RSEL
	Channel Control Register 7	Туре	r		rw			r	r	W
RMAP =	0, PAGE 2									
CA _H	ADC_RESR0L Reset: 00 _H	Bit Field	RES	SULT	0	VF	DRC		CHNR	
	Result Register 0 Low	Туре	r	h	r	rh	rh		rh	
св _Н	ADC_RESR0H Reset: 00 _H	Bit Field				RES	BULT			
	Result Register 0 High	Туре				r	ħ			
сс ^Н	ADC_RESR1L Reset: 00 _H Result Register 1 Low	Bit Field	RES	SULT	0	VF	DRC		CHNR	
-		Туре	r	h	r	rh	rh		rh	
CD _H	ADC_RESR1H Reset: 00 _H Result Register 1 High	Bit Field				RES	SULT			
-		Туре				r	'n			
CEH	ADC_RESR2L Reset: 00 _H Result Register 2 Low	Bit Field	RES	SULT	0	VF	DRC		CHNR	
		Туре	r	'n	r	rh	rh		rh	
CF _H	ADC_RESR2H Reset: 00 _H	Bit Field				RES	SULT			
	Result Register 2 High	Туре				r	ħ			
D2 _H	ADC_RESR3L Reset: 00 _H	Bit Field	RES	SULT	0	VF	DRC		CHNR	
	Result Register 3 Low	Туре	r	h	r	rh	rh		rh	
D3 _H	ADC_RESR3H Reset: 00 _H Result Register 3 High	Bit Field				RES	SULT			
	nesuit negister 3 might	Туре				r	'n			

Table 3-9ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	0, PAGE 3									
CA _H	ADC_RESRA0L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR	
	Result Register 0, View A Low	Туре		rh		rh	rh		rh	
св _н	ADC_RESRA0H Reset: 00 _H	Bit Field				RES	ULT			
	Result Register 0, View A High	Туре				r	h			
сс _Н	ADC_RESRA1L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR	
	Result Register 1, View A Low	Туре		rh		rh	rh		rh	
CD _H	ADC_RESRA1H Reset: 00 _H	Bit Field				RES	ULT	•		
	Result Register 1, View A High	Туре				r	h			
CeH	ADC_RESRA2L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR	
	Result Register 2, View A Low	Туре		rh		rh	rh		rh	
CF _H	ADC_RESRA2H Reset: 00 _H	Bit Field				RES	ULT			
	Result Register 2, View A High	Туре				r	h			
D2 _H	ADC_RESRA3L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR	
	Result Register 3, View A Low	Туре		rh		rh	rh		rh	
D3 _H	ADC_RESRA3H Reset: 00 _H	Bit Field				RES	ULT			
	Result Register 3, View A High	Туре				r	h			
RMAP =	= 0, PAGE 4									
CA _H	ADC_RCR0 Reset: 00 _H Result Control Register 0	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
св _Н	ADC_RCR1 Reset: 00 _H Result Control Register 1	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
сс _Н	ADC_RCR2 Reset: 00 _H Result Control Register 2	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
CD _H	ADC_RCR3 Reset: 00 _H Result Control Register 3	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
CEH	ADC_VFCR Reset: 00 _H	Bit Field)		VFC3	VFC2	VFC1	VFC0
	Valid Flag Clear Register	Туре			r		w	w	w	w
RMAP =	0, PAGE 5									
CA _H	ADC_CHINFR Reset: 00 _H Channel Interrupt Flag Register	Bit Field	CHINF 7	CHINF 6	CHINF 5	CHINF 4	CHINF 3	CHINF 2	CHINF 1	CHINF 0
		Туре	rh							
св _Н	ADC_CHINCR Reset: 00 _H Channel Interrupt Clear Register	Bit Field	CHINC 7	CHINC 6	CHINC 5	CHINC 4	CHINC 3	CHINC 2	CHINC 1	CHINC 0
		Туре	w	w	w	w	w	w	w	w

Table 3-9 ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
cc ^H	ADC_CHINSR Reset: 00 _H Channel Interrupt Set Register	Bit Field	CHINS 7	CHINS 6	CHINS 5	CHINS 4	CHINS 3	CHINS 2	CHINS 1	CHINS 0	
		Туре	w	w	w	w	w	w	w	w	
CDH	ADC_CHINPR Reset: 00 _H Channel Interrupt Node Pointer	Bit Field	CHINP 7	CHINP 6	CHINP 5	CHINP 4	CHINP 3	CHINP 2	CHINP 1	CHINP 0	
	Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw	
Ceh	ADC_EVINFR Reset: 00 _H Event Interrupt Flag Register	Bit Field	EVINF 7	EVINF 6	EVINF 5	EVINF 4	(0	EVINF 1	EVINF 0	
		Туре	rh	rh	rh	rh		r	rh	rh	
CF _H	ADC_EVINCR Reset: 00 _H Event Interrupt Clear Flag	Bit Field	EVINC 7	EVINC 6	EVINC 5	EVINC 4	(0	EVINC 1	EVINC 0	
	Register	Туре	W	w	w	w		r	w	w	
D2 _H	ADC_EVINSR Reset: 00 _H Event Interrupt Set Flag Register	Bit Field	EVINS 7	EVINS 6	EVINS 5	EVINS 4	(0	EVINS 0		
		Туре	w	w	w	w		r w w 0 EVINP EVIN			
D3 _H	ADC_EVINPR Reset: 00 _H Event Interrupt Node Pointer	Bit Field	EVINP 7	EVINP 6	EVINP 5	EVINP 4	(0	EVINP 0		
	Register	Туре	rw	rw	rw	rw	r rw rw				
RMAP =	= 0, PAGE 6										
CA _H	ADC_CRCR1 Reset: 00 _H	Bit Field	CH7	CH6	CH5	CH4		()		
	Conversion Request Control Register 1	Туре	rwh	rwh	rwh	rwh		l	r		
св _Н	ADC_CRPR1 Reset: 00 _H	Bit Field	CHP7	CHP6	CHP5	CHP4		()		
	Conversion Request Pending Register 1	Туре	rwh	rwh	rwh	rwh		I	r		
сс ^Н	ADC_CRMR1 Reset: 00 _H Conversion Request Mode	Bit Field	Rsv	LDEV	CLRP ND	SCAN	ENSI	ENTR	0	ENGT	
	Register 1	Туре	r	w	w	rw	rw	rw	r	rw	
CD _H	ADC_QMR0 Reset: 00 _H Queue Mode Register 0	Bit Field	CEV	TREV	FLUS H	CLRV	0	ENTR	0	ENGT	
		Туре	w	w	w	w	r	rw	r	rw	
Ceh	ADC_QSR0 Reset: 20 _H Queue Status Register 0	Bit Field	Rsv	0	EMPT Y	EV	(0	FI	LL	
		Туре	r	r	rh	rh		r	r	h	
CF _H	ADC_Q0R0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	V	0	0 REQCHNR			
	Queue 0 Register 0	Туре	rh	rh	rh	rh	r	r rh			
D2 _H	ADC_QBUR0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	V	0	0 REQCHNR			
	Queue Backup Register 0	Туре	rh	rh	rh	rh	r rh				
D2 _H	ADC_QINR0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	(0 REQCHNR			२	
	Queue Input Register 0	Туре	w	w	w		r	w			

3.4.5.8 Timer 2 Compare/Capture Unit Registers

The Timer 2 Compare/Capture Unit SFRs can be accessed in the standard memory area (RMAP = 0).

Table 3-10 T2CCU Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
RMAP =	= 0											
C7 _H	T2_PAGE Reset: 00 _H	Bit Field	0	Ρ	ST	NR	0		PAGE			
	Page Register	Туре	v	v	v	N	r		rwh			
RMAP =	0, PAGE 0	1										
со ^н	T2_T2CONReset: 00Timer 2 Control Register	Bit Field	TF2	EXF2	(0	EXEN 2	TR2	C/T2	CP/ RL2		
		Туре	rwh	rwh	I	r	rw	rwh	rw	rw		
C1 _H	T2_T2MOD Reset: 00 _H Timer 2 Mode Register	Bit Field	T2RE GS	T2RH EN	EDGE SEL	PREN		T2PRE		DCEN		
		Туре	rw	rw	rw	rw		rw		rw		
C2 _H	T2_RC2L Reset: 00 _H	Bit Field				R	C2	2				
	Timer 2 Reload/Capture Register Low	Туре				rv	vh					
C3 _H	T2_RC2H Reset: 00 _H	Bit Field				R	C2					
	Timer 2 Reload/Capture Register High	Туре				rv	vh					
C4 _H	T2_T2L Reset: 00 _H	Bit Field				TH	IL2					
	Timer 2 Register Low	Туре				rv	vh					
C5 _H	T2_T2H Reset: 00 _H	Bit Field				T⊦	IL2					
	Timer 2 Register High	Туре				rv	vh					
C6 _H	T2_T2CON1Reset: 03 _H Timer 2 Control Register 1	Bit Field			(0			TF2EN	EXF2E N		
		Туре			l	r			rw	rw		
RMAP =	= 0, PAGE 1											
C0 _H	T2CCU_CCEN Reset: 00 _H	Bit Field	CC	М3	CC	M2	CC	M1	CC	MO		
	T2CCU Capture/Compare Enable Register	Туре	n	N	r	w	r	w	r	w		
C1 _H	T2CCU_CCTBSELReset: 00 _H T2CCU Capture/Compare Time	Bit Field	CASC	CCTT OV	CCTB 5	CCTB 4	CCTB 3	CCTB 2	CCTB 1	CCTB 0		
	Base Select Register	Туре	rw	rwh	rw	rw	rw	rw	rw	rw		
C2 _H	T2CCU_CCTRELLReset: 00 _H	Bit Field	eld CCTREL									
	T2CCU Capture/Compare Timer Reload Register Low	Туре				r	w					
C3 _H	T2CCU_CCTRELHReset: 00H	Bit Field				CCT	REL					
	T2CCU Capture/Compare Timer Reload Register High	Туре				r	w					
C4 _H	T2CCU_CCTL Reset: 00 _H	Bit Field				C	СТ					
	T2CCU Capture/Compare Timer Register Low	Туре				rv	vh					

Table 3-10 T2CCU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
C5 _H	T2CCU_CCTH Reset: 00 _H	Bit Field				C	СТ				
	T2CCU Capture/Compare Timer Register High	Туре				rv	vh				
C6 _H	T2CCU_CCTCON Reset: 00 _H T2CCU CaptureCcompare	Bit Field		ССТ	PRE		CCTO VF	CCTO VEN	TIMSY N	CCTS T	
	Timer Control Register	Туре		r	W		rwh	rw	rw	rw	
RMAP =	= 0, PAGE 2										
C0H	T2CCU_COSHDWReset: 00 _H T2CCU Compare Shadow	Bit Field	ENSH DW	TXOV	COOU T5	COOU T4	COOU T3	COOU T2	COOU T1	COOU T0	
	Register	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	
C1 _H	T2CCU_CC0L Reset: 00 _H T2CCU Capture/Compare	Bit Field				CC/	/ALL				
	Register 0 Low	Туре				rv	vh				
C2 _H	T2CCU_CC0H Reset: 00 _H	Bit Field	eld CCVALH								
	T2CCU Capture/compare Register 0 High	Туре	rwh								
C3 _H	T2CCU_CC1L Reset: 00 _H	Bit Field	rwh								
	T2CCU Capture/compare Register 1 Low	Туре									
C4 _H	T2CCU_CC1H Reset: 00 _H	Bit Field				CCV	/ALH				
	T2CCU Capture/compare Register 1 High	Туре				rv	vh				
C5 _H	T2CCU_CC2L Reset: 00 _H	Bit Field				CC/	/ALL				
	T2CCU Capture/compare Register 2 Low	Туре				rv	vh				
C6 _H	T2CCU_CC2H Reset: 00 _H	Bit Field				CCV	/ALH				
	T2CCU Capture/compare Register 2 High	Туре				rv	vh				
RMAP =	= 0, PAGE 3										
C0 _H	T2CCU_COCON Reset: 00 _H T2CCU Compare Control	Bit Field	CCM5	CCM4	CM5F	CM4F	POLB	POLA	CON	NOD	
	Register	Туре	rw	rw	rwh	rwh	rw	rw	r	W	
C1 _H	T2CCU_CC3L Reset: 00 _H T2CCU Capture/compare	Bit Field				CC/	/ALL				
	Register 3 Low	Туре				rv	vh				
C2 _H	T2CCU_CC3H Reset: 00 _H	Bit Field				CCV	/ALH				
	T2CCU Capture/compare Register 3 High	Туре				rv	vh				
C3 _H	T2CCU_CC4L Reset: 00 _H	Bit Field				CC/	/ALL				
	T2CCU Capture/compare Register 4 Low	Туре	rwh								
C4 _H	T2CCU_CC4H Reset: 00 _H	Bit Field				CCV	/ALH				
	T2CCU Capture/compare Register 4 High	Туре				rv	vh				
C5 _H	T2CCU_CC5L Reset: 00 _H	Bit Field				CC/	/ALL				
	T2CCU Capture/compare Register 5 Low	Туре				rv	vh				
C6 _H	T2CCU_CC5H Reset: 00 _H	Bit Field				CCV	/ALH				
	T2CCU Capture/compare Register 5 High	Туре				rv	vh				

Table 3-10 T2CCU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	0, PAGE 4									
C2 _H	T2CCU_CCTDTCLReset: 00H	Bit Field				D	ГМ			
	T2CCU Capture/Compare Timer Dead-Time Control Register Low	Туре	rw							
C3 _H	T2CCU_CCTDTCHReset: 00 _H T2CCU Capture/Compare	Bit Field	DTRE S	DTR2	DTR1	DTR0	DTLEV	DTE2	DTE1	DTE0
	Timer Dead-Time Control Register High	Туре	rwh	rh	rh	rh	rw	rw	rw	rw

3.4.5.9 Timer 21 Registers

The Timer 21 SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 3-11T21 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
RMAP =	= 1											
C0H	T21_T2CONReset: 00HTimer 2 Control Register	Bit Field	TF2	EXF2	()	EXEN 2	TR2	C/T2	CP/ RL2		
		Туре	rwh	rwh	1	r	rw	rwh	rw	rw		
C1 _H	T21_T2MODReset: 00HTimer 2 Mode Register	Bit Field	T2RE GS	T2RH EN	EDGE SEL	PREN		T2PRE		DCEN		
		Туре	rw	rw	rw	rw	rw rw rw r					
C2 _H	T21_RC2L Reset: 00 _H	Bit Field				R	C2					
	Timer 2 Reload/Capture Register Low	Туре				rv	vh					
C3 _H	T21_RC2H Reset: 00 _H	Bit Field				R	02					
	Timer 2 Reload/Capture Register High	Туре				rv	vh					
C4 _H	T21_T2L Reset: 00 _H	Bit Field				TH	IL2					
	Timer 2 Register Low	Туре				rv	vh					
C5 _H	T21_T2H Reset: 00 _H	Bit Field				TH	IL2					
	Timer 2 Register High	Туре				rv	vh					
C6 _H	T21_T2CON1 Reset: 03 _H Timer 2 Control Register 1	Bit Field			()			TF2EN	EXF2E N		
		Туре	r rw rw									

3.4.5.10 CCU6 Registers

The CCU6 SFRs can be accessed in the standard memory area (RMAP = 0).

Table 3-12 CCU6 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
RMAP =	= 0	1										
A3 _H	CCU6_PAGE Reset: 00 _H	Bit Field	C	P	ST	NR	0		PAGE			
	Page Register	Туре	Ň	v	۱ ۱	N	r		rwh			
RMAP =	= 0, PAGE 0											
9A _H	CCU6_CC63SRL Reset: 00 _H	Bit Field				CC6	3SL					
	Capture/Compare Shadow Register for Channel CC63 Low	Туре				r	w					
9B _H	CCU6_CC63SRH Reset: 00 _H	Bit Field				CC63SH						
	Capture/Compare Shadow Register for Channel CC63 High	Туре				rw						
9CH	CCU6_TCTR4L Reset: 00 _H Timer Control Register 4 Low	Bit Field	T12 STD	T12 STR		0	DT RES	T12 RES	T12R S	T12R R		
		Туре	w	w		r	w	w w w v				
9D _H	CCU6_TCTR4H Reset: 00 _H Timer Control Register 4 High	Bit Field	T13 STD	T13 STR		0		T13 T13R T1 RES S				
		Туре	w	w		r		w				
9E _H	CCU6_MCMOUTSL Reset: 00 _H Multi-Channel Mode Output Shadow	Bit Field	STRM CM	0			MCMPS					
	Register Low	Туре	w	r			r	rw				
9F _H	CCU6_MCMOUTSH Reset: 00 _H Multi-Channel Mode Output Shadow	Bit Field	STRH P	0		CURHS			EXPHS			
	Register High	Туре	w	r		rw			rw			
A4 _H	CCU6_ISRL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	RT12 PM	RT12 OM	RCC6 2F	RCC6 2R	RCC6 1F	RCC6 1R	RCC6 0F	RCC6 0R		
	Reset Register Low	Туре	w	w	w	w	w	w	w	w		
A5 _H	CCU6_ISRH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	RSTR	RIDLE	RWH E	RCHE	0	RTRP F	RT13 PM	RT13 CM		
	Reset Register High	Туре	w	w	w	w	r	w	w	w		
A6 _H	CCU6_CMPMODIFL Reset: 00 _H Compare State Modification Register	Bit Field	0	MCC6 3S		0		MCC6 2S	MCC6 1S	MCC6 0S		
	Low	Туре	r	w		r		w	w	w		
а7 _Н	CCU6_CMPMODIFH Reset: 00 _H Compare State Modification Register	Bit Field	0	MCC6 3R						MCC6 0R		
	High	Туре	r	w		r		w	w	w		
FA _H	CCU6_CC60SRL Reset: 00 _H	Bit Field			CC60SL							
	Capture/Compare Shadow Register for Channel CC60 Low	Туре			rwh							
FB _H	CCU6_CC60SRH Reset: 00 _H	Bit Field			CC60SH							
	Capture/Compare Shadow Register for Channel CC60 High	Туре			rwh							

Table 3-12 CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
FC _H	CCU6_CC61SRL Reset: 00 _H	Bit Field		<u> </u>	<u> </u>	CC6	51SL			
	Capture/Compare Shadow Register for Channel CC61 Low	Туре				rv	vh			
FD _H	CCU6_CC61SRH Reset: 00 _H	Bit Field				CC6	51SH			
	Capture/Compare Shadow Register for Channel CC61 High	Туре				rv	vh			
Fe _H	CCU6_CC62SRL Reset: 00 _H	Bit Field				CC6	S2SL			
	Capture/Compare Shadow Register for Channel CC62 Low	Туре				rv	vh			
FF _H	CCU6_CC62SRH Reset: 00 _H	Bit Field				CC6	2SH			
	Capture/Compare Shadow Register for Channel CC62 High	Туре				rv	vh			
RMAP =	= 0, PAGE 1									
9A _H	CCU6_CC63RL Reset: 00 _H	Bit Field				CC6	3VL			
	Capture/Compare Register for Channel CC63 Low	Туре				r	h			
98 _Н	CCU6_CC63RH Reset: 00 _H	Bit Field				CC6	3VH			
	Capture/Compare Register for Channel CC63 High	Туре				r	h			
9CH	CCU6_T12PRL Reset: 00 _H	Bit Field				T12	PVL			
	Timer T12 Period Register Low	Туре				rv	vh			
9D _H	CCU6_T12PRH Reset: 00 _H	Bit Field				T12	PVH			
	Timer T12 Period Register High	Туре				rv	vh			
9E _H	CCU6_T13PRL Reset: 00 _H Timer T13 Period Register Low	Bit Field				T13	PVL			
		Туре				rv	vh			
9F _H	CCU6_T13PRH Reset: 00 _H Timer T13 Period Register High	Bit Field				T13	PVH			
		Туре				rv	vh			
A4 _H	CCU6_T12DTCL Reset: 00 _H Dead-Time Control Register for	Bit Field				D	ГМ			
	Timer T12 Low	Туре				r	w			
А5 _Н	CCU6_T12DTCH Reset: 00 _H Dead-Time Control Register for	Bit Field	0	DTR2	DTR1	DTR0	0	DTE2	DTE1	DTE0
	Timer T12 High	Туре	r	rh	rh	rh	r	rw	rw	rw
A6 _H	CCU6_TCTR0L Reset: 00 _H Timer Control Register 0 Low	Bit Field	СТМ	CDIR	STE1 2	T12R	T12 PRE		T12CLK	
		Туре	rw	rh	rh	rh	rw		rw	
а7 _Н	CCU6_TCTR0H Reset: 00 _H Timer Control Register 0 High	Bit Field		0	STE1 3	T13R	T13 PRE		T13CLK	
		Туре		r	rh	rh	rw		rw	
FA _H	CCU6_CC60RL Reset: 00 _H	Bit Field				CC6	60VL	1		
	Capture/Compare Register for Channel CC60 Low	Туре				r	h			
FB _H	CCU6_CC60RH Reset: 00 _H	Bit Field				CC6	60VH			
	Capture/Compare Register for Channel CC60 High	Туре				r	h			
FC _H	CCU6_CC61RL Reset: 00 _H	Bit Field				CC6	61VL			
	Capture/Compare Register for Channel CC61 Low	Туре				r	h			

Table 3-12 CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
FD _H	CCU6_CC61RH Reset: 00 _H	Bit Field				CC6	1VH			
	Capture/Compare Register for Channel CC61 High	Туре				r	h			
Fe _H	CCU6_CC62RL Reset: 00 _H	Bit Field				CC6	2VL			
	Capture/Compare Register for Channel CC62 Low	Туре				r	h			
FF _H	CCU6_CC62RH Reset: 00 _H	Bit Field				CC6	2VH			
	Capture/Compare Register for Channel CC62 High	Туре				r	h			
RMAP =	0, PAGE 2									
9A _H	CCU6_T12MSELL Reset: 00 _H	Bit Field		MS	EL61			MSE	EL60	
	T12 Capture/Compare Mode Select Register Low	Туре		r	w			r	w	
9B _H	CCU6_T12MSELH Reset: 00 _H T12 Capture/Compare Mode Select	Bit Field	DBYP		HSYNC			MSE	EL62	
	Register High	Туре	rw		rw			r	w	
9CH	CCU6_IENL Reset: 00 _H Capture/Compare Interrupt Enable Register Low	Bit Field	ENT1 2 PM	ENT1 2 OM	ENCC 62F	ENCC 62R	ENCC 61F	ENCC 61R	ENCC 60F	ENCC 60R
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
9D _H	CCU6_IENH Reset: 00 _H Capture/Compare Interrupt Enable	Bit Field	EN STR	EN IDLE	EN WHE	EN CHE	0	EN TRPF	ENT1 3PM	ENT1 3CM
	Register High	Туре	rw	rw	rw	rw	r rw rw			rw
9E _H	CCU6_INPL Reset: 40 _H	Bit Field	INP	CHE	INPO	CC62	INPO	CC61	INPO	CC60
	Capture/Compare Interrupt Node Pointer Register Low	Туре	r	N	r	w	r	w	r	w
9F _H	CCU6_INPH Reset: 39 _H	Bit Field	()	INP	T13	INP	T12	INP	ERR
	Capture/Compare Interrupt Node Pointer Register High	Туре		r	r	W	r	W	r	w
A4 _H	CCU6_ISSL Reset: 00 _H Capture/Compare Interrupt Status Set Register Low	Bit Field	ST12 PM	ST12 OM	SCC6 2F	SCC6 2R	SCC6 1F	SCC6 1R	SCC6 0F	SCC6 0R
		Туре	w	w	w	w	w	w	w	w
A5 _H	CCU6_ISSH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	SSTR	SIDLE	SWHE	SCHE	SWH C	STRP F	ST13 PM	ST13 CM
	Set Register High	Туре	w	w	w	w	w	w	w	w
A6 _H	CCU6_PSLR Reset: 00 _H	Bit Field	PSL63	0			P	SL		
	Passive State Level Register	Туре	rwh	r			rv	vh		
а7 _Н	CCU6_MCMCTR Reset: 00 _H Multi-Channel Mode Control Register	Bit Field	()	SW	SYN	0		SWSEL	
		Туре		r	r	w	r		rw	
FA _H	CCU6_TCTR2LReset: 00HTimer Control Register 2 Low	Bit Field	0	T13	TED					T12 SSC
		Туре	r	r	W					rw
FB _H	CCU6_TCTR2H Reset: 00 _H	Bit Field			0		T13RSEL T12RSEL			RSEL
	Timer Control Register 2 High	Туре			r		rw rw			w
FC _H	CCU6_MODCTRL Reset: 00 _H Modulation Control Register Low	Bit Field	MCM EN	0			T12MODEN			
		Туре	rw	r			rw			

Table 3-12 CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
FD _H	CCU6_MODCTRH Reset: 00 _H Modulation Control Register High	Bit Field	ECT1 30	0			T13M	ODEN			
		Туре	rw	r			r	w			
Fe _H	CCU6_TRPCTRL Reset: 00 _H Trap Control Register Low	Bit Field			0			TRPM 2	TRPM 1	TRPM 0	
		Туре			r			rw	rw	rw	
FF _H	CCU6_TRPCTRH Reset: 00 _H Trap Control Register High	Bit Field	TRPP EN	TRPE N13			TRI	PEN			
		Туре	rw	rw			r	w			
RMAP =	0, PAGE 3			-	-						
9A _H	CCU6_MCMOUTL Reset: 00 _H	Bit Field	0	R			MC	MP			
	Multi-Channel Mode Output Register Low	Туре	r	rh			r	'n			
9B _H	CCU6_MCMOUTH Reset: 00 _H	Bit Field		0		CURH			EXPH		
	Multi-Channel Mode Output Register	Туре		r		rh			rh		
9CH	CCU6_ISL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	T12 PM	T12 OM	ICC62 F	ICC62 R	ICC61 F	ICC61 R	ICC60 F	ICC60 R	
	Register Low	Туре	rh	rh	rh	rh	rh	rh	rh	rh	
9D _H	CCU6_ISH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	STR	IDLE	WHE	CHE	TRPS	TRPF	T13 PM	T13 CM	
	Register High	Туре	rh	rh	rh	rh	rh	rh	rh	rh	
9E _H	CCU6_PISEL0L Reset: 00 _H	Bit Field	IST	RP	ISC	C62	ISC	C61	ISC	C60	
	Port Input Select Register 0 Low	Туре	r	w	r	w	r	w	r	w	
9F _H	CCU6_PISEL0H Reset: 00 _H Port Input Select Register 0 High	Bit Field	IST1	2HR	ISP	OS2	ISP	OS1	ISP	OS0	
		Туре	r	W	r	W	r	W	rw		
A4 _H	CCU6_PISEL2 Reset: 00 _H Port Input Select Register 2	Bit Field)			IST1	3HR	
		Туре				r			r	w	
FA _H	CCU6_T12L Reset: 00 _H Timer T12 Counter Register Low	Bit Field				T12	CVL				
		Туре				rv	vh				
FB _H	CCU6_T12H Reset: 00 _H Timer T12 Counter Register High	Bit Field				T12	CVH				
		Туре				rv	vh				
FC _H	CCU6_T13L Reset: 00 _H Timer T13 Counter Register Low	Bit Field				T13	CVL				
		Туре				rv	vh				
FD _H	CCU6_T13H Reset: 00 _H	Bit Field				T13	CVH				
	Timer T13 Counter Register High	Туре				rv	vh				
FE _H	CCU6_CMPSTATL Reset: 00 _H Compare State Register Low	Bit Field	0	CC63 ST	CC POS2	CC POS1	CC POS0	CC62 ST	CC61 ST	CC60 ST	
		Туре	r	rh	rh	rh	rh	rh	rh	rh	
FFH	CCU6_CMPSTATH Reset: 00 _H Compare State Register High	Bit Field	T13IM	COUT 63PS	COUT 62PS	CC62 PS	COUT 61PS	CC61 PS	COUT 60PS	CC60 PS	
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	

3.4.5.11 UART1 Registers

The UART1 SFRs can be accessed in the mapped memory area (RMAP = 1).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0			
RMAP =	= 1												
C8 _H	SCON Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI			
	Serial Channel Control Register	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh			
C9 _H	SBUF Reset: 00 _H	Bit Field		•	•	V	۹L			•			
	Serial Data Buffer Register	Туре				rv	vh						
CA _H	BCON Reset: 00 _H	Bit Field		()			BRPRE					
	Baud Rate Control Register	Туре			r rw								
св _Н	BG Reset: 00 _H	Bit Field	BR_VALUE										
	Baud Rate Timer/Reload Register	Туре		rwh									
сс _Н	FDCON Reset: 00 _H	Bit Field			0			NDOV	FDM	FDEN			
	Fractional Divider Control Register	Туре			r			rwh	rw	rw			
CD _H	FDSTEP Reset: 00 _H	Bit Field				ST	ΈP						
	Fractional Divider Reload Register	Туре				r	w						
CEH	FDRES Reset: 00 _H	Bit Field				RES	ULT						
	Fractional Divider Result Register	Туре	rh										
CF _H	SCON1 Reset: 07 _H Serial Channel Control Register	Bit Field			0			NDOV EN	TIEN	RIEN			
	1	Туре			r			rw	rw	rw			

Table 3-13 UART1 Register Overview

3.4.5.12 SSC Registers

The SSC SFRs can be accessed in the standard memory area (RMAP = 0).

Table 3-14	SSC Register	Overview
------------	--------------	-----------------

	-											
Addr	Register Name	Bit	7	6	5	4	3	3 2 1 0				
RMAP =	= 0											
AA _H	SSC_CONL Reset: 00 _H	Bit Field	LB	PO	PH	HB		В	М			
	Control Register Low Programming Mode	Туре	rw	rw	rw	rw	rw					
AA _H	SSC_CONL Reset: 00 _H	Bit Field	i 0 BC									
	Control Register Low Operating Mode	Туре			r		rh					
ab _h	SSC_CONH Reset: 00 _H	Bit Field	EN	MS	0	AREN	BEN	PEN	REN	TEN		
	Control Register High Programming Mode	Туре	rw	rw	r	rw	rw	rw	rw	rw		
ab _h	SSC_CONH Reset: 00 _H	Bit Field	EN	MS	0	BSY	BE	PE	RE	TE		
	Control Register High Operating Mode	Туре	rw	rw	r	rh	rwh rwh rwh rw					

Table 3-14 SSC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0			
ac _h	SSC_TBL Reset: 00 _H Transmitter Buffer Register Low	Bit Field	TB_VALUE										
		Туре	rw										
ad _H	SSC_RBL Reset: 00 _H Receiver Buffer Register Low	Bit Field	RB_VALUE										
		Туре	rh										
АЕ _Н	SSC_BRLReset: 00HBaud Rate Timer ReloadRegister Low	Bit Field	BR_VALUE										
		Туре	rw										
AF _H	SSC_BRH Reset: 00 _H	Bit Field	BR_VALUE										
	Baud Rate Timer Reload Register High	Туре	rw										

3.4.5.13 MultiCAN Registers

The MultiCAN SFRs can be accessed in the standard memory area (RMAP = 0).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
RMAP =	= 0			•			•					
D8 _H	ADCON Reset: 00 _H CAN Address/Data Control Register	Bit Field	V3	V3 V2 V1 V0			AUAD		BSY	RWEN		
		Туре	rw	rw	rw	rw	rw		rh	rw		
D9 _H	ADL Reset: 00 _H CAN Address Register Low	Bit Field	CA9	CA8	CA7	CA6	CA5	CA4	CA3	CA2		
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh		
da _H	ADH Reset: 00 _H CAN Address Register High	Bit Field		(C		CA13	CA12	CA11	CA10		
		Туре			r		rwh	rwh	rwh	rwh		
db _H	DATA0 Reset: 00 _H CAN Data Register 0	Bit Field	CD									
		Туре	rwh									
dc _h	DATA1 Reset: 00 _H CAN Data Register 1	Bit Field	CD									
		Туре	rwh									
dd _H	DATA2 Reset: 00 _H	Bit Field	CD									
	CAN Data Register 2	Туре	rwh									
de _h	DATA3 Reset: 00 _H	Bit Field	d CD									
	CAN Data Register 3	Туре	rwh									

Table 3-15 CAN Register Overview

3.4.5.14 OCDS Registers

The OCDS SFRs can be accessed in the mapped memory area (RMAP = 1).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
RMAP =			-	-	-	-	-	_	-	-		
E9 _H	MMCR2 Reset: 8U _H Monitor Mode Control 2 Register	Bit Field	STMO DE	EXBC	DSUS P	MBCO N	ALTDI	MMEP	MMOD E	JENA		
		Туре	rw	rw	rw	rwh	rw	rwh	rh	rh		
EA _H	MEXTCR Reset: 0U _H Memory Extension Control Register	Bit Field	0 BANKBPx									
		Туре			r			r	W			
EB _H	MMWR1 Reset: 00 _H Monitor Work Register 1	Bit Field	MMWR1									
		Туре	rw									
ec _h	MMWR2 Reset: 00 _H Monitor Work Register 2	Bit Field	MMWR2									
		Туре	rw									
F1 _H	MMCR Reset: 00 _H Monitor Mode Control Register	Bit Field	MEXIT _P	MEXIT	0	MSTE P	MRAM S_P	MRAM S	TRF	RRF		
		Туре	w	rwh	r	rw	w	rwh	rh	rh		
F2 _H	MMSR Reset: 00 _H Monitor Mode Status Register	Bit Field	MBCA M	MBCIN	EXBF	SWBF	HWB3 F	HWB2 F	HWB1 F	HWB0 F		
		Туре	rw	rwh	rwh	rwh	rwh	rwh	rwh	rwh		
F3 _H	MMBPCR Reset: 00 _H Breakpoints Control Register	Bit Field	SWBC HWB3C		HWB2C		HWB1 C	HWB0C				
		Туре	rw	rw		rw		rw	rw			
F4 _H	MMICR Reset: 00 _H Monitor Mode Interrupt Control Register	Bit Field	DVEC T	DRET R	COMR ST	MSTS EL	MMUI E_P	MMUI E	RRIE_ P	RRIE		
		Туре	rwh	rwh	rwh	rh	w	rw	w	rw		
F5 _H	MMDR Reset: 00 _H	Bit Field	MMRR									
	Monitor Mode Data Transfer Register Receive	Туре	rh									
F6 _H	HWBPSR Reset: 00 _H Hardware Breakpoints Select	Bit Field		0		BPSEL _P		. BPSEL				
	Register	Туре	r w rw									
F7 _H	HWBPDR Reset: 00 _H	Bit Field	HWBPxx									
	Hardware Breakpoints Data Register	Туре	rw									

Table 3-16 OCDS Register Overview

3.4.5.15 Flash Registers

The Flash SFRs can be accessed in the mapped memory area (RMAP = 1).

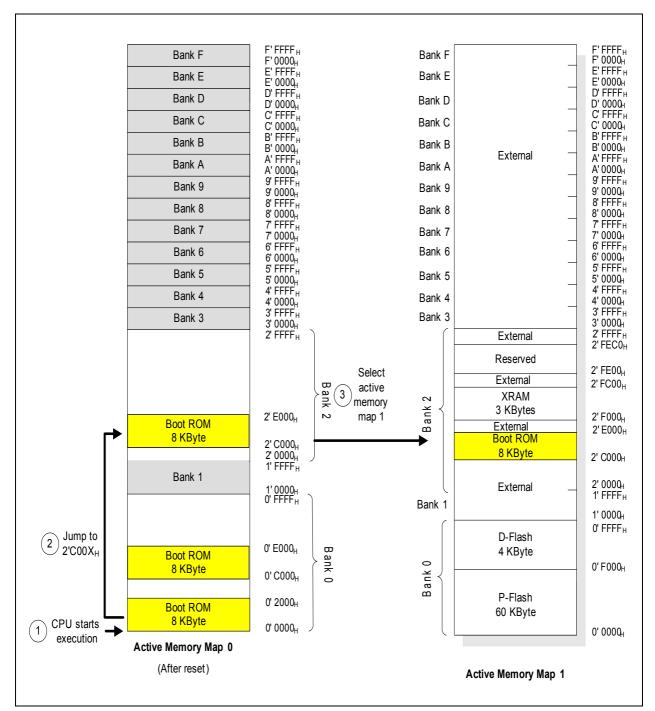

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
RMAP =	= 1											
D1 _H	FCON Reset: 10 _H P-Flash Control Register	Bit Field	0	FBSY	YE	1	NVST R	MAS1	ERAS E	PROG		
		Туре	r	rh	rwh	r	rw	rw	rw	rw		
D2 _H	EECON Reset: 10 _H D-Flash Control Register	Bit Field	0	EEBS Y	YE	1	NVST R	MAS1	ERAS E	PROG		
		Туре	r	rh	rwh	r	rw	rw	rw	rw		
D3 _H	FCS Reset: 80 _H Flash Control and Status Register	Bit Field	1	SBEIE	FTEN	0	EEDE RR	EESE RR	FDER R	FSER R		
		Туре	r	rw	rwh	r	rwh	rwh	rwh	rwh		
D4 _H	FEAL Reset: 00 _H Flash Error Address Register, Low Byte	Bit Field	ECCEADDR									
		Туре	rh									
D5 _H	FEAH Reset: 00 _H	Bit Field	ECCEADDR									
	Flash Error Address Register, High Byte	Туре	rh									
D6 _H	FTVAL Reset: 78 _H Flash Timer Value Register	Bit Field	MODE	MODE OFVAL								
		Туре	rw	rw rw								
dd _H	FCS1 Reset: 00 _H Flash Control and Status Register 1	Bit Field	0 EEA OR									
		Туре	r rwh									

Table 3-17 Flash Register Overview

3.5 Boot ROM Operating Mode

After a reset, the CPU will always start by executing the Boot ROM code in active memory map 0. In active memory map 0, the Boot ROM occupies the program memory address space $0'0000_{H} - 0'1FFF_{H}$, $0'C000_{H} - 0'DFFF_{H}$ and $2'C000_{H} - 2'DFFF_{H}$ with the remaining program memory address space disabled. The Boot ROM start-up procedure will first jump to $2'C00X_{H}$ before switching to active memory map 1 as shown in Figure 3-7 and Figure 3-8. As a result, the Boot ROM memory formerly occupying the address range $0'0000_H - 0'1FFF_H$, $0'C000_H - 0'DFFF_H$ and $2'C000_H - 2'DFFF_H$ will be mapped to only $2'C000_{H} - 2'DFFF_{H}$ or $0'C000_{H} - 0'DFFF_{H}$ depending on the Flash memory size. Also, the remaining program memory blocks (XRAM, P-Flash and D-Flash) are enabled. After the active memory map switch, the remaining Boot ROM startup procedure will be executed from $2'C00X_{H}/0'C00X_{H}$. This includes checking the latched values of pins MBC, TMS and P0.0 to enter the selected Boot ROM operating modes. Refer to Chapter 7.2.3 for the selection of different Boot ROM operating modes. The memory organization of the XC878 shown in this document is after the active memory map switch, i.e. active memory map 1, where the different operating modes are executed.

Note: The TM pin requires a external pull down device to ensure a proper entry of the Boot ROM operating mode

Figure 3-7 Active Memory Map Selection for 64K Flash

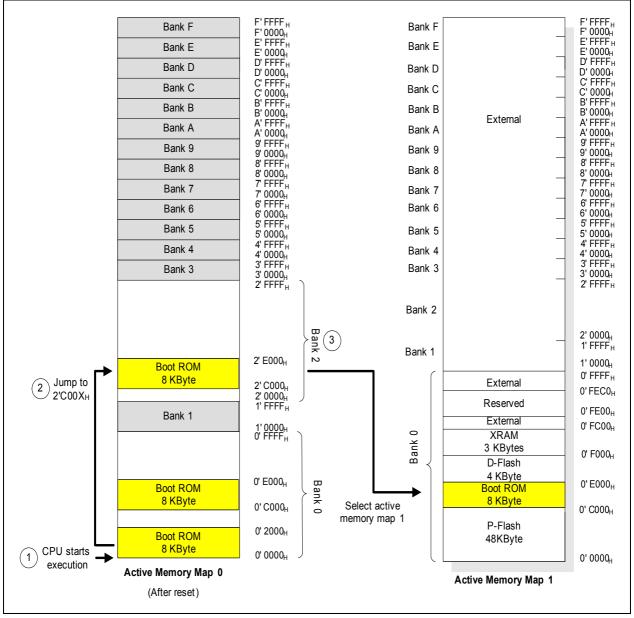


Figure 3-8 Active Memory Map Selection for 52K Flash

3.5.1 User Mode

If (MBC, TMS, P0.0) = (1, 0, x), the Boot ROM will jump to program memory address $0'0000_{H}$ to execute the user code in the Flash. This is the normal operating mode of the XC878 with the On-Chip Oscillator and PLL in non-bypassed mode.

However, if program memory address $0'0000_H$ contains FF_H, indicating the Flash memory is not yet programmed with user code, BootStrap Loader (BSL) mode will be entered instead to facilitate Flash programming.

Note: User should prevent programming a FF_H value to program memory address 0000_H to avoid entering BSL mode unintentionally.

3.5.2 Bootstrap Loader Mode

If (MBC, TMS, P0.0) = (0, 0, x), the software routines of the BootStrap Loader (BSL) located in the Boot ROM will be executed, allowing the XRAM and Flash memory (if available) to be programmed, erased and executed. Refer to **Chapter 19** for the different BSL working modes.

3.5.3 OCDS Mode

If (MBC, TMS, P0.0) = (0, 1, 0), the OCDS mode will be entered for debugging program code. The OCDS hardware is initialized and a jump to program memory address 0000_{H} is performed next. The user code in the Flash is executed and the debugging process may be started.

During the OCDS mode, the lowest 64 bytes $(00_H - 3F_H)$ in the internal data memory address range may be alternatively mapped to the 64-byte monitor RAM or the internal data RAM.

3.5.4 User JTAG Mode

If (MBC, TMS, P0.0) = (1, 1, x), the Boot ROM will jump to program memory address 0000_{H} to execute the user code in the Flash. This is similar to the normal user mode described in **Section 3.5.1**, with the addition that the primary JTAG port is automatically configured to allow hot-attach.

3-50

Flash Memory

4 Flash Memory

The XC878 has an embedded user-programmable non-volatile Flash memory that allows for fast and reliable storage of user code and data. It is operated with a single 2.5 V supply from the Embedded Voltage Regulator (EVR) and does not require additional programming or erasing voltage.

Features

- In-System Programming (ISP) via UART
- In-Application Programming (IAP)
- Error Correction Code (ECC) for dynamic correction of single-bit errors
- Support for aborting erase operation
- Minimum program width of 1-byte for D-Flash and 2-byte for P-Flash
- 1-page minimum erase width
- 1-byte read access
- 1 × CCLK period read access time
- Flash is delivered in erased state (read all ones)

4.1 Flash Memory Map

The XC878 product family offers Flash devices with 64 Kbytes and 52 Kbytes of embedded Flash memory. Each Flash device consists of Program Flash (P-Flash) and Data Flash (D-Flash) block. The 64-Kbyte Flash device consists of 60 Kbytes of P-Flash and 4 Kbytes of D-Flash; 52-Kbyte Flash device consists of 48 Kbytes of P-Flash and 4 Kbytes of D-Flash. **Table 4-1** shows the address mappings for P-Flash and D-Flash of the 2 devices available in XC878.

Devices	Description	Size	Address Range
64-Kbyte Flash	P-Flash	60 KBytes	0'0000 _H - 0'EFFF _H
	D-Flash	4 KBytes	0'F000 _H - 0'FFFF _H
52-Kbyte Flash	P-Flash	48 KBytes	0'0000 _H - 0'BFFF _H
	D-Flash	4 KBytes	0'E000 _H - 0'EFFF _H

Table 4-1Flash Memory Map for the 3 Flash devices

The P-Flash memory occupies program memory address starting from $0000_{\rm H}$, where the reset and interrupt vectors are located. The 4 Kbytes D-Flash memory are mapped to different location in the program memory address spaces based on the type of Flash devices in the XC878.

4.2 Flash Block Pagination

The XC878 devices consist of two types of blocks, namely Program Flash (P-Flash) block and Data Flash (D-Flash) block. P-Flash has 120 pages of 8 wordlines per page with 64 bytes per wordline. D-Flash has 64 pages of 2 wordlines per page with 32 bytes per wordline. Both types can be used for code and data storage. The label "Data" neither implies that the D-Flash is mapped to the data memory region, nor that it can only be used for data storage. It is used to distinguish the different page width and wordline of each Flash block.

The internal structure of each Flash block represents a page architecture for flexible erase capability. The minimum erase width is always a complete page. The D-Flash block is divided into smaller size for extended erasing and reprogramming capability.

For example, the user's program can implement a buffer mechanism for each page. Double copies of each data set can be stored in separate pages of similar size to ensure that a backup copy of the data set is available in the event the actual data set is corrupted or erased.

Alternatively, the user can implement an algorithm for EEPROM emulation, which uses the D-Flash block like a circular stack memory; the latest data updates are always programmed on top of the actual region. When the top of the page is reached, all actual data (representing the EEPROM data) is copied to the bottom area of the next page and

the last page is then erased. This round robin procedure, using multifold replications of the emulated EEPROM size, significantly increases the Flash endurance. To speed up data search, the RAM can be used to contain the pointer to the valid data set.

4.3 Operating Modes

XC878 has five Flash operation modes: STANDBY, READ, PROGRAM, ERASE and MASS ERASE, that are applicable to both P-Flash and D-Flash. Read operation is controlled by hardware while program, erase and mass erase operations are all controlled by CPU via software routines. In general, the Flash operating modes are controlled by the BSL and Flash program/erase subroutines (see Section 4.7). But user also have the option to create software subroutines to perform these flash operations (see Section 4.3.1 - Section 4.3.5). Various timing intervals are required during flash operations and they can be generated using the Flash Timer as describe in Section 4.4.

During an erase or program cycle, read operations on the same Flash array block are not allowed. If the user interrupts a program or erase cycle, the data may not be programmed or erased correctly. The software procedure as described in **Section 4.3.5** can be used to abort D-Flash program and erase operation to ensure correct behaviour of Flash macro.

When the user sets bit PMCON0.PD = 1 to enter the system power-down mode, the Flash blocks are automatically brought to its Standby state by hardware before bringing the system to power down state.

4.3.1 Read Operation

The read operation is controlled mainly by hardware. From the bus point of view, a read from the Flash module is done like a fetch from a program memory. Once the read signal from the CPU is active, the Flash memory block will enter the read mode and the data will be available to the CPU at the next clock cycle. No wait state is needed.

4.3.2 **Program Operation**

A program cycle writes data to a Flash array block. A write is performed by the instruction 'MOVC @(DPTR++),A'. The data is stored in a data buffer before it is encoded by the ECC module and programmed into the Flash array block. In XC878, the program width for P-Flash memory is in multiples of 2 bytes and D-Flash memory is 1 byte.

The following steps shows a possible programming sequence in a program cycle:

- 1. Set the bit FCON.PROG (P-Flash) or EECON.PROG (D-Flash) to signal the start of a programming cyle.
- 2. Execute a "MOVC" instruction with a dummy data to any address in the same wordline as the address to be accessed.
- 3. Delay for a minimum of 5 us (T_{vns}).

- 4. Set the bit FCON/EECON.NVSTR for charge pump to drive high voltage.
- 5. Delay for a minimum of 10 us (T_{pas}) .
- 6. Execute a "MOVC" instruction to the flash address to be accessed. FCON/EECON.YE and FCS.FTEN is set by hardware at next clock cycle (YE hold time of 40 ns is needed).
- 7. Delay for a minimum of 20 us but not longer than 40 us (T_{prog}) .
- 8. Clear the bits FCON/EECON.YE and FCS.FTEN respectively.
- 9. Repeat steps 6 to 8 for any further programming of data to the same row.
- 10. Clear the bit FCON/EECON.PROG.
- 11. Delay for a minimum of 5 us (T_{nvh})
- 12. Clear the bit FCON/EECON.NVSTR.
- 13. Delay for a minimum of 1 us (T_{rcv}).

Note: The programming sequences from 1 to 12 have to be completed within 4 ms.

4.3.3 Erase Operation

An erase cycle erases a Flash page to "1".

A possible page erase sequence is as follows:

- 1. Set the bit FCON/EECON.ERASE and clear the bit FCON/EECON.MAS1 to trigger the start of the page erase cycle.
- 2. Execute a "MOVC" instruction with a dummy data to any address in the page to be erased.
- 3. Delay for a minimum of 5 μ s (T_{vns}).
- 4. Set the bit FCON/EECON.NVSTR for charge pump to drive high voltage.
- 5. Delay for a minimum of 20 ms (T_{erase}).
- 6. Clear bit FCON/EECON.ERASE.
- 7. Delay for a minimum of 5 us (T_{nvh})
- 8. Clear the bit FCON/EECON.NVSTR.
- 9. Delay for a minimum of 1 us (T_{rcv}) .

Note: If a read is carried out on an address belonging to the page in the P-Flash which has just been erased, FDERR bit in register FCS will be set and an interrupt may be generated due to an ECC error. To prevent this, ECC interrupt generation should be disabled via the bit NMICON.NMIECC.

4.3.4 Mass Erase Operation

All memory cells in either the P-Flash block or the D-Flash block will be erased to "1" in mass erase operation depending on the address specific to be erased. If a read is carried out on the P-Flash block following a mass erase, an interrupt may be generated due to an ECC error. To prevent this, ECC interrupt generation should be disabled via the bit NMICON.NMIECC.

A possible mass erase sequence is as follows:

- 1. Set the bits FCON/EECON.ERASE and FCON/EECON.MAS1 to trigger the start of the mass erase cycle.
- 2. Execute a "MOVC" instruction with a dummy data to any address in the page to be erased.
- 3. Delay for a minimum of 5 μ s (T_{vns}).
- 4. Set the bit FCON/EECON.NVSTR for charge pump to drive high voltage.
- 5. Delay for a minimum of 200 ms (T_{me}).
- 6. Clear bit FCON/EECON.ERASE.
- 7. Delay for a minimum of 100 us (T_{nvhl})
- 8. Clear the bit FCON/EECON.NVSTR and FCON/EECON.MAS1.
- 9. Delay for a minimum of 1 us (T_{rcv}) .

4.3.5 Abort Operation

Program and erase operation including mass erase for D-Flash memory are allowed to be aborted by software. To ensure the correct behavior of Flash memory, software must follow the sequence shown in **Figure 4-1**. The abort operation can only be used while accessing D-Flash memory. Read, program and Erase operations are blocked once bit EEABORT in register FCS1 is set.

To ensure the timing interval required in the abort sequence is generated correctly using Flash timer, software need to clear FTEN and then set FTEN bit again. This step will reset the two counters in the Flash timer to zero count.

Flash Memory

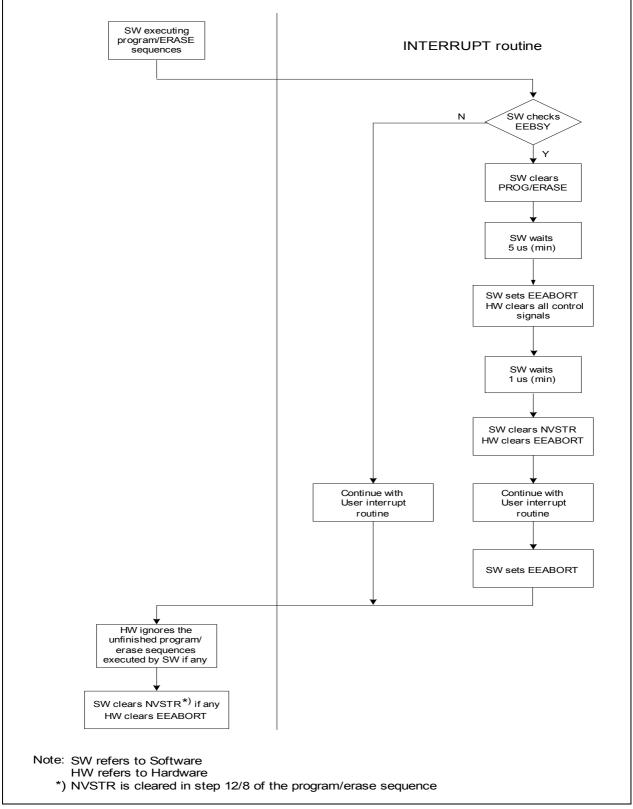
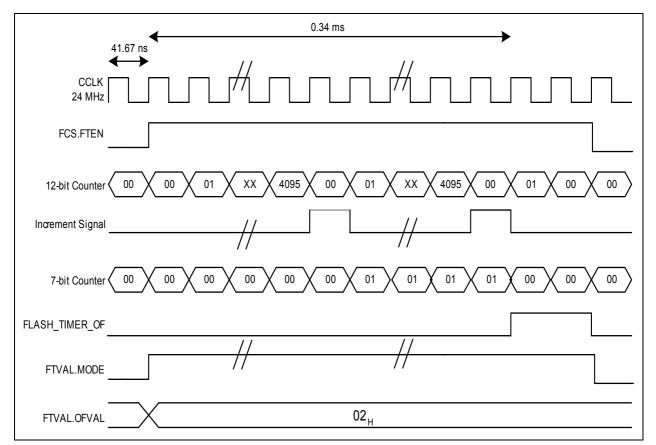


Figure 4-1 D-Flash Program/Erase Abort Flow


4.4 Flash Timer

The Flash Timer is used to generate various time intervals (e.g. for program set-up time, erase time) required during program and erase operations.

The Flash Timer has 2 operating modes, Program Timer and Erase Timer modes, which are selectable using the bit FTVAL.MODE. In Program Timer mode (FTVAL.MODE=0), a 7-bit counter is used to count up to the designated overflow value stored in FTVAL.OFVAL. Once this value is reached, the associated overflow flag FCS.FTOV is set. The 7-bit counter is then reset to zero and if the Flash timer is not disabled, resumes counting.

In Erase Timer mode (FTVAL.MODE=1), an additional 12-bit counter is used. On enabling the Flash Timer, the 12-bit counter starts counting up. Each time the 12-bit counter overflows, it generates a signal to increment the 7-bit counter by 1, before it is reset to zero and resumes counting. The timer overflow signal and flag is set only when the 7-bit counter reaches the designated overflow value.

The Flash Timer is enabled by setting the enable bit, FCS.FTEN, to '1'. Similarly, it is disabled by clearing the enable bit. Once disabled, both the 7-bit and 12-bit counter are reset and remain at zero.

An example of the Flash Timer waveform is shown in Figure 4-2.

Figure 4-2Flash Timer Timing Diagram

4.5 Error Detection and Correction

The 8-bit data from the CPU is encoded with an Error Correction Code (ECC) before being stored in the Flash memory. The ECC is generated based on a modified Hamming code and concatenated to the MSB of the data. During a read access, data is retrieved from the Flash memory and decoded for dynamic error detection and correction.

The correction algorithm (hamming code) has the capability to:

- · Detect and correct all 1-bit errors
- Detect all 2-bit errors, but cannot correct

A corrected 1-bit error (result is valid) and an uncorrected 2-bit error (result is invalid) can be distinguished by the single bit error flag and double bit error flag in register FCS.

In both cases, an ECC non-maskable interrupt (NMI) event can be generated; bit FNMIECC in register NMISR is set, and if enabled via NMICON.NMIECC, an NMI to the CPU is triggered. For the case of single bit error interrupt, bit SBEIE in register FCS has to be enabled too.

The 16-bit Flash address at which the ECC error occurs is stored in the system control SFRs FEAL and FEAH as described in **Section 4.9**, and can be accessed by the interrupt service routine to determine where the error occurred.

4.6 In-System Programming

In-System Programming (ISP) of the Flash memory is supported via the Boot ROMbased Bootstrap Loader (BSL), allowing a blank microcontroller device mounted onto an application board to be programmed with the user code, and also a previously programmed device to be erased then reprogrammed without removal from the board. This feature offers ease-of-use and versatility for the embedded design.

ISP is supported through the microcontroller's serial interface (UART) which is connected to the personal computer host via the commonly available RS-232 serial cable. The BSL mode is selected if the latched values of the MBC and TMS pins are 0 after power-on or hardware reset. The BSL routine will first perform an automatic synchronization with the transfer speed (baud rate) of the serial communication partner (personal computer host). Communication between the BSL routine and the host is done via a transfer protocol; information is sent from the host to the microcontroller in blocks with specified block structure, and the BSL routine acknowledges the received data by returning a single acknowledge or error byte. User can program, erase or execute the P-Flash and D-Flash blocks.

The available working modes include:

- Transfer user program from host to Flash
- Execute user program in Flash
- Page Erase of P-Flash or D-Flash block
- Mass Erase of P-Flash block and D-Flash block

4.7 In-Application Programming

In some applications, the Flash contents may need to be modified during program execution. In-Application Programming (IAP) is supported so that users can program, erase or mass erase the Flash memory from their Flash user program by calling some subroutines in the Boot ROM. The Flash subroutines will first perform some checks and an initialization sequence before starting the program, erase or mass erase operation. User program can only continue to run after the completion of these flash operation. A manual check on the Flash data is necessary to determine if the programming or erasing was successful via using the 'MOVC' instruction to read out the Flash contents.

Note: The wordline in the Flash memory, where the Flash user program is executing from, cannot be targeted for any page/mass erase and program operation. For example, user program in P Flash Block Page 1 Wordline 0 can program or erase other wordline except this Wordline 0 from Page 1.

4.7.1 Flash Programming

Each call of the Flash program subroutine allows the programming of 2 to 64 bytes of data for P-Flash block and 1 to 32 bytes of data for D-Flash block into the selected wordline (WL).

Before calling this subroutine, the user must ensure that the contents to be programmed are stored incrementally in the XRAM, starting from the address specified in DPTR1. R1 is also needed to indicate the number of bytes to progam into a WL.. In addition, the input DPTR0 must contain a valid Flash address in even number (addresses of a protected Flash block is considered invalid). Otherwise, PSW.CY bit will be set and no programming will occur. During each programming cycle, no crossing of a wordline boundary is allowed. For example, programming of 4-bytes of data to P-Flash block starting at address $0.3E_{\rm H}$ is not allowed.

If valid inputs (see **Table 4-2**) are available before calling the subroutine, the microcontroller will start with the initialization sequence (includes setting up the Flash Timer in an IRAM buffer) and then execute the program sequence as describe in **Section 4.3.2**. User program code will only continue after the execution of the Flash program subroutine.

Table 4-2	lash Program Subroutine
Subroutine	DFF6 _H : FLASH_PROGRAM
Input	DPTR0: Start address of the Flash programming location
	DPTR1: XRAM start address containing Flash data to be programmed.
	R1: Number of bytes to be programmed
	EA:0
Output	 PSW.CY: C = 0 Programs the content in R1 number of bytes of the XRAM block to the appropriate P-Flash or D-Flash¹⁾ location(s). C = 1 Flash is not programmed due to one or more of the following: 1. DPTR0 has an invalid P-Flash or D-Flash address. 2. DPTR0 has an odd P-Flash address. 3. R1 is 0 or exceed the appropriate Flash WL size. 4. R1 has an odd number during P-Flash programming. 5. The Flash block to be programmed crosses a wordline boundary.
Stack size req	uired 9
Resource used/destroye	ACC, B, C, R0, R3, R4, R5, IRAM(37 _H - 3E _H)

Table 4-2 Flash Program Subroutine

¹⁾ The P-Flash or D-Flash location is automatically determined by the subroutine whenever it is invoked.

4.7.2 Flash Page Erasing and Mass Erasing

Each call of the Flash erase subroutine for erase operation allows either Page Erase(erase a single page in either P-Flash block or the D-Flash) or Mass Erase(erase either the P-Flash block or the D-Flash block) to be carried out. Before calling the subroutine for erase operation, the ACC register must contain the type of erase operation and the input DPTR0 must contain a valid Flash address within the page or block to be erased. Also, protected Flash blocks should not be targeted for erase.

If valid inputs (see **Table 4-3**) are available before calling the subroutine, the microcontroller will start with the initialization sequence and then execute the erase sequence as described in **Section 4.3.3**. User program code will only continue after the execution of the Flash erase subroutine.

DFF9 _H : FLASH_ERASE					
DPTR0: Any address in the Flash page or block to be erased.					
ACC: Type of Erase (0: Page Erase, 1: Mass Erase)					
EA:0					
MISC_CON.DFLASHEN ¹⁾ :1					
PSW.CY: C = 0 Erase the appropriate P-Flash or D-Flash ²⁾ page or block. C = 1 Flash is not erased due to an invalid Flash address.					
9					
ACC, B, C, R0, R3, R4, R5, IRAM(37 _H - 3C _H) troyed					
-					

Table 4-3Flash Erase Subroutine

¹⁾ When Flash Protection Mode 0 is enabled, the DFLASHEN bit needs to be set before each erase of the D-Flash block.

²⁾ The P-Flash or D-Flash location is automatically determined by the subroutine whenever it is invoked.

4.7.3 Get Chip Information

This subroutine reads out a 4-byte data that contains chip related information. In the XC878, it reads out the 4-byte chip identification number, which is used to identify the particular device variant.

Subroutine	DFE1 _H : GET_CHIP_INFO
Input	ACC: 00 _H = Chip Identification Number Others = Reserved
	R1: IRAM start address for 4-byte return data MEX2.MCM:0

Table 4-4Get Chip Information Subroutine

	set only mornation Subroutine (cont d)
Output	PSW.CY: $C = 0$ With a valid input (ACC = 00_H), IRAM buffer filled with the following: Byte 1 in R1 (MSB) Byte 2 in R1 + 1 Byte 3 in R1 + 2 Byte 4 in R1 + 3 (LSB) $C = 1$ IRAM buffer is cleared upon invalid input (ACC not equal to 00_H)
Stack size req	uired 5
Resource used/destroye	d ACC, R1

Table 4-4 Get Chip Information Subroutine (cont'd)

4.8 Register Map

The SFRs of Flash module consist of two control registers for P-Flash and D-Flash, a common status register, a control register for D-Flash, a Flash Timer register and two address registers to store the full 16-bit address in the event of an ECC error. They can be accessed from the mapped SFR area.

Table 4-5 list the Flash module registers with their addresses.

Address	Register	
D1 _H	FCON	
D2 _H	EECON	
D3 _H D4 _H	FCS	
D4 _H	FEAL	
D5 _H	FEAL	
D6 _H	FTVAL	
DD _H	FCS1	

Table 4-5SFR Address List

4.9 Register Description

FCON P-Flash Control Register

Reset Value: 10_H

7	6	5	4	3	2	1	0
0	FBSY	YE	1	NVSTR	MAS1	ERASE	PROG
r	rh	rwh	r	rwh	rwh	rw	rw

Field	Bits	Туре	Description			
PROG	0	rw	 Program Bit 0 Program operation is not selected. 1 Program operation is selected. 			
ERASE	1	rw	Erase Bit0Erase operation is not selected.1Erase operation is selected.			
MAS1	2	rwh	Mass Erase Bit0Mass Erase operation is not selected.1Mass Erase operation is selected.			

Flash Memory

Field	Bits	Туре	Description	
NVSTR	3	rwh	 Non-Volatile Store Bit Charge pump to drive high voltage is off. Charge pump to drive high voltage is on. 	
YE	5	rwh	 Y-Address Enable Bit The YE bit is set by hardware only but can be cleared by both hardware and software. 0 FYE is disabled. 1 FYE is enabled. 	
FBSY	6	rh	 P-Flash Busy Bit 0 Flash is not performing any Program/Erase operation. 1 Flash is still performing a Program/Erase operation. 	
1	4	r	Reserved Returns 1 if read; should be written with 1.	
0	7	r	Reserved Returns 0 if read; should be written with 0.	

EECON D-Flash Control Register

Reset Value: 10_H

7	6	5	4	3	2	1	0
0	EEBSY	YE	1	NVSTR	MAS1	ERASE	PROG
r	rh	rwh	r	rwh	rwh	rw	rw

Field	Bits	Туре	Description
PROG	0	rw	 Program Bit 0 Program operation is not selected. 1 Program operation is selected.
ERASE	1	rw	 Erase Bit 0 Erase operation is not selected. 1 Erase operation is selected.
MAS1	2	rwh	Mass Erase Bit0Mass Erase operation is not selected.1Mass Erase operation is selected.

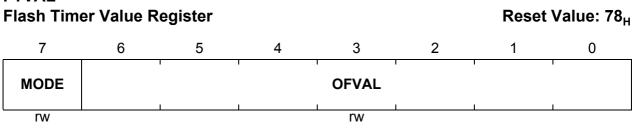
Flash Memory

Field	Bits	Туре	Description
NVSTR	3	rwh	 Non-Volatile Store Bit Charge pump to drive high voltage is off. Charge pump to drive high voltage is on.
YE	5	rwh	 Y-Address Enable Bit The YE bit is set by hardware only but can be cleared by both hardware and software. 0 FYE is disabled. 1 FYE is enabled.
EEBSY	6	rh	 D-Flash Busy Bit 0 Flash is not performing any Program/Erase operation. 1 Flash is still performing a Program/Erase operation.
1	4	r	Reserved Returns 1 if read; should be written with 1.
0	7	r	Reserved Returns 0 if read; should be written with 0.

FCS Flash Control and Status Register

Reset Value: 80_H

7	6	5	4	3	2	1	0
1	SBEIE	FTEN	0	EEDERR	EESERR	FDERR	FSERR
r	rw	rwh	r	rwh	rwh	rwh	rwh


Field	Bits	Туре	Description
FSERR	0	rwh	 Flash Single-bit Error Flag The FSERR bit is set by hardware and reset by software. 0 No single-bit error in data has occurred. 1 A single-bit error in data has occurred.
FDERR	1	rwh	 Flash Double-bit Error Flag The FDERR bit is set by hardware and reset by software. 0 No double-bit error has occurred. 1 A double-bit error has occurred.

Flash Memory

Field	Bits	Туре	Description
EESERR	2	rwh	 D-Flash Single-bit Error Flag The EESERR bit is set by hardware and reset by software. 0 No single-bit error in data has occurred. 1 A single-bit error in data has occurred.
EEDERR	3	rwh	 D-Flash Double-bit Error Flag The EEDERR bit is set by hardware and reset by software. 0 No double-bit error has occurred. 1 A double-bit error has occurred.
FTEN	5	rwh	 Flash Timer Enable Bit The FTEN bit can be set by both hardware and software but can only be reset by software. 0 Flash Timer is disabled. 1 Flash Timer is enabled.
SBEIE	6	rw	 Single-Bit Error Interrupt Enable 0 Single-bit error interrupt is not enabled. 1 Single-bit error interrupt is enabled.
0	4	r	Reserved Returns 0 if read; should be written with 0.
1	7	r	Reserved Returns 1 if read; should be written with 1.

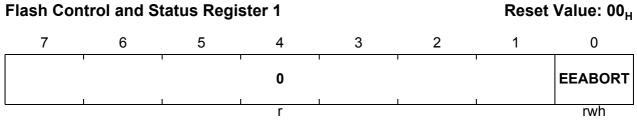
FTVAL

Field	Bits	Туре	Description
OFVAL	[6:0]	rw	Overflow Value The bit field OFVAL stores the value at which the 7- bit counter in the Flash Timer generates an overflow. Default value is $78_{\rm H}$, giving rise to a time interval of slightly more than 5 μ s at 24 MHz.

Field	Bits	Туре	Description
MODE	7	rw	MODE
			0 Program Timer mode is selected.
			1 Erase Timer mode is selected.

Note: The default value of 78_H for bit field OFVAL is calculated based on the default core frequency of 24 MHz. For frequencies other than 24 MHz, a new overflow value has to be calculated and written to OFVAL.

FEAL


Flash Error Address Register Low Reset Value: 00_H 7 6 5 4 3 2 1 0 ECCERRADDR rh

Field	Bits	Туре	Description
ECCERRADDR	[7:0]	rh	ECC Error Address Value [7:0]

FEAH Flash Error Address Register High Reset Value: 00_H 7 6 5 4 3 2 1 0 ECCERRADDR

Field	Bits	Туре	Description
ECCERRADDR	[7:0]	rh	ECC Error Address Value [15:8]

FCS1

Field	Bits	Туре	Description
EEABORT	0	rwh	 D-Flash Program/Erase Abort The EEABORT bit is set by software and reset by clearing EECON.NVSTR bit. 0 Program/Erase access is not aborted. 1 Program/Erase access is aborted. Note: Read, program and erase operations are blocked once EEABORT bit is set.
0	4	r	Reserved Returns 0 if read; should be written with 0.

5 Interrupt System

The XC800 Core supports one non-maskable interrupt (NMI) and 14 maskable interrupt requests. In addition to the standard interrupt functions supported by the core, e.g., configurable interrupt priority and interrupt masking, the XC878 interrupt system provides extended interrupt support capabilities such as the mapping of each interrupt vector to several interrupt sources to increase the number of interrupt sources supported, and additional status registers for detecting and identifying the interrupt source.

The XC878 supports 14 interrupt vectors with four priority levels. Twelve of these interrupt vectors are assigned to the on-chip peripherals: Timer 0, Timer 1 and UART are each assigned one dedicated interrupt vector; T2CCU, Timer 21, UART1, MDU, SSC, MultiCAN, CORDIC, A/D Converter and the Capture/Compare Unit share eight interrupt vectors. Two of these interrupt vectors are also shared with External Interrupts 2 to 6. External interrupts 0 to 1 are each assigned one dedicated interrupt vector.

The Non-Maskable Interrupt (NMI) is similar to regular interrupts, except it has the highest priority (over other regular interrupts) when addressing important system events. In the XC878, any one of the following five events can generate an NMI:

- WDT prewarning has occurred
- The PLL has lost the lock to the external crystal
- Flash Timer overflow has occurred
- VDDP is below the prewarning voltage level (4.0 V if the external power supply is 5.0 V)
- Flash ECC error has occurred

Figure 5-1 to **Figure 5-5** give a general overview of the interrupt sources and nodes, and their corresponding control and status flags.

Figure 5-6 gives the corresponding overview for the NMI sources.

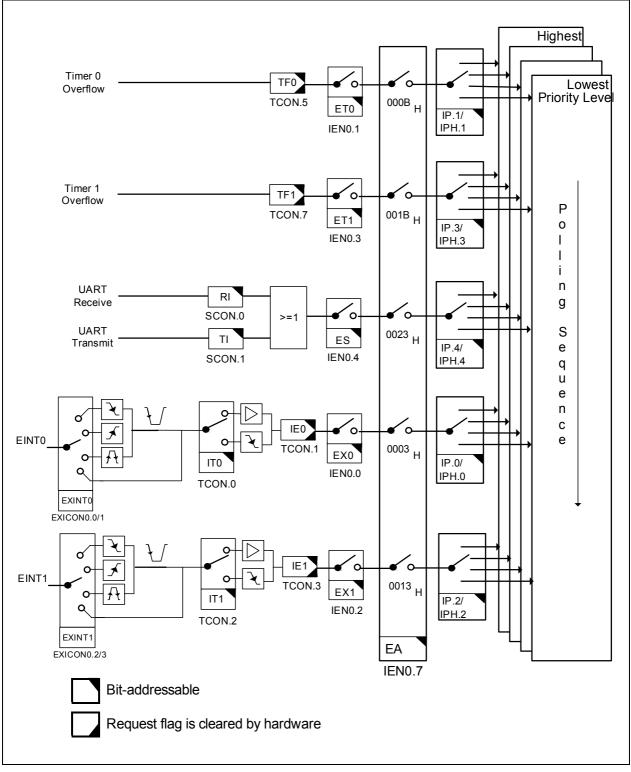


Figure 5-1 Interrupt Request Sources (Part 1)

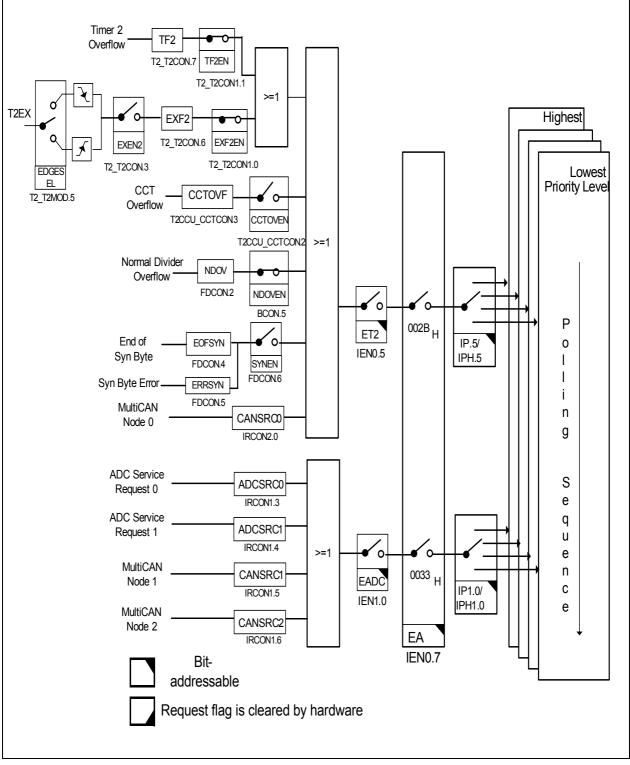


Figure 5-2 Interrupt Request Sources (Part 2)

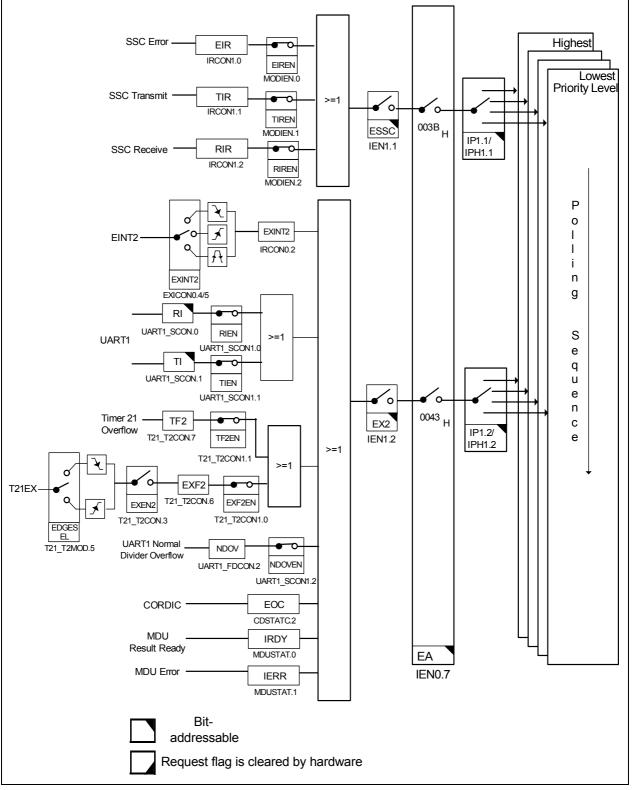


Figure 5-3 Interrupt Request Sources (Part 3)

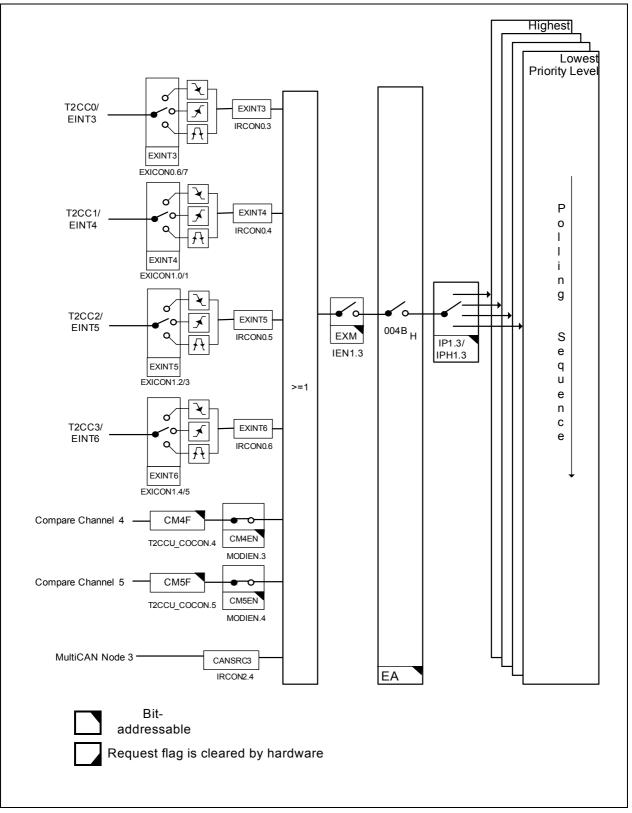


Figure 5-4 Interrupt Request Sources (Part 4)

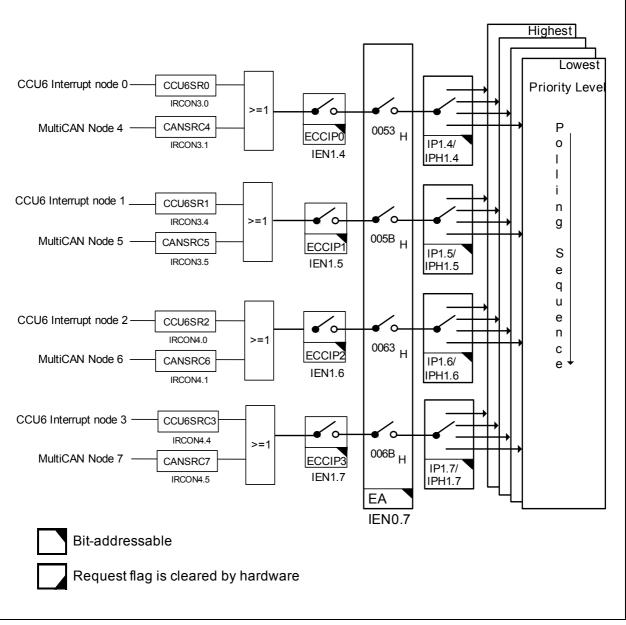


Figure 5-5 Interrupt Request Sources (Part 5)

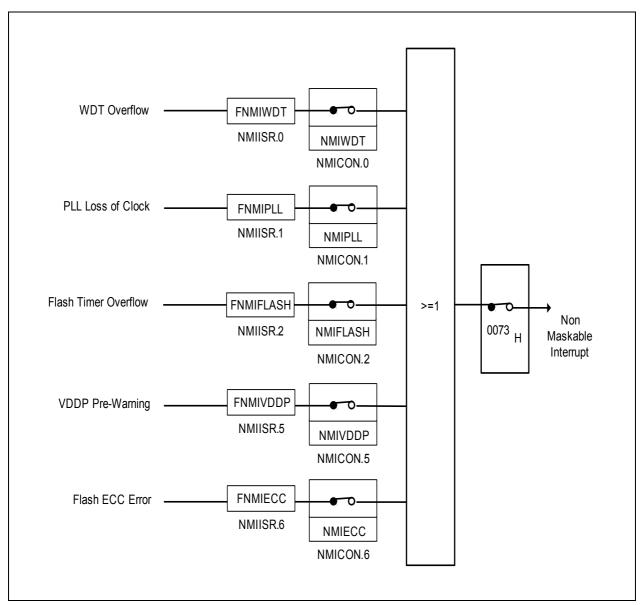
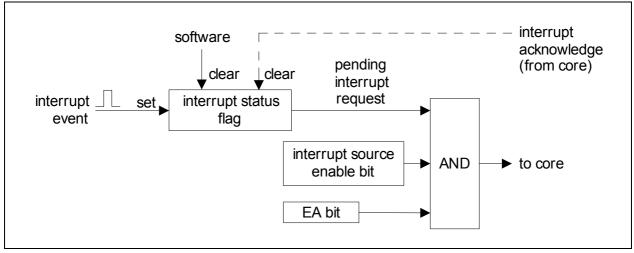


Figure 5-6 Non-Maskable Interrupt Request Sources

5.1 Interrupt Structure


An interrupt event source may be generated from the on-chip peripherals or from external. Detection of interrupt events is controlled by the respective on-chip peripherals. Interrupt status flags are available for determining which interrupt event has occurred, especially useful for an interrupt node which is shared by several event sources. Each interrupt node has a global enable/disable bit. In most cases, additional enable bits are provided for enabling/disabling particular interrupt events.

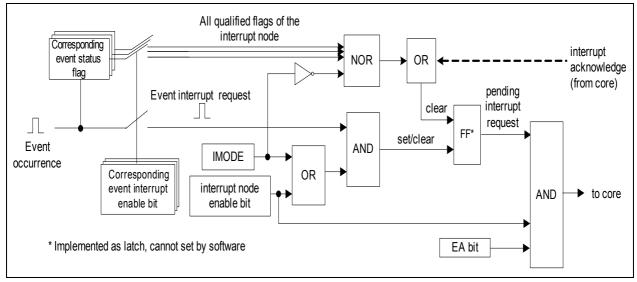
In general, the XC878 has two interrupt structures distinguished mainly by the manner in which the pending interrupt request (one per interrupt vector/source going directly to the core) is generated (due to the events) and cleared.

Common among these two interrupt structures is the interrupt masking bit, EA, which is used to globally enable or disable all interrupt requests (except NMI) to the core. Resetting bit EA to 0 only masks the pending interrupt requests from the core, but does not block the capture of incoming interrupt requests.

5.1.1 Interrupt Structure 1

For interrupt structure 1 in **Figure 5-7**, the interrupt event will set the interrupt status flag which doubles as a pending interrupt request to the core. An active pending interrupt request will interrupt the core only if its corresponding interrupt node is enabled. Once an interrupt node is serviced (interrupt acknowledged), its pending interrupt request (represented by the interrupt status flag) may be automatically cleared by hardware (the core).

Figure 5-7 Interrupt Structure 1


For the XC878, interrupt sources Timer 0, Timer 1, external interrupt 0 and external interrupt 1 (each have a dedicated interrupt node) will have their respective interrupt status flags TF0, TF1, IE0 and IE1 in register TCON cleared by the core once their corresponding pending interrupt request is serviced. In the case that an interrupt node is

disabled (e.g., software polling is used), its interrupt status flag must be cleared by software since the core will not be interrupted (and therefore the interrupt acknowledge is not generated). For the UART module, interrupt status flags RI and TI in register SCON will not be cleared by the core even when its pending interrupt request is serviced. The UART module's interrupt status flags (and hence the pending interrupt request) can only be cleared by software.

5.1.2 Interrupt Structure 2

Interrupt structure 2 in **Figure 5-8** applies to Timer 2, UART1, LIN, external interrupts 2 to 6, ADC, SSC, CCU6, Flash, MDU and MultiCAN interrupt sources. For this structure, the interrupt status flag does not directly drive the pending interrupt request, which is latched due to an interrupt event. Further, an additional control bit IMODE in SYSCON0 register is used to select one of two defined modes of handling incoming interrupt events.

Figure 5-8 Interrupt Structure 2

If IMODE = 1, an event generated by its corresponding interrupt source will set the status flag, and in parallel, if the event is enabled for interrupt, activate the pending interrupt request. If IMODE = 0, an event will set the status flag, but the pending interrupt request is activated only if the event is enabled for interrupt and the interrupt node is enabled. Consider the case where interrupt event occurred while its interrupt node was disabled (assume global interrupt enable EA is set). When the interrupt node is enabled later, for IMODE = 1, previously activated pending interrupt request will now cause an active interrupt request to the core. On the contrary with IMODE = 0, there is no active interrupt request to the core due to previous events.

An active pending interrupt request interrupts the core and is automatically cleared by hardware (the core) once the interrupt node is serviced (interrupt acknowledged); the status flag remains set and must be cleared by software. A pending interrupt request can also be cleared by software; the method differs depending on the IMODE bit setting.

If IMODE = 1, only on clearing all interrupt-enabled status flags of the node will indirectly clear its pending interrupt request. Note that this is not exactly like interrupt structure 1 where the pending interrupt request is cleared directly by resetting the node's interrupt status flags. If IMODE = 0, only on clearing the interrupt node enable bit will indirectly clear its pending interrupt request.

Hence when IMODE = 0, the interrupt node enable bit additionally serves a dual function: to enable/disable the generation of pending interrupt request, and to clear an already generated pending interrupt request (by resetting enable bit to 0).

Note: Interrupt structure 2 applies to the NMI, with the exclusion of EA bit and 'interrupt node enable bit' is replaced by OR of all NMICON bits. Therefore, NMI node is non-maskable when IMODE = 1; whereas NMI pending interrupt request may be cleared by clearing all NMICON bits when IMODE = 0

5.1.2.1 System Control Register 0

The SYSCON0 register contains bits to select the SFR mapping and interrupt structure 2 mode.

SYSCON0

System C	ontrol Reg	ister 0				Reset	Value: 00 _H
7	6	5	4	3	2	1	0
	0		IMODE	0	1	0	RMAP
	r		rw	r	r	r	rw

Field	Bits	Туре	Description
IMODE	4	rw	Interrupt Structure 2 Mode Select0Interrupt structure 2 mode 0 is selected.1Interrupt structure 2 mode 1 is selected.
1	2	r	Reserved Returns 1if read; should be written with 1.
0	1, 3, [7:5]	r	Reserved Returns 0 if read; should be written with 0.

Note: The IMODE bit should be cleared/set using ANL or ORL instructions.

5.2 Interrupt Source and Vector

Each interrupt event source has an associated interrupt vector address for the interrupt node it belongs to. This vector is accessed to service the corresponding interrupt node request. The interrupt service of each interrupt node can be individually enabled or disabled via an enable bit. The assignment of the XC878 interrupt sources to the interrupt vector address and the corresponding interrupt node enable bits are summarized in Table 5-1.

Interrupt Node	Vector Address	Assignment for XC878	Enable Bit	SFR
NMI	0073 _H	Watchdog Timer NMI	NMIWDT	NMICON
		PLL NMI	NMIPLL	
		Flash Timer NMI	NMIFLASH	
		V _{DDP} Prewarning NMI	NMIVDDP	
		Flash ECC NMI	NMIECC	
XINTR0	0003 _H	External Interrupt 0	EX0	IEN0
XINTR1	000B _H	Timer 0	ET0	
XINTR2	0013 _H	External Interrupt 1	EX1	
XINTR3	001B _H	Timer 1	ET1	
XINTR4	0023 _H	UART	ES	
XINTR5	002B _H	T2CCU	ET2	
		UART Fractional Divider (Normal Divider Overflow)		
		MultiCAN Node 0		
		LIN	1	

Table 5-1 Interrupt Vector Addresses

Table 5-1	Interrupt Vector Addresses (cont'd)					
Interrupt Node	Vector Address	Assignment for XC878	Enable Bit	SFR		
XINTR6	0033 _H	MultiCAN Nodes 1 and 2	EADC	IEN1		
		ADC[1:0]				
XINTR7	003B _H	SSC ESSC				
XINTR8	0043 _H	External Interrupt 2	EX2			
		T21				
		CORDIC				
		UART1				
		UART1 Fractional Divider (Normal Divider Overflow)				
		MDU[1:0]				
XINTR9	004B _H	External Interrupt 3	EXM			
		External Interrupt 4				
		External Interrupt 5				
		External Interrupt 6				
		T2CCU				
		MultiCAN Node 3				
XINTR10 0053 _H		CCU6 INP0	ECCIP0			
		MultiCAN Node 4				
XINTR11 005B _H		CCU6 INP1	ECCIP1			
		MultiCAN Node 5				
XINTR12 0063 _H		CCU6 INP2	ECCIP2			
		MultiCAN Node 6				
XINTR13	006B _H	CCU6 INP3	ECCIP3			
		MultiCAN Node 7				

Table 5-1 Interrupt Vector Addresses (cont'd)

5.3 Interrupt Priority

An interrupt that is currently being serviced can only be interrupted by a higher-priority interrupt, but not by another interrupt of the same or lower priority. Hence, an interrupt of the highest priority cannot be interrupted by any other interrupt request.

If two or more requests of different priority levels are received simultaneously, the request with the highest priority is serviced first. If requests of the same priority are received simultaneously, an internal polling sequence determines which request is serviced first. Thus, within each priority level, there is a second priority structure determined by the polling sequence as shown in **Table 5-2**.

Table 5-2 Priority Structure within Interrupt Level				
Source	Level			
Non-Maskable Interrupt (NMI)	(highest)			
External Interrupt 0	1			
Timer 0 Interrupt	2			
External Interrupt 1	3			
Timer 1 Interrupt	4			
UART Interrupt	5			
T2CCU,UART Normal Divider Overflow, LIN, MultiCAN Interrupt	6			
ADC, MultiCAN Interrupt	7			
SSC Interrupt	8			
External Interrupt 2, Timer 21, UART1, UART1 Normal Divider Overflow, CORDIC, MDU Interrupt	9			
External Interrupt [6:3], MultiCAN	10			
CCU6 Interrupt Node Pointer 0, MultiCAN Interrupt	11			
CCU6 Interrupt Node Pointer 1, MultiCAN Interrupt	12			
CCU6 Interrupt Node Pointer 2, MultiCAN Interrupt	13			
CCU6 Interrupt Node Pointer 3, MultiCAN Interrupt	14			

Table 5-2 Priority Structure within Interrupt Level

5.4 Interrupt Handling

The interrupt request signals are sampled at phase 2 in each machine cycle. The sampled requests are then polled during the following machine cycle. If one interrupt node request was active at phase 2 of the preceding cycle, the polling cycle will find it and the interrupt system will generate an LCALL to the appropriate service routine, provided this hardware-generated LCALL is not blocked by any of the following conditions:

- 1. An interrupt of equal or higher priority is already in progress.
- 2. The current (polling) cycle is not in the final cycle of the instruction in progress.
- 3. The instruction in progress is RETI or any write access to registers IEN0/IEN1 or IP,IPH/IP1,IP1H.

Any of these three conditions will block the generation of the LCALL to the interrupt service routine. Condition 2 ensures that the instruction in progress is completed before vectoring to any service routine. Condition 3 ensures that if the instruction in progress is RETI or any write access to registers IEN0/IEN1 or IP,IPH/IP1,IP1H, then at least one more instruction will be executed before any interrupt is vectored to; this delay guarantees that changes of the interrupt status can be observed by the CPU.

The polling cycle is repeated with each machine cycle, and the values polled are the values that were present at phase 2 of the previous machine cycle. Note that if any interrupt flag is active but was not responded to for one of the conditions already mentioned, or if the flag is no longer active at a later time when servicing the interrupt node, the corresponding interrupt source will not be serviced. In other words, the fact that the interrupt flag was once active but not serviced is not remembered. Every polling cycle interrogates only the pending interrupt requests.

The processor acknowledges an interrupt request by executing a hardware generated LCALL to the appropriate service routine. In some cases, hardware also clears the flag that generated the interrupt, while in other cases, the flag must be cleared by the user's software. The hardware-generated LCALL pushes the contents of the Program Counter (PC) onto the stack (but it does not save the PSW) and reloads the PC with an address that depends on the source of the interrupt being vectored to, as shown in the Table 5-1.

Program execution returns to the next instruction after calling the interrupt when the RETI instruction is encountered. The RETI instruction informs the processor that the interrupt routine is no longer in progress, then pops the two top bytes from the stack and reloads the PC. Execution of the interrupted program continues from the point where it was stopped. Note that the RETI instruction is important because it informs the processor that the program has left the current interrupt priority level. A simple RET instruction would also have returned execution to the interrupted program, but it would have left the interrupt control system on the assumption that an interrupt was still in progress. In this case, no interrupt of the same or lower priority level would be acknowledged.

5.5 Interrupt Response Time

Due to an interrupt event of (the various sources of) an interrupt node, its corresponding request signal will be sampled active at phase 2 in every machine cycle. The value is not polled by the circuitry until the next machine cycle. If the request is active and conditions are right for it to be acknowledged, a hardware subroutine call to the requested service routine will be the next instruction to be executed. The call itself takes two machine cycles. Thus, a minimum of three complete machine cycles will elapse from activation of the interrupt request to the beginning of execution of the first instruction of the service routine as shown in **Figure 5-9**.

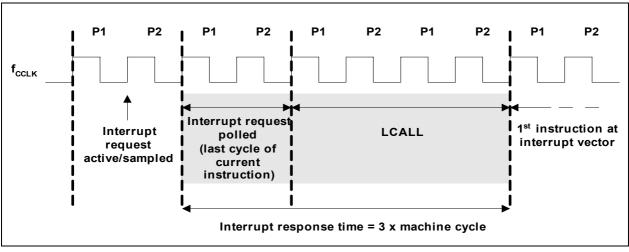


Figure 5-9 Minimum Interrupt Response Time

A longer response time would be obtained if the request is blocked by one of the three previously listed conditions:

- 1. If an interrupt of equal or higher priority is already in progress, the additional wait time will depend on the nature of the other interrupt's service routine.
- 2. If the instruction in progress is not in its final cycle, the additional wait time cannot be more than three machine cycles since the longest instructions (MUL and DIV) are only four machine cycles long. See Figure 5-10.
- 3. If the instruction in progress is RETI or a write access to registers IEN0, IEN1 or IP(H), IP1(H), the additional wait time cannot be more than five cycles (a maximum of one more machine cycle to complete the instruction in progress, plus four machine cycles to complete the next instruction, if the instruction is MUL or DIV). See Figure 5-11.

Interrupt System

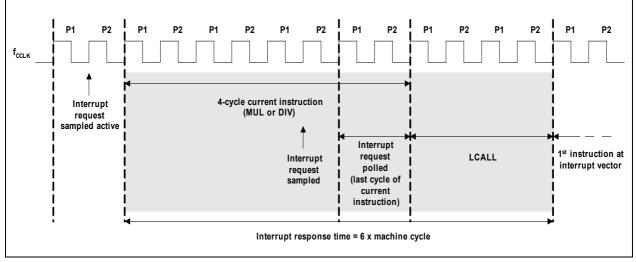


Figure 5-10 Interrupt Response Time for Condition 2

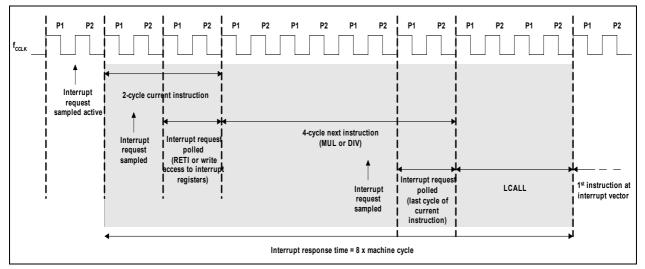


Figure 5-11 Interrupt Response Time for Condition 3

Thus in a single interrupt system, the response time is between three machine cycles and less than nine machine cycles if wait states are not considered. When considering wait states, the interrupt response time will be extended depending on the user instructions (except the hardware generated LCALL) being executed during the interrupt response time (shaded region in Figure 5-10 and Figure 5-11).

5.6 Interrupt Registers

Interrupt registers are used for interrupt node enable, external interrupt control, interrupt flags and interrupt priority setting.

5.6.1 Interrupt Node Enable Registers

Each interrupt node can be individually enabled or disabled by setting or clearing the corresponding bit in the interrupt enable registers IEN0 or IEN1. Register IEN0 also contains the global interrupt masking bit (EA), which can be cleared to block all pending interrupt requests at once.

The NMI interrupt vector is shared by a number of sources, each of which can be enabled or disabled individually via register NMICON.

After reset, the enable bits in IEN0, IEN1 and NMICON are cleared to 0. This implies that all interrupt sources are disabled by default.

IEN0 Interrupt E	Enable Reg	jister 0				Reset	Value: 00 _H	i
7	6	5	4	3	2	1	0	
EA	0	ET2	ES	ET1	EX1	ET0	EX0	

rw

rw

rw

rw

rw

Field	Bits	Туре	Description
EX0	0	rw	Interrupt Node XINTR0 Enable 0 XINTR0 is disabled 1 XINTR0 is enabled
ET0	1	rw	Interrupt Node XINTR1 Enable 0 XINTR1 is disabled 1 XINTR1 is enabled
EX1	2	rw	Interrupt Node XINTR2 Enable 0 XINTR2 is disabled 1 XINTR2 is enabled
ET1	3	rw	Interrupt Node XINTR3 Enable 0 XINTR3 is disabled 1 XINTR3 is enabled

rw

r

rw

Field	Bits	Туре	Description	
ES	4	rw	Interrupt Node XINTR4 Enable 0 XINTR4 is disabled 1 XINTR4 is enabled	
ET2	5	rw	Interrupt Node XINTR5 Enable 0 XINTR5 is disabled 1 XINTR5 is enabled	
EA	7	rw	 Global Interrupt Mask All pending interrupt requests (except NMI) are blocked from the core. Pending interrupt requests are not blocked from the core. 	
0	6	r	Reserved Returns 0 if read; should be written with 0.	

IEN1 Interrupt Enable Register 1

7	6	5	4	3	2	1	0
ECCIP3	ECCIP2	ECCIP1	ECCIP0	EXM	EX2	ESSC	EADC
rw	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description
EADC	0	rw	Interrupt Node XINTR6 Enable0XINTR6 is disabled1XINTR6 is enabled
ESSC	1	rw	Interrupt Node XINTR7 Enable0XINTR7 is disabled1XINTR7 is enabled
EX2	2	rw	Interrupt Node XINTR8 Enable0XINTR8 is disabled1XINTR8 is enabled
EXM	3	rw	Interrupt Node XINTR9 Enable0XINTR9 is disabled1XINTR9 is enabled

XC878CLM

Interrupt System

Field	Bits	Туре	Description
ECCIP0	4	rw	Interrupt Node XINTR10 Enable 0 XINTR10 is disabled 1 XINTR10 is enabled
ECCIP1	5	rw	Interrupt Node XINTR11 Enable 0 XINTR11 is disabled 1 XINTR11 is enabled
ECCIP2	6	rw	Interrupt Node XINTR12 Enable0XINTR12 is disabled1XINTR12 is enabled
ECCIP3	7	rw	Interrupt Node XINTR13 Enable0XINTR13 is disabled1XINTR13 is enabled

NMICON NMI Control Register

	7	6	5	4	3	2	1	0
	0	NMIECC	NMIVDDP	0	NMIOCDS	NMIFLAS H	NMIPLL	NMIWDT
_	r	rw	rw	r	rw	rw	rw	rw

Field	Bits	Туре	Description
NMIWDT	0	rw	Watchdog Timer NMI Enable0WDT NMI is disabled.1WDT NMI is enabled.
NMIPLL	1	rw	PLL Loss of Clock NMI Enable0PLL Loss of Clock NMI is disabled.1PLL Loss of Clock NMI is enabled.
NMIFLASH	2	rw	Flash Timer NMI Enable0Flash Timer NMI is disabled.1Flash Timer NMI is enabled.
NMIOCDS	3	rw	OCDS NMI Enable0OCDS NMI is disabled.1Reserved

XC878CLM

Interrupt System

Field	Bits	Туре	Description
NMIVDDP	5	rw	VDDP Prewarning NMI Enable0 V_{DDP} NMI is disabled.1 V_{DDP} NMI is enabled.
			Note: When the external power supply is 3.3 V, the user must disable NMIVDDP.
NMIECC	6	rw	ECC NMI Enable0ECC NMI is disabled.1ECC NMI is enabled.
0	4, 7	r	Reserved Returns 0 if read; should be written with 0.

5.6.2 External Interrupt Control Registers

The seven external interrupts, EXT_INT[6:0], are driven into the XC878 from the ports. External interrupts can be positive, negative, or double edge triggered. Registers EXICON0 and EXICON1 specify the active edge for the external interrupt. Among the external interrupts, external interrupt 0 and external interrupt 1 can be selected to bypass edge detection for direct feed-through to the core. This signal to the core can be further programmed to either low-level or negative transition activated, by the bits IT0 and IT1 in the TCON register. However for edge detection, TCON.IT0/1 must be set to falling edge triggered. An active edge event detected will generate internally two CCLK cycle low pulse for detection by core.

If the external interrupt is positive (negative) edge triggered, the external source must hold the request pin low (high) for at least one CCLK cycle, and then hold it high (low) for at least one CCLK cycle to ensure that the transition is recognized. If edge detection is bypassed for external interrupt 0 and external interrupt 1, the external source must hold the request pin "high" or "low" for at least two CCLK cycles.

External Interrupts 2 to 6 share their interrupt node with other interrupt sources. Therefore in addition to the corresponding interrupt node enable, each external interrupt 2 to 6 may be disabled individually, and are disabled by default after reset.

All the external interrupts support alternative input pin, selected via EXINTxIS bits in SFRs MODPISEL, MODPISEL1 and MODPISEL4. When switching inputs, the active edge/level trigger select and the level on the associated pins should be considered to prevent unintentional interrupt generation.

EXICON0 External Interrupt Control Register 0

-										
	7	6	5	4	3	2	1	0		
	EXINT3		EXI	NT2	EXINT1		EXI	NT0		
	rw		rw		rw		rw			

Field	Bits	Туре	Description
EXINT0	[1:0]	rw	External Interrupt 0 Trigger Select
			00 Interrupt on falling edge
			01 Interrupt on rising edge
			10 Interrupt on both rising and falling edges
			11 Bypass the edge detection. The interrupt
			request signal directly feeds to the core.

Reset Value: F0...

Field	Bits	Туре	Description
EXINT1	[3:2]	rw	External Interrupt 1 Trigger Select
			00 Interrupt on falling edge
			01 Interrupt on rising edge
			10 Interrupt on both rising and falling edges
			11 Bypass the edge detection. The interrupt
			request signal directly feeds to the core.
EXINT2	[5:4]	rw	External Interrupt 2 Trigger Select
			00 Interrupt on falling edge
			01 Interrupt on rising edge
			10 Interrupt on both rising and falling edges
			11 External interrupt 2 is disabled
EXINT3	[7:6]	rw	External Interrupt 3 Trigger Select
			00 Interrupt on falling edge
			01 Interrupt on rising edge
			10 Interrupt on both rising and falling edges
			11 External interrupt 3 is disabled

EXICON1 External Interrupt Control Register 1

7	6	5	4	3	2	1	0
0	0 EXINT6		EXI	NT5	EXINT4		
r	r rw		rw		rw		

Field	Bits	Туре	Description
EXINT4	[1:0]	rw	 External Interrupt 4 Trigger Select 00 Interrupt on falling edge 01 Interrupt on rising edge 10 Interrupt on both rising and falling edges 11 External interrupt 4 is disabled
EXINT5	[3:2]	rw	 External Interrupt 5 Trigger Select 00 Interrupt on falling edge 01 Interrupt on rising edge 10 Interrupt on both rising and falling edges 11 External interrupt 5 is disabled

Field	Bits	Туре	Description	
EXINT6	[5:4]	rw	 External Interrupt 6 Trigger Select 00 Interrupt on falling edge 01 Interrupt on rising edge 10 Interrupt on both rising and falling edges 11 External interrupt 6 is disabled 	
0	[7:6]	r	Reserved Returns 0 if read; should be written with 0.	

MODPISEL

Peripheral Input Select Register

7	6	5	4	3	2	1	0
0	URRISH	JTAGTDIS	JTAGTCKS	EXINT2IS	EXINT1IS	EXINT0IS	URRIS
r	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description
EXINT0IS	1	rw	 External Interrupt 0 Input Select 0 External Interrupt Input EXINT0_0 is selected. 1 External Interrupt Input EXINT0_1 is selected.
EXINT1IS	2	rw	 External Interrupt 1 Input Select 0 External Interrupt Input EXINT1_0 is selected. 1 External Interrupt Input EXINT1_1 is selected.
EXINT2IS	3	rw	 External Interrupt 2 Input Select 0 External Interrupt Input EXINT2_0 is selected. 1 External Interrupt Input EXINT2_1 is selected.
0	7	r	Reserved Returns 0 if read; should be written with 0.

MODPISEL1 Barinharal Input Salaat Ba

Peripheral Input Select Register 1

7	6	5	4	3	2	1	0
	EXINT6IS	1	UR1	RIS	T21EXIS	(0
	rw		rv	V	rw		r

Field	Bits	Туре	Description
EXINT6IS	[7:5]	rw	 External Interrupt 6 Input/T2CCU Capture/Compare Channel 3 Select 000 External Interrupt Input EXINT6_0 is selected. 001 External Interrupt Input EXINT6_1 is selected. 010 External Interrupt Input EXINT6_2/T2CCU Capture/Compare Channel T2CC3_0 is selected. 011 External Interrupt Input EXINT6_3/T2CCU Capture/Compare Channel T2CC3_1 is selected. 100 External Interrupt Input EXINT6_4/T2CCU Capture/Compare Channel T2CC3_2 is selected. 101 External Interrupt Input EXINT6_4/T2CCU Capture/Compare Channel T2CC3_2 is selected. 101 Reserved. 111 Reserved.
0	[1:0]	r	Reserved Returns 0 if read; should be written with 0.

MODPISEL4 Peripheral Input Select Register 4

7	6	5	4	3	2	1	0
C)	EXINT5IS		EXINT4IS		EXINT3IS	
r	•	rw		rw		rw	

Field	Bits	Туре	Description
EXINT3IS	[1:0]	rw	 External Interrupt 3 Input/T2CCU Capture/Compare Channel 0 Select 00 External Interrupt Input EXINT3_0 is selected. 01 External Interrupt Input EXINT3_1/T2CCU Capture/Compare Channel T2CC0_0 is selected. 10 External Interrupt Input EXINT3_2/T2CCU Capture/Compare Channel T2CC0_1 is selected 11 External Interrupt Input EXINT3_3/T2CCU Capture/Compare Channel T2CC0_2 is selected
EXINT4IS	[3:2]	rw	 External Interrupt 4 Input/T2CCU Capture/Compare Channel 1 Select 00 External Interrupt Input EXINT4_0 is selected. 01 External Interrupt Input EXINT4_1/T2CCU Capture/Compare Channel T2CC1_0 is selected. 10 External Interrupt Input EXINT4_2/T2CCU Capture/Compare Channel T2CC1_1 is selected 11 External Interrupt Input EXINT4_3/T2CCU Capture/Compare Channel T2CC1_2 is selected

Field	Bits	Туре	Description
EXINT5IS	[5:4]	rw	External Interrupt 5 Input/T2CCU
			Capture/Compare Channel 2 Select
			00 External Interrupt Input EXINT5_0 is selected.
			01 External Interrupt Input EXINT5_1/T2CCU Capture/Compare Channel T2CC2_0 is selected.
			10 External Interrupt Input EXINT5_2/T2CCU Capture/Compare Channel T2CC2_1 is selected
			11 External Interrupt Input EXINT5_3/T2CCU Capture/Compare Channel T2CC2_2 is selected
0	[7:6]	r	Reserved Returns 0 if read; should be written with 0.

TCON Timer and Counter Control/Status Register

7	6	5	4	3	2	1	0
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
rwh	rw	rwh	rw	rwh	rw	rwh	rw

Field	Bits	Туре	Description
ITO	0	rw	 External Interrupt 0 Level/Edge Trigger Control Flag 0 Low-level triggered external interrupt 0 is selected. 1 Falling edge triggered external interrupt 0 is
IT1	2	rw	selected. External Interrupt 1 Level/Edge Trigger Control Flag
			 Low-level triggered external interrupt 1 is selected. Falling edge triggered external interrupt 1 is selected.

5.6.3 Interrupt Flag Registers

The interrupt flags for the different interrupt sources are located in several Special Function Registers (SFRs). In case of software and hardware access to a flag bit at the same time, hardware will have higher priority.

IRCON0

Interrupt Request Register 0

 7	6	5	4	3	2	1	0
0	EXINT6	EXINT5	EXINT4	EXINT3	EXINT2	EXINT1	EXINT0
 r	rwh						

Field	Bits	Туре	Description
EXINTx (x = 0 - 1)	[1:0]	rwh	Interrupt Flag for External Interrupt 0/1 This bit is set by hardware and can only be cleared by software. 0 Interrupt event has not occurred. 1 Interrupt event has occurred. These bits are set by corresponding active edge event i.e. falling/rising/both. These flags are 'dummy' and has no effect on the respective interrupt signal to core. Instead, the corresponding TCON flag is the interrupt request to the core - it is sufficient to poll and clear the TCON flag.
EXINT2	2	rwh	 Interrupt Flag for External Interrupt 2 This bit is set by hardware and can only be cleared by software. 0 Interrupt event has not occurred. 1 Interrupt event has occurred.
EXINTy (y = 3 - 6)	[6:3]	rwh	Interrupt Flag for External Interrupt y or T2CCUCapture/Compare Channel z(z = 0-3)This bit is set by hardware and can only be clearedby software.0Interrupt event has not occurred.1Interrupt event has occurred.
0	7	r	Reserved Returns 0 if read; should be written with 0.

IRCON1 Interrupt Request Register 1

7	6	5	4	3	2	1	0
0	CANSRC2	CANSRC1	ADCSR1	ADCSR0	RIR	TIR	EIR
 r	rwh	rwh	rwh	rwh	rwh	rwh	rwh

Field	Bits	Туре	Description				
EIR	0	rwh	 Error Interrupt Flag for SSC This bit is set by hardware and can only be cleared by software. 0 Interrupt event has not occurred. 1 Interrupt event has occurred. 				
TIR	1	rwh	 Transmit Interrupt Flag for SSC This bit is set by hardware and can only be cleared by software. 0 Interrupt event has not occurred. 1 Interrupt event has occurred. 				
RIR	2	rwh	 Receive Interrupt Flag for SSC This bit is set by hardware and can only be cleared by software. 0 Interrupt event has not occurred. 1 Interrupt event has occurred. 				
ADCSR0	3	rwh	Interrupt Flag 0 for ADCThis bit is set by hardware and can only be clearedby software.00Interrupt event has not occurred.11Interrupt event has occurred.				
ADCSR1	4	rwh	Interrupt Flag 1 for ADCThis bit is set by hardware and can only be clearedby software.00Interrupt event has not occurred.1Interrupt event has occurred.				

Field	Bits	Туре	Description				
CANSRC1	5 rwh		Interrupt Flag 1 for MultiCANThis bit is set by hardware and can only be clearedby software.00Interrupt event has not occurred.11Interrupt event has occurred.				
CANSRC2	6	6 rwh Interru This bit by softw 0 Ir	Interrupt Flag 2 for MultiCANThis bit is set by hardware and can only be clearedby software.00Interrupt event has not occurred.11Interrupt event has occurred.				
0	7	r	Reserved Returns 0 if read; should be written with 0.				

IRCON2 Interrupt Request Register 2

7	6	5	4	3	2	1	0
	0	1	CANSRC3		0	1	CANSRC0
	r		rwh		r		rwh

Field	Bits	Туре	Description				
CANSRC0	0	rwh	Interrupt Flag 0 for MultiCANThis bit is set by hardware and can only be clearedby software.0Interrupt event has not occurred.1Interrupt event has occurred.				
CANSRC3	3	rwh	Interrupt Flag 3 for MultiCANThis bit is set by hardware and can only be clearedby software.00Interrupt event has not occurred.11Interrupt event has occurred.				
0	[3:1], [7:5]	r	Reserved Returns 0 if read; should be written with 0.				

IRCON3 Interrupt Request Register 3

7	6	5	4	3	2	1	0
C)	CANSRC5	CCU6SR1	C)	CANSRC4	CCU6SR0
r	•	rwh	rwh	r	•	rwh	rwh

Field	Bits	Туре	Description				
CCU6SR0	0	rwh	Interrupt Flag 0 for CCU6This bit is set by hardware and can only be clearedby software.00Interrupt event has not occurred.11Interrupt event has occurred.				
CANSRC4	1	rwh	Interrupt Flag 4 for MultiCAN This bit is set by hardware and can only be cleared by software. 0 Interrupt event has not occurred. 1 Interrupt event has occurred.				
CCU6SR1	4	rwh	Interrupt Flag 1 for CCU6This bit is set by hardware and can only be clearedby software.00Interrupt event has not occurred.11Interrupt event has occurred.				
CANSRC5	5	rwh	Interrupt Flag 5 for MultiCANThis bit is set by hardware and can only be clearedby software.00Interrupt event has not occurred.11Interrupt event has occurred.				
0	[3:2], [7:6]	r	Reserved Returns 0 if read; should be written with 0.				

IRCON4 Interrupt Request Register 4

7	6	5	4	3	2	1	0
C)	CANSRC7	CCU6SR3	()	CANSRC6	CCU6SR2
r	•	rwh	rwh	1	ſ	rwh	rwh

Field	Bits	Туре	Description				
CCU6SR2 0		rwh	Interrupt Flag 2 for CCU6This bit is set by hardware and can only be clearedby software.00Interrupt event has not occurred.11Interrupt event has occurred.				
CANSRC6	1	rwh	Interrupt Flag 6 for MultiCANThis bit is set by hardware and can only be cleareby software.00Interrupt event has not occurred.1Interrupt event has occurred.				
CCU6SR3	4	rwh	Interrupt Flag 3 for CCU6This bit is set by hardware and can only be clearedby software.00Interrupt event has not occurred.11Interrupt event has occurred.				
CANSRC7	5	rwh	Interrupt Flag 7 for MultiCANThis bit is set by hardware and can only be clearedby software.00Interrupt event has not occurred.1Interrupt event has occurred.				
0	[3:2], [7:6]	r	Reserved Returns 0 if read; should be written with 0.				

TCON Timer Control Register

7	6	5	4	3	2	1	0
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
rwh	rw	rwh	rw	rwh	rw	rwh	rw

Field	Bits	Туре	Description				
IEO	1	rwh	External Interrupt 0 Flag Set by hardware when external interrupt 0 event is detected. Cleared by hardware when processor vectors to interrupt routine. Can also be cleared by software				
IE1	3	rwh	External Interrupt 1 Flag Set by hardware when external interrupt 1 event is detected. Cleared by hardware when processor vectors to interrupt routine. Can also be cleared by software.				
TF0	5	rwh	Timer 0 Overflow Flag Set by hardware on Timer 0 overflow. Cleared by hardware when processor vectors to interrupt routine. Can also be cleared by software.				
TF1	7	rwh	Timer 1 Overflow Flag Set by hardware on Timer 1 overflow. Cleared by hardware when processor vectors to interrupt routine. Can also be cleared by software.				

SCON Serial Channel Control Register

Reset Value: 00_H

7	6	5	4	3	2	1	0
SM0	SM1	SM2	REN	TB8	RB8	ТІ	RI
rw	rw	rw	rw	rw	rwh	rwh	rwh

Field	Bits	Туре	Description
RI	0	rwh	Serial Interface Receiver Interrupt Flag Set by hardware if a serial data byte has been received. Must be cleared by software.
ті	1	rwh	Serial Interface Transmitter Interrupt Flag Set by hardware at the end of a serial data transmission. Must be cleared by software.

NMISR NMI Status Register

	7	6	5	4	3	2	1	0
	0	FNMIECC	FNMI VDDP	0	FNMI OCDS	FNMI FLASH	FNMIPLL	FNMIWDT
_	r	rwh	rwh	r	rwh	r	rwh	rwh

Field	Bits	Туре	Description		
FNMIWDT	0	rwh	 Watchdog Timer NMI Flag 0 No Watchdog Timer NMI has occurred. 1 Watchdog Timer prewarning has occurred. 		
FNMIPLL	1	rwh	PLL NMI Flag0No PLL NMI has occurred.1PLL loss-of-clock to the external crystal has occurred.		
FNMIFLASH	2	rwh	FLASH Timer NMI Flag0No FlashTimer NMI has occurred.1Flash Timer Overflow has occurred.		

XC878CLM

Interrupt System

Field	Bits	Туре	Description			
FNMIOCDS	3	rwh	OCDS NMI Flag0No OCDS NMI has occurred.1Reserved			
FNMIVDDP	5	rwh	 VDDP Prewarning NMI Flag No V_{DDP} NMI occurred. V_{DDP} prewarning (drop to 4.0 V for external power supply of 5.0 V) has occurred. 			
FNMIECC	6	rwh	ECC NMI Flag0No ECC error has occurred.1ECC error has occurred.			
0	4,7	r	Reserved Returns 0 if read; should be written with 0.			

Register NMISR can only be cleared by software or reset to the default value after the power-on reset/hardware reset/brownout reset. The register value is retained on any other reset such as watchdog timer reset or power-down wake-up reset. This allows the system to detect what caused the previous NMI.

5.6.4 Interrupt Priority Registers

Each interrupt source can be individually programmed to one of the four available priority levels. Two pairs of interrupt priority registers are available to program the priority level of each interrupt vector. The first pair of Interrupt Priority Registers are SFRs IP and IPH. The second pair of Interrupt Priority Registers are SFRs IP1 and IPH1.

The corresponding bits in each pair of Interrupt Priority Registers select one of the four priority levels shown in Table 5-3.

IPH.x / IPH1.x	IP.x / IP1.x	Priority Level
0	0	Level 0 (lowest)
0	1	Level 1
1	0	Level 2
1	1	Level 3 (highest)

Table 5-3 Interrupt Priority Level Selection

Note: NMI always has the highest priority (above Level 3), it does not use the level selection shown in **Table 5-3**.

IP

Interrupt Priority Register

7	6	5	4	3	2	1	0
(D	PT2	PS	PT1	PX1	PT0	PX0
	r	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description
PX0	0	rw	Priority Level Low Bit for Interrupt Node XINTR0
PT0	1	rw	Priority Level Low Bit for Interrupt Node XINTR1
PX1	2	rw	Priority Level Low Bit for Interrupt Node XINTR2
PT1	3	rw	Priority Level Low Bit for Interrupt Node XINTR3
PS	4	rw	Priority Level Low Bit for Interrupt Node XINTR4
PT2	5	rw	Priority Level Low Bit for Interrupt Node XINTR5
0	[7:6]	r	Reserved Returns 0 if read; should be written with 0.

IPH Interrupt Priority High Register

Reset Value: 00_H

7	6	5	4	3	2	1	0
0		PT2H	PSH	PT1H	PX1H	РТОН	РХОН
r	•	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description		
PX0H	0	rw	Priority Level High Bit for Interrupt Node XINTR0		
PT0H	1	rw	Priority Level High Bit for Interrupt Node XINTR1		
PX1H	2	rw	Priority Level High Bit for Interrupt Node XINTR2		
PT1H	3	rw	Priority Level High Bit for Interrupt Node XINTR3		
PSH	4	rw	Priority Level High Bit for Interrupt Node XINTR4		
PT2H	5	rw	Priority Level High Bit for Interrupt Node XINTR5		
0	[7:6]	r	Reserved Returns 0 if read; should be written with 0.		

IP1 Interrupt Priority 1 Register

7	6	5	4	3	2	1	0
PCCIP3	PCCIP2	PCCIP1	PCCIP0	PXM	PX2	PSSC	PADC
rw	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description
PADC	0	rw	Priority Level Low Bit for Interrupt Node XINTR6
PSSC	1	rw	Priority Level Low Bit for Interrupt Node XINTR7
PX2	2	rw	Priority Level Low Bit for Interrupt Node XINTR8
РХМ	3	rw	Priority Level Low Bit for Interrupt Node XINTR9
PCCIP0	4	rw	Priority Level Low Bit for Interrupt Node XINTR10
PCCIP1	5	rw	Priority Level Low Bit for Interrupt Node XINTR11
PCCIP2	6	rw	Priority Level Low Bit for Interrupt Node XINTR12

Field	Bits	Туре	Description
PCCIP3	7	rw	Priority Level Low Bit for Interrupt Node XINTR13

IPH1 Interrupt Priority 1 High Register

7	6	5	4	3	2	1	0
РССІРЗН	PCCIP2H	PCCIP1H	PCCIP0H	РХМН	PX2H	PSSCH	PADCH
rw	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description
PADCH	0	rw	Priority Level High Bit for Interrupt Node XINTR6
PSSCH	1	rw	Priority Level High Bit for Interrupt Node XINTR7
PX2H	2	rw	Priority Level High Bit for Interrupt Node XINTR8
РХМН	3	rw	Priority Level High Bit for Interrupt Node XINTR9
PCCIP0H	4	rw	Priority Level High Bit for Interrupt Node XINTR10
PCCIP1H	5	rw	Priority Level High Bit for Interrupt Node XINTR11
PCCIP2H	6	rw	Priority Level High Bit for Interrupt Node XINTR12
PCCIP3H	7	rw	Priority Level High Bit for Interrupt Node XINTR13

5.7 Interrupt Flag Overview

The interrupt events have interrupt flags that are located in different SFRs. **Table 5-4** provides the corresponding SFR to which each interrupt flag belongs. Detailed information on the interrupt flags is provided in the respective peripheral chapters.

Interrupt Source	Interrupt Flag	SFR	
Timer 0 Overflow	TF0	TCON	
Timer 1 Overflow	TF1	TCON	
Timer 2 Overflow	TF2	T2_T2CON	
Timer 2 External Event	EXF2	T2_T2CON	
Timer 21 Overflow	TF2	T21_T2CON	
Timer 21 External Event	EXF2	T21_T2CON	
LIN End of Syn Byte	EOFSYN	FDCON	
LIN Syn Byte Error	ERRSYN	FDCON	
UART Receive	RI	SCON	
UART Transmit	TI	SCON	
UART Normal Divider Overflow	NDOV	FDCON	
UART1 Receive	RI	UART1_SCON	
UART1 Transmit	TI	UART1_SCON	
UART1 Normal Divider Overflow	NDOV	UART1_FDCON TCON TCON	
External Interrupt 0	IE0		
External Interrupt 1	IE1		
External Interrupt 2	EXINT2	IRCON0	
External Interrupt 3/T2CC0	EXINT3	IRCON0	
External Interrupt 4/T2CC1	EXINT4	IRCON0	
External Interrupt 5/T2CC2	EXINT5	IRCON0	
External Interrupt 6/T2CC3	EXINT6	IRCON0	
T2CC4	CM4F	T2CCU_COCON	
T2CC5	CM5F	T2CCU_COCON	
T2CCU CCT Overflow	CCTOVF	T2CCU_CCTCON	
MDU Result Ready	IRDY	MDUSTAT	
MDU Error	IERR	MDUSTAT	

 Table 5-4
 Locations of the Interrupt Request Flags

Interrupt Source	Interrupt Flag	SFR	
A/D Converter Service Request 0	ADCSR0	IRCON1	
A/D Converter Service Request 1	ADCSR1	IRCON1	
SSC Error	EIR	IRCON1	
SSC Transmit	TIR	IRCON1	
SSC Receive	RIR	IRCON1	
CORDIC Interrupt	EOC	CDSTATC	
MultiCAN Interrupt 0	CANSRC0 ¹⁾	IRCON2	
MultiCAN Interrupt 1	CANSRC1 ¹⁾	IRCON1	
MultiCAN Interrupt 2	CANSRC2 ¹⁾	IRCON1	
MultiCAN Interrupt 3	CANSRC3 ¹⁾	IRCON2	
MultiCAN Interrupt 4	CANSRC4 ¹⁾	IRCON3	
MultiCAN Interrupt 5	CANSRC5 ¹⁾	IRCON3	
MultiCAN Interrupt 6	CANSRC6 ¹⁾	IRCON4	
MultiCAN Interrupt 7	CANSRC7 ¹⁾	IRCON4	
CCU6 Node 0 Interrupt	CCU6SR0	IRCON3	
CCU6 Node 1 Interrupt	CCU6SR1	IRCON3	
CCU6 Node 2 Interrupt	CCU6SR2	IRCON4	
CCU6 Node 3 Interrupt	CCU6SR3	IRCON4	
Watchdog Timer NMI	FNMIWDT	NMISR	
PLL NMI	FNMIPLL	NMISR	
FLASH Timer Overflow NMI	FNMIFLASH	NMISR	
V _{DDP} Prewarning NMI	FNMIVDDP	NMISR	
Flash ECC NMI	FNMIECC	NMISR	

Table 5-4 Locations of the Interrupt Request Flags (cont'd)

¹⁾ Different MultiCAN interrupt can be assigned to different MultiCAN interrupt output lines [7:0] via MultiCAN registers NIPRx/MOIPRn.

6 Parallel Ports

The XC878 has 40 port pins organized into five parallel ports: Port 0 (P0), Port 1 (P1), Port 3 (P3), Port 4 (P4) and Port 5 (P5). Each pin has a pair of internal pull-up and pull-down devices that can be individually enabled or disabled. These ports are bidirectional and can be used as general purpose input/output (GPIO) or to perform alternate input/output functions for the on-chip peripherals. When configured as an output, the open drain mode can be selected.

Bidirectional Port Features:

- Configurable pin direction
- Configurable pull-up/pull-down devices
- Configurable open drain mode
- Configurable drive strength
- Transfer data through digital inputs and outputs (general purpose I/O)
- Alternate input/output for on-chip peripherals

6.1 General Description

Figure 6-1 shows the block diagram of an XC878 bidirectional port pin. Each port pin is equipped with a number of control and data bits, thus enabling very flexible usage of the pin. By defining the contents of the control register, each individual pin can be configured as an input or an output. The user can also configure each pin as an open drain pin with or without internal pull-up/pull-down device.

Each bidirectional port pin can be configured for input or output operation. Switching between input and output mode is accomplished through the register Px_DIR (x = 0, 1, 3, 4 or 5), which enables or disables the output and input drivers. A port pin can only be configured as either input or output mode at any one time.

In input mode (default after reset), the output driver is switched off (high-impedance). The actual voltage level present at the port pin is translated into a logic 0 or 1 via a Schmitt-Trigger device and can be read via the register Px_DATA.

In output mode, the output driver is activated and drives the value supplied through the multiplexer to the port pin. In the output driver, each port line can be switched to open drain mode or normal mode (push-pull mode) via the register Px_OD. The drive strength of the output driver can also be configured via the register Px_DS.

The output multiplexer in front of the output driver enables the port output function to be used for different purposes. If the pin is used for general purpose output, the multiplexer is switched by software to the data register Px_DATA. Software can set or clear the bit in Px_DATA and therefore directly influence the state of the port pin. If an on-chip peripheral uses the pin for output signals, alternate output lines (AltDataOut) can be switched via the multiplexer to the output driver circuitry. Selection of the alternate function is defined in registers Px_ALTSEL0 and Px_ALTSEL1. When a port pin is used as an alternate function, its direction must be set accordingly in the register Px_DIR.

Each pin can also be programmed to activate an internal weak pull-up or pull-down device. Register Px_PUDSEL selects whether a pull-up or the pull-down device is activated while register Px_PUDEN enables or disables the pull device.

XC878CLM

Parallel Ports

Figure 6-1 General Structure of Bidirectional Port

6.1.1 General Register Description

The individual control and data bits of each parallel port are implemented in a number of 8-bit registers. Bits with the same meaning and function are assembled together in the same register. The registers configure and use the port as general purpose I/O or alternate function input/output.

The availability and definition of registers specific to each port is defined in **Section 6.3** to **Section 6.7**. This section provides only an overview of the different port registers

Register Short Name	Register Long Name	Description
Px_DATA	Port x Data Register	Page 6-5
Px_DIR	Port x Direction Register	Page 6-6
Px_OD	Port x Open Drain Control Register	Page 6-6
Px_PUDSEL	Port x Pull-Up/Pull-Down Select Register	Page 6-7
Px_PUDEN	Port x Pull-Up/Pull-Down Enable Register	Page 6-7
Px_ALTSEL0	Port x Alternate Select Register 0	Page 6-8
Px_ALTSEL1	Port x Alternate Select Register 1	Page 6-8
Px_DS	Port x Drive Strength Control Register	Page 6-9

Table 6-1Port Registers

6.1.1.1 Data Register

If a port pin is used as general purpose output, output data is written into data register Px_DATA. If a port pin is used as general purpose input, the latched value of the port pin can be read through register Px_DATA.

Note: A port pin that has been assigned as input will latch in the active internal pullup/pull-down setting if it is not driven by an external source. This results in register Px_DATA being updated with the active pull value.

Px_DATA Port x Data Register

7	6	5	4	3	2	1	0
P7	P6	Р5	P4	Р3	P2	P1	P0
rwh							

Field	Bits	Туре	Description		
Pn (n = 0 - 7)	n	rwh	Port x Pin n Data Value0Port x pin n data value = 01Port x pin n data value = 1		

Bit Px_DATA.n can only be written if the corresponding pin is set to output $(Px_DIR.n = 1)$ and cannot be written if the corresponding pin is set to input $(Px_DIR.n = 0)$. The content of Px_DATA.n is output on the assigned pin if the pin is assigned as GPIO pin and the direction is switched/set to output. A read operation of Px_DATA returns the register value and not the state of the corresponding Px_DATA pin.

6.1.1.2 Direction Register

The direction of bidirectional port pins is controlled by the respective direction register Px_DIR.

Px_DIR Port x Direction Register

7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0
rw							

Field	Bits	Туре	Description		
Pn (n = 0 - 7)	n	rw	 Bidirectional: Port x Pin n Direction Control 0 Direction is set to input 1 Direction is set to output 		

6.1.1.3 Open Drain Control Register

Each pin in output mode can be emulated to open drain mode. If driven with 1, no driver will be activated and the pin output state depends on the internal pull-up/pull-down device setting or stay at tristate mode. If driven with 0, the driver's pull-down transistor will be activated.

The open drain mode is controlled by the register Px_OD.

Px_OD

Port x Open Drain Control Register

7	6	5	4	3	2	1	0	_
P7	P6	P5	P4	P3	P2	P1	P0	
rw								

Field	Bits	Туре	Description
Pn (n = 0 - 7)	n	rw	 Port x Pin n Open Drain Mode 0 Normal Mode; output is actively driven for 0 and 1 state 1 Open Drain Mode; output is actively driven only for 0 state

6.1.1.4 Pull-Up/Pull-Down Device Register

Internal pull-up/pull-down devices can be optionally applied to a port pin.

This offers the possibility to configure the following input characteristics:

- tristate
- High-impedance with a weak pull-up device
- High-impedance with a weak pull-down device

and the following output characteristics:

- Push/pull (optional pull-up/pull-down)
- Open drain with internal pull-up
- Open drain with external pull-up

The pull-up/pull-down device can be fixed or controlled via the registers Px_PUDSEL and Px_PUDEN . Register Px_PUDSEL selects the type of pull-up/pull-down device, while register Px_PUDEN enables or disables it. The pull-up/pull-down device can be selected pinwise.

Px_PUDSEL

Port x Pull-Up/Pull-Down Select Register

7	6	5	4	3	2	1	0	
P7	P6	P5	P4	P3	P2	P1	P0	
rw	3							

Field	Bits	Туре	Description		
Pn	n	rw	Pull-Up/Pull-Down Select Port x Bit n		
(n = 0 - 7)			0 Pull-down device is selected		
			1 Pull-up device is selected		

Px_PUDEN Port x Pull-Up/Pull-Down Enable Register

7	6	5	4	3	2	1	0	
P7	P6	P5	P4	Р3	P2	P1	P0	
rw	,							

Field	Bits	Туре	Description	
Pn (n = 0 - 7)	n	rw	Pull-Up/Pull-Down Enable at Port x Bit n0Pull-up or Pull-down device is disabled1Pull-up or Pull-down device is enabled	

6.1.1.5 Alternate Input and Output Functions

The number of alternate input functions that uses a pin for input is not limited. Each port control logic of an I/O pin provides several input paths of digital input value via register or direct digital input value.

Alternate output functions are selected via an output multiplexer which can select up to four output lines.

This multiplexer can be controlled by the following registers:

- Register Px_ALTSEL0
- Register Px_ALTSEL1

Selection of alternate functions is defined in registers Px_ALTSEL0 and Px_ALTSEL1.

Px_ALTSELn(n = 0 - 1) Port x Alternate Select Register

7	6	5	4	3	2	1	0
P7	P6	Р5	Ρ4	Р3	P2	P1	P0
rw							

Field	Bits	Туре	Description		
Pn	n	rw	Pin Output Functions		
(n = 0 - 7)			Configuration of Px_ALTSEL0.Pn and		
			Px_ALTSEL1.Pn for GPIO or alternate settings:		
			00 Normal GPIO		
			10 Alternate Select 1		
			01 Alternate Select 2		
			11 Alternate Select 3		

Note: Set Px_ALTSEL0.Pn and Px_ALTSEL1.Pn to select only implemented alternate output functions.

6.1.1.6 Drive Strength Control Register

The drive strength of the port can be controlled by the register Px_DS. It selects either the strong or weak drive strength.

Px_DS

Port x Drive Strength Control Register

7	6	5	4	3	2	1	0
P7	P6	P5	P4	Р3	P2	P1	P0
rw							

Field	Bits	Туре	Description	
Pn (n = 0 - 7)	n	rw	 Drive Strength Control Port x Bit n 0 Weak drive strength 1 Strong drive strength 	

6.2 Register Address Map

The Port SFRs are located in the standard memory area (RMAP = 0) and are organized into 4 pages. The PORT_PAGE register is located at address $B2_{H}$. It contains the page value and page control information.

The addresses of the kernel SFRs are listed in Table 6-2

Address	Page 0	Page 1	Page 2	Page 3
80H	P0_DATA	P0_PUDSEL	P0_ALTSEL0	P0_OD
86H	P0_DIR	P0_PUDEN	P0_ALTSEL1	P0_DS
90H	P1_DATA	P1_PUDSEL	P1_ALTSEL0	P1_OD
91H	P1_DIR	P1_PUDEN	P1_ALTSEL1	P1_DS
92H	P5_DATA	P5_PUDSEL	P5_ALTSEL0	P5_OD
93H	P5_DIR	P5_PUDEN	P5_ALTSEL1	P5_DS
B0H	P3_DATA	P3_PUDSEL	P3_ALTSEL0	P3_OD
B1H	P3_DIR	P3_PUDEN	P3_ALTSEL1	P3_DS
C8H	P4_DATA	P4_PUDSEL	P4_ALTSEL0	P4_OD
C9H	P4_DIR	P4_PUDEN	P4_ALTSEL1	P4_DS

Table 6-2 SFR Address List for Pages 0-3

PORT_PAGE Page Register for PORT

7	6	5	4	3	2	1	0
	OP	STNR		0		PAGE	
	Ŵ	W		r	•	rwh	

Field	Bits	Туре	Description
PAGE	[2:0]	rwh	Page Bits When written, the value indicates the new page address. When read, the value indicates the currently active page = addr [y:x+1]

Field	Bits	Туре	Description
STNR	[5:4]	W	Storage NumberThis number indicates which storage bit field is the target of the operation defined by bit OP.If $OP = 10_B$, the contents of PAGE are saved in STx before being overwritten with the new value.If $OP = 11_B$, the contents of PAGE are overwritten by the contents of STx. The value written to the bit positions of PAGE is ignored.00ST0 is selected.01ST1 is selected.10ST2 is selected.11ST3 is selected.
OP	[7:6]	W	 Operation 0X Manual page mode. The value of STNR is ignored and PAGE is directly written. 10 New page programming with automatic page saving. The value written to the bit positions of PAGE is stored. In parallel, the former contents of PAGE are saved in the storage bit field STx indicated by STNR. 11 Automatic restore page action. The value written to the bit positions PAGE is ignored and instead, PAGE is overwritten by the contents of the storage bit field STx indicated by STNR.
0	3	r	Reserved Returns 0 if read; should be written with 0.

6.3 Port 0

Port P0 is a 8-bit general purpose bidirectional port.

The registers of P0 are summarized in **Table 6-3**.

Register Long Name				
Port 0 Data Register				
Port 0 Direction Register				
Port 0 Open Drain Control Register				
Port 0 Pull-Up/Pull-Down Select Register				
Port 0 Pull-Up/Pull-Down Enable Register				
Port 0 Alternate Select Register 0				
Port 0 Alternate Select Register 1				
Port 0 Drive Strength Control Register				

Table 6-3Port 0 Registers

6.3.1 Functions

Table 6-4 shows Port 0 input and output functions.

Alternate output functions are selected via register P0_ALTSEL0 and register P0_ALTSEL1.

Port Pin	Input/Output	Select	Connected Signal(s)	From/to Module
P0.0	Input	GPI	P0_DATA.P0	-
		ALT1	TCK_0	JTAG
		ALT2	T12HR_1	CCU6
		ALT3	CC61_1	CCU6
	Output	GPO	P0_DATA.P0	-
		ALT1	CLKOUT_0	Clock Output
		ALT2	CC61_1	CCU6
		ALT3	RXDO_1	UART

 Table 6-4
 Port 0 Input/Output Functions

Port Pin	Input/Output	Select	Connected Signal(s)	From/to Module
P0.1	Input	GPI	P0_DATA.P1	-
		ALT1	TDI_0	JTAG
		ALT2	T13HR_1	CCU6
		ALT3	RXD_1	UART
		ALT4	RXDC1_0	MultiCAN
	Output	GPO	P0_DATA.P1	-
		ALT1	EXF2_1	T2CCU
		ALT2	COUT61_1	CCU6
		ALT3	-	-
P0.2	Input	GPI	P0_DATA.P2	-
		ALT1	-	-
		ALT2	CTRAP_2	CCU6
		ALT3	-	-
	Output	GPO	P0_DATA.P2	-
		ALT1	TDO_0	JTAG
		ALT2	TXD_1	UART
		ALT3	TXDC1_0	MultiCAN
P0.3	Input	GPI	P0_DATA.P3	-
		ALT1	SCK_1	SSC
		ALT2	-	-
		ALT3	-	-
	Output	GPO	P0_DATA.P3	-
		ALT1	SCK_1	SSC
		ALT2	COUT63_1	CCU6
		ALT3	RXDO1_0	UART1
		EXT_INT	A17	External Interface

Table 6-4 Port 0 Input/Output Functions

Port Pin	Input/Output	Select	Connected Signal(s)	From/to Module
P0.4	Input	GPI	P0_DATA.P4	-
		ALT1	MTSR_1	SSC
		ALT2	-	-
		ALT3	CC62_1	CCU6
	Output	GPO	P0_DATA.P4	-
		ALT1	MTSR_1	SSC
		ALT2	CC62_1	CCU6
		ALT3	TXD1_0	UART1
		EXT_INT	A18	External Interface
P0.5	Input	GPI	P0_DATA.P5	-
		ALT1	MRST_1	SSC
		ALT2	EXINT0_0	External interrupt 0
		ALT3	T2EX1_1	Timer 21
		ALT4	RXD1_0	UART1
	Output	GPO	P0_DATA.P5	-
		ALT1	MRST_1	SSC
		ALT2	COUT62_1	CCU6
		ALT3	-	-
		EXT_INT	A19	External Interface
⁻ 0.6	Input	GPI	P0_DATA.P6	-
		ALT1	-	-
		ALT2	-	-
		ALT3	-	-
	Output	GPO	P0_DATA.P6	-
		ALT1	T2CC4_1	T2CCU
		ALT2	-	-
		ALT3	-	-
		EXT_INT	WR	External Interface

Table 6-4 Port 0 Input/Output Functions

XC878CLM

Parallel Ports

Port Pin	Input/Output	Select	Connected Signal(s)	From/to Module
P0.7	Input	GPI	P0_DATA.P7	-
		ALT1	-	-
		ALT2	-	-
		ALT3	-	-
	Output	GPO	P0_DATA.P7	-
		ALT1	CLKOUT_1	SCU
		ALT2	T2CC5_1	T2CCU
		ALT3	-	-
		EXT_INT	RD	External Interface

Table 6-4 Port 0 Input/Output Functions

Reset Value: 00_H

6.3.2 Register Description

P0_DATA Port 0 Data Register

		-						
	7	6	5	4	3	2	1	0
	P7	P6	Р5	P4	Р3	P2	P1	P0
-	rwh							

Field	Bits	Туре	Description		
Pn (n = 0 - 7)	n	rwh	Port 0 Pin n Data Value0Port 0 pin n data value = 0 (default)1Port 0 pin n data value = 1		

P0_DIR Port 0 Direction Register

7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0
rw							

Field	Bits	Туре	Description		
Pn (n = 0 - 7)	n	rw	 Port 0 Pin n Direction Control 0 Direction is set to input (default). 1 Direction is set to output 		

P0_OD Port 0 Open Drain Control Register

Reset Value: 00_H

_	7	6	5	4	3	2	1	0
	P7	P6	P5	P4	Р3	P2	P1	P0
	rw							

Field	Bits	Туре	Description			
Pn (n = 0 - 7)	n	rw	 Port 0 Pin n Open Drain Mode 0 Normal Mode; output is actively driven for 0 and 1 state (default). 1 Open Drain Mode; output is actively driven only for 0 state 			

P0_PUDSEL Port 0 Pull-Up/Pull-Down Select Register

7	6	5	4	3	2	1	0
P7	P6	P5	P4	Р3	P2	P1	P0
rw							

Field	Bits	Туре	Description		
Pn (n = 0 - 7)	n	rw	Pull-Up/Pull-Down Select Port 0 Bit n0Pull-down device is selected1Pull-up device is selected (default).		

P0_PUDEN

Port 0 Pull-Up/Pull-Down Enable Register

Reset Value: C4_H

	7	6	5	4	3	2	1	0
	P7	P6	P5	P4	Р3	P2	P1	P0
_	rw							

Field	Bits	Туре	Description		
Pn (n = 0 - 7)	n	rw	Pull-Up/Pull-Down Enable at Port 0 Bit n0Pull-up or Pull-down device is disabled1Pull-up or Pull-down device is enabled		

P0_ALTSELn(n = 0 - 1) Port 0 Alternate Select Register

7	6	5	4	3	2	1	0
P7	P6	P5	P4	Р3	P2	P1	P0
rw							

Field	Bits	Туре	Description
Pn (n = 0 - 7)	n	rw	Pin Output Functions Configuration of P0_ALTSEL0.Pn and P0_ALTSEL1.Pn for GPIO or alternate settings: 00 Normal GPIO (default). 10 Alternate Select 1 01 Alternate Select 2
			11 Alternate Select 3

P0_DS Port 0 Drive Strength Control Register

	7	6	5	4	3	2	1	0
	P7	P6	Р5	Ρ4	P3	P2	P1	P0
L	rw							

Field	Bits	Туре	Description		
Pn (n = 0 - 7)	n	rw	 Drive Strength Control Port 0 Bit n 0 Weak drive strength 1 Strong drive strength (default). 		

6.4 Port 1

Port P1 is a 8-bit general purpose bidirectional port.

The registers of P1 are summarized in **Table 6-5**.

Register Long Name						
Port 1 Data Register						
Port 1 Direction Register						
Port 1 Open Drain Control Register						
Port 1 Pull-Up/Pull-Down Select Register						
Port 1 Pull-Up/Pull-Down Enable Register						
Port 1 Alternate Select Register 0						
Port 1 Alternate Select Register 1						
Port 1 Drive Strength Control Register						

Table 6-5Port 1 Registers

6.4.1 Functions

 Table 6-6 shows Port 1 input and output functions.

Alternate output functions are selected via register P1_ALTSEL0 and register P1_ALTSEL1.

Port Pin	Input/Output	Select	Connected Signal(s)	From/to Module
P1.0	Input	GPI	P1_DATA.P0	-
		ALT1	RXD_0	UART
		ALT2	T2EX_0	T2CCU
		ALT3	RXDC0_0	MultiCAN
	Output	GPO	P1_DATA.P0	-
		ALT1	-	-
		ALT2	-	-
		ALT3	-	-
		EXT_INT	A8	External Interface

 Table 6-6
 Port 1 Input/Output Functions

Port Pin	Input/Output	Select	Connected Signal(s)	From/to Module
P1.1	Input	GPI	P1_DATA.P1	-
		ALT1	-	-
		ALT2	EXINT3_0	External interrupt 3
		ALT3	T0_1	Timer 0
	Output	GPO	P1_DATA.P1	-
		ALT1	-	-
		ALT2	TXD_0	UART
		ALT3	TXDC0_0	MultiCAN
		EXT_INT	A9	External Interface
P1.2	Input	GPI	P1_DATA.P2	-
		ALT1	SCK_0	SSC
		ALT2	-	-
		ALT3	-	-
	Output	GPO	P1_DATA.P2	-
		ALT1	SCK_0	SSC
		ALT2	-	-
		ALT3	-	-
		EXT_INT	A10	External Interface
P1.3	Input	GPI	P1_DATA.P3	-
		ALT1	MTSR_0	SSC
		ALT2	SCK_2	SSC
		ALT3	-	-
	Output	GPO	P1_DATA.P3	-
		ALT1	MTSR_0	SSC
		ALT2	SCK_2	SSC
		ALT3	TXDC1_3	MultiCAN
		EXT_INT	A11	External Interface

Table 6-6 Port 1 Input/Output Functions

XC878CLM

Parallel Ports

Port Pin	Input/Output	Select	Connected Signal(s)	From/to Module
P1.4	Input	GPI	P1_DATA.P4	-
		ALT1	MRST_0	SSC
		ALT2	EXINT0_1	External interrupt 0
		ALT3	RXDC1_3	MultiCAN
		ALT4	MTSR_2	SSC
	Output	GPO	P1_DATA.P4	-
		ALT1	MRST_0	SSC
		ALT2	MTSR_2	SSC
		ALT3	-	-
		EXT_INT	A12	External Interface
P1.5	Input	GPI	P1_DATA.P5	-
		ALT1	CCPOS0_1	CCU6
		ALT2	EXINT5_0	External interrupt 5
		ALT3	T1_1	Timer 1
		ALT4	MRST_2	SSC
	Output	GPO	P1_DATA.P5 ¹⁾	-
		ALT1	EXF2_0	T2CCU
		ALT2	RXDO_0	UART
		ALT3	MRST_2	SSC
P1.6	Input	GPI	P1_DATA.P6	-
		ALT1	CCPOS1_1	CCU6
		ALT2	T12HR_0	CCU6
		ALT3	EXINT6_0	External interrupt 6
		ALT4	RXDC0_2	MultiCAN
		ALT5	T21_1	Timer 21
	Output	GPO	P1_DATA.P6 ²⁾	-
		ALT1	-	-
		ALT2	_	-

Table 6-6 Port 1 Input/Output Functions

XC878CLM

Parallel Ports

Port Pin	Input/Output	Select	Connected Signal(s)	From/to Module
P1.7	Input	GPI	P1_DATA.P7	-
		ALT1	CCPOS2_1	CCU6
		ALT2	T13HR_0	CCU6
		ALT3	T2_1	T2CCU
	Output	GPO	P1_DATA.P7	-
		ALT1	-	-
		ALT2	-	-
		ALT3	TXDC0_2	MultiCAN

Table 6-6 Port 1 Input/Output Functions

¹⁾ P1.5 can be used as a software Chip Select function for the SSC.

²⁾ P1.6 can be used as a software Chip Select function for the SSC.

Reset Value: 00_H

6.4.2 Register Description

P1_DATA Port 1 Data Register

	•						
7	6	5	4	3	2	1	0
P7	P6	Р5	P4	P3	P2	P1	P0
rwh							

Field	Bits	Туре	Description			
Pn	n	rwh	Port 1 Pin n Data Value			
(n = 0 - 7)			 0 Port 1 pin n data value = 0 (default) 1 Port 1 pin n data value = 1 			

P1_DIR Port 1 Direction Register

7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0
rw							

Field	Bits	Туре	Description		
Pn (n = 0 - 7)	n	rw	Port 1 Pin n Direction Control0Direction is set to input (default)1Direction is set to output		

P1_OD Port 1 Open Drain Control Register

Reset Value: 00_H

7	6	5	4	3	2	1	0
P7	P6	P5	P4	Р3	P2	P1	P0
rw							

Field	Bits	Туре	Description
Pn (n = 0 - 7)	n	rw	 Port 1 Pin n Open Drain Mode 0 Normal Mode; output is actively driven for 0 and 1 state (default) 1 Open Drain Mode; output is actively driven only for 0 state

P1_PUDSEL Port 1 Pull-Up/Pull-Down Select Register

7	6	5	4	3	2	1	0
P7	P6	P5	P4	Р3	P2	P1	P0
rw							

Field	Bits	Туре	Description		
Pn (n = 0 - 7)	n	rw	Pull-Up/Pull-Down Select Port 1 Bit n0Pull-down device is selected1Pull-up device is selected (default)		

P1_PUDEN

Port 1 Pull-Up/Pull-Down Enable Register

Reset Value: FF_{H}

7	6	5	4	3	2	1	0	_
P7	P6	Ρ5	Ρ4	Р3	P2	P1	P0	
rw	•							

Field	Bits	Туре	Description		
Pn	n	rw	Pull-Up/Pull-Down Enable at Port 1 Bit n		
(n = 0 - 7)			 Pull-up or Pull-down device is disabled Pull-up or Pull-down device is enabled(default) 		

P1_ALTSELn(n = 0 - 1) Port 1 Alternate Select Register

7	6	5	4	3	2	1	0
P7	P6	P5	P4	Р3	P2	P1	P0
rw							

Field	Bits	Туре	Description
Pn (n = 0 - 7)	n	rw	Pin Output Functions Configuration of P1_ALTSEL0.Pn and P1_ALTSEL1.Pn for GPIO or alternate settings: 00 Normal GPIO (default) 10 Alternate Select 1 01 Alternate Select 2
			01 Alternate Select 211 Alternate Select 3

P1_DS Port 1 Drive Strength Control Register

7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0
rw							

Field	Bits	Туре	Description			
Pn (n = 0 - 7)	n	rw	 Port 1 Bit n Drive Strength 0 Weak drive strength 1 Strong drive strength (default) 			

6.5 Port 3

Port P3 is a 8-bit general purpose bidirectional port.

The registers of P3 are summarized in **Table 6-7**.

Register Short Name	Register Long Name				
P3_DATA	Port 3 Data Register				
P3_DIR Port 3 Direction Register					
P3_OD	Port 3 Open Drain Control Register				
P3_PUDSEL	Port 3 Pull-Up/Pull-Down Select Register				
P3_PUDEN	Port 3 Pull-Up/Pull-Down Enable Register				
P3_ALTSEL0	Port 3 Alternate Select Register 0				
P3_ALTSEL1	Port 3 Alternate Select Register 1				
P3_DS	Port 3 Drive Strength Control Register				

Table 6-7Port 3 Registers

6.5.1 Functions

 Table 6-8 shows Port 3 input and output functions.

Alternate output functions are selected via register P3_ALTSEL0 and register P3_ALTSEL1.

Port Pin	Input/Output	Select	Connected Signal(s)	From/to Module
P3.0	Input	GPI	P3_DATA.P0	-
		ALT1	CC60_0	CCU6
		ALT2	CCPOS1_2	CCU6
		ALT3	T2CC0_1/EXINT3_2	T2CCU/ External Interrupt 3
	Output	GPO	P3_DATA.P0	-
		ALT1	CC60_0	CCU6
		ALT2	T2CC0_1	T2CCU
		ALT3	RXDO1_1	UART1

 Table 6-8
 Port 3 Input/Output Functions

Port Pin	Input/Output	Select	Connected Signal(s)	From/to Module
P3.1	Input	GPI	P3_DATA.P1	-
		ALT1	-	-
		ALT2	CCPOS0_2	CCU6
		ALT3	CC61_2	CCU6
	Output	GPO	P3_DATA.P1	-
		ALT1	COUT60_0	CCU6
		ALT2	CC61_2	CCU6
		ALT3	TXD1_1	UART1
P3.2	Input	GPI	P3_DATA.P2	-
		ALT1	CC61_0	CCU6
		ALT2	CCPOS2_2	CCU6
		ALT3	RXDC1_1	MultiCAN
		ALT4	RXD1_1	UART1
		ALT5	T2CC1_1/EXINT4_2	T2CCU/ External Interrupt 4
	Output	GPO	P3_DATA.P2	-
		ALT1	CC61_0	CCU6
		ALT2	T2CC1_1	T2CCU
		ALT3	-	-
P3.3	Input	GPI	P3_DATA.P3	-
		ALT1	T2CC2_1/EXINT5_2	T2CCU/ External Interrupt 5
		ALT2	-	-
		ALT3	-	-
	Output	GPO	P3_DATA.P3	-
		ALT1	COUT61_0	CCU6
		ALT2	T2CC2_1	T2CCU
		ALT3	TXDC1_1	MultiCAN
		EXT_INT	A13	External Interface

Table 6-8 Port 3 Input/Output Functions

Port Pin	Input/Output	Select	Connected Signal(s)	From/to Module		
P3.4	Input	GPI	P3_DATA.P4	-		
		ALT1	CC62_0	CCU6		
		ALT2	T2EX1_0	Timer 21		
		ALT3	RXDC0_1	MultiCAN		
		ALT4	T2CC3_1/EXINT6_3	T2CCU/ External Interrupt 6		
	Output	GPO	P3_DATA.P4	-		
		ALT1	CC62_0	CCU6		
		ALT2	T2CC3_1	T2CCU		
		ALT3	-	-		
		EXT_INT	A14	External Interface		
P3.5	Input	GPI	P3_DATA.P5	_		
		ALT1	-	_		
		ALT2	-	_		
		ALT3	-	_		
	Output	GPO	P3_DATA.P5	_		
		ALT1	COUT62_0	CCU6		
		ALT2	EXF21_0	Timer 21		
		ALT3	TXDC0_1	MultiCAN		
		EXT_INT	A15	External Interface		
P3.6	Input	GPI	P3_DATA.P6	_		
		ALT1	CTRAP_0	CCU6		
		ALT2	-	_		
		ALT3	-			
	Output	GPO	P3_DATA.P6	-		
		ALT1	-	-		
		ALT2	-	-		
		ALT3	-	_		

Table 6-8 Port 3 Input/Output Functions

XC878CLM

Parallel Ports

Port Pin	Input/Output	Select	Connected Signal(s)	From/to Module	
P3.7	Input	GPI	P3_DATA.P7	-	
		ALT1	-	-	
		ALT2	EXINT4_0	External interrupt 4	
		ALT3	-	-	
	Output	GPO	P3_DATA.P7	-	
		ALT1	COUT63_0	CCU6	
		ALT2	-	-	
		ALT3	-	-	
		EXT_INT	A16	External Interface	

Table 6-8 Port 3 Input/Output Functions

Reset Value: 00_H

6.5.2 Register Description

P3_DATA Port 3 Data Register

	-						••
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0
rwh							

Field	Bits	Туре	Description	
Pn	n	rwh	Port 3 Pin n Data Value	
(n = 0 - 7)			 0 Port 3 pin n data value = 0 (default) 1 Port 3 pin n data value = 1 	

P3_DIR Port 3 Direction Register

7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0
rw							

Field	Bits	Туре	Description		
Pn (n = 0 - 7)	n	rw	 Port 3 Pin n Direction Control 0 Direction is set to input (default) 1 Direction is set to output 		

P3_OD Port 3 Open Drain Control Register

Reset Value: 00_H

7	6	5	4	3	2	1	0
P7	P6	Р5	P4	Р3	P2	P1	P0
rw							

Field	Bits	Туре	Description
Pn (n = 0 - 7)	n	rw	 Port 3 Pin n Open Drain Mode 0 Normal Mode; output is actively driven for 0 and 1 state (default) 1 Open Drain Mode; output is actively driven only for 0 state

P3_PUDSEL Port 3 Pull-Up/Pull-Down Select Register

Reset Value: BF_H

7	6	5	4	3	2	1	0
P7	P6	Р5	Ρ4	Р3	P2	P1	P0
rw							

Field	Bits	Туре	Description		
Pn (n = 0 - 7)	n	rw	Pull-Up/Pull-Down Select Port 3 Bit n0Pull-down device is selected1Pull-up device is selected (default)		

Note: Pull down device is activated for Pin P3.6 when reset is active. In the BootROM start up procedure, the pull down device is deactivated so that Pin P3.6 becomes tristate.

P3_PUDEN

Port 3 Pull-Up/Pull-Down Enable Register

Reset Value: 40_H

7	6	5	4	3	2	1	0	
P7	P6	P5	P4	P3	P2	P1	P0	
rw	1							

Field	Bits	Туре	Description		
Pn	n	rw	Pull-Up/Pull-Down Enable at Port 3 Bit n		
(n = 0 - 7)			 Pull-up or Pull-down device is disabled Pull-up or Pull-down device is enabled(default) 		

P3_ALTSEL0 Port 3 Alternate Select 0 Register

_	7	6	5	4	3	2	1	0
	P7	P6	P5	P4	P3	P2	P1	P0
	rw							

Field	Bits	Туре	Description		
Pn (n = 0 - 7)	n	rw	Pin Output Functions Configuration of P3_ALTSEL0.Pn and P3_ALTSEL1.Pn for GPIO or alternate settings: 00 Normal GPIO (default)		
			 10 Alternate Select 1 11 Alternate Select 3 		

P3_ALTSEL1 Port 3 Alternate Select 1 Register

Reset Value: 00_H

_	7	6	5	4	3	2	1	0
	P7	P6	P5	P4	P3	P2	P1	P0
	rw							

Field	Bits	Туре	Description Pin Output Functions	
Pn	n	rw		
(n = 0 - 7)			Configuration of P3_ALTSEL0.Pn and	
			P3_ALTSEL1.Pn for GPIO or alternate settings:	
			00 Normal GPIO (default)	
			10 Alternate Select 1	
			01 Alternate Select 2	
			11 Alternate Select 3	

P3_DS Port 3 Drive Strength Control Register

7	6	5	4	3	2	1	0	
P7	P6	P5	P4	P3	P2	P1	P0	
rw								

Field	Bits	Туре	Description	
Pn (n = 0 - 7)	n	rw	 Port 3 Bit n Drive Strength 0 Weak drive strength 1 Strong drive strength (default) 	

6.6 Port 4

Port P4 is a 8-bit general purpose bidirectional port.

The registers of P4 are summarized in **Table 6-9**.

Register Short Name	Register Long Name				
P4_DATA	Port 4 Data Register				
P4_DIR Port 4 Direction Register					
P4_OD Port 4 Open Drain Control Register					
P4_PUDSEL	Port 4 Pull-Up/Pull-Down Select Register				
P4_PUDEN	Port 4 Pull-Up/Pull-Down Enable Register				
P4_ALTSEL0	Port 4 Alternate Select Register 0				
P4_ALTSEL1 Port 4 Alternate Select Register 1					
P4_DS	Port 4 Drive Strength Control Register				

Table 6-9Port 4 Registers

6.6.1 Functions

Table 6-10 shows Port 4 input and output functions. Alternate output functions are selected via register P4_ALTSEL0 and register P4_ALTSEL1.

Port Pin	Input/Output	Select	Connected Signal(s)	From/to Module
P4.0	Input	GPI	P4_DATA.P0	-
		ALT1	-	-
		ALT2	-	-
		ALT3	RXDC0_3	MultiCAN
		ALT4	T2CC0_0/EXINT3_1	T2CCU/ External Interrupt 3
		EXT_INT	D0	External Interface
	Output	GPO	P4_DATA.P0	-
		ALT1	CC60_1	CCU6
		ALT2	T2CC0_0	T2CCU
		ALT3	-	-
		EXT_INT	D0	External Interface
P4.1	Input	GPI	P4_DATA.P1	-
		ALT1	T2CC1_0/EXINT4_1	T2CCU/ External Interrupt 4
		ALT2	-	-
		ALT3	-	-
		EXT_INT	D1	External Interface
	Output	GPO	P4_DATA.P1	-
		ALT1	COUT60_1	CCU6
		ALT2	T2CC1_0	T2CCU
		ALT3	TXDC0_3	MultiCAN
		EXT_INT	D1	External Interface

Table 6-10 Port 4 Input/Output Functions

Port Pin Input/Output Select **Connected Signal(s)** From/to Module P4.2 Input GPI P4 DATA.P2 _ ALT1 Timer 21 T21 0 ALT2 EXINT6 1 **External Interrupt 6** ALT3 — External Interface EXT INT D2 GPO Output P4 DATA.P2 _ ALT1 _ ALT2 _ _ ALT3 _ _ EXT INT D2 **External Interface** P4.3 Input GPI P4 DATA.P3 _ ALT1 T2CCU T2EX 1 ALT2 _ _ ALT3 _ _ EXT INT D3 External Interface Output GPO P4 DATA.P3 _ Timer 21 ALT1 EXF21 1 ALT2 CCU6 COUT63 2 ALT3 EXT INT D3 External Interface P4.4 GPI Input P4 DATA.P4 _ ALT1 CCPOS0 3 CCU6 ALT2 T0 0 Timer 0 ALT3 T2CC2_0/EXINT5_1 T2CCU/ External Interrupt 5 EXT_INT D4 **External Interface** Output GPO P4 DATA.P4 _ ALT1 CCU6 CC61 4 ALT2 T2CCU T2CC2 0 ALT3 _ _

Table 6-10 Port 4 Input/Output Functions

External Interface

D4

EXT INT

Input/Output From/to Module Port Pin Select **Connected Signal(s)** P4.5 Input GPI P4 DATA.P5 _ ALT1 CCU6 CCPOS1 3 ALT2 T1 0 Timer 1 T2CCU/ ALT3 T2CC3 0/EXINT6 2 **External Interrupt 6** EXT INT D5 External Interface Output GPO P4 DATA.P5 _ ALT1 COUT61 2 CCU6 ALT2 T2CC3 0 T2CCU ALT3 _ _ EXT INT D5 External Interface P4.6 Input GPI P4 DATA.P6 _ ALT1 CCPOS2 3 CCU6 ALT2 T2_0 Timer 2 ALT3 _ External Interface EXT INT D6 Output GPO P4 DATA.P6 ALT1 CC62 2 CCU6 ALT2 T2CC4 0 T2CCU ALT3 _ External Interface EXT INT D6 GPI P4.7 Input P4 DATA.P7 CTRAP 3 ALT1 CCU6 ALT2 _ _ ALT3 _ EXT_INT **External Interface** D7 Output GPO P4 DATA.P7 _ ALT1 CCU6 COUT62 2 ALT2 T2CC5 0 T2CCU ALT3 _ _

Table 6-10 Port 4 Input/Output Functions

D7

EXT INT

External Interface

Reset Value: 00_H

6.6.2 Register Description

P4_DATA Port 4 Data Register

	•						
7	6	5	4	3	2	1	0
P7	P6	P5	P4	Р3	P2	P1	P0
rwh							

Field	Bits	Туре	Description	
Pn	n	rwh	Port 4 Pin n Data Value	
(n = 0 - 7)			 0 Port 4 pin n data value = 0 (default) 1 Port 4 pin n data value = 1 	

P4_DIR Port 4 Direction Register

7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0
rw							

Field	Bits	Туре	Description		
Pn (n = 0 - 7)	n	rw	Port 4 Pin n Direction Control0Direction is set to input (default)1Direction is set to output		

P4_OD Port 4 Open Drain Control Register

Reset Value: 00_H

7	6	5	4	3	2	1	0
P7	P6	Р5	Ρ4	Р3	P2	P1	Р0
rw							

Field	Bits	Туре	Description
Pn (n = 0 - 7)	n	rw	 Port 4 Pin n Open Drain Mode 0 Normal Mode; output is actively driven for 0 and 1 state (default) 1 Open Drain Mode; output is actively driven only for 0 state

P4_PUDSEL Port 4 Pull-Up/Pull-Down Select Register

7	6	5	4	3	2	1	0
P7	P6	Р5	P4	Р3	P2	P1	P0
rw							

Field	Bits	Туре	Description		
Pn (n = 0 - 7)	n	rw	Pull-Up/Pull-Down Select Port 4 Bit n0Pull-down device is selected1Pull-up device is selected (default)		

P4_PUDEN

Port 4 Pull-Up/Pull-Down Enable Register

Reset Value: 04_H

7	6	5	4	3	2	1	0	_
P7	P6	Р5	P4	P3	P2	P1	P0	
rw	1							

Field	Bits	Туре	Description		
Pn (n = 0 - 7)	n	rw	Pull-Up/Pull-Down Enable at Port 4 Bit n0Pull-up or Pull-down device is disabled		
			1 Pull-up or Pull-down device is enabled(default)		

P4_ALTSELn(n = 0 - 1) Port 4 Alternate Select Register

_	7	6	5	4	3	2	1	0
	P7	P6	P5	P4	Р3	P2	P1	P0
-	rw							

Field	Bits	Туре	Description
Pn (n = 0 - 7)	n	rw	Pin Output Functions Configuration of P4_ALTSEL0.Pn and P4_ALTSEL1.Pn for GPIO or alternate settings: 00 Normal GPIO (default)
			10 Alternate Select 101 Alternate Select 211 Alternate Select 3

P4_DS Port 4 Drive Strength Control Register

7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0
rw							

Field	Bits	Туре	Description		
Pn (n = 0 - 7)	n	rw	 Port 4 Bit n Drive Strength 0 Weak drive strength 1 Strong drive strength (default) 		

6.7 Port 5

Port P5 is a 8-bit general purpose bidirectional port.

The registers of P5 are summarized in **Table 6-11**.

Register Short Name	Register Long Name				
P5_DATA	Port 5 Data Register				
P5_DIR	Port 5 Direction Register				
P5_OD	Port 5 Open Drain Control Register				
P5_PUDSEL	Port 5 Pull-Up/Pull-Down Select Register				
P5_PUDEN	Port 5 Pull-Up/Pull-Down Enable Register				
P5_ALTSEL0	Port 5 Alternate Select Register 0				
P5_ALTSEL1	Port 5 Alternate Select Register 1				
P5_DS	Port 5 Drive Strength Control Register				

Table 6-11Port 5 Registers

6.7.1 Functions

 Table 6-12 shows Port 5 input and output functions.

Alternate output functions are selected via register P5_ALTSEL0 and register P5_ALTSEL1.

Port Pin	Input/Output	Select	Connected Signal(s)	From/to Module
P5.0	Input	GPI	P5_DATA.P0	-
		ALT1	-	-
		ALT2	EXINT1_1	External Interrupt 1
		ALT3	-	-
	Output		P5_DATA.P0	-
		ALT1	-	-
		ALT2	-	-
		ALT3	-	-
		EXT_INT	A0	External Interface

 Table 6-12
 Port 5 Input/Output Functions

Port Pin	Input/Output	Select	Connected Signal(s)	From/to Module
P5.1	Input	GPI	P5_DATA.P1	-
		ALT1	ALT1 – –	
		ALT2	ALT2 EXINT2_1 Externa	
		ALT3	-	-
	Output	GPO	P5_DATA.P1	-
		ALT1	-	-
		ALT2	-	-
		ALT3	-	-
		EXT_INT	A1	External Interface
P5.2	Input	GPI	P5_DATA.P2	-
		ALT1	RXD_2	UART
		ALT2	T2CC2_2/EXINT5_3	T2CCU/ External Interrupt 5
		ALT3	-	-
	Output	GPO	P5_DATA.P2	-
		ALT1	T2CC2_2	T2CCU
		ALT2	-	-
		ALT3	-	-
		EXT_INT	A2	External Interface
P5.3	Input	GPI	P5_DATA.P3	-
		ALT1	CCPOS0_0	CCU6
		ALT2	EXINT1_0	External Interrupt 1
		ALT3	T12HR_2	CCU6
		ALT4	CC61_3	CCU6
	Output	GPO	P5_DATA.P3	-
		ALT1	T2CC5_2	T2CCU
		ALT2	TXD_2	UART
		ALT3	-	-
		EXT_INT	A3	External Interface
·			t	

Table 6-12 Port 5 Input/Output Functions

Input/Output From/to Module Port Pin Select **Connected Signal(s)** P5.4 Input GPI P5 DATA.P4 _ ALT1 CCU6 CCPOS1 0 ALT2 EXINT2 0 **External Interrupt 2** ALT3 T13HR 2 CCU6 ALT4 CC62 3 CCU6 GPO P5 DATA.P4 Output _ T2CC4 2 ALT1 T2CCU ALT2 RXDO 2 UART ALT3 _ _ EXT INT A4 **External Interface** P5.5 Input GPI P5 DATA.P5 _ ALT1 CCU6 CCPOS2 0 ALT2 **T2CC0 2/EXINT3 3** T2CCU/ **External Interrupt 3** CTRAP 1 ALT3 CCU6 ALT4 CC60 3 CCU6 Output GPO P5 DATA.P5 ALT1 TDO 1 JTAG ALT2 TXD1 2 UART1 ALT3 T2CC0 2 T2CCU EXT INT External Interface A5 P5.6 GPI P5 DATA.P6 Input _ JTAG ALT1 TCK_1 ALT2 T2CC1 2/EXINT4 3 T2CCU/ **External Interrupt 4** ALT3 _ _ GPO Output P5 DATA.P6 _ ALT1 _ ALT2 RXDO1 2 UART1 ALT3 T2CC1 2 T2CCU

Table 6-12 Port 5 Input/Output Functions

External Interface

A6

EXT_INT

XC878CLM

Parallel Ports

Port Pin	Input/Output	Select	Connected Signal(s)	From/to Module
P5.7	Input	GPI	P5_DATA.P7	-
		ALT1	TDI_1	JTAG
		ALT2	RXD1_2	UART1
		ALT3	T2CC3_2/EXINT6_4	T2CCU/ External Interrupt 6
	Output	GPO	P5_DATA.P7	-
		ALT1	T2CC3_2	T2CCU
		ALT2	-	-
		ALT3	-	-
		EXT_INT	A7	External Interface

Table 6-12 Port 5 Input/Output Functions

Reset Value: 00_H

6.7.2 Register Description

P5_DATA Port 5 Data Register

	-						
 7	6	5	4	3	2	1	0
P7	P6	Р5	P4	Р3	P2	P1	P0
rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh

Field	Bits	Туре	Description		
Pn	n	rwh	Port 5 Pin n Data Value		
(n = 0 - 7)			 0 Port 5 pin n data value = 0 (default) 1 Port 5 pin n data value = 1 		

P5_DIR Port 5 Direction Register

7	6	5	4	3	2	1	0
P7	P6	Р5	P4	P3	P2	P1	P0
rw							

Field	Bits	Туре	Description		
Pn (n = 0 - 7)	n	rw	Port 5 Pin n Direction Control0Direction is set to input (default)1Direction is set to output		

P5_OD Port 5 Open Drain Control Register

Reset Value: 00_H

7	6	5	4	3	2	1	0
P7	P6	Р5	P4	Р3	P2	P1	Р0
rw							

Field	Bits	Туре	Description		
Pn (n = 0 - 7)	n	rw	 Port 5 Pin n Open Drain Mode 0 Normal Mode; output is actively driven for 0 and 1 state (default) 1 Open Drain Mode; output is actively driven only for 0 state 		

P5_PUDSEL Port 5 Pull-Up/Pull-Down Select Register

7	6	5	4	3	2	1	0
P7	P6	P5	P4	Р3	P2	P1	P0
rw							

Field	Bits	Туре	Description		
Pn (n = 0 - 7)	n	rw	Pull-Up/Pull-Down Select Port 5 Bit n0Pull-down device is selected1Pull-up device is selected (default)		

Parallel Ports

P5_PUDEN

Port 5 Pull-Up/Pull-Down Enable Register

Reset Value: FF_{H}

7	6	5	4	3	2	1	0	_
P7	P6	P5	Ρ4	P3	P2	P1	P0	
rw	•							

Field	Bits	Туре	Description			
Pn (n = 0 - 7)	n	rw	Pull-Up/Pull-Down Enable at Port 5 Bit n0Pull-up or Pull-down device is disabled1Pull-up or Pull-down device is enabled(default)			

P5_ALTSELn(n = 0 - 1) Port 5 Alternate Select Register

Reset Value: 00_H

	7	6	5	4	3	2	1	0
	P7	P6	P5	P4	P3	P2	P1	P0
-	rw							

Field	Bits	Туре	Description			
		rw	Pin Output Functions Configuration of P5_ALTSEL0.Pn and P5_ALTSEL1.Pn for GPIO or alternate settings: 00 Normal GPIO (default) 10 Alternate Select 1			
			01 Alternate Select 211 Alternate Select 3			

Parallel Ports

P5_DS Port 5 Drive Strength Control Register

Reset Value: FF_H

7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0
rw							

Field	Bits	Туре	Description			
Pn (n = 0 - 7)	n	rw	 Port 5 Bit n Drive Strength 0 Weak drive strength 1 Strong drive strength (default) 			

Parallel Ports

7 Power Supply, Reset and Clock Management

The XC878 provides a range of utility features for secure system performance under critical conditions (e.g., brownout).

The power supply to the core, memories and the peripherals is regulated by the Embedded Voltage Regulator (EVR) that comes with detection circuitries to ensure that the supplied voltages are within the specified operating range. The main voltage and low power voltage regulators in the EVR may be independently switched off to reduce power consumption for the different power saving modes.

At the center of the XC878 clock system is the Clock Generation Unit (CGU), which generates a master clock frequency using the Phase-Locked Loop (PLL) and oscillator units. In-phase synchronized clock signals are derived from the master clock and distributed throughout the system. A programmable clock divider is available for scaling the master clock into lower frequencies for power savings.

7.1 Power Supply System with Embedded Voltage Regulator

The XC878 microcontroller requires two different levels of power supply:

- 3.3 V or 5.0 V for the Embedded Voltage Regulator (EVR) and Ports
- 2.5 V for the core, memory, on-chip oscillator, and peripherals

Figure 7-1 shows the XC878 power supply system. A power supply of 3.3 V or 5.0 V must be provided from the external power supply pin. The 2.5 V power supply for the logic is generated by the EVR. The EVR helps reduce the power consumption of the whole chip and the complexity of the application board design.

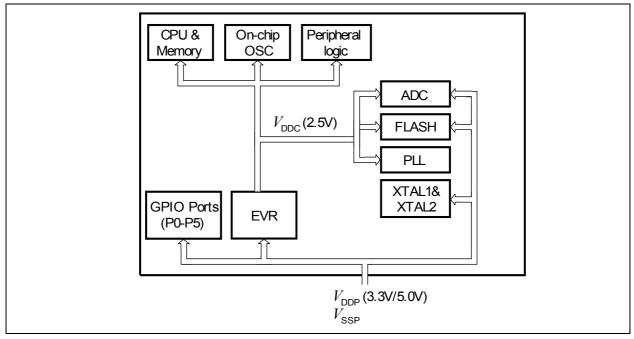


Figure 7-1 XC878 Power Supply System

EVR Features:

- Input voltage (V_{DDP}): 3.3 V/5.0 V
- Output voltage (V_{DDC}): 2.5 V +/-7.5%
- Low power voltage regulator provided in power-down mode
- V_{DDP} prewarning detection
- V_{DDC} brownout detection

The EVR consists of a main voltage regulator and a low power voltage regulator. In active mode, both voltage regulators are enabled. In power-down mode, the main voltage regulator is switched off, while the low power voltage regulator continues to function and provide power supply to the system with low power consumption.

The EVR has the V_{DDC} and V_{DDP} detectors. The V_{DDC} detector has a threshold voltage levels for brownout (1.8 V). If V_{DDC} is below 1.8 V, the brownout reset is activated, putting the microcontroller into a reset state. The brownout detection is enabled in both active and power down mode.

As for V_{DDP} , there is a prewarning threshold of 4.0 V if the external power supply is 5.0 V. When V_{DDP} is below 4.0 V, the V_{DDP} NMI flag NMISR.FNMIVDDP is set and an NMI request to the CPU is activated provided V_{DDP} NMI is enabled (NMICON.NMIVDDP). If an external power supply of 3.3 V is used, the V_{DDP} detector is switched off. In power-down mode, all detectors are disabled except for the brownout detector.

The EVR also has a power-on reset (POR) detector for V_{DDC} to ensure correct power up. The voltage level detection of POR is 1.8 V. The monitoring function is used in both active mode and power-down mode. During power up, after V_{DDC} exceeds 1.8 V, the reset of EVR is extended by a delay that is typically 300 µs.

7.2 Reset Control

The XC878 has five types of resets: power-on reset, hardware reset, watchdog timer reset, power-down wake-up reset, and brownout reset.

When theXC878 is first powered up, the status of certain pins (see **Table 7-2**) must be defined to ensure proper start operation of the device. At the end of a reset sequence, the sampled values are latched to select the desired boot option, which cannot be modified until the next power-on reset or hardware reset. This guarantees stable conditions during the normal operation of the device.

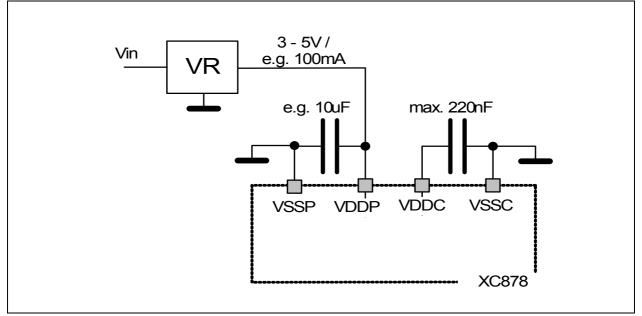
The hardware reset function can be used during normal operation or when the chip is in power-down mode. A reset input pin RESET is provided for the hardware reset.

The Watchdog Timer (WDT) module is also capable of resetting the device if it detects a malfunction in the system.

Another type of reset that needs to be detected is the reset while the device is in power-down mode (i.e., wake-up reset). While the contents of the static RAM are undefined after a power-on reset, they are well defined after a wake-up reset from power-down mode.

A brownout reset is triggered if the V_{DDC} supply voltage dips below 1.8 V.

7.2.1 Types of Resets


7.2.1.1 Power-On Reset

The supply voltage V_{DDP} is used to power up the chip. The EVR is the first module in the chip to be reset, which includes:

- 1. Startup of the main voltage regulator and the low power voltage regulator.
- 2. When V_{DDP} and V_{DDC} reach the threshold of the V_{DDP} and V_{DDC} detectors, the reset of EVR becomes inactive.

A typical example of the circuitry connected to the power supply of XC878 is shown in **Figure 7-2**. For a voltage regulator with $IDD_{max} = 100 \text{ mA}$, the V_{DDP} capacitor value is 10 μ F. V_{DDC} capacitor value has a maximum value of 220 nF.

Figure 7-2 Example of a Power Supply Circuitry

When the system starts up, the output of PLL is disabled. Once the EVR is stable, provided the oscillator is running, the PLL is connected and the continuous lock detection ensures that PLL starts functioning. Following this, as soon as the system clock is stable, the reset to CPU is released and program execution starts.

The status of pins MBC, TMS and P0.0 is latched by the reset. The latched values are used to select the boot options (see **Section 7.2.3**). A correctly executed reset leaves the system in a defined state. The program execution starts from location $0000_{\rm H}$.

Figure 7-3 shows the power-on reset sequence.

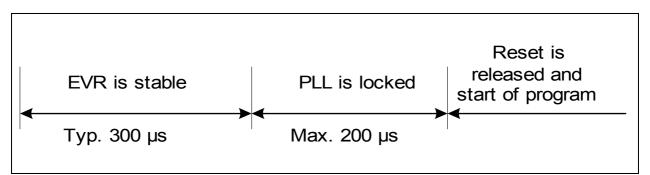


Figure 7-3 Power-on Reset

7.2.1.2 Hardware Reset

An external hardware reset sequence is started when the reset input pin RESET is asserted low. After the RESET pin is deasserted, the reset sequence is the same as the power-on reset sequence, as shown in **Figure 7-3**. A hardware reset through RESET pin will terminate the idle mode or the power-down mode.

The status of pins MBC, TMS and P0.0 is latched by the reset. The latched value is used to select the boot options (see **Section 7.2.3**).

7.2.1.3 Watchdog Timer Reset

The watchdog timer reset is an internal reset. The Watchdog Timer (WDT) maintains a counter that must be refreshed or cleared periodically. If the WDT is not serviced correctly and in time, it will generate an NMI request to the CPU and then reset the device after a predefined time-out period. Bit PMCON0.WDTRST is used to indicate the watchdog timer reset status.

For watchdog timer reset, as the EVR and clock system are already stable, the timing for watchdog timer reset is shorter compared to the other types of resets.

7.2.1.4 Power-Down Wake-Up Reset

Power is still applied to the XC878 during power-down mode, as the low power voltage regulator is still operating. If power-down mode is entered appropriately, all important system states will have been preserved in the Flash by software.

If the XC878 is in power-down mode, three options are available to awaken it:

- through RXD
- through EXINT0
- through RXD or EXINT0

Selection of these options is made via the control bit PMCON0.WS. The wake-up from power-down can be with reset or without reset; this is chosen by the PMCON0.WKSEL bit. The wake-up status (with or without reset) is indicated by the PMCON0.WKRS bit.

Once XC878 is awake, the power-down wake-up reset sequence is similar to the poweron reset sequence.

In addition to the above-mentioned three options, the power-down mode can also be exited by the hardware reset through RESET pin.

7.2.1.5 Brownout Reset

In active mode and power-down mode, the V_{DDC} detector in EVR detects brownout when the core supply voltage V_{DDC} dips below the threshold voltage V_{DDC_TH} (1.8 V). The brownout will cause the device to be reset. Once the brownout reset takes place, the reset sequence is the same as the power-on reset sequence, as shown in **Figure 7-3**. All ports are at tristate during brownout.

7.2.2 Module Reset Behavior

Table 7-1 lists the functions of the XC878 and the various reset types that affect these functions. The symbol "■" signifies that the particular function is reset to its default state.

Module/ Function	Wake-Up Reset	Watchdog Reset	Hardware Reset	Power-On Reset	Brownout Reset
CPU Core					
Peripherals					
On-Chip Static RAM	Not affected, Reliable	Not affected, Reliable	Not affected, Reliable	Affected, un- reliable	Affected, un- reliable
Oscillator, PLL		Not affected			
Port Pins					
EVR	The voltage regulator is switched on	Not affected	Not affected		
FLASH					
NMI					

 Table 7-1
 Effect of Reset on Device Functions

7.2.3 Booting Scheme

When the XC878 is reset, it must identify the type of configuration with which to start the different modes once the reset sequence is complete. Thus, boot configuration information that is required for activation of special modes and conditions needs to be applied by the external world through input pins. After power-on reset or hardware reset, the pins MBC, TMS and P0.0 collectively select the different boot options. Table 7-2 shows the available boot options in the XC878.

МВС	TMS	P0.0	Type of Mode	PC Start Value
1	0	x	User Mode; on-chip OSC/PLL non-bypassed (normal)	0000 _H
1	1	x	User (JTAG) Mode ²⁾ ; on-chip OSC/PLL non- bypassed (normal)	0000 _H
0	0	x	BSL Mode (LIN Mode ³⁾ , UART/ MultiCAN Mode ⁴⁾⁵⁾ and Alternate BSL Mode ⁶⁾); on-chip OSC/PLL non- bypassed	0000 _H
0	1	0	OCDS Mode; on-chip OSC/PLL non-bypassed (normal)	0000 _H

Table 7-2	XC878	Boot	Selections	1)
	70010	DUUL	OCICCUOIIS	

¹⁾ In addition to the pins MBC, TMS and P0.0, TM pin also requires an external pull down for all the boot options.

²⁾ Normal user mode with standard JTAG (TCK,TDI,TDO) pins for hot-attach purpose.

³⁾ If a device is programmed as LIN, LIN BSL is always used instead of UART/MultiCAN.

⁴⁾ UART or MultiCAN BSL is decoded by firmware based on the protocol for product variant with MultiCAN. If no MultiCAN and LIN variant, UART BSL is used.

- ⁵⁾ In MultiCAN BSL mode, the clock source is switched to XTAL by firmware, bypassing the on-chip oscillator. This avoids any frequency invariance with the on-chip oscillator and allows other frequency clock input, thus ensuring accurate baud rate detection (especially at high bit rates).
- ⁶⁾ Alternate BSL Mode is a user defined BSL code programmed in Flash. It is entered if the AltBSLPassword is valid.

Note: The boot options are valid only with the default set of UART and JTAG pins.

7.2.4 Register Description

Table 7-3 Reset Values of Register PMCON0

Reset Source	Reset Value		
Power-on Reset/Hardware Reset/Brownout Reset	1000 0000 _B		
Watchdog Timer Reset	1100 0000 _B		
Power-down Wake-up Reset	1010 0000 _B		

Table 7-4 Reset Values of Register CR_MISC

Reset Source	Reset Value		
Power-on Reset/Brownout Reset	0000 0000 _B		
Hardware Reset	0000 0001 _B		

PMCON0

Power Mode Control Register 0

Reset Value: See Table 7-3

7	6	5	4	3	2	1	0
VDDP WARN	WDTRST	WKRS	WKSEL	SD	PD	WS	
rh	rwh	rwh	rw	rw	rwh	rw	

Field	Bits	Туре	Description
WS	[1:0]	rw	 Wake-Up Source Select No wake-up is selected. Wake-up source RXD (falling edge trigger) is selected. Wake-up source EXINT0 (falling edge trigger) is selected. Wake-up source RXD (falling edge trigger) or EXINT0 (falling edge trigger) is selected.
WKSEL	4	rw	Wake-Up Reset Select Bit0Wake-up without reset1Wake-up with reset

Field	Bits	Туре	Description
WKRS	5	rwh	Wake-Up Indication Bit0No wake-up occurred.1Wake-up has occurred.This bit can only be set by hardware and reset by software.
WDTRST	6	rwh	 Watchdog Timer Reset Indication Bit 0 No watchdog timer reset occurred. 1 Watchdog timer reset has occurred. This bit can only be set by hardware and reset by software.
VDDPWARN	7	rh	 V_{DDP} Warning Threshold Indication Bit Below V_{DDP} warning threshold level. Above V_{DDP} warning threshold level.

CR_MISC Clock and Reset Miscellaneous Register

Reset Value: See Table 7-4

7	6	5	4	3	2	1	0
CCCFG	MDUCCFG	CCUCCFG	T2CCFG		0	1	HDRST
rw	rw	rw	rw		r	•	rwh

Field	Bits	Туре	Description
HDRST	7	rwh	 Hardware Reset Indication Bit 0 No hardware reset occurred. 1 Hardware reset occurred. This bit can only be set by hardware and reset by software.
0	[3:1]	r	Reserved Returns 0 if read; should be written with 0.

7.3 Clock System

The XC878 clock system performs the following functions:

- · Acquires and buffers incoming clock signals to create a master clock frequency
- Distributes in-phase synchronized clock signals throughout the system
- Divides a system master clock frequency into lower frequencies for power saving mode

7.3.1 Clock Generation Unit

The Clock Generation Unit (CGU) in the XC878 consists of an oscillator circuit and a Phase-Locked Loop (PLL). In the XC878, the oscillator can be from either of these two sources: the on-chip oscillator (4 MHz) or the external oscillator (2 MHz to 20 MHz). The term "oscillator" is used to refer to both on-chip oscillator and external oscillator, unless otherwise stated. After the reset, on-chip oscillator will be used by default. The external oscillator can be selected via software. The PLL can convert a low-frequency external clock signal from the oscillator circuit to a high-speed internal clock for maximum performance.

Figure 7-4 shows the block diagram of CGU.

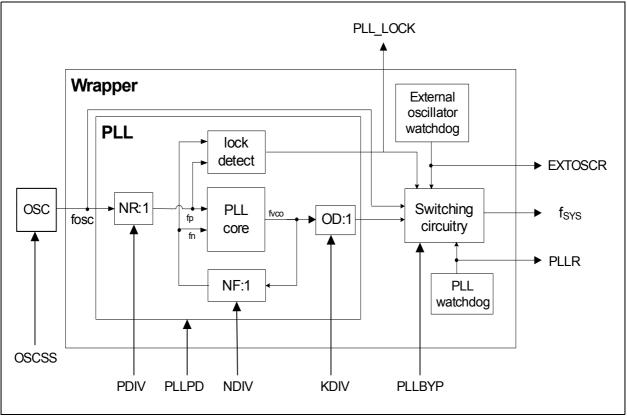


Figure 7-4 CGU Block Diagram

7.3.1.1 Functional Description

When the XC878 is powered up, the PLL output is disabled. After the EVR is stable, provided the oscillator is running, the PLL will be connected and the continuous lock detection will ensure that the PLL starts functioning. Once reset has been released, bit LOCK will be set to 1 to indicate that the PLL is locked.

Loss-of-Clock Operation

Loss-of-Clock may happens during one or a combination of these situations:

- PLL loses it's lock to the oscillator; or
- PLL output runs at less than 25 MHz; or
- External oscillator runs at less than 1 MHz when it is selected as the input source to PLL; or
- External oscillator runs at less than 1 MHz when it is programmed as the system frequency by setting OSC_CON.PLLBYP = 1 and OSC_CON.OSCSS = 1.

During loss-of-clock, one of the signal stated below could be deasserted:

- the PLL lock status, PLL_CON.PLL_LOCK
- the PLL run status, PLL_CON.PLLR
- the external oscillator run status, OSC_CON.EXTOSCR

When PLL loses its lock to the oscillator, the PLL Loss-of-Clock NMI flag NMISR.FNMIPLL is set and an NMI request to the CPU is activated if PLL NMI is enabled (NMICON.NMIPLL). In addition, the PLL_LOCK flag, PLLR flag and EXTOSCR flag may be reset depending on different application. While loss-of-clock remains true, the system clock is automatically switched to bypass the PLL output and the on-chip oscillator is used as the clock source. Emergency routines can be executed with the XC878 clocked at the on-chip frequency.

The XC878 remains in this loss-of-clock state until the next power-on reset, hardware reset or after a successful lock recovery has been performed. For the case of unsuccessfully loss-of-clock recovery, emergency measures must be executed. Emergency measures such as a system shut down can be carried out by the user.

If the PLL is not the system's clock source (PLLBYP = 1) or the external oscillator is not the system frequency when the loss-of-clock is detected, only the lock flag is reset (PLL_LOCK = 0) and no further action is taken. This allows the PLL parameters to be switched dynamically.

Loss-of-Clock Recovery

If loss-of-clock has occurred, the system clock will automatically switch to run from onchip oscillator frequency (4 MHz). EXTOSCR, PLLR and PLL_LOCK flag must be checked and normal operation can only resumed if all bits are set. To ensure that the recovery from loss-of-clock, the following sequence must be performed.

When external oscillator is selected as the input source to PLL:

- 1. Restart the external oscillator watchdog by setting bit EORDRES.
- 2. Restart the PLL watchdog by setting bit PLLRDRES
- 3. Bypass the PLL output (PLLBYP = 1).
- 4. Select the PLL power down mode (PLLPD = 1).
- 5. Select the internal oscillator as the source of oscillator (OSCSS = 0).
- 6. Wait for 65 cycles based on internal oscillator frequency
- If bit OSC_CON.EXTOSCR is set after 65 internal oscillator clock cycles, then:
- 1. Select the external oscillator as the source of oscillator (OSCSS = 1).
- 2. Reprogram NDIV, PDIV and KDIV values is necessary.
- 3. Change to PLL normal operation mode (PLLPD=0).
- 4. Wait until the PLL_LOCK and PLLR flag has been set.
- 5. Disable the bypass of PLL output (PLLBYP = 0) and normal operation resumed.

When internal oscillator is selected as the input source to PLL:

- 1. Restart the PLL watchdog by setting bit PLLRDRES
- 2. Bypass the PLL output (PLLBYP = 1).
- 3. Select the PLL power down mode (PLLPD = 1).
- 4. Reprogram NDIV, PDIV and KDIV values is necessary.
- 5. Change to PLL normal operation mode (PLLPD=0).
- 6. Wait until the PLL_LOCK and PLLR flag has been set.
- 7. Disable the bypass of PLL output (PLLBYP = 0) and normal operation resumed.

When external oscillator is selected as system frequency:

- 1. Restart the external oscillator watchdog by setting bit EORDRES.
- 2. Select the internal oscillator as the source of oscillator (OSCSS = 0).
- 3. Wait for 65 cycles based on internal oscillator frequency
- If bit EXTOSCR is set after 65 internal oscillator clock cycles, then:
- 1. Select the external oscillator as the source of oscillator (OSCSS = 1).

Changing PLL Parameters

To change the PLL parameters, the following sequence must be performed:

- 1. Bypass the PLL output (PLLBYP = 1).
- 2. Select the PLL power down mode (PLLPD = 1).
- 3. Program desired NDIV, PDIV and KDIV values.
- 4. Change to PLL normal operation mode (PLLPD=0).
- 5. Restart the PLL watchdog by setting bit PLLRDRES.
- 6. Wait until the PLL_LOCK and PLLR flag has been set.
- 7. Disable the bypass of PLL output (PLLBYP = 0).

Select the External Oscillator as PLL input source

To select the external oscillator, the following sequence must be performed:

- 1. Select On-chip oscillator as system clock (OSCSS = 0)
- 2. Bypass the PLL output (PLLBYP = 1).
- 3. Select the PLL power down mode (PLLPD = 1).
- 4. Power up external oscillator (XPD = 0)
- 5. Wait for 1.5 ms until the external oscillator is stable (the delay time should be adjusted accroding to different external oscillators).
- 6. Restart the external oscillator watchdog by setting bit EORDRES.
- 7. Wait for 65 cycles based on internal oscillator frequency.
- If bit EXTOSCR is set after 65 internal oscillator clock cycles, then:
- 8. The source of external oscillator is selected by setting bit OSCSS.; External oscillator as system clock
- 9. Program desired NDIV, PDIV and KDIV values.
- 10. Change to PLL normal operation mode (PLLPD=0).
- 11. Restart the PLL watchdog by setting PLLRDRES.
- 12. Wait untill the PLL_LOCK and PLLR flag has been set.
- 13. Disable the bypass of PLL output (PLLBYP = 0).

Select the External Oscillator as system clock using Direct Drive (PLL Bypass) mode

To select the external oscillator as system clock, the following sequence must be performed:

- 1. Select On-chip oscillator as system clock (OSCSS = 0)
- 2. Bypass the PLL output (PLLBYP = 1).
- 3. Select the PLL power down mode (PLLPD = 1).
- 4. Power up external oscillator (XPD = 0)
- 5. Wait for 1.5 ms until the external oscillator is stable (the delay time should be adjusted accroding to different external oscillators).
- 6. Restart the external oscillator watchdog by setting bit EORDRES.
- 7. Wait for 65 cycles based on internal oscillator frequency.
- If bit EXTOSCR is set after 65 internal oscillator clock cycles, then:
- 8. The source of external oscillator is selected by setting bit OSCSS.; External oscillator as system clock

To minimize power consumption when the on-chip oscillator is used, the external oscillator circuitry may be powered down by setting bits XPD.

7.3.2 Clock Source Control

The clock system provides two ways to generate the system clock:

Direct Drive (PLL Bypass Operation)

During PLL bypass operation, the system clock has the same frequency as the external clock source.

(7.1)

 $f_{SYS} = f_{OSC}$

PLL Mode

The CPU clock is derived from the oscillator clock, divided by the NR factor (PDIV), multiplied by the NF factor (NDIV), and divided by the OD factor (KDIV). PLL output must not be bypassed for this PLL mode. The PLL mode is used during normal system operation.

(7.2)

$$f_{SYS} = f_{OSC} x \frac{NF}{NR x OD}$$

In normal running mode, the system works in the PLL mode.

For the XC878, the value of NF, NR and OD can be selected by bits NDIV, PDIV and KDIV respectively for different oscillator inputs inorder to obtain the required fsys. But the combination of these factors must fulfill the following condition:

- 100 MHz < f_{VCO} < 175 MHz
- 800 KHz < f_{OSC} / (2 * NR) < 8 MHz

Table 7-5 provides examples on how the typical system frequency of fsys = 144 MHz can be obtained for the different oscillator sources.

Oscillator	fosc	N	Ρ	K	fsys	
On-chip	4 MHz	72	2	1	144 MHz	
External	8 MHz	72	4	1	144 MHz	
	6 MHz	72	3	1	144 MHz	
	4 MHz	72	2	1	144 MHz	

Table 7-5System frequency (f_{sys} = 144 MHz)

7.3.3 Clock Management

The Clock Management sub-module generates all clock signals required within the microcontroller from the basic clock. It consists of:

- Generate all clocks in the system
- Basic clock slow down circuitry
- Centralized enable/disable circuit for clock control

Figure 7-5 shows the clock generation from the system frequency f_{sys} . In normal running mode, the typical frequencies of different modules are as follows:

- CPU clock: CCLK, SCLK = 24 MHz
- Fast clock: FCLK = 48 MHz
- Peripheral clock: PCLK = 24 MHz

For the XC878, there are five modules, namely MultiCAN, MDU, CORDIC, CCU6 and T2CCU which could be clocked at 24 MHz or 48 MHz clock. The selection of the clock frequency for these five modules are done via CMCON and CR_MISC register.

Furthermore, a clock output (CLKOUT) is available on pin P(0.0 or 0.7) as an alternate output. If bit COUTS = 00, the output clock is from on-chip oscillator output frequency; if bit COUTS = 01, the clock output frequency is chosen by the bit field COREL. Under this selection, the clock output frequency can further be divided by 2 using toggle latch (bit TLEN is set to 1), so that the resulting output frequency has 50% duty cycle. If bit COUTS = 10, the PCLK clock is selected.

In idle mode, only the CPU clock CCLK is disabled. In power-down mode, CCLK, SCLK, FCLK, CCLK2 and PCLK are all disabled. If slow-down mode is enabled, the clock to the core and peripherals will be divided by a programmable factor that is selected by the bit field CMCON.CLKREL.

Power Supply, Reset and Clock Management

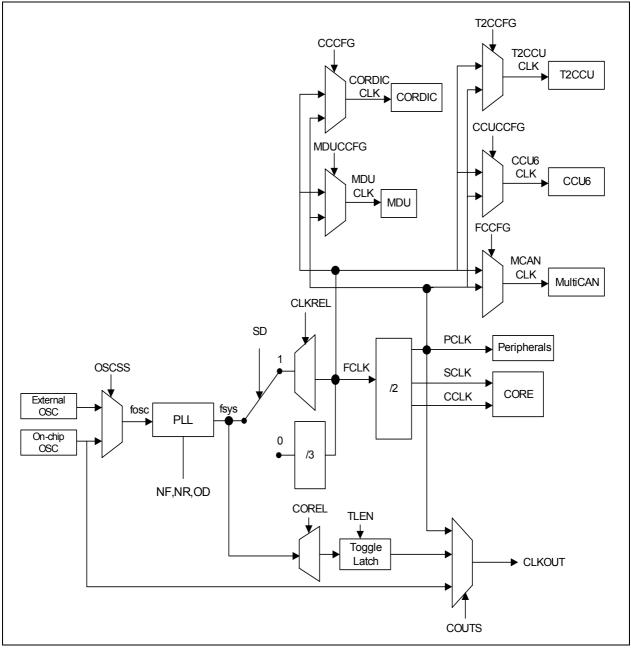


Figure 7-5 Clock Generation from f_{sys}

7.3.4 Register Description

OSC_CON OSC Control Register

Reset Value: 0X00 1000_B

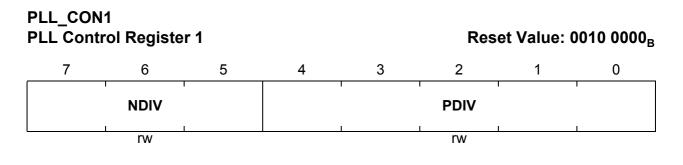
7	6	5	4	3	2	1	0
PLL RDRES	PLLBYP	PLLPD	0	XPD	OSCSS	EORDRES	EXTOSCR
rwh	rwh	rw	r	rw	rwh	rwh	rh

Field	Bits	Туре	Description
EXTOSCR	0	rh	 External Oscillator Run Status Bit This bit shows the state of the external oscillator watchdog. 0 External oscillator is not running. 1 External oscillator is running.
EORDRES	1	rwh	 External Oscillator Watchdog Reset 0 No Operation. 1 External oscillator watchdog is reset and restarted. This bit will be reset automatically to 0.
OSCSS	2	rwh	Oscillator Source Select0On-chip oscillator is selected.1External oscillator is selected.This bit is protected by the Bit-Protection Scheme. Itis updated by hardware after reset depending onboot configuration.This bit is not modified by hardware due to switchingto on-chip oscillator during the PLL loss-of-clock.The previous setting will be retained.
			Note: To make the switch clock source smoothly, before switching from on-chip oscillator to external oscillator, clock output from external oscillator must be kept stable.
XPD	3	rw	 XTAL Power-down Control XTAL is not powered down. XTAL is powered down. This bit is protected by the Bit-Protection Scheme. Note: Before setting OSCSS bit to 1, XPD bit must be ensure to be 0.

Field	Bits	Туре	Description
PLLPD	5	rw	PLL Power Down Control0PLL is not powered down.1PLL is powered down.This bit is protected by the Bit-Protection Scheme.
PLLBYP	6	rwh	 PLL Output Bypass Contro 0 PLL output is not bypassed. 1 PLL output is bypassed. This bit is updated by hardware after reset, depending on boot configuration.
PLLRDRES	7	rw	PLL Watchdog reset0No Operation.1PLL watchdog is reset and restarted.This bit will be reset automatically to 0.
0	4	r	Reserved Returns 0 if read; should be written with 0.

PLL_CON PLL Control Register

Reset Value: 0001 1000_B


7	6	5	4	3	2	1	0
	NDIV						PLL_ LOCK
I		rv	V	1 1		rh	rh

Field	Bits	Туре	Description
PLL_LOCK	0	rh	PLL Lock Status Flag0PLL is not locked.1PLL is locked.
PLLR	1	rh	PLL Run Status Flag0PLL is not running.1PLL is running.

Field	Bits	Туре	Description
NDIV	[7:2]	rw	PLL NF-Divider together with PLL_CON1[7:5] $00000000 \text{ NF} = 2$ $00000001 \text{ NF} = 3$ $00000010 \text{ NF} = 4$ $001000110 \text{ NF} = 72 (default)$ $111111101 \text{ NF} = 511$ $111111101 \text{ NF} = 512$ $111111110 \text{ NF} = 513$ The NDIV bit is a protected bit. When the ProtectionScheme is activated, this bit cannot be writtendirectly. See Protection Scheme (Chapter 3.4.4.1)for more details.

Note: The reset value of register PLL_CON is **0001 1000**_B. One clock cycle after reset, bit LOCK will be set to 1 if the PLL is locked, then the value **0001 1001**_B will be observed.

Field	Bits	Туре	Description
PDIV	[4:0]	rw	PLL NR-Divider 00000 NR = 2 (default) 00001 NR = 3 00010 NR = 4 11101 NR = 31 11110 NR = 32 11111 NR = 33 The PDIV bit is a protected bit. When the Protection Scheme is activated, this bit cannot be written directly. See Protection Scheme (Chapter 3.4.4.1) for more details.
NDIV	[7:5]	rw	MSBs PLL NF-Divider Together with PLL_CON.NDIV to form a 9 bit divider.

CMCON Clock Control Register

Reset Value: 0001 0000_B

7	6	5	4	3	2	1	0
KC	VIV	0	FCCFG		CLK	REL	
۳	N	r	rw		۳	N	

Field	Bits	Туре	Description
CLKREL	[3:0]	rw	Clock Divider $0000 f_{SYS}/6$ $0001 f_{SYS}/12$ $0010 f_{SYS}/18$ $0011 f_{SYS}/24$ $0100 f_{SYS}/36$ $0101 f_{SYS}/48$ $0110 f_{SYS}/72$ $0111 f_{SYS}/96$ $1000 f_{SYS}/144$ $1001 f_{SYS}/192$ $1010 f_{SYS}/288$ $1011 f_{SYS}/288$ $1011 f_{SYS}/384$ $1100 f_{SYS}/576$ $1101 f_{SYS}/768$ $1110 f_{SYS}/1152$ <i>Note: The changes of bit field CLKREL take effect only when PMCON0.SD bit is set.</i> <i>Note: The clock division listed above is inclusive of the fixed divider factor of 2. See Figure 7-5.</i>
FCCFG	4	rw	MultiCAN Clock Configuration0f_MCAN is configured to run at PCLK.1f_MCAN is configured to run at 2 times PCLK.
KDIV	[7:6]	rw	PLL OD-Divider00OD = 1 (default)01OD = 210OD = 211OD = 4The KDIV bit is a protected bit. When the ProtectionScheme is activated, this bit cannot be writtendirectly. See Protection Scheme (Chapter 3.4.4.1)for more details.
0	5	r	Reserved Returns 0 if read; should be written with 0.

COCON Clock Output Control Register Reset Value: 0000 0000 _E								
7	6	5	4	3	2	1	0	
COUTS		TLEN	0		COI	REL		
 rw		rw	r		n	N		

Field	Bits	Туре	Description
COREL	[3:0]	rw	Clock Output Divider $0000 f_{SYS}/3$ $0001 f_{SYS}/6$ $0010 f_{SYS}/9$ $0011 f_{SYS}/12$ $0100 f_{SYS}/15$ $0101 f_{SYS}/18$ $0110 f_{SYS}/21$ $0111 f_{SYS}/24$ $1000 f_{SYS}/30$ $1001 f_{SYS}/36$ $1010 f_{SYS}/39$ $1011 f_{SYS}/42$ $1100 f_{SYS}/48$ $1101 f_{SYS}/54$ $1110 f_{SYS}/60$
TLEN	5	rw	 Toggle Latch Enable This bit is only applicable when COUTS is set to 01_B. 0 Toggle Latch is disabled. Clock output frequency is chosen by the bit field COREL. 1 Toggle Latch is enabled. Clock output frequency is half of the frequency that is chosen by the bit field COREL. The clock output frequency has 50% duty cycle.
COUTS	[7:6]	rw	 Clock Out Source Select On-chip oscillator output frequency is selected. Clock output frequency is chosen by the bit field COREL. PCLK output frequency is selected. Reserved.

Field	Bits	Туре	Description
0	4	r	Reserved
			Returns 0 if read; should be written with 0.

Note: Registers OSC_CON, *PLL_CON*, *PLL_CON1*, *CMCON*, *and COCON are not reset during the watchdog timer reset*.

CR_MISC

Clock and Reset Miscellaneous Register

Reset Value: 0000 000X_B

_	7	6	5	4	3	2	1	0
	CCCFG	MDUCCFG	CCUCCFG	T2CCFG		0	1	HDRST
-	rw	rw	rw	rw	•	r		rwh

Field	Bits	Туре	Description
T2CCFG	4	rw	Timer 2 Capture/Compare Unit ClockConfiguration0 f_{T2CCU} is configured to run at PCLK.1 f_{T2CCU} is configured to run at 2 times PCLK.
CCUCCFG	5	rw	CCU6 Clock Configuration0f _{CCU6} is configured to run at PCLK.1f _{CCU6} is configured to run at 2 times PCLK.
MDUCCFG	6	rw	 MDU Clock Configuration 0 f_{MDU} is configured to run at PCLK. 1 f_{MDU} is configured to run at 2 times PCLK.
CCCFG	7	rw	CORDIC Clock Configuration0f _{CORDIC} is configured to run at PCLK.1f _{CORDIC} is configured to run at 2 times PCLK.
0	[3:1]	r	Reserved Returns 0 if read; should be written with 0.

8 Power Saving Modes

The power saving modes in the XC878 provide flexible power consumption through a combination of techniques, including:

- Stopping the CPU clock
- Stopping the clocks of individual system components
- Reducing clock speed of some peripheral components
- Power-down of the entire system with fast restart capability

After a reset, the active mode (normal operating mode) is selected by default (see **Figure 8-1**) and the system runs in the main system clock frequency. From active mode, different power saving modes can be selected by software. They are:

- Idle mode
- Slow-down mode
- Power-down mode

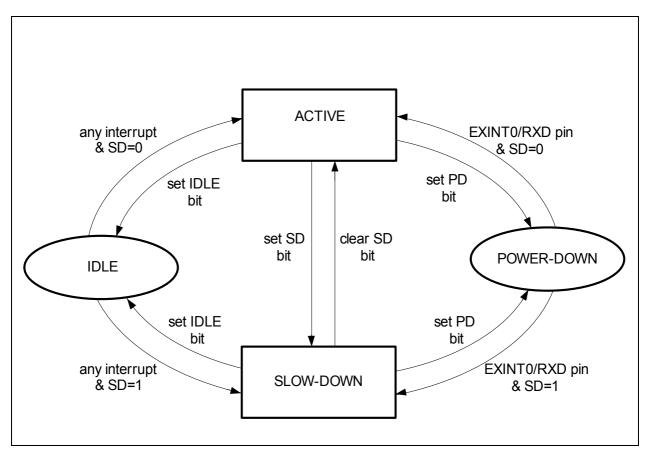


Figure 8-1 Transition between Power Saving Modes

8.1 Functional Description

This section describes the various power saving modes, their operations, and how they are entered and exited.

8.1.1 Idle Mode

The idle mode is used to reduce power consumption by stopping the core's clock.

In idle mode, the oscillator continues to run, but the core is stopped with its clock disabled. Peripherals whose input clocks are not disabled are still functional. The user should disable the Watchdog Timer (WDT) before the system enters the idle mode; otherwise, it will generate an internal reset when an overflow occurs and thus will disrupt the idle mode. The CPU status is preserved in its entirety; the stack pointer, program counter, program status word, accumulator, and all other registers maintain their data during idle mode. The port pins hold the logical state they had at the time the idle mode was activated.

Software requests idle mode by setting the bit PCON.IDLE to 1.

The system will return to active mode on occurrence of any of the following conditions:

- The idle mode can be terminated by activating any enabled interrupt. The CPU operation is resumed and the interrupt will be serviced. Upon RETI instruction, the core will return to execute the next instruction after the instruction that sets the IDLE bit to 1.
- An external hard reset signal (RESET) is asserted.

8.1.2 Slow-Down Mode

The slow-down mode is used to reduce power consumption by decreasing the internal clock in the device.

The slow-down mode is activated by setting the bit SD in SFR PMCON0. The bit field CMCON.CLKREL is used to select a different slow-down frequency. The CPU and peripherals are clocked at this lower frequency. The slow-down mode is terminated by clearing bit SD.

The slow-down mode can be combined with the idle mode by performing the following sequence:

- 1. The slow-down mode is activated by setting the bit PMCON0.SD.
- 2. The idle mode is activated by setting the bit PCON.IDLE.

There are two ways to terminate the combined idle and slow-down modes:

The idle mode can be terminated by activation of any enabled interrupt. CPU operation is resumed, and the interrupt will be serviced. The next instruction to be executed after the RETI instruction will be the one following the instruction that had set the bit IDLE. Nevertheless, the slow-down mode stays enabled and if required termination must be done by clearing the bit SD in the corresponding interrupt service

routine or at any point in the program where the user no longer requires the slowdown mode.

• The other way of terminating the combined idle and slow-down mode is through a hardware reset.

8.1.3 Power-down Mode

In power-down mode, the oscillator and the PLL are turned off. All the memories including Flash are put into the standby mode mode. The main voltage regulator is switched off, but the low power voltage regulator continues to operate. Therefore, all functions of the microcontroller are stopped and only the contents of the FLASH, on-chip RAM, XRAM and the SFRs are maintained. The port pins hold the logical state they had when the power-down mode was activated. For the digital ports, the user must take care from external side that the ports are not floating in power-down mode. This can be done with external pull-up/pull-down or putting the port to output. For Flash memories, user need to take care that the current flash program or erase operation has completed before entering power down mode. Otherwise, it may need to be aborted if there is an urgent request of power down. In this case, the current operation may not be successful. **Figure 8-2** shows the flow with Flash abort during an urgent power down that triggers a NMI interrupt.

In power-down mode, the clock is turned off. Hence, it cannot be awakened by an interrupt or by the WDT. It is awakened only when it receives an external wake-up signal or reset signal.

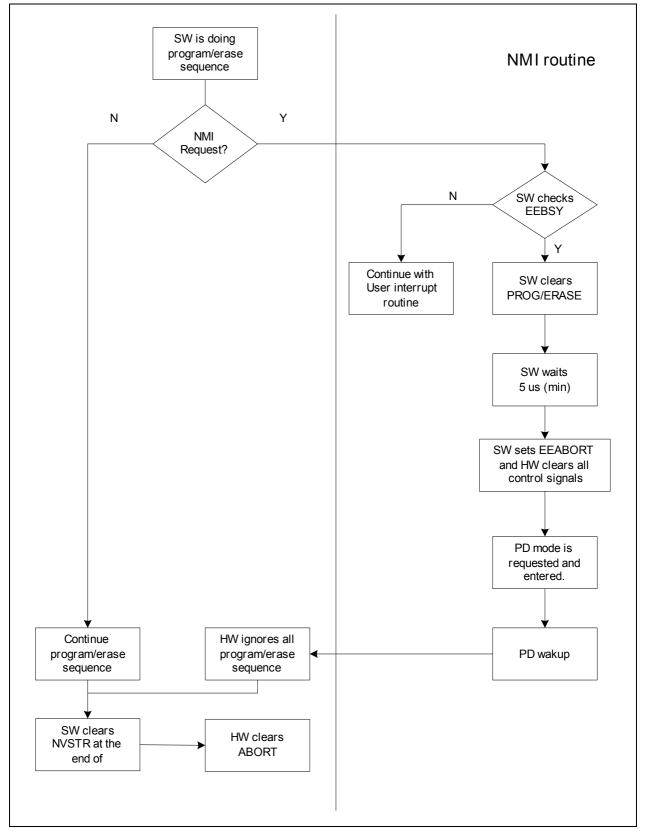


Figure 8-2 Power Down with Flash Abort Flow

Entering Power-down Mode

Software requests power-down mode by setting the bit PMCON0.PD to 1.

Three NOP instructions must be inserted after the bit PMCON0.PD is set to 1. This ensures the first instruction (after three NOP instructions) is executed correctly after wake-up from power-down mode.

If the external wake-up from power-down is used, software must prepare the external environment of the XC878 to trigger one of these signals under the appropriate conditions before entering power-down mode. A wake-up circuit is used to detect a wake-up signal and activate the power-up. During power-down, this circuit remains active. It does not depend on any clocks. Exit from power-down mode can be achieved by applying a falling edge trigger to the:

- EXINT0 pin
- RXD pin
- RXD pin or EXINT0 pin

The wake-up source can be selected by the bit WS of the PMCON0 register. The wake-up with reset or without reset is selected by bit PMCON0.WKSEL. The wake-up source and wake-up type must be selected before the system enters the power-down mode.

Exiting Power-down Mode

If power-down mode is exited via a hardware reset, the device is put into the hardware reset state.

When the wake-up source and wake-up type have been selected prior to entering power-down mode, the power-down mode can be exited via EXINT0 pin/RXD pin.

Bit MODPISEL.URRIS and MODPISEL.URRISH are used to select one of the three RXD inputs and bit MODPISEL.EXINT0IS is used to select one of the two EXINT0 inputs.

If bit WKSEL was set to 1 before entering power-down mode, the system will execute a reset sequence similar to the power-on reset sequence. Therefore, all port pins are put into their reset state and will remain in this state until they are affected by program execution.

If bit WKSEL was cleared to 0 before entering power-down mode, a fast wake-up sequence is used. The port pins continue to hold their state which was valid during power-down mode until they are affected by program execution.

The wake-up from power-down without reset undergoes the following procedure:

- 1. In power-down mode, EXINT0 pin/RXD pin must be held at high level.
- 2. Power-down mode is exited when EXINT0 pin/RXD pin goes low for at least 100 ns.
- 3. The main voltage regulator is switched on and takes approximately 300 μ s to become stable.

- 4. The on-chip oscillator and the PLL are started irregardless of the clock source selected before entering power down mode. Typically, the on-chip oscillator takes approximately 8 μ s to stabilize. The PLL will be locked within 200 μ s after the on-chip oscillator clock is detected for stable nominal frequency.
- 5. The CPU operation is resumed. The core will return to execute the next instruction after the instruction which sets the PD bit.
- Note: No interrupt will be generated by the EXINTO wake-up source even if EXINTO is enabled before entering power-down mode. An interrupt will be generated only if EXINTO fulfils the interrupt generation conditions after CPU resumes operation.

8.1.4 Peripheral Clock Management

The amount of reduction in power consumption that can be achieved by this feature depends on the number of peripherals running. Peripherals that are not required for a particular functionality can be disabled by gating off the clock inputs. For example, in idle mode, if all timers are stopped, and ADC, CCU6, MDU, MultiCAN and the serial interfaces are not running, maximum power reduction can be achieved. However, the user must take care when determining which peripherals should continue running and which must be stopped during active and idle modes.

The ADC, SSC, CCU6, CORDIC, MDU, MultiCAN, UART1, T2CCU and Timer 21 can be disabled (clock is gated off) by setting the corresponding bit in the PMCON1 register and PMCON2 register. Furthermore, the analog part of the ADC module may be disabled by resetting the GLOBCTR.ANON bit. This feature causes the generation of f_{ADCI} to be stopped and allows a reduction in power consumption when no conversion is needed.

In order to save power consumption when the on-chip oscillator is used, XTAL should be powered down by setting bit OSC_CON.XPD. However, when the external oscillator is used, the on-chip oscillator cannot be powered down.

8.2 Register Description

PMCON0

Power Mode Control Register 0

Reset Value: 80_H¹⁾

7	6	5	4	3	2	1	0
VDDPWA RN	WDTRST	WKRS	WKSEL	SD	PD	ws	
rh	rwh	rwh	rw	rw	rwh	rw	

¹⁾ The reset value for watchdog timer reset is $C0_{H}$ and the reset value for power-down wake-up reset is $A0_{H}$.

Field	Bits	Туре	Description			
ws	[1:0]	rw	 Wake-up Source Select No wake-up is selected. Wake-up source RXD (falling edge trigger) is selected. Wake-up source EXINT0 (falling edge trigger) is selected. Wake-up source RXD (falling edge trigger) or EXINT0 (falling edge trigger) is selected. 			
PD	2	rwh	Power-down Enable Bit Setting this bit will cause the chip to enter power-down mode. It is reset by wake-up circuit. The PD bit is a protected bit. When the Protection Scheme (see Chapter 3.4.4.1) is activated, this bit cannot be written directly.			
SD	3	rw	Solution Solution and Solution			
WKSEL	4	rw	Wake-up Reset Select Bit0Wake-up without reset1Wake-up with reset			

Field	Bits	Туре	Description
WKRS	5	rwh	Wake-up Indication BitThis bit can only be set by hardware and reset by software.0No wake-up occurred1Wake-up has occurred

PCON Power Control Register

Reset Value: 00_H

7	6	5	4	3	2	1	0
SMOD		0		GF1	GF0	0	IDLE
rw		r		rw	rw	r	rw

Field	Bits	Туре	Description
IDLE	0	rw	Idle Mode Enable0Do not enter idle mode1Enter idle mode
0	1, [6:4]	r	Reserved Returns 0 if read; should be written with 0.

MODPISEL

Peripheral Input Select Register

Reset Value: 00_H

	7	6	5	4	3	2	1	0
	0	URRISH	JTAGTDIS	JTAGTCK S	EXINT2IS	EXINT1IS	EXINT0IS	URRIS
-	r	rw	rw	rw	rw	rw	r	rw

Field	Bits	Туре	Description			
URRISH,	6, 0	rw	UART Receive Input Select			
URRIS			00 UART Receiver Input RXD_0 is selected.			
			01 UART Receiver Input RXD_1 is selected.			
			10 UART Receiver Input RXD_2 is selected.			
			11 Reserved			

Field	Bits	Туре	Description
EXINTOIS	1	rw	 External Interrupt 0 Input Select 0 External Interrupt Input EXINT0_0 is selected. 1 External Interrupt Input EXINT0_1 is selected.
0	7	r	Reserved Returns 0 if read; should be written with 0.

PMCON1 Power Mode Control Register 1

Reset Value: 00_H

7	6	5	4	3	2	1	0
0	CDC_DIS	CAN_DIS	MDU_DIS	T2CCU_DI S	CCU_DIS	SSC_DIS	ADC_DIS
r	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description
ADC_DIS	0	rw	 ADC Disable Request. Active high 0 ADC is in normal operation (default). 1 ADC is disabled.
SSC_DIS	1	rw	 SSC Disable Request. Active high 0 SSC is in normal operation (default). 1 SSC is disabled.
CCU_DIS	2	rw	 CCU Disable Request. Active high CCU is in normal operation (default). CCU is disabled.
T2CCU_DIS	3	rw	 T2CCU Disable Request. Active high T2CCU is in normal operation (default). T2CCU is disabled.
MDU_DIS	4	rw	 MDU Disable Request. Active high MDU is in normal operation (default). MDU is disabled.
CAN_DIS	5	rw	 CAN Disable Request. Active high 0 CAN is in normal operation (default). 1 CAN is disabled.
CDC_DIS	6	rw	 CORDIC Disable Request. Active High 0 CORDIC is in normal operation (default). 1 CORDIC is disabled.

Power Saving Modes

Field	Bits	Туре	Description
0	7	r	Reserved
			Returns 0 if read; should be written with 0.

PMCON2

Power Mode Control Register 2

Reset Value: 00_H

7	6	5	4	3	2	1	0
			0	1	1	UART1_ DIS	T21_DIS
			r			rw	rw

Field	Bits	Туре	Description
T21_DIS	0	rw	Timer 21 Disable Request. Active high0Timer 21 is in normal operation (default).1Timer 21 is disabled.
UART1_DIS	1	rw	 UART1 Disable Request. Active high 0 UART1 is in normal operation (default). 1 UART1 is disabled.
0	[7:2]	r	Reserved Returns 0 if read; should be written with 0.

ADC_GLOBCTR Global Control Register

Reset Value: 00_H

7	6	5	4	3	2	1	0
ANON	DW	стс			()	
rw	rw	rw				ſ	

Power Saving Modes

Field	Bits	Туре	Description
ANON	7	rw	 Analog Part Switched On This bit enables the analog part of the ADC module and defines its operation mode. 0 The analog part is switched off and conversions are not possible. To achieve minimal power consumption, the internal analog circuitry is in its power-down state and the generation of f_{ADCI} is stopped. 1 The analog part of the ADC module is switched on and conversions are possible. The automatic power-down capability of the analog part is disabled.
0	3:0	r	Reserved Returns 0 if read; should be written with 0.

OSC_CON OSC Control Register

Reset Value: 0X00 1000_B

7	6	5	4	3	2	1	0
PLLRDRES	PLLBYP	PLLPD	0	XPD	OSCSS	EORDRES	EXTOSCR
rwh	rwh	rw	r	rw	rwh	rwh	rh

Field	Bits	Туре	Description
XPD	3	rw	 XTAL Power Down Control XTAL is not powered down. XTAL is powered down. The XPD bit is a protected bit. When the Protection Scheme is activated, this bit cannot be written directly
PLLPD	5	rw	PLL Power Down Control0PLL is not powered down.1PLL is powered down.The PLLPD bit is a protected bit. When theProtection Scheme is activated, this bit cannot bewritten directly
0	4	r	Reserved Returns 0 if read; should be written with 0.

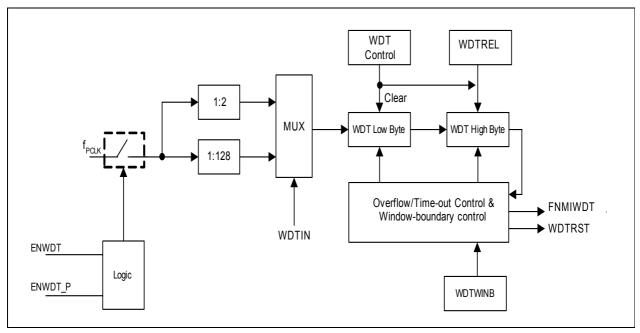
Power Saving Modes

9 Watchdog Timer

The Watchdog Timer (WDT) provides a highly reliable and secure way to detect and recover from software or hardware failures. The WDT is reset at a regular interval that is predefined by the user. The CPU must service the WDT within this interval to prevent the WDT from causing an XC878 system reset. Hence, routine service of the WDT confirms that the system is functioning properly. This ensures that an accidental malfunction of the XC878 will be aborted in a user-specified time period.

The WDT is by default disabled.

In debug mode, the WDT is default suspended and stops counting (its debug suspend bit is default set i.e., MODSUSP.WDTSUSP = 1). Therefore during debugging, there is no need to refresh the WDT.


Features

- 16-bit Watchdog Timer
- Programmable reload value for upper 8 bits of timer
- Programmable window boundary
- Selectable input frequency of $f_{PCLK}/2$ or $f_{PCLK}/128$

9.1 Functional Description

The Watchdog Timer is a 16-bit timer, which is incremented by a count rate of $f_{\rm PCLK}/2$ or $f_{\rm PCLK}/128$. This 16-bit timer is realized as two concatenated 8-bit timers. The upper 8 bits of the Watchdog Timer can be preset to a user-programmable value via a watchdog service access in order to vary the watchdog expire time. The lower 8 bits are reset on each service access. Figure 9-1 shows the block diagram of the watchdog timer unit.

Figure 9-1 WDT Block Diagram

If the WDT is enabled by setting WDTEN to 1, the timer is set to a user-defined start value and begins counting up. It must be serviced before the counter overflows. Servicing is performed through refresh operation (setting bit WDTRS to 1). This reloads the timer with the start value, and normal operation continues.

If the WDT is not serviced before the timer overflows, a system malfunction is assumed and normal mode is terminated. A WDT NMI request (FNMIWDT) is then asserted and prewarning is entered. The prewarning lasts for 30_H count. During the prewarning period, refreshing of the WDT is ignored and the WDT cannot be disabled. A reset (WDTRST) of the XC878 is imminent and can no longer be avoided. The occurrence of a WDT reset is indicated by the bit WDTRST, which is set to 1 once hardware detects the assertion of the signal WDTRST. If refresh happens at the same time an overflow occurs, WDT will not go into prewarning period

The WDT must be serviced periodically so that its count value will not overflow. Servicing the WDT clears the low byte and reloads the high byte with the preset value in bit field WDTREL. Servicing the WDT also clears the bit WDTRS.

The WDT has a "programmable window boundary", which disallows any refresh during the WDT's count-up. A refresh during this window-boundary constitutes an invalid

access to the WDT and causes the WDT to activate WDTRST, although no NMI request is generated in this instance. The window boundary is from $0000_{\rm H}$ to the value obtained from the concatenation of WDTWINB and $00_{\rm H}$. This feature can be enabled by WINBEN.

After being serviced, the WDT continues counting up from the value ($\langle WDTREL \rangle * 2^8$). The time period for an overflow of the WDT is programmable in two ways:

- The input frequency to the WDT can be selected via bit WDTIN in register WDTCON to be either $f_{PCLK}/2$ or $f_{PCLK}/128$.
- The reload value WDTREL for the high byte of WDT can be programmed in register WDTREL.

The period P_{WDT} between servicing the WDT and the next overflow can be determined by the following formula:

$$P_{WDT} = \frac{2^{(1+\langle WDTIN \rangle^{*6})} * (2^{16} - WDTREL * 2^{8})}{f_{PCLK}}$$
(9.1)

If the Window-Boundary Refresh feature of the WDT is enabled, the period P_{WDT} between servicing the WDT and the next overflow is shortened if WDTWINB is greater than WDTREL. See also **Figure 9-2**. This period can be calculated by the same formula by replacing WDTREL with WDTWINB. In order for this feature to be useful, WDTWINB cannot be smaller than WDTREL.

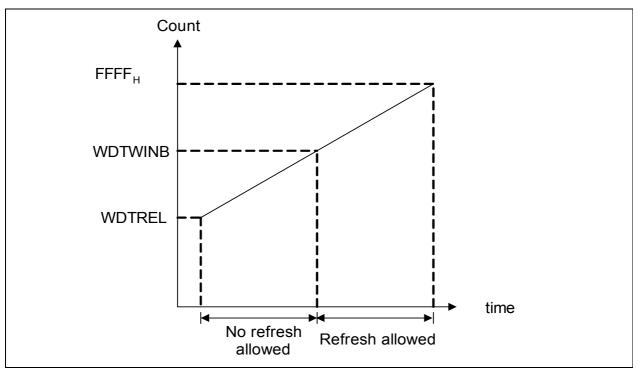


Figure 9-2 WDT Timing Diagram

Table 9-1 lists the possible ranges for the watchdog time which can be achieved using a certain module clock. Some numbers are rounded to 3 significant digits.

Reload value in WDTREL	Prescaler for f_{WDT}								
	2 (WDTIN	1 = 0)		128 (WDTIN = 1)					
	24 MHz	16 MHz	12 MHz	24 MHz	16 MHz	12 MHz			
FF _H	21.3 μs	32.0 μs	42.67 μs	1.37 ms	2.05 ms	2.73 ms			
7F _H	2.75 ms	4.13 ms	5.5 ms	176 ms	264 ms	352 ms			
00 _H	5.46 ms	8.19 ms	10.92 ms	350 ms	524 ms	699 ms			

Table 9-1 Watchdog Time Rang

Note: For safety reasons, the user is advised to rewrite WDTCON each time before the WDT is serviced.

9.1.1 Module Suspend Control

The WDT is by default suspended on entering debug mode. The WDT can be allowed to run in debug mode by clearing the bit WDTSUSP in SFR MODSUSP to 0.

MODSUSP

Module Suspend Control Register

Reset Value: 01_H

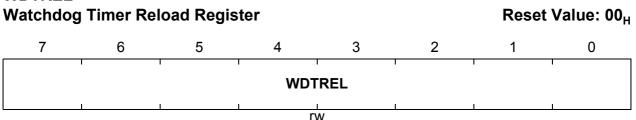
7	6	5	4	3	2	1	0
	0	CCTSUSP	T21SUSP	T2SUSP	T13SUSP	T12SUSP	WDTSUSP
	r	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description		
WDTSUSP	0	rw	 WDT Debug Suspend Bit 0 WDT will not be suspended. 1 WDT will be suspended. 		
0	7:6	r	ReservedI Returns 0 if read; should be written with 0.		

9.2 Register Map

Five SFRs control the operations of the WDT. They can be accessed from the mapped SFR area.

Table 9-2 lists the addresses of these SFRs.


Table 9-2SFR Address List

Address	Register
BB _H	WDTCON
BC _H BD _H	WDTREL
BD _H	WDTWINB
BE _H	WDTL
BF _H	WDTH

9.3 Register Description

The Watchdog Timer Current Count Value is contained in the Watchdog Timer Register WDTH and WDTL, which are non-bitaddressable read-only register. The operation of the WDT is controlled by its bitaddressable WDT Control Register WDTCON. This register also selects the input clock prescaling factor. The register WDTREL specifies the reload value for the high byte of the timer.

WDTREL

FieldBitsTypeDescriptionWDTREL7:0rwWatchdog Timer Reload Value (for the high byte of
WDT)

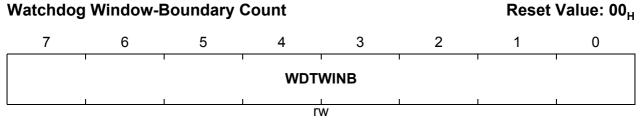
WDTCON Watchdog Timer Register

Reset Value: 00_H

	7	6	5	4	3	2	1	0
	0		WINBEN	WDTPR	0	WDTEN	WDTRS	WDTIN
-	r		rw	rh	r	rw	rwh	rw

Field	Bits	Туре	Description			
WDTIN	0	rw	Watchdog Timer Input Frequency Selection0Input frequency is $f_{PCLK}/2$ 1Input frequency is $f_{PCLK}/128$			
WDTRS	1	rwh	WDT Refresh Start. Active high. Set to start refresh operation on the watchdog timer. Cleared by hardware automatically.			
WDTEN	2	rw	 WDT Enable. WDTEN is a protected bit. If the Protection Scheme is activated then this bit cannot be written directly. See protection Scheme for more details. 0 WDT is disabled. 1 WDT is enabled. 			
WDTPR	4	rh	WDT is enabled. Watchdog Prewarning Mode Flag This bit is set to 1 when a Watchdog error is detected. The Watchdog Timer has issued an NMI trap and is in Prewarning Mode. A reset of the chip occurs after the prewarning period has expired. 0 Normal mode (default after reset) 1 The Watchdog is operating in Prewarning Mode			
WINBEN	5	rw	 Watchdog Window-Boundary Enable. Watchdog Window-Boundary feature is disabled (default). Watchdog Window-Boundary feature is enabled. 			
0	3, [7:6]	r	Reserved Returns 0 if read; should be written with 0.			

WDTL Watchdog Timer, Low Byte Reset Value: 00 _H									
7	6	5	4	3	2	1	0		
			WDT	[70]	I	I			
			TT I	1					


Field	Bits	Туре	Description
WDT[70]	7:0	rh	Watchdog Timer Current Value

WDTH Watchdog Timer, High Byte Reset Value: 00 _H								
7	6	5	4	3	2	1	0	
	WDT[158]							
	1	1	r	ĥ	<u> </u>		<u> </u>	

Field	Bits	Туре	Description
WDT[158]	7:0	rh	Watchdog Timer Current Value

WDTWINB Watchdog Window-Boundary Count

Field	Bits	Туре	Description
WDTWINB	7:0	rw	Watchdog Window-Boundary Count Value
			This value is programmble. Within this Window-
			Boundary range from 0000H to (WDTWINB,00H),
			the WDT cannot do a Refresh, else it will cause a
			WDTRST to be asserted.
			WDTWINB is matched to WDTH.

PMCON0 Power Mode Control Register 0

Reset Value: 80_H¹⁾

7	6	5	4	3	2	1	0
VDDP WARN	WDTRST	WKRS	WKSEL	SD	PD	W	S
rh	rwh	rwh	rw	rw	rwh	rw	/

¹⁾ The reset value for watchdog timer reset is $C0_{H}$ and the reset value for power-down wake-up reset is $A0_{H}$.

Field	Bits	Туре	Description		
WDTRST	6	rwh	 Watchdog Timer Reset Indication Bit 0 No WDT reset has occurred. 1 WDT reset has occurred. 		

10 Multiplication/Division Unit

The Multiplication/Division Unit (MDU) provides fast 16-bit multiplication, 16-bit and 32-bit division as well as shift and normalize features. It has been integrated to support the XC878 Core in real-time control applications, which require fast mathematical computations.

The MDU uses a total of 14 registers; 12 registers for data manipulation, one register to control the operation of MDU and one register for storing the status flags. These registers are memory mapped as special function registers like any other registers for peripheral control. The MDU operates concurrently with and independent of the CPU.

Features

- Fast signed/unsigned 16-bit multiplication
- Fast signed/unsigned 32-bit divide by 16-bit and 16-bit divide by 16-bit operations
- 32-bit unsigned normalize operation
- · 32-bit arithmetic/logical shift operations
- 2 selectable operating frequency: peripheral clock or double the peripheral clock.

Table 10-1 specifies the number of clock cycles used for calculation in various operations.

Operation	Result	Remainder	No. of Clock Cycles used for calculation
Signed 32-bit/16-bit	32-bit	16-bit	33
Signed 16-bit/16bit	16-bit	16-bit	17
Signed 16-bit x 16-bit	32-bit	-	16
Unsigned 32-bit/16-bit	32-bit	16-bit	32
Unsigned 16-bit/16-bit	16-bit	16-bit	16
Unsigned 16-bit x 16-bit	32-bit	-	16
32-bit normalize	-	-	No. of shifts + 1 (Max. 32)
32-bit shift L/R	-	-	No. of shifts + 1 (Max. 32)

Table 10-1 MDU Operation Characteristics

10.1 Functional Description

The MDU can be regarded as a special coprocessor for multiplication, division, normalization and shift. Its operation can be divided into three phases (see Figure 10-1):

Phase one: Load MDx registers

In this phase, the operands are loaded into the MDU Operand (MDx) registers by the CPU.

The type of calculation the MDU must perform is selected by writing a 4-bit opcode that represents the required operation into the bit field MDUCON.OPCODE.

Phase two: Execute calculation

This phase commences only when the start bit MDUCON.START is set, which in turn sets the busy flag. The start bit is automatically cleared in the next cycle.

During this phase, the MDU works on its own, in parallel with the CPU. The result of the calculation is made available in the MDU Result (MRx) registers at the end of this phase.

Phase three: Read result from the MRx registers

In this final phase, the result is fetched from the MRx registers by the CPU. The MRx registers will be overwritten at the start of the next calculation phase.

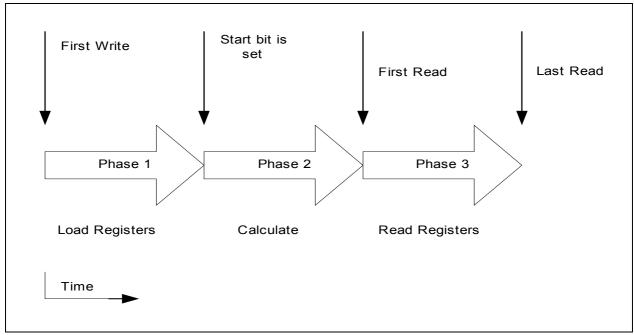


Figure 10-1 Operating phases of the MDU

10.1.1 Division Operation

The MDU supports the truncated division operation, which is also the ISO C99 standard and the popular choice among modern processors. The division and modulus functions of the truncated division are related in the following way:

If q = D div d and r = D mod d then D = q * d + r and | r | < | d |

where "D" is the dividend, "d" is the divisor, "q" is the quotient and "r" is the remainder.

The truncated division rounds the quotient towards zero and the sign of its remainder is always the same as that of its dividend, i.e., sign (r) = sign (D).

10.1.2 Normalize

The MDU supports up to 32-bit unsigned normalize.

Normalizing is done on an unsigned integer variable stored in MD0 (least significant byte) to MD3 (most significant byte). This feature is mainly meant to support applications where floating point arithmetic is used. During normalization, all leading zeros of an unsigned integer variable in registers MD0 to MD3 are removed by shift left operations. The whole operation is completed when the MSB (most significant bit) contains a 1.

After normalizing, bit field MR4.SCTR contains the number of shift left operations that were done. This number may be used later as an exponent. The maximum number of shifts in a normalize operation is $31 (= 2^5 - 1)$.

10.1.3 Shift

The MDU implements both logical and arithmetic shifts to support up to 32-bit unsigned and signed shift operations.

During logical shift, zeros are shifted in from the left end of register MD3 or right end of register MD0. An arithmetic left shift is identical to a logical left shift, but during arithmetic right shifts, signed bits are shifted in from the left end of register MD3. For example, if the data 0101_B and 1010_B are to undergo an arithmetic shift right, the results obtained will be 0010_B and 1101_B , respectively.

For any shift operation, register bit MD4.SLR specifies the shift direction, and MD4.SCTR the shift count.

Note: The MDU does not detect overflows due to an arithmetic shift left operation. User must always ensure that the result of an arithmetic shift left is within the boundaries of MDU.

10.1.4 Busy Flag

A busy flag is provided to indicate the MDU is still performing a calculation. The flag MDUSTAT.BSY is set at the start of a calculation and cleared after the calculation is completed at the end of phase two. It is also cleared when the error flag is set.

If a second operation needs to be executed, the status of the busy flag will be polled first and only when it is not set, can the start bit be written and the second operation begin. Any unauthorized write to the start bit while the busy flag is still set will be ignored.

10.1.5 Error Detection

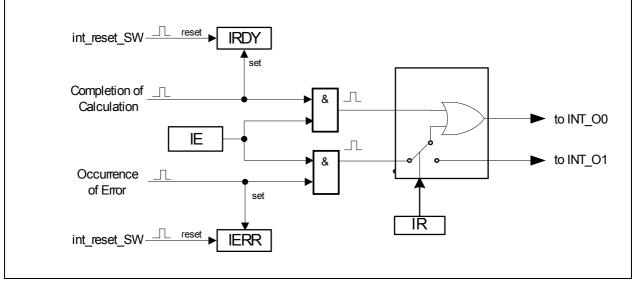
The error flag MDUSTAT.IERR is provided to indicate that an error has occurred while performing a calculation. The flag is set by hardware when one of these occurs:

- Division by zero
- Writing of reserved opcodes to MDUCON register

The setting of the error flag causes the current operation to be aborted and triggers an interrupt (see **Section 10.2** below). A division by zero error does not set the error flag immediately but rather, at the end of calculation phase for a division operation. An opcode error is detected upon setting MDUCON.START to 1. Errors due to division by zero lead to the loading of a saturated value into the MRx registers.

Note: The accuracy of any result obtained when the error flag is set is not guaranteed by MDU and hence the result should not be used.

10.2 Interrupt Generation


The interrupt structure of the MDU is shown in **Figure 10-2**. There are two possible interrupt events in the MDU, and each event sets one of the two interrupt flags. The interrupt flags is reset by software by writing 0 to it.

At the end of phase two, the interrupt flag MDUSTAT.IRDY is set by hardware to indicate the successful completion of a calculation. The results can then be obtained from the MRx registers. The interrupt line INT_O0 is mapped directly to this interrupt source.

An interrupt can also be triggered when an error occurs during calculation. This is indicated by the setting of the interrupt flag MDUSTAT.IERR. In the event of a division by zero error, MDUSTAT.IERR is set only at the end of the calculation phase. Once the MDUSTAT.IERR is set, any ongoing calculation will be aborted. For a division by zero error, a saturated value is then loaded into the MRx registers. The bit MDUCON.IR determines the interrupt line to be mapped to this interrupt source.

An interrupt is only generated when interrupt enable bit MDUCON.IE is 1 and the corresponding interrupt event occurs. An interrupt request signal is always asserted positively for 2 clocks.

Figure 10-2 Interrupt Generation

10.3 Low Power Mode

If the MDU functionality is not required at all, it can be completely disabled by gating off its clock input for maximal power reduction. This is done by setting bit MDU_DIS in register PMCON1 as described below. Refer to **Chapter 8.1.4** for details on peripheral clock management.

PMCON1

	Power Mode Control Register 1 Reset Value: 00 _H								
	7	6	5	4	3	2	1	0	
	0	CDC_DIS	CAN_DIS	MDU_DIS	T2CCU _DIS	CCU_DIS	SSC_DIS	ADC_DIS	
-	r	rw	rw	rw	rw	rw	rw	rw	

Field	Bits	Туре	Description		
MDU_DIS	4	rw	 MDU Disable Request. Active high. MDU is in normal operation (default). Request to disable the MDU. 		
0	7	r	Reserved Returns 0 if read; should be written with 0.		

10.4 Register Map

Table 10-2 lists the MDU registers with their addresses:

	•	
SFR	Address	Name
MDUCON	B1 _H (mapped)	MDU Control Register
MDUSTAT	B0 _H (mapped)	MDU Status Register
MD0/MR0	B2 _H (mapped)	MDU Data/Result Register 0
MD1/MR1	B3 _H (mapped)	MDU Data/Result Register 1
MD2/MR2	B4 _H (mapped)	MDU Data/Result Register 2
MD3/MR3	B5 _H (mapped)	MDU Data/Result Register 3
MD4/MR4	B6 _H (mapped)	MDU Data/Result Register 4
MD5/MR5	B7 _H (mapped)	MDU Data/Result Register 5
	*	•

Table 10-2MDU Registers

The MDx and MRx registers share the same address. However, since MRx registers should never be written to, any write operation to one of these addresses will be interpreted as a write to an MDx register.

In the event of a read operation, an additional bit MDUCON.RSEL is needed to select which set of registers, MDx or MRx, the read operation must be directed to. By default, the MRx registers are read.

10.5 Register Description

The 14 SFRs of the MDU consist of a control register MDUCON, a status register MDUSTAT and 2 sets of data registers, MD0 to MD5 (which contain the operands) and MR0 to MR5 (which contain the results).

Depending on the type of operation, the individual MDx and MRx registers assume specific roles as summarized in **Table 10-3** and **Table 10-4**. For example, in a multiplication operation, the low byte of the 16-bit multiplicator must be written to register MD4 and the high byte to MD5.

Register	Roles of regist	Roles of registers in operations							
	16-bit Multiplication	32/16-bit Division	16/16-bit Division	Normalize and Shift					
MD0	M'andL	D'endL	D'endL	OperandL					
MD1	M'andH	D'end	D'endH	Operand					
MD2	-	D'end	-	Operand					
MD3	-	D'endH	-	OperandH					
MD4	M'orL	D'orL	D'orL	Control					
MD5	M'orH	D'orH	D'orH	-					

Table 10-3 MDx Registers

Table 10-4MRx Registers

Register	Roles of registers in operations								
	16-bit Multiplication	32/16-bit Division	16/16-bit Division	Normalize and Shift					
MR0	PrL	QuoL	QuoL	ResultL					
MR1	Pr	Quo	QuoH	Result					
MR2	Pr	Quo	-	Result					
MR3	PrH	QuoH	-	ResultH					
MR4	M'orL	RemL	RemL	Control					
MR5	M'orH	RemH	RemH	-					

Abbreviations:

• D'end: Dividend, 1st operand of division

- D'or: Divisor, 2nd operand of division
- M'and: Multiplicand, 1st operand of multiplication
- M'or: Multiplicator, 2nd operand of multiplication
- Pr: Product, result of multiplication
- Rem: Remainder
- Quo: Quotient, result of division
- ...L: means that this byte is the least significant of the 16-bit or 32-bit operand
- ...H: means that this byte is the most significant of the 16-bit or 32-bit operand

The MDx registers are built with shadow registers, which are latched with data from the actual registers at the start of a calculation. This frees up the MDx registers to be written with the next set of operands while the current calculation is ongoing.

MDx and MRx registers not used in an operation are undefined to the user. For normalize and shift operations, the registers MD4 and MR4 are used as shift input and output control registers to specify the shift direction and store the number of shifts performed.

Reset Value: 00_H

Multiplication/Division Unit

10.5.1 Operand and Result Registers

The MDx and MRx registers are used to store the operands and results of a calculation. MD4 and MR4 are also used as input and output control registers for shift and normalize operations.

MDx (x = 0 - 5) MDU Operand Register

-	_						
7	6	5	4	3	2	1	0
			1	1			1
			DA	TA			
	1	L	I	I	1	L	1
			r	W			

Field	Bits	Туре	Description
DATA	7:0	rw	Operand Value See Table 10-3.

MRx (x = 0 MDU Resu	•	r				Reset	Value: 00 _H
7	6	5	4	3	2	1	0
			DA	ТА			
	1	L	r\	N	1	1	1

Field	Bits	Туре	Description
DATA	7:0	rh	Result Value See Table 10-4.

MD4 Shift Input Control Register

Reset Value: 00_H

XC878CLM

Multiplication/Division Unit

Field	Bits	Туре	Description
SCTR	4:0	rw	Shift Counter The count written to SCTR determines the number of shifts to be performed during a shift operation.
SLR	5	rw	Shift Direction0Selects shift left operation.1Selects shift right operation.
0	7:6	rw	Reserved Should be written with 0. Returns undefined data if read.

MR4 Shift Output Control Register

Reset Value: 00_H

7	6	5	4	3	2	1	0
	0	Ι			SCTR		
Lı	rh	I	I		rh		I

Field	Bits	Туре	Description
SCTR	4:0	rh	Shift Counter After a normalize operation, SCTR contains the number of normalizing shifts performed.
0	7:5	rh	Reserved Returns undefined data if read.

10.5.2 Control Register

Register MDUCON contains control bits that select and start the type of operation to be performed.

MDUCON MDU Control Register

MDU Con	trol Regist	er				Reset	Value: 00 _H
7	6	5	4	3	2	1	0
IE	IR	RSEL	START		OPC	ODE	1
rw	rw	rw	rwh	•	rv	V	

Field	Bits	Туре	Description		
OPCODE	3:0	rw	Operation Code 0000 Unsigned 16-bit Multiplication 0001 Unsigned 16-bit/16-bit Division 0010 Unsigned 32-bit/16-bit Division 0011 32-bit Logical Shift L/R 0100 Signed 16-bit Multiplication 0101 Signed 16-bit/16-bit Division 0110 Signed 32-bit/16-bit Division 0111 32-bit Arithmetic Shift L/R 1000 32-bit Normalize Others: Reserved		
START	4	rwh	Start BitThe bit START is set by software and reset by hardware.0Operation is not started.1Operation is started.		
RSEL	5	rw	Read Select0Read the MRx registers.1Read the MDx registers.		
IR	6	rw	 Interrupt Routing 0 The two interrupt sources have their own dedicated interrupt lines. 1 The two interrupt sources share one interrupt line INT_O0. 		

Field	Bits	Туре	Description	
IE	7	rw	Interrupt Enable0The interrupt is disabled.1The interrupt is enabled.	

- Note: Write access to MDUCON is not allowed when the busy flag MDUSTAT.BSY is set during the calculation phase.
- Note: Writing reserved opcode values to MDUCON results in an error condition when MDUCON.START bit is set to 1.

10.5.3 Status Register

Register MDUSTAT contains the status flags of the MDU.

MDUSTAT MDU Status Register

Reset Value: 00_H

7	6	5	4	3	2	1	0
	Τ	0	I	1	BSY	IERR	IRDY
	1	r	1	1	rh	rwh	rwh

Field	Bits	Туре	Description
IRDY	0	rwh	 Interrupt on Result Ready The bit IRDY is set by hardware and reset by software. 0 No interrupt is triggered at the end of a successful operation. 1 An interrupt is triggered at the end of a successful operation.
IERR	1	rwh	 Interrupt on Error The bit IERR is set by hardware and reset by software. 0 No interrupt is triggered with the occurrence of an error. 1 An interrupt is triggered with the occurrence of an error.
BSY	2	rh	Busy Bit0The MDU is not running any calculation.1The MDU is still running a calculation.
0	7:3	r	Reserved Returns 0 if read; should be written with 0.

CORDIC Coprocessor

11 CORDIC Coprocessor

The CORDIC algorithm is a useful convergence method for computing trigonometric, linear, hyperbolic and related functions. It allows performance of vector rotation not only in the Euclidian plane, but also in the Linear and Hyperbolic planes.

The CORDIC algorithm is an iterative process where truncation errors are inherent. Higher accuracy is achieved in the CORDIC Coprocessor with 16 iterations per calculation and kernel data width of at least 20 bits. The main advantage of using this algorithm is the low hardware costs involved compared to other complex algorithms.

The generalized CORDIC algorithm has the following CORDIC equations. The factor m controls the vector rotation and selects the set of angles for the circular, linear and hyperbolic function:

$$x_{i+1} = x_i - m \cdot d_i \cdot y_i \cdot 2^{-i}$$
(11.1)

$$y_{i+1} = y_i + d_i \cdot x_i \cdot 2^{-i}$$
 (11.2)

$$z_{i+1} = z_i - d_i \cdot e_i$$
(11.3)

where

m = 1 Circular function (basic CORDIC) with $e_i = atan(2^{-i})$

m = 0 Linear function with $e_i = 2^{-i}$

m = -1 Hyperbolic function with $e_i = \operatorname{atanh}(2^{-i})$

For clarity, the document uses the following terms for referencing CORDIC data:

- Result Data: Final result data at the end of CORDIC calculation (Bit BSY no longer active).
- Calculated Data: Intermediate or last data resulting from CORDIC iterations.
- Initial Data: Data used for the very first CORDIC iteration, is usually user-initialized data.

CORDIC CoprocessorFeatures

11.1 Features

- Modes of operation
 - Supports all CORDIC operating modes for solving circular (trigonometric), linear (multiply-add, divide-add) and hyperbolic functions
 - Integrated look-up tables (LUTs) for all operating modes
- Circular vectoring mode: Extended support for values of initial X and Y data up to full range of [-2¹⁵,(2¹⁵-1)] for solving angle and magnitude
- Circular rotation mode: Extended support for values of initial Z data up to full range of $[-2^{15},(2^{15}-1)]$, representing angles in the range $[-\pi,((2^{15}-1)/2^{15})\pi]$ for solving trigonometry
- 2 selectable operating frequency: peripheral clock or double the peripheral clock.
- Gated clock input to support disabling of module
- 16-bit accessible data width
 - 24-bit kernel data width plus 2 overflow bits for X and Y each
 - 20-bit kernel data width plus 1 overflow bit for Z
 - With KEEP bit to retain the last value in the kernel register for a new calculation
- 16 iterations per calculation: Approximately 41 clock-cycles or less, from set of start (ST) bit to set of end-of-calculation flag, excluding time taken for write and read access of data bytes.
- Twos complement data processing
 - Only exception: X result data with user selectable option for unsigned result
- X and Y data generally accepted as integer or rational number; X and Y must be of the same data form
- Entries of LUTs are 20-bit signed integers
 - Entries of atan and atanh LUTs are integer representations (S19) of angles with the scaling such that $[-2^{15},(2^{15}-1)]$ represents the range $[-\pi,((2^{15}-1)/2^{15})\pi]$
 - Accessible Z result data for circular and hyperbolic functions is integer in data form of S15
- Emulated LUT for linear function
 - Data form is 1 integer bit and 15-bit fractional part (1.15)
 - Accessible Z result data for linear function is rational number with fixed data form of S4.11 (signed 4Q16)
- Truncation Error
 - The result of a CORDIC calculation may return an approximation due to truncation of LSBs
 - Good accuracy of the CORDIC calculated result data, especially in circular mode
- Interrupt
 - On completion of a calculation
 - Interrupt enabling and corresponding flag

11.2 Functional Description

The following sections describe the function of the CORDIC Coprocessor.

11.2.1 Operation of the CORDIC Coprocessor

The CORDIC Coprocessor can be used for the circular (trigonometric), linear (multiplyadd, divide-add) or hyperbolic function, in either rotation or vectoring mode. The modes are selectable by software via the CD_CON control register.

Initialization of the kernel data register is enabled by clearing respective KEEP bits of the CD_STATC. If ST_MODE = 1, writing 1 to bit ST starts a new calculation. Otherwise, by default where ST_MODE = 0, a new calculation starts after a write access to register CD_CORDXL. Each calculation involves a fixed number of 16 iterations. Bit BSY is set while a calculation is in progress to indicate busy status. It is cleared by hardware at the end of a calculation.

As the first step on starting a CORDIC calculation (provided the corresponding KEEP bits are not set), the initial data is loaded from the data registers CD_CORDxL and CD_CORDxH to the internal kernel data registers. During the calculation, the kernel data registers always hold the latest intermediate data. On completion of the calculation, they hold the result data.

The data registers CD_CORDxL and CD_CORDxH function as shadow registers which can be written to without affecting an ongoing calculation. Values are transferred to the kernel data registers only on valid setting of bit ST, or if ST_MODE = 0, after write access to X low byte CD_CORDXL (provided KEEP bit of corresponding data is not set). The result data must be read at the end of calculation (BSY no longer active) before starting a new calculation. The result data is read directly from the kernel data registers with bit CD_STATC.DMAP = 0. The kernel data is placed directly on the bus so the data registers which function as shadow registers are not overwritten during this operation. Alternatively, the shadow data registers are read (DMAP = 1), although this would be merely reading back the user-initialized initial data.

At the end of each calculation, CD_STATC.BSY returns to 0, the End-of-Calculation (EOC) flag is set and the interrupt request signal will be activated if interrupt is enabled by INT_EN = 1. The result data in X, Y and Z are internally checked, and in case of data overflow, the ERROR bit is set. This bit is automatically cleared on the start of a new calculation, or when read.

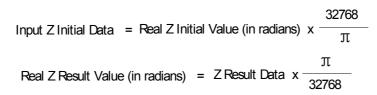
On starting a new calculation, the kernel data registers can no longer be expected to hold the result of the previous calculation. The kernel data registers always hold either the initial value or the (intermediate) result of the last CORDIC iteration.

Setting the bit ST during an ongoing calculation while BSY is set has no effect. In order to start a new calculation, bit ST must be set again at a later time when BSY is no longer active. In the same manner, changing the operating mode during a running calculation (as indicated by BSY) has no effect.

11.2.2 Interrupt

The End-of-Calculation (EOC) is the only interrupt source of the CORDIC Coprocessor. If interrupt is enabled by CD_STATC.INT_EN = 1, an interrupt request signal is activated at the end of CORDIC calculation and also indicated by the CD_STATC.EOC flag. If not cleared by software, the EOC flag remains set until cleared by hardware when a read access is performed to the low byte of Z result data (DMAP = 0).

During EOC data processing, a check must be made to ensure that the ERROR flag is not set (indicates data overflow has occurred).


11.2.3 Normalized Result Data

In all operating modes, the CORDIC Coprocessor returns a normalized result data for X and Y, as shown in the following equation:

On the other hand, the interpretation for Z result data differs, which is also dependent on the CORDIC function used:

For **linear** function, there is no additional processing of the CORDIC calculated Z data, as such it is taken directly as the result data. The accessible Z result data is a real number expressed as signed 4Q16.

For **circular** and **hyperbolic** functions, the accessible Z result data is a normalized integer value, angles in the range $[-\pi,((2^{15}-1)/2^{15})\pi]$ are represented by $[-2^{15},(2^{15}-1)]$. The CORDIC Coprocessor expects Z data to be interpreted with this scaling:

The CORDIC calculated data includes an inherent gain factor K resulting from the rotation or vectoring. The value K is different for each CORDIC function, as shown in **Table 11-1**.

Function	Approximated Gain K	
Circular	1.64676	
Hyperbolic	0.828	
Linear	1	

 Table 11-1
 CORDIC Function Inherent Gain Factor for Result Data

11.2.4 CORDIC Coprocessor Operating Modes

Table 11-2 gives an overview of the CORDIC Coprocessor operating modes. In this table, *X*, *Y* and *Z* represent the initial data, while X_{final} , Y_{final} and Z_{final} represent the final result data when all processing is complete and BSY is no longer active.

The CORDIC equations are:

$x_{i+1} = x_i - m \cdot d_i \cdot y_i \cdot 2^{-i}$	(11.4)
$y_{i+1} = y_i + d_i \cdot x_i \cdot 2^{-i}$	(11.5)
$z_{i+1} = z_i - d_i \cdot e_i$	(11.6)

Table 11-2 CORDIC Coprocessor Operating Modes and Corresponding Result Data Data

Function	Rotation Mode	Vectoring Mode
	$d_i = \text{sign}(z_i), z_i \rightarrow 0$	d_i = -sign (y_i), $y_i \rightarrow 0$
Circular m = 1 $e_i = atan(2^{-i})$	$\begin{split} X_{\text{final}} &= K[X\cos(Z) - Y\sin(Z)] \; / \; MPS \\ Y_{\text{final}} &= K[Y\cos(Z) + X\sin(Z)] \; / \; MPS \\ Z_{\text{final}} &= 0 \\ \text{where } K \approx 1.64676 \end{split}$	$\begin{array}{l} X_{\rm final} = {\rm K}\; {\rm sqrt}(X^2 {+}\; Y^2) \; / \; {\rm MPS} \\ Y_{\rm final} = 0 \\ Z_{\rm final} = Z \; {+}\; {\rm atan}(Y { / \;} X) \\ {\rm where}\; {\rm K} \approx 1.64676 \end{array}$
	For solving $cos(Z)$ and $sin(Z)$, set $X = 1 / K$, $Y = 0$. Useful domain: Full range of X , Y and Z supported due to pre- processing logic.	For solving magnitude of vector (sqrt(x^2+y^2)), set $X = x / K$, $Y = y / K$. Useful domain: Full range of X and Y supported due to pre- and post- processing logic.
		For solving $atan(Y X)$, set $Z = 0$. Useful domain: Full range of X and Y , except $X = 0$.
	Relationships: tan(v) = sin(v) / cos(v)	Relationships: acos(w) = atan[sqrt(1-w ²) / w] asin(w) = atan[w / sqrt(1-w ²)]
Linear m = 0 $e_i = 2^{-i}$	$\begin{array}{l} X_{\text{final}} = X / \text{ MPS} \\ Y_{\text{final}} = [Y + XZ] / \text{ MPS} \\ Z_{\text{final}} = 0 \end{array}$	$\begin{array}{l} X_{\rm final} = X / {\rm MPS} \\ Y_{\rm final} = 0 \\ Z_{\rm final} = Z + Y / X \end{array}$
	For solving $X \cdot Z$, set $Y = 0$. Useful domain: $ Z \le 2$.	For solving ratio Y / X , set $Z = 0$. Useful domain: $ Y / X \le 2, X > 0$.

Table 11-2	CORDIC Coprocessor Operating Modes and Corresponding Result
	Data (cont'd)

Function	Rotation Mode	Vectoring Mode
Hyperbolic m = -1 $e_i = \operatorname{atanh}(2^{-i})$	$\begin{split} X_{\text{final}} &= k[X\cosh(Z) - Y\sinh(Z)] \ / \\ \text{MPS} \\ Y_{\text{final}} &= k[Y\cosh(Z) + X\sinh(Z)] \ / \\ \text{MPS} \\ Z_{\text{final}} &= 0 \\ \text{where } k \approx 0.828 \end{split}$	$X_{\text{final}} = \text{k sqrt}(X^2 - Y^2) / \text{MPS}$ $Y_{\text{final}} = 0$ $Z_{\text{final}} = Z + \text{atanh}(Y / X)$ where k ≈ 0.828
	For solving $cosh(Z)$ and $sinh(Z)$ and e^{Z} , set $X = 1 / k$, $Y = 0$. Useful domain: $ Z \le 1.11$ rad, $Y = 0$.	For solving sqrt(x^2-y^2), set $X = x/k$, Y = y/k. Useful domain: $ y < x $, $X > 0$. For solving atanh(Y/X), set $Z = 0$. Useful domain: $ atanh(Y/X) \le 1.11$ rad, $X > 0$.
	Relationships: tanh(v) = sinh(v) / cosh(v) $e^{v} = sinh(v) + cosh(v)$ $w^{t} = e^{t ln(w)}$	Relationships: $ln(w) = 2 \operatorname{atanh}[(w-1) / (w+1)]$ $sqrt(w) = sqrt((w+0.25)^2-(w-0.25)^2)$ $acosh(w) = ln[w+sqrt(1-w^2)]$ $asinh(w) = ln[w+sqrt(1+w^2)]$

Usage Notes

- For solving the respective functions, user must initialize the CORDIC data (X, Y and Z) with meaningful initial values within domain of convergence to ensure result convergence. The 'useful domain' listed in Table 11-2 covers the supported domain of convergence for the CORDIC algorithm and excludes the not-meaningful range(s) for the function. For details regarding the supported domain of convergence, refer to Chapter 11.2.4.1. For result data accuracy, refer to Chapter 11.2.6.
- Function limitations must be considered, e.g., setting initial X = 0 for atan(Y / X) is not meaningful. Violations of such function limitations may yield incoherent CORDIC result data.
- All data inputs are processed and handled as twos complement. Only exception is user-option for X result data (only) to be read as unsigned value.
- The only case where the result data is always positive and larger than the initial data is X result data (only) in circular vectoring mode; therefore, the user may want to use the MSB bit as data bit instead of sign bit. By setting X_USIGN = 1, X result data will be processed as unsigned data.
- For circular and hyperbolic functions, and due to the corresponding fixed LUT, the Z data is always handled as signed integer S19 (accessible as S15). The LUTs contain scaled integer values (S19) of atan(2⁻ⁱ) for i = 0, 1, 2, ..., 15 and atanh(2⁻ⁱ) for

i = 1, 2, ..., 15, such that angles in the range $[-\pi,((2^{19}-1)/2^{19})\pi]$ are represented by integer values ranging $[-2^{19},(2^{19}-1)]$. Therefore, Z data is limited (not considering domain of convergence) to represent angles $[-\pi,((2^{15}-1)/2^{15})\pi]$ for these CORDIC functions. Any calculated value of Z outside of this range will result in overflow error.

- For linear function, the Z data is always handled as signed fraction S4.15 (accessible as S4.11 in the form signed 4Q16). The emulated LUT is actually a shift register that holds data in the form 1.15 which gives the real value of 2⁻ⁱ. Therefore, regardless of the domain of convergence, Z data is logically only useful for values whose magnitude is smaller than 16. Overflow error is indicated by the CD_STATC.ERROR bit.
- The MPS setting has no effect on Z data. User must ensure proper initialization of Z initial data to prevent overflow and incorrect result data.
- The CORDIC Coprocessor is designed such that with correct user setting of MPS > 1, there is no internal overflow of the X and Y data and the read result data is complete. However, note that in these cases, the higher the MPS setting, the lower the resolution of the result data due to loss of LSB bit(s).
- The hyperbolic rotation mode is limited, in terms of result accuracy, in that initial Y data must be set to zero. In other words, the CORDIC Coprocessor is not able to return accurate result for cosh(Z)+/-sinh(Z) in a single calculation.

11.2.4.1 Domains of Convergence

For convergence of result data, there are limitations to the magnitude or value of initial data and corresponding useful data form, depending on the operating mode used. The following are generally applicable regarding convergence of CORDIC result data.

Rotation Mode: Z data must converge towards 0. Initial Z data must be equal or smaller than $\sum d_i \cdot e_i$, where e_i is always decreasing for iteration i. In other words, $|Z| \leq Sum$ of LUT. In circular function, this means $|Z| \leq$ integer value representing 1.74 radians. For linear function, $|Z| \leq 2$. In hyperbolic function, $|Z| \leq$ integer value representing 1.11 radians.

Vectoring Mode: Y data must converge towards 0. The values of initial X and Y are limited by the Z function which is dependent on the corresponding LUT. For circular function, this means $|atan(Y | X)| \le 1.74$ radians. For linear function, $|Y | X| \le 2$. For hyperbolic function, $|atanh(Y | X)| \le 1.11$ radians. In vectoring mode, the additional requirement is that X > 0.

While the operating modes of the CORDIC Coprocessor are generally bounded by these convergence limits, there are exceptions to the circular rotation and circular vectoring modes which use additional pre- (and post-)processing logic to support wider range of inputs.

Circular Rotation Mode: The full range of Z input $[-2^{15}, (2^{15}-1)]$ representing angles $[-\pi, ((2^{15}-1)/2^{15})\pi]$ is supported. No limitations on initial X and Y inputs, except for overflow considerations which can be overcome with MPS setting.

Circular Vectoring Mode: The full range of X and Y inputs [-2¹⁵,(2¹⁵-1)] are supported, while Z initial value should satisfy $|Z| \le \pi / 2$ to prevent possible Z result data overflow.

- Note: Considerations should also be given to function limitations such as the meaning of the result data, e.g. divide by zero is not meaningful. The 'useful domain' included within **Table 11-2** for each of the main functions, attempts to cover both for CORDIC convergence and useful range of the function.
- Note: Input values may be within the domain of convergence, however, this does not guarantee a fixed level of accuracy of the CORDIC result data. Refer to **Chapter 11.2.6** for details on accuracy of the CORDIC Coprocessor.

11.2.4.2 Overflow Considerations

Besides considerations for domain of convergence, the limitations on the magnitude of input data must also be considered to prevent result data overflow.

Data overflow is handled by the CORDIC Coprocessor in the same way in all operating modes. Overflow for X and Y data can be prevented by correct setting by the user of the MPS bit, whose value is partly based on the CORDIC Coprocessor operating mode and the application data.

The MPS setting has no effect on the Z data. For circular and hyperbolic functions, any value of Z outside of the range $[-\pi,((2^{15}-1)/2^{15})\pi]$ cannot be represented and will result in Z data overflow error. Note that kernel data Z has values in the range $[-\pi,((2^{19}-1)/2^{19})\pi]$ scaled to the range $[-2^{19},(2^{19}-1)]$, so the written and read values of Z data are always normalized as such. For linear function, where Z is a real value, magnitude of Z must not exceed 4 integer bits.

11.2.5 CORDIC Coprocessor Data Format

The CORDIC Coprocessor accepts (initial) data X, Y and Z inputs in twos complement format. The result data is also in twos complement format.

The only exception is for the X result data in circular vectoring mode. The X result data has a default data format of twos complement, but the user can select via bit CD_CON.X_USIGN = 1 for the X result data to be read as unsigned value. This option prevents a potential overflow of the X result data (taken together with the MPS setting), as the MSB bit is now a data bit. Note that setting bit X_USIGN = 1 is only effective when operating in the circular vectoring mode, which always yields result data that is positive and larger than the initial data.

Generally, the input data for X and Y can be integer or rational number (fraction). However, in any calculation, the data form must be the same for both X and Y. Also, in case of fraction, X and Y must have the same number of bits for decimal place.

The Z data is always handled as integer, based on the normalization factor for circular or hyperbolic function. In case of linear function, accessible Z data is a real number with

fixed input and result data form of S4.11 (signed 4Q16) which is a fraction with 11 decimal places.

Refer to **Chapter 11.2.3** for details on data normalization.

11.2.6 Accuracy of CORDIC Coprocessor

Each CORDIC calculation involves a fixed number of 16 CORDIC iterations starting from iteration 0. The hyperbolic function is special in this respect in that it starts from iteration 1 with repeat iterations at defined steps. The addressable data registers are 16 bits wide, while the internal kernel X and Y data registers used for calculation are each 26 bits wide (24 data bits plus 2 overflow bits) and internal kernel Z data register is 21 bits wide (20 data bits plus 1 overflow bit). For more details on the data form of the LUTs, refer to Chapter 11.3.1 and Chapter 11.3.2.

For input data values within the specified useful domain (see **Table 11-2**), the result of each calculation of the CORDIC Coprocessor is guaranteed to converge, although the accuracy is not fixed per data form in each operating mode. The accuracy is a measure of the magnitude of the difference between the result data and the expected data from a high-accuracy calculator. "Normalized Deviation" (ND) is a generic term used to refer to the magnitude of deviation of the result data from the expected result. The deviation is calculated as if the input/result data is integer. In case the data is a rational number, the magnitude of deviation has to be interpreted. For example, Z for linear vectoring mode of the data form S4.11 - ND = 1 (01_B) means the difference from expected real data has magnitude of no more than $|2^{-11} + 2^{-11}|$; ND = 2 (10_B) means the difference is no more than $|2^{-10}+2^{-11}|$; ND = 3 (11_B) means the difference is no more than $|2^{-11}+2^{-10}+2^{-11}|$; ND = 4 (100_B) means the difference is no more than $|2^{-9}+2^{-11}|$, and so on. The value of 2^{-11} is always added to account for possible truncation error.

Table 11-3 lists the probability of Normalized Deviation in a single calculation, obtained from simulation with approximately one million different input sets for each respective CORDIC Coprocessor operating mode, based on the input conditions specified (always within useful domain, possibly with additional conditions).

The accuracy of each mode can be easily increased, by working with rational numbers (fraction) instead of integers. This refers to X and Y data only (X and Y must always be of same data form), while the data form of Z is fixed per the respective LUT's definition. It is obvious to expect that for a given input of X and Y (and Z), the calculated result will always return a constant value—regardless of whether X and Y are integers or rational numbers. The only difference is with regards to interpreting the input and result data, i.e., with no decimal place or how many decimal places. The deviation of the CORDIC result from the expected data is never smaller if X and Y are integers instead of rational numbers. Therefore, wherever possible, assign X and Y as rational numbers with carefully selected decimal place point, which could be based on the maximum ND of that mode.

Table 11-3 Normalized Deviation of a Calculation					
Mode	X Normalized Deviation	Y or Z Normalized Deviation			
Circular	Input conditions: Useful Domain and $[(1.64676/2) \cdot \text{sqrt}(X^2+Y^2) \ge 600]$				
Vectoring	0 : 50.8317%	0 : 55.8702%			
	1 : 49.1683%	1:44.1298%			
	ND for $X \le 1$	ND for $Z \le 1$			
Circular	Input conditions: Useful Domai	in (Full range of X, Y and Z)			
Rotation	0 : 50.7715%	0 : 51.2011%			
	1 : 48.8579%	1:48.4944%			
	2:0.3681%	2:0.3024%			
	3 : 0.0023%	3:0.0020%			
	4 : 0.0002%	4 : 0.0001%			
_	ND for $X \le 4$	ND for $Y \le 4$			
Linear	Input conditions: Useful Domain ($ Y / X \le 2, X > 0$)				
Vectoring	0:66.9170%	0:88.5676%			
	1:33.0830%	1 : 11.4322%			
	ND for $X \le 1$	2:0.0002%			
		ND for $Z \le 2$			
Linear	Input conditions: Useful Domain ($ Z \le 2$)				
Rotation	0 : 69.7141%	0:62.4055%			
	1:30.2859%	1:37.1965%			
	ND for $X \le 1$	2:0.3980%			
		ND for $Y \le 2$			
Hyperbolic Vectoring	Input conditions: Useful Domain ($ Y < X $, X > 0, $ atanh(Y / X) \le 1.11rad$)				
	0:34.5399%	0:58.3062%			
	1:34.5438%	1:41.6938%			
	2 : 17.9254%	ND for $Z \leq 1$			
	3 : 11.6747%				
	4 : 1.3162%				
	ND for $X \le 4$				

Mode	X Normalized Deviation	Y or Z Normalized Deviation			
Hyperbolic	Input conditions: Useful Domain ($ Z \le 1.11$ rad, Y = 0)				
Rotation	0 : 14.9401%	0:40.4787%			
	1:31.6474%	1 : 40.6711%			
	2:23.7692%	2:11.9209%			
	3 : 14.8353%	3:4.6940%			
	4 : 7.4881%	4 : 1.7290%			
	5:4.3398%	5:0.4453%			
	6 : 2.4387%	6:0.0607%			
	7 : 0.5267%	7:0.0003%			
	8 : 0.0146%	ND for $Y \le 7$			
	ND for $X \le 8$				

Table 11-3 Normalized Deviation of a Calculation (cont'd)

Note: The accuracy/deviation as stated above for each mode is not guaranteed for the final result of multi-step calculations, e.g. if an operation involves two CORDIC calculations, the second calculation uses the result data from the first calculation (enabled with corresponding KEEP bit set). This is due to accumulated approximations and errors.

11.2.7 Performance of CORDIC Coprocessor

The CORDIC calculation time increases linearly with increased precision. Increased precision is achieved with greater number of iterations, which requires increased width of the data parameters.

The CORDIC Coprocessor uses barrel shifters for data shifting. For a fixed number of 16 iterations per calculation, the total time from the start of calculation to the instant the EOC flag is set is approximately 41 clock cycles (or less). It should be noted that the ERROR flag is valid only after one cycle. This timing for one complete calculation is applicable also to those modes which involve additional data processing, and also to the hyperbolic modes which involve repeat iterations and an extra cycle for mode setup.

Note: The above timing exclude time taken for software loading of initial data and reading of the final result data, to and from the six data registers.

CORDIC CoprocessorThe CORDIC Coprocessor Kernel

11.3 The CORDIC Coprocessor Kernel

The CORDIC Coprocessor consists of data registers for holding the X, Y and Z values, in twos complement format. Three shift registers are used to shift the values in the X and Y registers by the number of iterations and to generate the emulated LUT data for the linear function. Additionally, two look-up tables (LUT) are implemented as combinatorial logic to support the circular and hyperbolic function each. The LUT data for the selected operating mode is multiplexed and then added to the data in the Z register with the correct sign. The atan LUT contains precalculated atan(2⁻ⁱ) values, while the atanh LUT contains precalculated atan(2⁻ⁱ) values, while the atanh LUT contains precalculated atan(2⁻ⁱ) values, both in twos complement format for i = iteration count. The emulated LUT, as mentioned above, is actually a shift register that generates data by shifting. This shift register is reloaded whenever the Finite-State-Machine (FSM) switches to the setup mode on starting a new calculation. The CORDIC Coprocessor FSM controls the flow of the calculation.

11.3.1 Arctangent and Hyperbolic Arctangent Look-Up Tables

The LUTs are 20bits and 21bits wide respectively, for the arctangent table (atan LUT) and hyperbolic arctangent table (atanh LUT). Each entry of the atan LUT is divided into 1 sign bit (MSB) followed by 19-bit integer part. For the atanh LUT, each entry has 1 repeater bit (MSB), followed by 1 sign bit, then 19-bit integer part.

The contents of the LUTs are:

• atan LUT with data form of S19, see Table 11-4

Iteration No.	Scaled atan(2 ⁻ⁱ) in hex	Iteration No.	Scaled atan(2 ⁻ⁱ) in hex
i = 0	20000	i = 8	28C
i = 1	12E40	i = 9	146
i = 2	9FB4	i = 10	A3
i = 3	5111	i = 11	51
i = 4	28B1	i = 12	29
i = 5	145D	i = 13	14
i = 6	A2F	i = 14	A
i = 7	518	i = 15	5

Table 11-4Precomputed Scaled Values for atan(2-i)

• atanh LUT with data form of S19, see Table 11-5

abla dd E

Iteration No.	Scaled atanh(2 ⁻ⁱ) in hex	Iteration No.	Scaled atanh(2 ⁻ⁱ) in hex
i = 0	-	i = 8	28C
i = 1	16618	i = 9	146
i = 2	A681	i = 10	A3
i = 3	51EA	i = 11	51
i = 4	28CC	i = 12	29
i = 5	1461	i = 13	14
i = 6	A30	i = 14	A
i = 7	518	i = 15	5

outod Coolod Valuoo far stank (2-İ)

CORDIC CoprocessorThe CORDIC Coprocessor Kernel

The Z data is a normalized representation of the actual angle. The internal scaling is
such that $[-\pi,((2^{19}-1)/2^{19})\pi]$ is equivalent to $[-2^{19},(2^{19}-1)]$. The last 4 LSB bits are
truncated, as 16-bit data is transferred to the data bus when addressed. From user's
point, the angles $[-\pi,((2^{15}-1)/2^{15})\pi]$ are therefore represented by the range $[-2^{15},(2^{15}-1)]$.

11.3.2 Linear Function Emulated Look-Up Table

The emulated LUT for linear function is actually a shift register. The emulated LUT has 1 integer bit (MSB) followed by 15-bit fractional part of the form 1Q16.

In linear function, where Z is a real number, the internal Z data is of the form signed 4Q20. The externally read data has the last 4 bits of the fractional part truncated, resulting in a sign bit followed by 4-bit integer part, and finally 11-bit fractional part.

CORDIC CoprocessorLow Power Mode

11.4 Low Power Mode

If the CORDIC Coprocessor functionality is not required at all, it can be completely disabled by gating off its clock input for maximal power reduction. This is done by setting bit CDC_DIS in register PMCON1 as described below. Refer to **Chapter 8.1.4** for details on peripheral clock management.

PMCON1

Power Mode Control Register 1

Reset Value: 00_H

7	6	5	4	3	2	1	0
0	CDC_DIS	CAN_DIS	MDU_DIS	T2CCU _DIS	CCU_DIS	SSC_DIS	ADC_DIS
r	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description
CDC_DIS	6	rw	 CORDIC Disable Request. Active high. 0 CORDIC is in normal operation (default). 1 Request to disable the CORDIC.
0	7	r	Reserved Returns 0 if read; should be written with 0.

CORDIC CoprocessorRegister Map

11.5 Register Map

The CORDIC Coprocessor registers are located in the mapped Special Function Register (SFR) area. **Table 11-6** lists the addresses of these registers.

Note: All CORDIC Coprocessor register names described in this section shall be referenced fully with the module name prefix "CD_".

Name	Address (HEX)	Reset Value (HEX)	Description
CD_CORDXL	9A	00	CORDIC X Data Low Byte
CD_CORDXH	9B	00	CORDIC X Data High Byte
CD_CORDYL	9C	00	CORDIC Y Data Low Byte
CD_CORDYH	9D	00	CORDIC Y Data High Byte
CD_CORDZL	9E	00	CORDIC Z Data Low Byte
CD_CORDZH	9F	00	CORDIC Z Data High Byte
CD_STATC	A0	00	CORDIC Status and Data Control Register
CD_CON	A1	62	CORDIC Control Register

 Table 11-6
 Register Summary for CORDIC Coprocessor

11.6 Register Description

11.6.1 Control Register

The CD_CON register allows for the general control of the CORDIC Coprocessor. Write action to this register while CD_STATC.BSY is set has no effect.

CD_CON CORDIC Control Register

Reset Value: 62_H

7	6	5	4	3	2	1	0
MF	PS	X_USIGN	ST_MODE	ROTVEC	MOI	DE	ST
rv	V	rw	rw	rw	rw	/	rwh

Field	Bits	Туре	Description		
ST	0	rwh	Start Calculation If ST_MODE = 1, set ST to start a CORDIC calculation. Is effective only while BSY is not set. This bit may be set with the other bits of this register in one write access. Cleared by hardware at the beginning of calculation.		
MODE	2:1	rw	Operating Mode00Linear Mode01Circular Mode (default)10Reserved11Hyperbolic Mode		
ROTVEC	3	rw	Rotation Vectoring Selection0Vectoring Mode (default)1Rotation Mode		
ST_MODE	4	rw	Start Method0Auto start of calculation after write access to X low byte CD_CORDXL (default)1Start calculation only after bit ST is set		

Field	Bits	Туре	Description
X_USIGN	5	rw	 Result Data Format for X in Circular Vectoring Mode When reading the X result data with DMAP = 0, X data has a data format of: 0 Signed, twos complement 1 Unsigned (default) With this bit set, the MSB bit of the X result data is processed as a data bit instead of a sign bit. Note: This bit is only effective when operating in circular vectoring mode. In all other modes, X is always processed as twos complement data. Note: X_USIGN = 1 is meaningful in circular vectoring mode because the result data is always positive and always larger than the initial data.
MPS	7:6	rw	 X and Y Magnitude Prescaler After the last iteration of a calculation, the calculated value of X and Y are each divided by this factor to yield the result. Proper setting of these bits is important to avoid an overflow of the result in the respective kernel data registers. 00 Divide by 1 01 Divide by 2 (default) 10 Divide by 4 11 Reserved, retain the last MPS setting

11.6.2 Status and Data Control Register

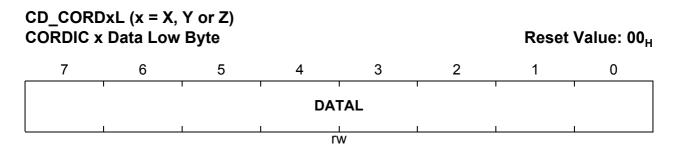
The CD_STATC register is bit-addressable, and generally reflects the status of the CORDIC Coprocessor. The register also contain bits for data control, as well as for interrupt control.

CD_STATC

CORDIC Status and Data Control Register

Reset Value: 00_H

7	6	5	4	3	2	1	0
KEEPZ	KEEPY	KEEPX	DMAP	INT_EN	EOC	ERROR	BSY
rw	rw	rw	rw	rw	rwh	rh	rh


Field	Bits	Туре	Description			
BSY	0	rh	Busy Indication Indicates a running calculation when set. The flag is asserted one clock cycle after bit ST was set. It is deasserted at the end of a calculation.			
ERROR	1	rh	Error Indication In case of overflow error in the calculated result for X, Y or Z, this bit is set at the end of CORDIC calculation. Cleared after any read access on this register, or when a new CORDIC calculation is started.			
EOC	2	rwh	End of Calculation Flag Set at the end of a complete CORDIC calculation when BSY goes inactive. Unless cleared by software, bit remains set until a read access is performed to the low byte of Z result data (DMAP = 0) where the bit is automatically cleared by hardware.			
INT_EN	3	rw	Interrupt Enable Set to enable CORDIC Coprocessor interrupt			
DMAP	4	rw	 Data Map 0 Read (result) data from kernel data registers (default) 1 Read (initial) data from the shadow data registers 			

Field	Bits	Туре	Description
KEEPX	5	rw	Last X Result as Initial Data for New Calculation If set, a new calculation will use as initial data, the value of the result from the previous calculation. In other words, the respective kernel data register will not be overwritten by the contents of the shadow data register at the beginning of new calculation. This bit should always be cleared for the very first calculation to load the initial X data.
			Note: Independent of the KEEP bit, the shadow data registers will continue to hold the last written initial data value until the next software write.
			Note: If KEEPx bit is set for a multi-step calculation, the accuracy of the corresponding final x result data may be reduced and is not guaranteed as shown in Section 11.2.6 .
KEEPY	6	rw	Last Y Result as Initial Data for New Calculation <see description="" for="" keepx=""></see>
KEEPZ	7	rw	Last Z Result as Initial Data for New Calculation <see description="" for="" keepx=""></see>

11.6.3 Data Registers

The Data registers are used to initialize the X, Y and Z parameters. The result data from CORDIC calculation can also be read (DMAP = 0). Reading of the shadow registers for initial data are also possible (DMAP = 1). Regardless of the DMAP setting for reading, these data registers always hold the last written initial value until the next user software write, or reset.

Reset Value: 00_H

CORDIC CoprocessorRegister Description

Field	Bits	Туре	Description
DATAL	7:0	rw	Low Byte Data Write to this byte always writes to the low byte of the corresponding shadow data register. New data may be written during an ongoing CORDIC calculation.
			For read, DMAP=0: Result data from kernel data byte DMAP=1: Initial data from the shadow data byte

CD_CORDxH (x = X, Y or Z) CORDIC x Data High Byte

	Ŭ	•						
7	6	5	4	3	2	1	0	
		I I		1 1	I			
DATAH								
	I	1 1		1 1			1	
	rw							

Field	Bits	Туре	Description
DATAH	Wi co		High Byte Data Write to this byte always writes to the high byte of the corresponding shadow data register. New data may be written during an ongoing CORDIC calculation.
			For read, DMAP=0: Result data from kernel data byte DMAP=1: Initial data from the shadow data byte

12 Serial Interfaces

The XC878 contains three serial interfaces, which consists of two Universal Asynchronous Receivers/Transmitters (UART and UART1) and a High-Speed Synchronous Serial Interface (SSC), for serial communication with external devices. Additionally, the UART module can be used to support the Local Interconnect Network (LIN) protocol.

UART and UART1 Features

- Full-duplex asynchronous modes
 - 8-bit or 9-bit data frames, LSB first
 - fixed or variable baud rate
- Receive buffered
- Multiprocessor communication
- Interrupt generation on the completion of a data transmission or reception

LIN Features

• Master and slave mode operation

SSC Features

- Master and slave mode operation
 - Full-duplex or half-duplex operation
- Transmit and receive buffered
- Flexible data format
 - Programmable number of data bits: 2 to 8 bits
 - Programmable shift direction: LSB or MSB shift first
 - Programmable clock polarity: idle low or high state for the shift clock
 - Programmable clock/data phase: data shift with leading or trailing edge of the shift clock
- Variable baud rate
- Compatible with Serial Peripheral Interface (SPI)
- Interrupt generation
 - On a transmitter empty condition
 - On a receiver full condition
 - On an error condition (receive, phase, baud rate, transmit error)

12.1 UART

The UART provides a full-duplex asynchronous receiver/transmitter, i.e., it can transmit and receive simultaneously. It is also receive-buffered, i.e., it can commence reception of a second byte before a previously received byte has been read from the receive register. However, if the first byte still has not been read by the time reception of the second byte is complete, one of the bytes will be lost.

Note: The term "UART" is used to represent the serial port in general and is applicable to both UART and UART1 modules. If it is followed by the word "module" as in "UART module", it is used to represent the first UART module.

12.1.1 UART Modes

The UART can be used in four different modes. In mode 0, it operates as an 8-bit shift register. In mode 1, it operates as an 8-bit serial port. In modes 2 and 3, it operates as a 9-bit serial port. The only difference between mode 2 and mode 3 is the baud rate, which is fixed in mode 2 but variable in mode 3. The variable baud rate is set by either the underflow rate on the dedicated baud-rate generator, or by the overflow rate on Timer 1.

The different modes are selected by setting bits SM0 and SM1 to their corresponding values, as shown in **Table 12-1**.

SM0	SM1	Operating Mode	Baud Rate
0	0	Mode 0: 8-bit shift register	f _{PCLK} /2
0	1	Mode 1: 8-bit shift UART	Variable
1	0	Mode 2: 9-bit shift UART	$f_{\rm PCLK}/64 \text{ or } f_{\rm PCLK}/32^{1)}$
1	1	Mode 3: 9-bit shift UART	Variable

Table 12-1 UART Modes

¹⁾ For UART1 module, the baud rate is fixed at $f_{PCLK}/64$.

12.1.1.1 Mode 0, 8-Bit Shift Register, Fixed Baud Rate

In mode 0, the serial port behaves as an 8-bit shift register. Data is shifted in through RXD, and out through RXDO, while the TXD line is used to provide a shift clock which can be used by external devices to clock data in and out.

The transmission cycle is activated by a write to SBUF. One machine cycle later, the data has been written to the transmit shift register with a 1 at the 9th bit position. For the next seven machine cycles, the contents of the transmit shift register are shifted right one position and a zero shifted in from the left so that when the MSB of the data byte is at the output position, it has a 1 and a sequence of zeros to its left. The control block then executes one last shift before setting the TI bit.

Reception is started by the condition REN = 1 and RI = 0. At the start of the reception cycle, 1111110_B is written to the receive shift register. In each machine cycle that follows, the contents of the shift register are shifted left one position and the value sampled on the RXD line in the same machine cycle is shifted in from the right. When the 0 of the initial byte reaches the leftmost position, the control block executes one last shift, loads SBUF and sets the RI bit.

The baud rate for the transfer is fixed at $f_{\text{PCLK}}/2$ where f_{PCLK} is the input clock frequency, i.e. one bit per machine cycle.

12.1.1.2 Mode 1, 8-Bit UART, Variable Baud Rate

In mode 1, the UART behaves as an 8-bit serial port. A start bit (0), 8 data bits, and a stop bit (1) are transmitted on TXD or received on RXD at a variable baud rate.

The transmission cycle is activated by a write to SBUF. The data is transferred to the transmit register and a 1 is loaded to the 9th bit position (as in mode 0). At phase 1 of the machine cycle after the next rollover in the divide-by-16 counter, the start bit is copied to TXD, and data is activated one bit time later. One bit time after the data is activated, the data starts getting shifted right with zeros shifted in from the left. When the MSB gets to the output position, the control block executes one last shift and sets the TI bit.

Reception is started by a high to low transition on RXD (sampled at 16 times the baud rate). The divide-by-16 counter is then reset and $1111 \ 1111_B$ is written to the receive register. If a valid start bit (0) is then detected (based on two out of three samples), it is shifted into the register followed by 8 data bits. If the transition is not followed by a valid start bit, the controller goes back to looking for a high to low transition on RXD. When the start bit reaches the leftmost position, the control block executes one last shift, then loads SBUF with the 8 data bits, loads RB8 (SCON.2) with the stop bit, and sets the RI bit, provided RI = 0, and either SM2 = 0 (see Section 12.1.2) or the received stop bit = 1. If none of these conditions is met, the received byte is lost.

The associated timings for transmit/receive in mode 1 are illustrated in Figure 12-1.

XC878CLM

Serial Interfaces

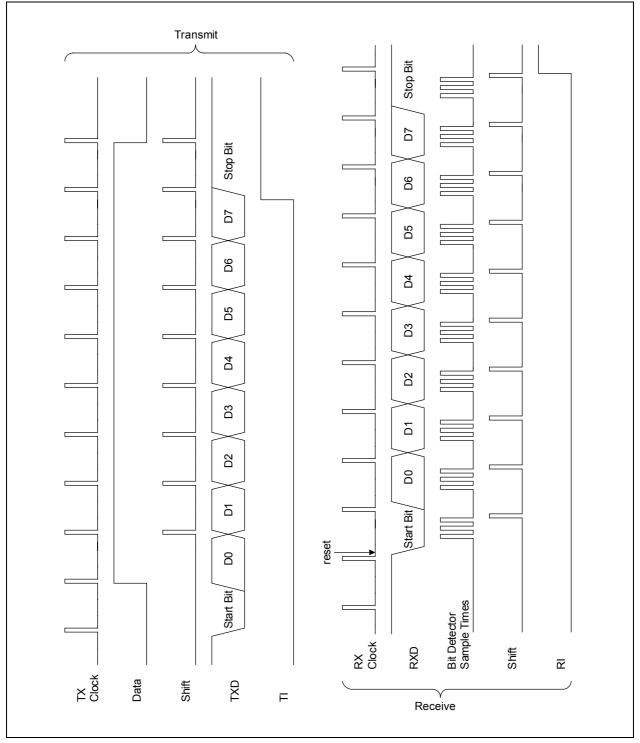


Figure 12-1 Serial Interface, Mode 1, Timing Diagram

12.1.1.3 Mode 2, 9-Bit UART, Fixed Baud Rate

In mode 2, the UART behaves as a 9-bit serial port. A start bit (0), 8 data bits plus a programmable 9th bit and a stop bit (1) are transmitted on TXD or received on RXD. The 9th bit for transmission is taken from TB8 (SCON.3) while for reception, the 9th bit received is placed in RB8 (SCON.2).

The transmission cycle is activated by a write to SBUF. The data is transferred to the transmit register and TB8 is copied into the 9th bit position. At phase 1 of the machine cycle following the next rollover in the divide-by-16 counter, the start bit is copied to TXD and data is activated one bit time later. One bit time after the data is activated, the data starts shifting right. For the first shift, a stop bit (1) is shifted in from the left and for subsequent shifts, zeros are shifted in. When the TB8 bit gets to the output position, the control block executes one last shift and sets the TI bit.

Reception is started by a high to low transition on RXD (sampled at 16 times the baud rate). The divide-by-16 counter is then reset and $1111 \ 1111_B$ is written to the receive register. If a valid start bit (0) is then detected (based on two out of three samples), it is shifted into the register followed by 8 data bits. If the transition is not followed by a valid start bit, the controller goes back to looking for a high to low transition on RXD. When the start bit reaches the leftmost position, the control block executes one last shift, then loads SBUF with the 8 data bits, loads RB8 (SCON.2) with the 9th data bit, and sets the RI bit, provided RI = 0, and either SM2 = 0 (see Section 12.1.2) or the 9th bit = 1. If none of these conditions is met, the received byte is lost.

The baud rate for the transfer is either $f_{\text{PCLK}}/64$ or $f_{\text{PCLK}}/32$ for UART module, depending on the setting of the top bit (SMOD) of the PCON (Power Control) register, which acts as a Double Baud Rate selector. For UART1 module, the baud rate is fixed at $f_{\text{PCLK}}/64$.

12.1.1.4 Mode 3, 9-Bit UART, Variable Baud Rate

Mode 3 is the same as mode 2 in all respects except that the baud rate is variable.

In all modes, transmission is initiated by any instruction that uses SBUF as a destination register. Reception is initiated in the modes by the incoming start bit if REN = 1.

The serial interface also provides interrupt requests when transmission or reception of the frames has been completed. The corresponding interrupt request flags are TI or RI, respectively. If the serial interrupt is not used (i.e., serial interrupt not enabled), TI and RI can also be used for polling the serial interface.

The associated timings for transmit/receive in modes 2 and 3 are illustrated in **Figure 12-2**.

XC878CLM

Serial Interfaces

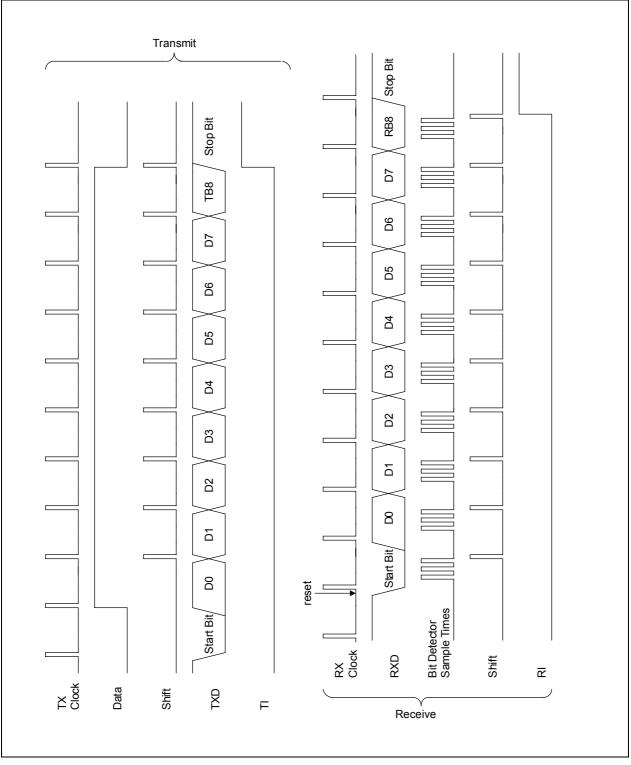


Figure 12-2 Serial Interface, Modes 2 and 3, Timing Diagram

12.1.2 Multiprocessor Communication

Modes 2 and 3 have a special provision for multiprocessor communication using a system of address bytes with bit 9 = 1 and data bytes with bit 9 = 0. In these modes, 9 data bits are received. The 9th data bit goes into RB8. The communication always ends with one stop bit. The port can be programmed such that when the stop bit is received, the serial port interrupt will be activated only if RB8 = 1.

This feature is enabled by setting bit SM2 in SCON. One of the ways to use this feature in multiprocessor systems is described in the following paragraph.

When the master processor wants to transmit a block of data to one of several slaves, it first sends out an address byte that identifies the target slave. An address byte differs from a data byte in that the 9th bit is 1 in an address byte and 0 in a data byte. With SM2 = 1, no slave will be interrupted by a data byte. An address byte, however, will interrupt all slaves, so that each slave can examine the received byte and see if it is being addressed. The addressed slave will clear its SM2 bit and prepare to receive the data bytes that will be coming. The slaves that were not being addressed retain their SM2s as set and ignore the incoming data bytes.

Bit SM2 has no effect in mode 0. SM2 can be used in mode 1 to check the validity of the stop bit. In a mode 1 reception, if SM2 = 1, the receive interrupt will not be activated unless a valid stop bit is received.

12.1.3 UART Register Description

Both UART modules contain the two Special Function Registers (SFRs), SCON and SBUF. SCON is the control register and SBUF is the data register. On reset, both SCON and SBUF return 00_{H} . The serial port control and status register is the SFR SCON. This register contains not only the mode selection bits, but also the 9th data bit for transmit and receive (TB8 and RB8) and the serial port interrupt bits (TI and RI).

SBUF is the receive and transmit buffer of the serial interface. Writing to SBUF loads the transmit register and initiates transmission. This register is used for both transmit and receive data. Transmit data is written to this location and receive data is read from this location, but the two paths are independent.

Reading out SBUF accesses a physically separate receive register.

UART1 module has additionally a third SFR, SCON1, to enable or disable the receive, transmit and divider overflow interrupts. Setting bit RIEN to 1, for example, enables UART1 module's receive interrupt.

SBUF

Serial Interfaces

Serial Data Buffer Reset Value: 00_H 7 6 5 4 3 2 1 0 VAL

Field	Bits	Туре	Description
VAL	[7:0]	rwh	Serial Interface Buffer Register

SCON Serial Channel Control Register

Reset Value: 00_H

7	6	5	4	3	2	1	0
SM0	SM1	SM2	REN	TB8	RB8	TI	RI
rw	rw	rw	rw	rw	rwh	rwh	rwh

Field	Bits	Туре	Description
RI	0	rwh	Receive Interrupt Flag This is set by hardware at the end of the 8th bit on mode 0, or at the half point of the stop bit in modes 1, 2, and 3. Must be cleared by software.
ті	1	rwh	Transmit Interrupt Flag This is set by hardware at the end of the 8th bit in mode 0, or at the beginning of the stop bit in modes 1, 2, and 3. Must be cleared by software.
RB8	2	rwh	Serial Port Receiver Bit 9 In modes 2 and 3, this is the 9th data bit received. In mode 1, this is the stop bit received. In mode 0, this bit is not used.
TB8	3	rw	Serial Port Transmitter Bit 9 In modes 2 and 3, this is the 9th data bit sent.
REN	4	rw	 Enable Receiver of Serial Port 0 Serial reception is disabled. 1 Serial reception is enabled.

Field	Bits	Туре	Description	
SM2	5	rw	Enable Serial Port Multiprocessor Communication i Modes 2 and 3 In mode 2 or 3, if SM2 is set to 1, RI will not be activated if the received 9th data bit (RB8) is 0. In mode 1, if SM2 is set to 1, RI will not be activate if a valid stop bit (RB8) was not received. In mode 0, SM2 should be 0.	
SM1, SM0	6 7	rw	Serial Port Operating Mode Selection00Mode 0: 8-bit shift register, fixed baud rate $(f_{PCLK}/2)$.01Mode 1: 8-bit UART, variable baud rate.10Mode 2: 9-bit UART, fixed baud rate ($f_{PCLK}/64$ or $f_{PCLK}/32$).11Mode 3: 9-bit UART, variable baud rate.	

SCON1 Serial Channel Control Register 1

Reset Value: 07_H

7	6	5	4	3	2	1	0
	T	0	I	Τ	NDOVEN	TIEN	RIEN
	1		I	1	rw	rw	rw

Field	Bits	Туре	Description
RIEN	0	rw	Receive Interrupt Enable Bit0Receive interrupt is disabled.1Receive interrupt is enabled.
TIEN	1	rw	 Transmit Interrupt Enable Bit 0 Transmit interrupt is disabled. 1 Transmit interrupt is enabled.
NDOVEN	2	rw	 Normal Divider Overflow Enable Bitt 0 Normal divider overflow interrupt is disabled. 1 Normal divider overflow interrupt is enabled.
0	[7:3]	r	Reserved Returns 0 if read; should be written with 0.

12.1.4 Baud Rate Generation

There are several ways to generate the baud rate clock for the serial ports, depending on the mode in which they are operating.

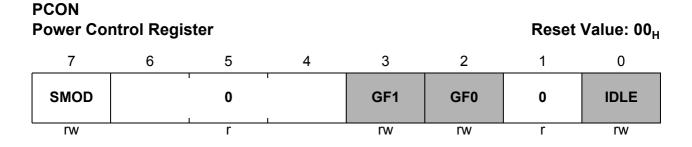
The baud rates in modes 0 and 2 are fixed, so they use the

• Fixed clock, (see Section 12.1.4.1)

In modes 1 and 3, the variable baud rate is generated using the

• Dedicated baud-rate generator (see Section 12.1.4.2)

Additionally for UART module, the variable baud can also be generated using


• Timer 1 (see Section 12.1.4.3)

This selection between the different variable baud rate sources is performed by bit BGS in UART module's FDCON register.

12.1.4.1 Fixed Clock

The baud rates in modes 0 and 2 are fixed. However, for the case of UART module, while the baud rate in mode 0 can only be $f_{\rm PCLK}/2$, the baud rate in mode 2 can be selected as either $f_{\rm PCLK}/64$ or $f_{\rm PCLK}/32$ depending on bit SMOD. Bit SMOD in the PCON register acts as a double baud rate selector in modes 1, 2 and 3. In modes 1 and 3, only the variable baud rate supplied by Timer 1 is dependent on SMOD. The baud rate supplied by the dedicated baud-rate generator is independent of SMOD.

"Baud rate clock" and "baud rate" must be distinguished from each other. The serial interface requires a clock rate that is 16 times the baud rate for internal synchronization. Therefore, the dedicated baud-rate generator and Timer 1 must provide a "baud rate clock" to the serial interface where it is divided by 16 to obtain the actual "baud rate". The abbreviation f_{PCLK} refers to the input clock frequency.

Field	Bits	Туре	Description
SMOD	7	rw	 Double Baud Rate Enable Do not double the baud rate of serial interface in modes 1, 2 and 3. Double the baud rate of serial interface in mode 2, and in modes 1 and 3 only if Timer 1 is used as variable baud rate source.
0	1, [6:4]	r	Reserved Returns 0 if read; should be written with 0.

Baud rate in Mode 2

For UART module, the baud rate in mode 2 is dependent on the value of bit SMOD in the PCON register. If SMOD = 0 (value after reset), the baud rate is 1/64 of the input clock frequency $f_{\rm PCLK}$. If SMOD = 1, the baud rate is 1/32 of $f_{\rm PCLK}$.

(12.1)

Mode 2 baud rate = $\frac{2^{\text{SMOD}}}{64} \times f_{\text{PCLK}}$

For UART1 module, the baud rate in mode 2 does not depend on the bit SMOD and is always 1/64 of the input clock frequency f_{PCLK} .

12.1.4.2 Dedicated Baud-rate Generator

Each of the UART modules has a dedicated baud-rate generator that is based on a programmable 8-bit reload value, and includes divider stages (i.e., prescaler and fractional divider) for generating a wide range of baud rates based on its input clock f_{PCLK} .

The baud rate timer is a count-down timer and is clocked by either the output of the fractional divider (f_{MOD}) if the fractional divider is enabled (FDCON.FDEN = 1), or the output of the prescaler (f_{DIV}) if the fractional divider is disabled (FDEN = 0). For baud rate generation, the fractional divider must be configured to fractional divider mode (FDCON.FDM = 0). This allows the baud rate control run bit BCON.R to be used to start or stop the baud rate timer. At each timer underflow, the timer is reloaded with the 8-bit reload value in register BG and one clock pulse is generated for the serial channel.

Enabling the fractional divider in normal divider mode (FDEN = 1 and FDM = 1) stops the baud rate timer and nullifies the effect of bit BCON.R.

Register BG is a dual-function Baud-rate Generator/Reload register. Reading from BG returns the timer's contents, while writing to BG causes an auto-reload of its contents into the baud rate timer if BCON.R = 1. If BCON.R = 0 at the time a write operation to BG

occurs, the auto-reload action will be delayed until the first instruction cycle after setting BCON.R.

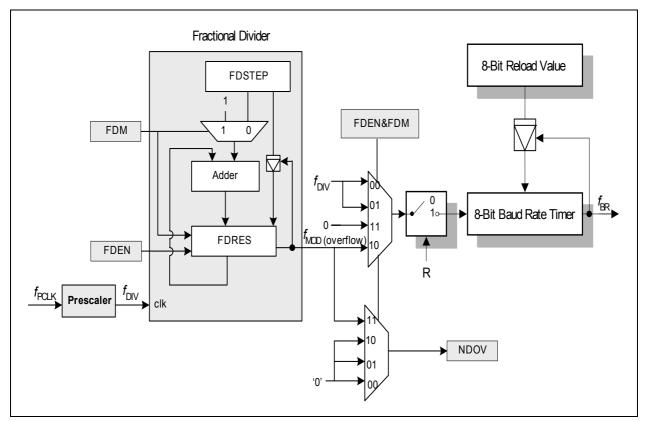


Figure 12-3 Baud-rate Generator Circuitry

The baud rate (f_{BR}) value is dependent on the following parameters:

- Input clock f_{PCLK}
- Prescaling factor (2^{BRPRE}) defined by bit field BRPRE in register BCON
- Fractional divider (STEP/256) defined by register FDSTEP (to be considered only if fractional divider is enabled and operating in fractional divider mode)
- 8-bit reload value (BR_VALUE) for the baud rate timer defined by register BG

The following formulas calculate the final baud rate without (see **Equation (12.2)**) and with the fractional divider (see **Equation (12.3)**), respectively:

(12.2)

baud rate = $\frac{f_{PCLK}}{16 \times 2^{BRPRE} \times (BR_VALUE + 1)}$ where $2^{BRPRE} \times (BR_VALUE + 1) > 1$

(12.3)

baud rate = $\frac{f_{PCLK}}{16 \times 2^{BRPRE} \times (BR_VALUE + 1)} \times \frac{STEP}{256}$

The maximum baud rate that can be generated is limited to $f_{\rm PCLK}/32$. Hence, for a module clock of 24 MHz, the maximum achievable baud rate is 0.75 MBaud.

Standard LIN protocol can support a maximum baud rate of 20 kHz, the baud rate accuracy is not critical and the fractional divider can be disabled. Only the prescaler is used for auto baud rate calculation. For LIN fast mode, which supports the baud rate of 20 kHz to 57.6 kHz, the higher baud rates require the use of the fractional divider for greater accuracy.

Table 12-2 lists the various commonly used baud rates with their corresponding parameter settings and deviation errors. The fractional divider is disabled and a module clock of 24 MHz is used.

Baud rate	Prescaling Factor (2 ^{BRPRE})	Reload Value (BR_VALUE + 1)	Deviation Error
19.2 kBaud	1 (BRPRE=000 _B)	78 (4E _H)	0.17 %
9600 Baud	1 (BRPRE=000 _B)	156 (9C _H)	0.17 %
4800 Baud	2 (BRPRE=001 _B)	156 (9C _H)	0.17 %
2400 Baud	4 (BRPRE=010 _B)	156 (9C _H)	0.17 %

 Table 12-2
 Typical Baud rates for UART with Fractional Divider disabled

The fractional divider allows baud rates of higher accuracy (lower deviation error) to be generated. **Table 12-3** lists the resulting deviation errors from generating a baud rate of 57.6 kHz, using different module clock frequencies. The fractional divider is enabled (fractional divider mode) and the corresponding parameter settings are shown.

f _{pclk}	Prescaling Factor (2 ^{BRPRE})	Reload Value (BR_VALUE + 1)	STEP	Deviation Error					
26.67 MHz	1	20 (14 _H)	177 (B1 _H)	+0.03 %					
24 MHz	1	6 (6 _H)	59 (3B _H)	+0.03 %					
16 MHz	1	4 (4 _H)	59 (3B _H)	+0.03 %					
13.33 MHz	1	10 (A _H)	177 (B1 _H)	+0.03 %					
12 MHz	1	3 (3 _H)	59 (3B _H)	+0.03 %					
8 MHz	1	2 (2 _H)	59 (3B _H)	+0.03 %					
6.67 MHz	1	5 (5 _H)	177 (B1 _H)	+0.03 %					
6 MHz	1	6 (6 _H)	236 (EC _H)	+0.03 %					
		1	1						

 Table 12-3
 Deviation Error for UART with Fractional Divider enabled

Fractional Divider

The input clock f_{DIV} to the 8-bit fractional divider is scaled either by a factor of 1/n, or n/256 to generate an output clock f_{MOD} for the baud rate timer. The fractional divider has two operating modes:

- Fractional divider mode
- Normal divider mode

Fractional Divider Mode

The fractional divider mode is selected by clearing bit FDM in register FDCON to 0. Once the fractional divider is enabled (FDEN = 1), the output clock f_{MOD} of the fractional divider is derived from scaling its input clock f_{DIV} by a factor of n/256, where n is defined by bit field STEP in register FDSTEP and can take any value from 0 to 255.

In fractional divider mode, the output clock pulse f_{MOD} is dependent on the result of the addition FDRES.RESULT + FDSTEP.STEP; if the addition leads to an overflow over FF_H, a pulse is generated for f_{MOD} .

The average output frequency in fractional divider mode is derived as follows:

(12.4)

$$f_{MOD} = f_{DIV} x \frac{STEP}{256}$$
 where $STEP = 0 - 255$

Figure 12-4 shows the operation in fractional divider mode with a reload value of STEP = $8D_H$ (factor of 141/256 = 0.55).

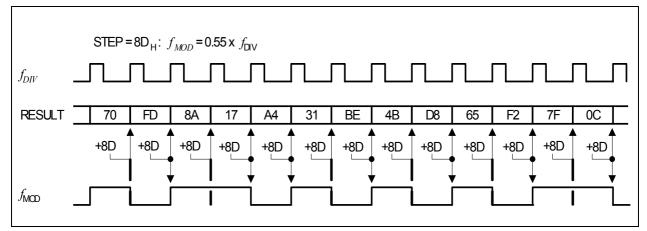


Figure 12-4 Fractional Divider Mode Timing

Note: In fractional divider mode, f_{MOD} will have a maximum jitter of one f_{DIV} clock period.

In general, the fractional divider mode can be used to generate an average output clock frequency with higher accuracy than the normal divider mode.

Normal Divider Mode

Setting bit FDM in register FDCON to 1 configures the fractional divider to normal divider mode, while at the same time disables baud rate generation (see **Figure 12-3**). Once the fractional divider is enabled (FDEN = 1), it functions as an 8-bit auto-reload timer (with no relation to baud rate generation) and counts up from the reload value with each input clock pulse. Bit field RESULT in register FDRES represents the timer value, while bit field STEP in register FDSTEP defines the reload value. At each timer overflow, an overflow flag (FDCON.NDOV) will be set and an interrupt request will be generated if NDOVEN bit is set. This bit is located in BCON register for UART while it is located in SCON1 register for UART1. This gives an output clock f_{MOD} that is 1/n of the input clock f_{DIV} , where n is defined by 256 - STEP.

The output frequency in normal divider mode is derived as follows:

(12.5)

$$f_{MOD} = f_{DIV} x \frac{1}{256 - STEP}$$

Figure 12-5 shows the operation in normal divider mode with a reload value of STEP = FD_{H} . In order to get $f_{MOD} = f_{DIV}$, STEP must be programmed with FF_{H} .

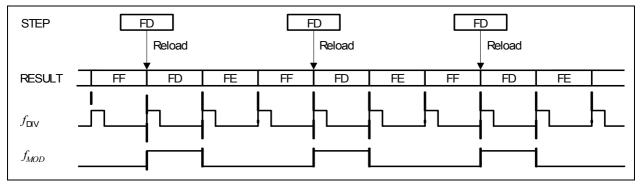


Figure 12-5 Normal Mode Timing

Baud Rate Generator Registers

Both UART and UART1 module baud rate generators contain the five SFRs, BG, BCON, FDCON, FDSTEP and FDRES. The functionality of these registers are described in the following pages.

Register BCON contains the control bits for the baud-rate generator and the prescaling factor.

BCON Baud Rate Control Register

Reset Value: 20_H

7	6	5	4	3	2	1	0
во	SEL	NDOVEN	BRDIS		BRPRE		R
	rw	rw	rw		rw		rw

Field	Bits	Туре	Description
R	0	rw	 Baud-rate Generator Run Control Baud-rate generator is disabled. Baud-rate generator is enabled. Note: BR_VALUE should only be written if R = 0.
BRPRE	[3:1]	rw	Prescaler Select $\begin{array}{l} 000 f_{\text{DIV}} = f_{\text{PCLK}} \\ 001 f_{\text{DIV}} = f_{\text{PCLK}}/2 \\ 010 f_{\text{DIV}} = f_{\text{PCLK}}/4 \\ 011 f_{\text{DIV}} = f_{\text{PCLK}}/8 \\ 100 f_{\text{DIV}} = f_{\text{PCLK}}/16 \\ 101 f_{\text{DIV}} = f_{\text{PCLK}}/32 \\ 0 \text{thers: reserved} \end{array}$

Field	Bits	Туре	Description
BRDIS	4	rw	 Break/Synch Detection Disable 0 Break/Synch detection is enabled. 1 Break/Synch detection is disabled.
NDOVEN	5	rw	 Normal Divider Overflow Enable Bit 0 Normal divider overflow interrupt is disabled. 1 Normal divider overflow interrupt is enabled.
BGSEL	[7:6]	rw	Baud Rate Select for Detection For different values of BGSEL, the baud rate range for detection is defined by the following formula: $f_{PCLK}/(2184*2^BGSEL) < baud rate range < f_{PCLK}/(72*2^BGSEL)$ where BGSEL =00 _B , 01 _B , 10 _B , 11 _B . See Table 12-4 for bit field BGSEL definition for different input frequencies.

Note: Bits BRDIS, BGSEL and NDOVEN are used only in UART module and not in UART1 module. Therefore, they should always be written with 0 in the BCON register in UART1 module. Setting them to 1 in the UART1 register has no effect. The reset value of BCON in UART1 is 00_H.

Note: Please take note that bit NDOVEN for UART1 is located in SCON1 register.

f _{pclk}	BGSEL	Baud Rate Select for Detection $f_{PCLK}/(2184*2^{BGSEL})$ to $f_{PCLK}/(72*2^{BGSEL})$
24 MHz	00 _B	11 kHz to 333.3 kHz
	01 _B	5.5 kHz to 166.6 kHz
	10 _B	2.8 kHz to 83.3 kHz
	11 _B	1.4 kHz to 41.6 kHz
12 MHz	00 _B	5.5 kHz to 166.6 kHz
	01 _B	2.8 kHz to 83.3 kHz
	10 _B	1.4 kHz to 41.6 kHz
	11 _B	0.7 kHz to 20.8 kHz

Table 12-4 BGSEL Bit Field Definition for Different Input Frequencies

Table 12-4 BGSEL Bit Field Definition for Different Input Frequencies	(cont'd)
---	----------

f _{pclk}	BGSEL	Baud Rate Select for Detection $f_{\rm PCLK}/(2184^{*}2^{\rm BGSEL})$ to $f_{\rm PCLK}/(72^{*}2^{\rm BGSEL})$
2 MHz	00 _B	0.92 kHz to 27.7 kHz
	01 _B	0.46 kHz to 13.8 kHz
	10 _B	0.23 kHz to 6.9 kHz
	11 _B	0.12 kHz to 3.4 kHz

When f_{PCLK} =24 MHz, the baud rate range between 1.4 kHz to 333.3 kHz can be detected. In order to increase the detection accuracy of the baud rate, the following examples serve as a guide to select BGSEL value:

- If the baud rate falls in the range of 1.4 kHz to 2.8 kHz, selected BGSEL value is " 11_B ".
- If the baud rate falls in the range of 2.8 kHz to 5.5 kHz, selected BGSEL value is " 10_{B} ".
- If the baud rate falls in the range of 5.5 kHz to 11 kHz, selected BGSEL value is " 01_B ".
- If the baud rate falls in the range of 11 kHz to 333.3 kHz, selected BGSEL value is "00_B". If the baud rate is 20kHz, the possible values of BGSEL that can be selected are "00_B", "01_B", "10_B", and "11_B". However, it is advisable to select "00_B" for better detection accuracy.

The baud rate can also be detected when the system is in the slow-down mode. For detection of the standard LIN baud rate, the required minimum $f_{\rm PCLK}$ is 2 MHz, for which the baud rate range that can be detected is between 0.12 kHz to 27.7 kHz.

Register BG contains the 8-bit reload value for the baud rate timer.

BG Baud Rate Timer/Reload Register

7 6 5 4 3 2 1 0 BR_VALUE

Field	Bits	Туре	Description
BR_VALUE	[7:0]	rwh	Baud rate Timer/Reload Value Reading returns the 8-bit content of the baud rate timer; writing loads the baud rate timer/reload value. <i>Note: BG should only be written if R = 0.</i>

Reset Value: 00_H

Register FDCON contains the control and status bits for the fractional divider, and also the status flags used in LIN protocol support (see **Section 12.2.1**).

FDCON

Fractional Divider Control Register

Reset Value: 00_H

	7	6	5	4	3	2	1	0
	BGS	SYNEN	ERRSYN	EOFSYN	BRK	NDOV	FDM	FDEN
-	rw	rw	rwh	rwh	rwh	rwh	rw	rw

Field	Bits	Туре	Description			
FDEN	0	rw	 Fractional Divider Enable Bit 0 Fractional Divider is disabled, only prescaler is considered. 1 Fractional Divider is enabled. 			
FDM	1	rw	 Fractional Divider Mode Select 0 Fractional Divider Mode is selected. 1 Normal Divider Mode is selected. 			
NDOV	2	rwh	 Overflow Flag in Normal Divider Mode This bit is set by hardware and can only be cleared by software. 0 Interrupt request is not active. 1 Interrupt request is active. 			
BRK	3	rwh	 Break Field Flag This bit is set by hardware and can only be cleared by software. 0 Break Field is not detected. 1 Break Field is detected. 			
EOFSYN	4	rwh	 End of SYN Byte Flag This bit is set by hardware and can only be cleared by software. 0 End of SYN Byte is not detected. 1 End of SYN Byte is detected. 			
ERRSYN	5	rwh	 SYN Byte Error Flag This bit is set by hardware and can only be cleared by software. 0 Error is not detected in SYN Byte. 1 Error is detected in SYN Byte. 			

Field	Bits	Туре	Description
SYNEN	6	rw	End of SYN Byte and SYN Byte Error Interrupts Enable
			 End of SYN Byte and SYN Byte Error Interrupts are not enabled. End of SYN Byte and SYN Byte Error Interrupts are enabled.
BGS	7	rw	 Baud-rate Generator Select Baud-rate generator is selected. Timer 1 is selected.

Note: Bits 3 to 7 are used only in UART module and not in UART1 module. Therefore, they should always be written with 0 in the FDCON register in UART1 module. Setting them to 1 in the UART1 register has no effect.

Register FDSTEP contains the 8-bit STEP value for the fractional divider.

FDSTEP

Fractional Divider Reload Register							Value: 00 _H		
7	6	5	4	3	2	1	0		
	I	1 1	ST	EP					
rw									

Field	Bits	Туре	Description
STEP	[7:0]	rw	STEP Value In normal divider mode, STEP contains the reload value for RESULT. In fractional divider mode, this bit field defines the 8-bit value that is added to the RESULT with each input clock cycle.

Register FDRES contains the 8-bit RESULT value for the fractional divider.

FDRES

Fractional I	Divider Re	esult Regis	ter			Reset	Value: 00 _H
7	6	5	4	3	2	1	0
			RES	ULT			1

Field	Bits	Туре	Description
RESULT	[7:0]	rh	RESULT Value In normal divider mode, RESULT acts as reload counter (addition +1). In fractional divider mode, this bit field contains the result of the addition RESULT+STEP. If FDEN bit is changed from "0" to "1", RESULT is loaded with FF.

12.1.4.3 Timer 1

In modes 1 and 3 of UART module, Timer 1 can be used for generating the variable baud rates. In theory, this timer could be used in any of its modes. But in practice, it should be set into auto-reload mode (Timer 1 mode 2), with its high byte set to the appropriate value for the required baud rate. The baud rate is determined by the Timer 1 overflow rate and the value of SMOD as follows:

(12.6)

Mode 1, 3 baud rate =
$$\frac{2^{\text{SMOD}} \text{ x } \text{ f}_{\text{PCLK}}}{32 \text{ x } 2 \text{ x } (256 \text{ - TH1})}$$

Alternatively, for a given baud rate, the value of Timer 1 high byte can be derived:

(12.7)

TH1=256-
$$\frac{2^{\text{SMOD}} \times f_{\text{PCLK}}}{32 \times 2 \times \text{Mode 1, 3 baud rate}}$$

- Note: Timer 1 can neither indicate an overflow nor generate an interrupt if Timer 0 is in mode 3; Timer 1 is halted while Timer 0 takes over the use of its control bits and overflow flag. Hence, the baud rate supplied to the UART module is defined by Timer 0 and not Timer 1. User should avoid using Timer 0 and Timer 1 in mode 3 for baud rate generation.
- Note: Timer 1 cannot be used to generate the variable baud rate in UART1.

Reset Value: 00

12.1.5 Port Control

Peripheral Input Select Register

The UART modules shift in data through RXD which can be selected from three different sources, RXD_0, RXD_1 and RXD_2. This selection is performed by the SFR bits MODPISEL.URRIS and MODPISEL.URRISH in UART module, and MODPISEL1.UR1RIS in UART1 module.

MODPISEL

	•	•	U					
	7	6	5	4	3	2	1	0
	0	URRISH	JTAGTDIS	JTAGTCK S	EXINT2IS	EXINT1IS	EXINT0IS	URRIS
-	r	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description
URRISH, URRIS	6,0	rw	 UART Receive Input Select [6,0] 00 UART Receiver Input RXD_0 is selected. 01 UART Receiver Input RXD_1 is selected. 10 UART Receiver Input RXD_2 is selected. 11 Reserved
0	7	r	Reserved Returns 0 if read; should be written with 0.

MODPISEL1 Parinharal Input Salact Pagistar 1

Periphera	I Input Sele	ect Registe	er 1			Reset	Value: 00 _H
7	6	5	4	3	2	1	0
	EXINT6IS	1	UR1	RIS	T21EXIS		0
	rw		٢١	N	rw		r

Field	Bits	Туре	Description
UR1RIS	[4:3]	rw	UART1 Receive Input Select
			00 UART1 Receiver Input RXD_0 is selected.
			01 UART1 Receiver Input RXD_1 is selected.
			10 UART1 Receiver Input RXD_2 is selected.
			11 Reserved

Field	Bits	Туре	Description
0	[1:0]	r	Reserved
			Returns 0 if read; should be written with 0.

12.1.6 Low Power Mode

If the UART1 module functionality is not required at all, it can be completely disabled by gating off its clock input for maximal power reduction. This is done by setting bit UART1_DIS in register PMCON2 as described below. Refer to **Chapter 8.1.4** for details on peripheral clock management.

PMCON2

Power Mode Control Register 1

Reset Value: 00_H

7	6	5	4	3	2	1	0
	1	C)	1	1	UART1_ DIS	T21_DIS
		r	•			rw	rw

Field	Bits	Туре	Description
UART1_DIS	1	rw	 UART1 Module Disable Request. Active high. 0 UART1 module is in normal operation (default). 1 Request to disable the UART1 module.
0	[7:2]	r	Reserved Returns 0 if read; should be written with 0.

Note: The Low Power Mode option is not available in UART module.

12.1.7 Register Map

All UART1 module register names described in the previous sections are referenced in other chapters of this document with the module name prefix "UART1_", e.g., UART1_SCON. However, all UART module registers are not referenced by any prefix.

Besides the SCON and SBUF registers, which can be accessed from both the standard (non-mapped) and mapped SFR area, the rest of the UART module's SFRs are located in SCU page 0 of the standard area. The UART1 module SFRs are all located in the mapped SFR area.

Table 12-5 lists the addresses of these SFRs.

UART Module		UART1 Module	UART1 Module		
Address	Register	Address	Register		
98 _H	SCON	C8 _H	SCON		
99 _H	SBUF	C9 _H	SBUF		
BD _H	BCON	CA _H	BCON		
BE _H	BG	CB _H	BG		
E9 _H	FDCON	CC _H	FDCON		
EA _H	FDSTEP	CD _H	FDSTEP		
EB _H	FDRES	CE _H	FDRES		
		CF _H	SCON1		

 Table 12-5
 UART Module SFR Address List

12.2 LIN

The UART module can be used to support the Local Interconnect Network (LIN) protocol for both master and slave operations. The LIN baud rate detection feature, which consists of the hardware logic for Break and Synch Byte detection, provides the capability to detect the baud rate within LIN protocol using Timer 2. This allows the UART module to be synchronized to the LIN baud rate for data transmission and reception.

Note: The LIN baud rate detection feature is available for use only with UART. To use UART1 for LIN communication, software has to be implemented to detect the Break and Synch Byte.

12.2.1 LIN Protocol

LIN is a holistic communication concept for local interconnected networks in vehicles. The communication is based on the SCI (UART) data format, a single-master/multipleslave concept, a clock synchronization for nodes without stabilized time base. An attractive feature of LIN is self-synchronization of the slave nodes without a crystal or ceramic resonator, which significantly reduces the cost of hardware platform. Hence, the baud rate must be calculated and returned with every message frame.

The structure of a LIN frame is shown in **Figure 12-6**. The frame consists of the:

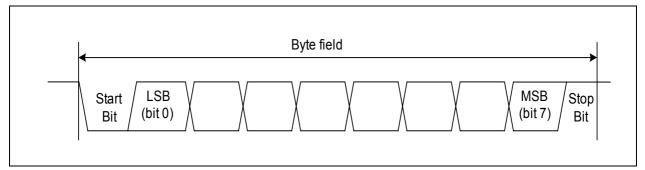

- header, which comprises a Break (13-bit time low), Synch Byte (55_H), and ID field
- response time
- data bytes (according to UART protocol)
- checksum

Figure 12-6 The Structure of LIN Frame

Each byte field is transmitted as a serial byte, as shown in **Figure 12-7**. The LSB of the data is sent first and the MSB is sent last. The start bit is encoded as a bit with value zero (dominant) and the stop bit is encoded as a bit with value one (recessive).

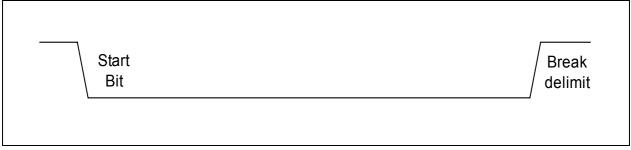


Figure 12-7 The Structure of Byte Field

The break is used to signal the beginning of a new frame. It is the only field that does not comply with **Figure 12-7**. A break is always generated by the master task (in the master mode) and it must be at least 13 bits of dominant value, including the start bit, followed by a break delimiter, as shown in **Figure 12-8**. The break delimiter will be at least one nominal bit time long.

A slave node will use a break detection threshold of 11 nominal bit times.

Figure 12-8 The Break Field

Synch Byte is a specific pattern for determination of time base. The byte field is with the data value 55_{H} , as shown in **Figure 12-9**.

A slave task is always able to detect the Break/Synch sequence, even if it expects a byte field (assuming the byte fields are separated from each other). If this happens, detection of the Break/Synch sequence will abort the transfer in progress and processing of the new frame will commence.

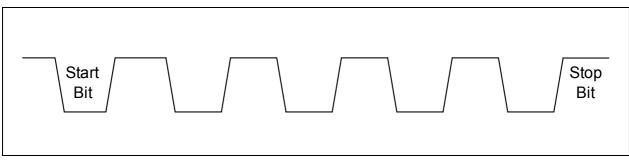


Figure 12-9 The Synch Byte Field

The slave task will receive and transmit data when an appropriate ID is sent by the master:

- 1. Slave waits for Synch Break
- 2. Slave synchronizes on Synch Byte
- 3. Slave snoops for ID
- 4. According to ID, slave determines whether to receive or transmit data, or do nothing
- 5. When transmitting, the slave sends 2, 4 or 8 data bytes, followed by check byte

12.2.2 LIN Header Transmission

LIN header transmission is only applicable in master mode. In the LIN communication, a master task decides when and which frame is to be transferred on the bus. It also identifies a slave task to provide the data transported by each frame. The information needed for the handshaking between the master and slave tasks is provided by the master task through the header portion of the frame.

The header consists of a break and synch pattern followed by an identifier. Among these three fields, only the break pattern cannot be transmitted as a normal 8-bit UART data. The break must contain a dominant value of 13 bits or more to ensure proper synchronization of slave nodes.

In the LIN communication, a slave task is required to be synchronized at the beginning of the protected identifier field of frame. For this purpose, every frame starts with a sequence consisting of a break field followed by a synch byte field. This sequence is unique and provides enough information for any slave task to detect the beginning of a new frame and be synchronized at the start of the identifier field.

12.2.2.1 Automatic Synchronization to the Host

Upon entering LIN communication, a connection is established and the transfer speed (baud rate) of the serial communication partner (host) is automatically synchronized in the following steps that are to be included in user software:

STEP 1: Initialize interface for reception and timer for baud rate measurement

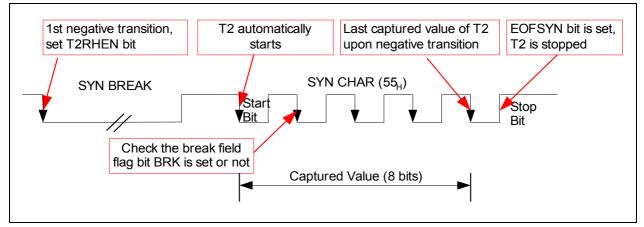
STEP 2: Wait for an incoming LIN frame from host

STEP 3: Synchronize the baud rate to the host

STEP 4: Enter for Master Request Frame or for Slave Response Frame

The next section, **Section 12.2.2.2**, provides some hints on setting up the microcontroller for baud rate detection of LIN.

Note: Re-synchronization and setup of baud rate are always done for **every** Master Request Header or Slave Response Header LIN frame.


12.2.2.2 Baud Rate Detection of LIN

The LIN baud rate detection feature provides the capability to detect the baud rate within the LIN protocol using Timer 2. Initialization consists of:

- Serial port of the microcontroller set to Mode 1 (8-bit UART, variable baud rate) for communication.
- Provide the baud rate range via bit field BCON.BGSEL.
- Toggle BCON.BRDIS bit (set the bit to 1 before clearing it back to 0) to initialize the Break/Synch detection logic.
- Clear all status flags FDCON.BRK, FDCON.EOFSYN and FDCON.ERRSYN to 0.
- Timer 2 is set to capture mode with falling edge trigger at pin T2EX. Bit T2MOD.EDGESEL is set to 0 by default and bit T2CON.CP/RL2 is set to 1.
- Timer 2 external events are enabled. T2CON. EXEN2 is set to 1. (EXF2 flag is set when a negative transition occurs at pin T2EX)
- f_{T2} can be configured by bit field T2MOD.T2PRE.

The baud rate detection for LIN is shown in **Figure 12-10**, the Header LIN frame consists of the:

- SYN Break (13 bit times low)
- SYN byte (55_H)
- Protected ID field

Figure 12-10 LIN Auto Baud Rate Detection

With the first falling edge:

• The Timer 2 External Start Enable bit (T2MOD.T2RHEN) is set. The falling edge at pin T2EX is selected by default for Timer 2 External Start (bit T2MOD.T2REGS is 0).

With the second falling edge:

• Start Timer 2 by the hardware.

With the third falling edge:

- Timer 2 captures the timing of 2 bits of SYN byte.
- Check the Break Field Flag bit FDCON.BRK.

If the Break Field Flag FDCON.BRK is set, software may continue to capture 4/6/8 bits of SYN byte. Finally, the End of SYN Byte Flag (FDCON.EOFSYN) is set, Timer 2 is stopped. T2 Reload/Capture register (RC2H/L) is the time taken for 2/4/6/8 bits according to the implementation. Then the LIN routine calculates the actual baud rate, sets the PRE and BG values if the UART module uses the baud-rate generator for baud rate generation.

After the third falling edge, the software may discard the current operation and continue to detect the next header LIN frame if the following conditions were detected:

- The Break Field Flag FDCON.BRK is not set, or
- The SYN Byte Error Flag FDCON.ERRSYN is set, or
- The Break Field Flag FDCON.BRK is set, but the End of SYN Byte Flag FDCON.EOFSYN and the SYN Byte Error Flag FDCON.ERRSYN are not set.

12.3 High-Speed Synchronous Serial Interface

The SSC supports full-duplex and half-duplex synchronous communication. The serial clock signal can be generated by the SSC internally (master mode) using its own 16-bit baud-rate generator, or can be received from an external master (slave mode). Data width, shift direction, clock polarity and phase are programmable. This allows communication with SPI-compatible devices or devices using other synchronous serial interfaces.

Data is transmitted or received on lines TXD and RXD, which are normally connected to the pins MTSR (Master Transmit/Slave Receive) and MRST (Master Receive/Slave Transmit). The clock signal is output via line MS_CLK (Master Serial Shift Clock) or input via line SS_CLK (Slave Serial Shift Clock). Both lines are normally connected to the pin SCLK. Transmission and reception of data are double-buffered.

Figure 12-11 shows the block diagram of the SSC.

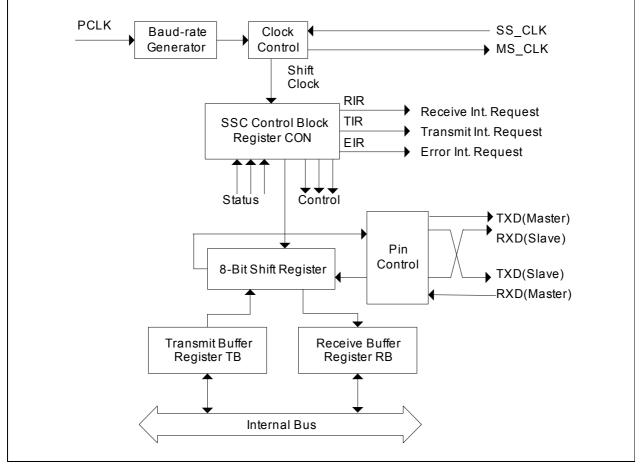


Figure 12-11 Synchronous Serial Channel SSC Block Diagram

12.3.1 General Operation

12.3.1.1 Operating Mode Selection

The operating mode of the serial channel SSC is controlled by its control register CON. This register has a double function:

- During programming (SSC disabled by CON.EN = 0), it provides access to a set of control bits
- During operation (SSC enabled by CON.EN = 1), it provides access to a set of status flags.

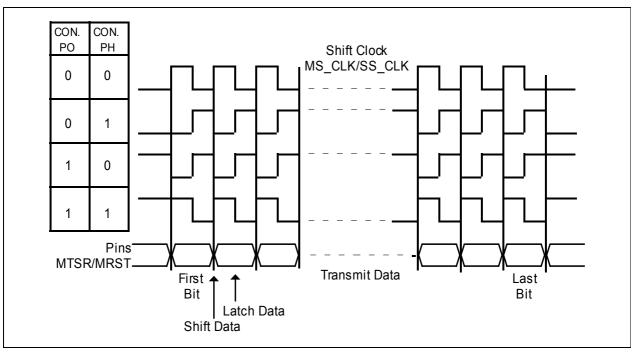
The shift register of the SSC is connected to both the transmit lines and the receive lines via the pin control logic. Transmission and reception of serial data are synchronized and take place at the same time, i.e., the same number of transmitted bits is also received. Transmit data is written into the Transmitter Buffer register (TB) and is moved to the shift register as soon as this is empty. An SSC master (CON.MS = 1) immediately begins transmitting, while an SSC slave (CON.MS = 0) will wait for an active shift clock. When the transfer starts, the busy flag CON.BSY is set and the Transmit Interrupt Request line (TIR) will be activated to indicate that register TB may be reloaded again. When the programmed number of bits (2...8) have been transferred, the contents of the shift register are moved to the Receiver Buffer register (RB) and the Receive Interrupt Request line (RIR) will be activated. If no further transfer is to take place (TB is empty), CON.BSY will be cleared at the same time. Software should not modify CON.BSY, as this flag is hardware controlled.

Note: The SSC starts transmission and sets CON.BSY minimum two clock cycles after transmit data is written into TB. Therefore, it is not recommended to poll CON.BSY to indicate the start and end of a single transmission. Instead, interrupt service routine should be used if interrupts are enabled, or the interrupt flags IRCON1.TIR and IRCON1.RIR should be polled if interrupts are disabled.

Note: Only one SSC can be the master at a given time.

The transfer of serial data bits can be programmed in a number of ways:

- The data width can be specified from 2 to 8 bits
- A transfer may start with either the LSB or the MSB
- The shift clock may be idle low or idle high
- The data bits may be shifted with the leading edge or the trailing edge of the shift clock signal
- The baud rate may be set within a certain range depending on the module clock
- The shift clock can be generated (MS_CLK) or can be received (SS_CLK)


These features allow the SSC to be adapted to a wide range of applications requiring serial data transfer.

The Data Width Selection supports the transfer of frames of any data length, from 2-bit "characters" up to 8-bit "characters". Starting with the LSB (CON.HB = 0) allows communication with SSC devices in synchronous mode or with serial interfaces such as the one in 8051. Starting with the MSB (CON.HB = 1) allows operation compatible with the SPI interface.

Regardless of the data width selected and whether the MSB or the LSB is transmitted first, the transfer data is always right-aligned in registers TB and RB, with the LSB of the transfer data in bit 0 of these registers. The data bits are rearranged for transfer by the internal shift register logic. The unselected bits of TB are ignored; the unselected bits of RB will not be valid and should be ignored by the receiver service routine.

The Clock Control allows the transmit and receive behavior of the SSC to be adapted to a variety of serial interfaces. A specific shift clock edge (rising or falling) is used to shift out transmit data, while the other shift clock edge is used to latch in receive data. Bit CON.PH selects the leading edge or the trailing edge for each function. Bit CON.PO selects the level of the shift clock line in the idle state. Thus, for an idle-high clock, the leading edge is a falling one, a 1 - to - 0 transition (see Figure 12-12).

Figure 12-12 Serial Clock Phase and Polarity Options

When initializing the devices for serial communication, one device must be selected for master operation while all other devices must be programmed for slave operation.

12.3.1.2 Full-Duplex Operation

The various devices are connected through three lines. The definition of these lines is always determined by the master: the line connected to the master's data output line

TXD is the transmit line; the receive line is connected to its data input line RXD; the shift clock line is either MS_CLK or SS_CLK. Only the device selected for master operation generates and outputs the shift clock on line MS_CLK. Since all slaves receive this clock, their pin SCLK must be switched to input mode. The external connections are hard-wired, and the function and direction of these pins are determined by the master or slave operation of the individual device.

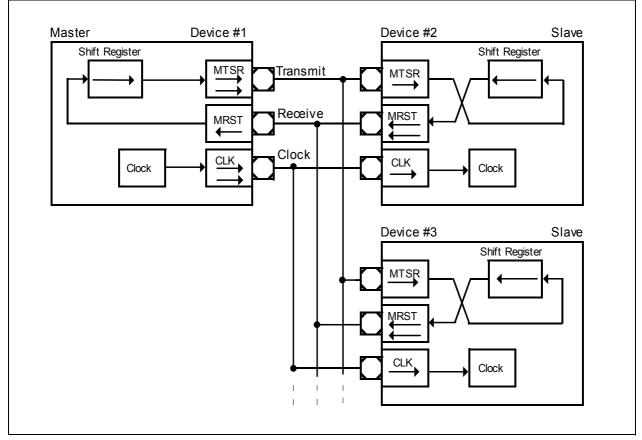


Figure 12-13 SSC Full-Duplex Configuration

The data output pins MRST of all slave devices are connected together onto the single receive line in the configuration shown in **Figure 12-13**. During a transfer, each slave shifts out data from its shift register. There are two ways to avoid collisions on the receive line due to different slave data:

 Only one slave drives the line, i.e., enables the driver of its MRST pin. All the other slaves must have their MRST pins programmed as input so only one slave can put its data onto the master's receive line. Only the receiving of data from the master is possible. The master selects the slave device from which it expects data either by separate select lines, or by sending a special command to this slave. The selected slave then switches its MRST line to output until it gets a de-selection signal or command.

The slaves use open drain output on MRST. This forms a wired-AND connection. The
receive line needs an external pull-up in this case. Corruption of the data on the
receive line sent by the selected slave is avoided when all slaves not selected for
transmission to the master send ones only. Because this high level is not actively
driven onto the line, but only held through the pull-up device, the selected slave can
pull this line actively to a low-level when transmitting a zero bit. The master selects
the slave device from which it expects data either by separate select lines or by
sending a special command to this slave.

After performing the necessary initialization of the SSC, the serial interfaces can be enabled. For a master device, the clock line will now go to its programmed polarity. The data line will go to either 0 or 1 until the first transfer starts. After a transfer, the data line will always remain at the logic level of the last transmitted data bit.

When the serial interfaces are enabled, the master device can initiate the first data transfer by writing the transmit data into register TB. This value is copied into the shift register (assumed to be empty at this time), and the selected first bit of the transmit data will be placed onto the TXD line on the next clock from the baud-rate generator (transmission starts only if CON.EN = 1). Depending on the selected clock phase, a clock pulse will also be generated on the MS_CLK line. At the same time, with the opposite clock edge, the master latches and shifts in the data detected at its input line RXD. This "exchanges" the transmit data with the receive data. Because the clock line is connected to all slaves, their shift registers will be shifted synchronously with the master's shift register—shifting out the data contained in the registers, and shifting in the data detected at the input line.

With the start of the transfer, the busy flag CON.BSY is set and the TIR will be activated to indicate that register TB may be reloaded again. After the preprogrammed number of clock pulses (via the data width selection), the data transmitted by the master is contained in all the slaves' shift registers, while the master's shift register holds the data of the selected slave. In the master and all slaves, the contents of the shift register are copied into the receive buffer RB and the RIR is activated. If no further transfer is to take place (TB is empty), CON.BSY will be cleared at the same time. Software should not modify CON.BSY, as this flag is hardware controlled.

When configured as a slave device, the SSC will immediately output the selected first bit (MSB or LSB of the transfer data) at the output pin once the contents of the transmit buffer are copied into the slave's shift register. Bit CON.BSY is not set until the first clock edge at SS_CLK appears.

Note: The initialization of the CLK pin on the master requires some attention in order to avoid undesired clock transitions, which may disturb the other devices. Before the clock pin is switched to output via the related direction control register, the clock output level will be selected in the control register CON and the alternate output

Note: On the SSC, a transmission and a reception take place at the same time, regardless of whether valid data has been transmitted or received.

be prepared via the related ALTSEL register, or the output latch must be loaded with the clock idle level.

12.3.1.3 Half-Duplex Operation

In a half-duplex mode, only one data line is necessary for both receiving and transmitting of data. The data exchange line is connected to both the MTSR and MRST pins of each device, the shift clock line is connected to the SCLK pin.

The master device controls the data transfer by generating the shift clock, while the slave devices receive it. Due to the fact that all transmit and receive pins are connected to one data exchange line, serial data may be moved between arbitrary stations.

As in full-duplex mode, there are two ways to avoid collisions on the data exchange line:

- only the transmitting device may enable its transmit pin driver
- the non-transmitting devices use open drain output and send only ones.

Since the data inputs and outputs are connected together, a transmitting device will clock in its own data at the input pin (MRST for a master device, MTSR for a slave). By this method, any corruptions on the common data exchange line are detected if the received data is not equal to the transmitted data.

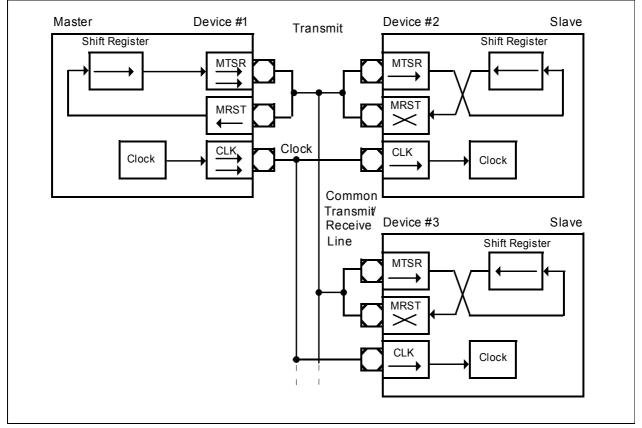


Figure 12-14 SSC Half-Duplex Configuration

12.3.1.4 Continuous Transfers

When the transmit interrupt request flag is set, it indicates that the transmit buffer TB is empty and ready to be loaded with the next transmit data. If TB has been reloaded by the time the current transmission is finished, the data is immediately transferred to the shift register and the next transmission will start without any additional delay. On the data line, there is no gap between the two successive frames. For example, two byte transfers would look the same as one word transfer. This feature can be used to interface with devices that can operate with or require more than 8 data bits per transfer. It is just a matter of software specifying the total data frame length. This option can also be used to interface with byte-wide and word-wide devices.

Note: This feature allows only multiples of the selected basic data width, because it would require disabling/enabling of the SSC to reprogram the basic data width on-the-fly.

12.3.1.5 Port Control

The SSC uses three lines to communicate with the external world as shown in **Figure 12-15**. Pin SCLK serves as the clock line, while pins MRST and MTSR serve as the serial data input/output lines.

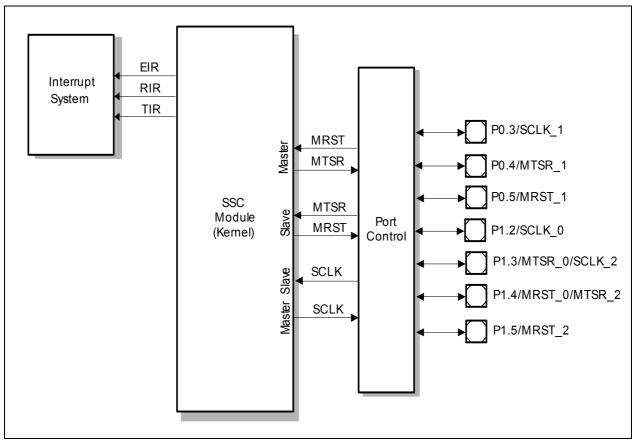


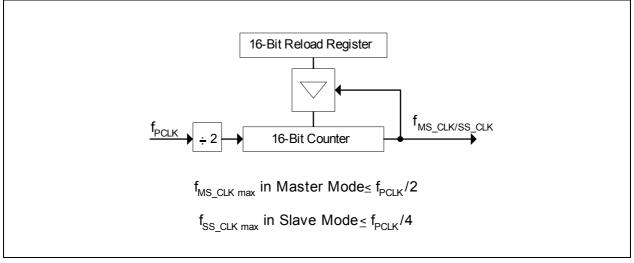
Figure 12-15 SSC Module I/O Interface

Operation of the SSC I/O lines depends on the selected operating mode (master or slave). The direction of the port lines depends on the operating mode. The SSC will automatically use the correct kernel output or kernel input line of the ports when switching modes.

Since the SSC I/O lines are connected with the bidirectional lines of the general purpose I/O ports, software I/O control is used to control the port pins assigned to these lines. The port registers must be programmed for alternate output and input selection. When switching between master and slave modes, port registers must be reprogrammed. As for switching between different receiver inputs, register MODPISEL3 is used.

MODPISEL3 Peripheral Input Select Register 3

Reset Value: 00_H


7	6	5	4	3	2	1	0
C	CIS		SIS		MIS		
		L I		ĺ			
r	•	rw		rv	V	n	N

Field	Bits	Туре	Description
MIS	[1:0]	rw	Master Mode Receiver Input Select00Receiver input 0 is selected.01Receiver input 1 is selected.10Receiver input 2 is selected.11Reserved
SIS	[3:2]	rw	Slave Mode Receiver Input Select00Receiver input 0 is selected.01Receiver input 1 is selected.10Receiver input 2 is selected.11Reserved
CIS	[5:4]	rw	Slave Mode Clock Input Select00Clock input 0 is selected.01Clock input 1 is selected.10Clock input 2 is selected.11Reserved
0	[7:6]	r	Reserved Returns 0 if read; should be written with 0.

12.3.1.6 Baud Rate Generation

The serial channel SSC has its own dedicated 16-bit baud-rate generator with 16-bit reload capability, allowing baud rate generation independent of the timers. **Figure 12-16** shows the baud-rate generator.

Figure 12-16 SSC Baud-rate Generator

The baud-rate generator is clocked with the module clock $f_{\rm PCLK}$. The timer counts downwards. Register BR is the dual-function Baud-rate Generator/Reload register. Reading BR, while the SSC is enabled, returns the contents of the timer. Reading BR, while the SSC is disabled, returns the programmed reload value. In this mode, the desired reload value can be written to BR.

Note: Never write to BR while the SSC is enabled.

The formulas below calculate either the resulting baud rate for a given reload value, or the required reload value for a given baud rate:

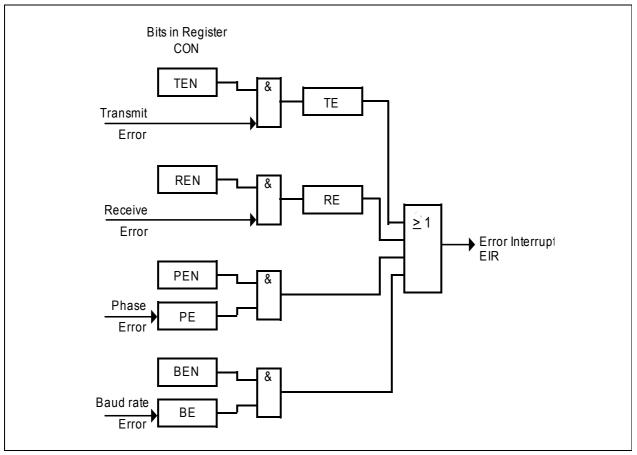
Baud rate =
$$\frac{f_{PCLK}}{2 x (\langle BR \rangle + 1)}$$
 BR = $\frac{f_{PCLK}}{2 x Baud rate} - 1$

 represents the contents of the reload register, taken as an unsigned 16-bit integer, while baud rate is equal to $f_{\rm MS\ CLK/SS\ CLK}$ as shown in Figure 12-16.

The maximum baud rate that can be achieved when using a module clock of 24 MHz is 12 MBaud in master mode (with $\langle BR \rangle = 0000_{H}$) or 6 MBaud in slave mode (with $\langle BR \rangle = 0001_{H}$).

Table 12-6 lists some possible baud rates together with the required reload values and the resulting deviation errors, assuming a module clock frequency of 24 MHz.

Reload Value	Baud Rate (= <i>f</i> _{MS_CLK/SS_CLK})	Deviation
0000 _H	12 MBaud (only in Master mode)	0.0%
0001 _H	6 MBaud	0.0%
0008 _H	1.3 MBaud	0.0%
000B _H	1 MBaud	0.0%
000F _H	750 kBaud	0.0%
0011 _H	666.7 kBaud	0.0%
0013 _H	600 kBaud	0.0%
0017 _H	500 kBaud	0.0%
002C _H	266.7 kBaud	0.0%
003B _H	200 kBaud	0.0%
0059 _H	133.3 kBaud	0.0%
0077 _H	100 kBaud	0.0%
FFFF _H	183.11 Baud	0.0%


Table 12-6Typical Baud Rates of the SSC ($f_{hw_{clk}} = 24 \text{ MHz}$)

12.3.1.7 Error Detection Mechanisms

The SSC is able to detect four different error conditions. Receive Error and Phase Error are detected in all modes; Transmit Error and Baud Rate Error apply only to slave mode. When an error is detected, the respective error flag is/can be set and an error interrupt request will be generated by activating the Error Interrupt Request line (EIR) (see **Figure 12-17**). The error interrupt handler may then check the error flags to determine the cause of the error interrupt. The error flags are not reset automatically, but rather must be cleared by software after servicing. This allows servicing of error conditions to be done via interrupt if their enable bits are set, or via polling by software if their enable bits are not set.

Note: The error interrupt handler must clear the associated (enabled) error flag(s) to prevent repeated interrupt requests.

Figure 12-17 SSC Error Interrupt Control

A **Receive Error** (master or slave mode) is detected when a new data frame is completely received, but the previous data was not read out of the register RB. This condition sets the error flag CON.RE and the EIR, when enabled via CON.REN. The old data in the receive buffer RB will be overwritten with the new value and this lost data is irretrievable.

A **Phase Error** (master or slave mode) is detected when the incoming data at pin MRST (master mode) or MTSR (slave mode), sampled with the same frequency as the module clock, changes between one cycle before and two cycles after the latching edge of the shift clock signal SCLK. This condition sets the error flag CON.PE and, when enabled via CON.PEN, sets the EIR.

Note: When receiving and transmitting data in parallel, phase error occurs if the baud rate is configured to $f_{hw clk}/2$.

A **Baud Rate Error** (slave mode) is detected when the incoming clock signal deviates from the programmed baud rate by more than 100%, i.e., it is either more than double or less than half the expected baud rate. This condition sets the error flag CON.BE and, when enabled via CON.BEN, sets the EIR. Using this error detection capability requires that the slave's baud-rate generator be programmed to the same baud rate as the master device. This feature detects false, additional or missing pulses on the clock line (within a certain frame).

- Note: If this error condition occurs and bit CON.AREN = 1, an automatic reset of the SSC will be performed. This is done to re-initialize the SSC if too few or too many clock pulses have been detected.
- Note: This error can occur after any transfer if the communication is stopped. This is the case due to the fact that the SSC module supports back-to-back transfers for multiple transfers. In order to handle this, the baud rate detector expects immediately after a finished transfer, the next clock cycle for a new transfer.

A **Transmit Error** (slave mode) is detected when a transfer was initiated by the master (SS_CLK gets active), but the transmit buffer TB of the slave had not been updated since the last transfer. This condition sets the error flag CON.TE and the EIR, when enabled via CON.TEN. If a transfer starts without the transmit buffer having been updated, the slave will shift out the 'old' contents of the shift register, which normally is the data received during the last transfer. This may lead to corruption of the data on the transmit/receive line in half-duplex mode (open drain configuration) if this slave is not selected for transmission. This mode requires that slaves not selected for transmission only shift out ones; that is, their transmit buffers must be loaded with 'FFFF_H' prior to any transfer.

Note: A slave with push/pull output drivers not selected for transmission, will normally have its output drivers switched off. However, in order to avoid possible conflicts or misinterpretations, it is recommended to always load the slave's transmit buffer prior to any transfer.

The cause of an error interrupt request (receive, phase, baud rate or transmit error) can be identified by the error status flags in control register CON.

Note: The error status flags CON.TE, CON.RE, CON.PE, and CON.BE are not reset automatically upon entry into the error interrupt service routine, but must be cleared by software.

12.3.2 Interrupts

There are 3 interrupt sources in SSC that will trigger an interrupt: TIR, RIR and EIR.

An overview of the various interrupts in SSC is provided in Table 12-7.

Interrupt	Signal	Description
Transmission starts	TIR	Indicates that the transmit buffer can be reloaded with new data.
Transmission ends	RIR	The configured number of bits have been transmitted and shifted to the receive buffer.
Receive Error	EIR	This interrupt occurs if a new data frame is completely received and the last data in the receive buffer was not read.
Phase Error	EIR	This interrupt is generated if the incoming data changes between one cycle before and two cycles after the latching edge of the shift clock signal SCLK.
Baud Rate Error (Slave mode only)	EIR	This interrupt is generated when the incoming clock signal deviates from the programmed baud rate by more than 100%.
Transmit Error (Slave mode only)	EIR	This interrupt is generated when TB was not updated since the last transfer if a transfer is initiated by a master.

Table 12-7 SSC Interrupt Sources

SSC module uses interrupt structure 2 which is described in **Chapter 5.1.2** for the 3 interrupt sources. 3 bits define in register MODIEN are used for the enabling and disabling of these interrupt event.

MODIEN

Peripheral Interrupt Enable Register

Reset Value: 07_H

7	6	5	4	3	2	1	0
	0	1	CM5EN	CM4EN	RIREN	TIREN	EIREN
-	r		rw	rw	rw	rw	rw

Field	Bits	Туре	Description
EIREN	0	rw	 Error Interrupt Enable Bit for SSC 0 Error interrupt is disabled. 1 Error interrupt is enabled.
TIREN	1	rw	 Transmit Interrupt Enable Bit for SSC 0 Transmit interrupt is disabled. 1 Transmit interrupt is enabled.
RIREN	2	rw	Receive Interrupt Enable Bit for SSC0Receive interrupt is disabled.1Receive interrupt is enabled.
0	[7:5]	r	Reserved Returns 0 if read; should be written with 0.

Reset Value: 00

12.3.3 Low Power Mode

If the SSC functionality is not required at all, it can be completely disabled by gating off its clock input for maximal power reduction. This is done by setting bit SSC_DIS in register PMCON1 as described below. Refer to **Chapter 8.1.4** for details on peripheral clock management.

PMCON1 Power Mode Control Register 1

		U					п
7	6	5	4	3	2	1	0
0	CDC_DIS	CAN_DIS	MDU_DIS	T2CCU _DIS	CCU_DIS	SSC_DIS	ADC_DIS
r	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description	
SSC_DIS	1	rw	 SSC Disable Request. Active high. SSC is in normal operation (default). Request to disable the SSC. 	
0	7	r	Reserved Returns 0 if read; should be written with 0.	

12.3.4 Register Map

The addresses of the kernel SFRs are listed in Table 12-8.

Table 12-8SFR Address List

Address	Register
AA _H	CONL
AB _H	CONH
AC _H	TBL
AD _H	RBL
$ \frac{AA_{H}}{AB_{H}} $ $ \frac{AC_{H}}{AD_{H}} $ $ \frac{AB_{H}}{AB_{H}} $ $ \frac{AB_{H}}{AB_{H}} $	BRL
AF _H	BRH

12.3.5 Register Description

All SSC register names described in this section are referenced in other chapters of this document with the module name prefix "SSC_", e.g., SSC_CONL.

12.3.5.1 Configuration Register

The operating mode of the serial channel SSC is controlled by the control register CON. This register contains control bits for mode and error check selection, and status flags for error identification. Depending on bit EN, either control functions or status flags and master/slave control are enabled.

CON.EN = 0: Programming Mode

CONL Control Register Low

Reset Value: 00_H

	7	6	5	4	3	2	1	0
	LB	РО	PH	НВ		B	Μ	
_	rw	rw	rw	rw		n	V	

Field	Bits	Туре	Description
ВМ	[3:0]	rw	Data Width Selection0000Reserved. Do not use this combination.0001-0111Transfer Data Width is 28 bits (<bm>+1)Note: BM[3] is fixed to 0.</bm>
НВ	4	rw	Heading Control0Transmit/Receive LSB First1Transmit/Receive MSB First
PH	5	rw	 Clock Phase Control Shift transmit data on the leading clock edge, latch on trailing edge Latch receive data on leading clock edge, shift on trailing edge

XC878CLM

Serial Interfaces

Field	Bits	Туре	Description
PO	6	rw	 Clock Polarity Control Idle clock line is low, leading clock edge is low- to-high transition Idle clock line is high, leading clock edge is high- to-low transition
LB	7	rw	 Loop Back Control Normal output Receive input is connected with transmit output (half-duplex mode)

CONH Control Register High

Reset Value: 00_H

7	6	5	4	3	2	1	0
EN	MS	0	AREN	BEN	PEN	REN	TEN
rw	rw	r	rw	rw	rw	rw	rw

Field	Bits	Туре	Description
TEN	0	rw	Transmit Error Interrupt Enable0Transmit error interrupt is disabled1Transmit error interrupt is enabled
REN	1	rw	Receive Error Enable0Receive error interrupt is disabled1Receive error interrupt is enabled
PEN	2	rw	Phase Error Enable0Phase error interrupt is disabled1Phase error interrupt is enabled
BEN	3	rw	Baud Rate Error Enable0Baud rate error interrupt is disabled1Baud rate error interrupt is enabled
AREN	4	rw	 Automatic Reset Enable No additional action upon a baud rate error The SSC is automatically reset upon a baud rate error.

Field	Bits	Туре	Description
MS	6	rw	Master Select0Slave mode. Operate on shift clock received via SCLK.1Master mode. Generate shift clock and output it via SCLK.
EN	7	rw	Enable Bit = 0 Transmission and reception disabled. Access to control bits.
0	5	r	Reserved Returns 0 if read; should be written with 0.

CON.EN = 1: Operating Mode

CONL Control Register Low

Control Re	egister Lov	N				Reset	Value: 00 _H
7	6	5	4	3	2	1	0
	()			E	SC	
	1	ſ		II	r	ĥ	

Field	Bits	Туре	Description
BC	[3:0]	rh	Bit Count Field 0001 - 1111 Shift counter is updated with every shifted bit
0	[7:4]	r	Reserved Returns 0 if read; should be written with 0.

CONH Control Register High

Reset Value: 00_H

7	6	5	4	3	2	1	0
EN	MS	0	BSY	BE	PE	RE	TE
rw	rw	r	rh	rwh	rwh	rwh	rwh

Field	Bits	Туре	Description
TE	0	rwh	 Transmit Error Flag No error Transfer starts with the slave's transmit buffer not being updated
RE	1	rwh	 Receive Error Flag 0 No error 1 Reception completed before the receive buffer was read
PE	2	rwh	 Phase Error Flag 0 No error 1 Received data changes around sampling clock edge

XC878CLM

Serial Interfaces

Field	Bits	Туре	Description
BE	3	rwh	 Baud rate Error Flag No error More than factor 2 or 0.5 between slave's actual and expected baud rate
BSY	4	rh	Busy Flag Set while a transfer is in progress
MS	6	rw	 Master Select Bit Slave mode. Operate on shift clock received via SCLK. Master mode. Generate shift clock and output it via SCLK.
EN	7	rw	Enable Bit = 1 Transmission and reception enabled. Access to status flags and Master/Slave control.
0	5	r	Reserved Returns 0 if read; should be written with 0.

Note: The target of an access to CON (control bits or flags) is determined by the state of CON.EN prior to the access; that is, writing $C057_H$ to CON in programming mode (CON.EN = 0) will initialize the SSC (CON.EN was 0) and then turn it on (CON.EN = 1). When writing to CON, ensure that reserved locations receive zeros.

12.3.5.2 Baud Rate Timer Reload Register

The SSC baud rate timer reload register BR contains the 16-bit reload value for the baud rate timer.

BRL Baud Rate	3RL Baud Rate Timer Reload Register Low Reset Value: 00 _H									
7	6	5	4	3	2	1	0			
	BR_VALUE									
	1	1		L	1 1					
			n	N						

Field	Bits	Туре	Description
BR_VALUE	[7:0]	rw	Baud Rate Timer/Reload Register Value [7:0] Reading BR returns the 16-bit contents of the baud rate timer. Writing to BR loads the baud rate timer reload register with BR_VALUE.

BRH Baud Rate Timer Reload Register High Reset Value: 00 _H								
7	6	5	4	3	2	1	0	
BR_VALUE								
			r	N				

Field	Bits	Туре	Description
BR_VALUE	[7:0]	rw	Baud Rate Timer/Reload Register Value [15:8] Reading BR returns the 16-bit contents of the baud rate timer. Writing to BR loads the baud rate timer reload register with BR_VALUE.

12.3.5.3 Transmit and Receive Buffer Register

The SSC transmitter buffer register TB contains the transmit data value.

TBL Transmitte	er Buffer R	Register Lo)W			Reset	Value: 00 _H
7	6	5	4	3	2	1	0
	1	1	TB_V	ALUE	1	1	1
			n	N			

Field	Bits	Туре	Description
TB_VALUE	[7:0]	rw	Transmit Data Register Value TB_VALUE is the data value to be transmitted. Unselected bits of TB are ignored during transmission.

The SSC receiver buffer register RB contains the receive data value.

RBL Receiver I	Buffer Reg	ister Low				Reset	Value: 00 _H
7	6	5	4	3	2	1	0
	1	1	RB_V	ALUE			
			r	h			

Field	Bits	Туре	Description
RB_VALUE	[7:0]	rh	Receive Data Register Value RB contains the received data value RB_VALUE. Unselected bits of RB will not be valid and should be ignored.

13 Timers

The XC878 provides four 16-bit timers, Timer 0, Timer 1, Timer 2 and Timer 21. They are useful in many timing applications such as measuring the time interval between events, counting events and generating signals at regular intervals. In particular, Timer 1 can be used as the baud-rate generator for the on-chip serial port.

Timer 0 and Timer 1 Features:

- Four operational modes :
 - Mode 0: 13-bit timer/counter
 - Mode 1: 16-bit timer/counter
 - Mode 2: 8-bit timer/counter with auto-reload
 - Mode 3: Two 8-bit timers/counters

Timer 2 and Timer 21 Features:

- Selectable up/down counting
- 16-bit auto-reload mode
- 1 channel, 16-bit capture mode
- Note: Timer 2 refers to the 16-bit general purpose timer in T2CCU modules(Timer 2 Capture/Compare Unit). For the detailed CCU operation of T2CCU, see Chapter 14.

13.1 Timer 0 and Timer 1

Timer 0 and Timer 1 can function as both timers or counters. When functioning as a timer, Timer 0 and Timer 1 are incremented every machine cycle, i.e. every 2 input clocks (or 2 PCLKs). When functioning as a counter, Timer 0 and Timer 1 are incremented in response to a 1-to-0 transition (falling edge) at their respective external input pins, T0 or T1.

13.1.1 Basic Timer Operations

The operations of the two timers are controlled using the Special Function Registers (SFRs) TCON and TMOD. To enable a timer, i.e., allow the timer to run, its control bit TCON.TRx is set. To select the timer input to be either from internal system clock or external pin, the input selector bit TMOD is used.

Note: The "x" (e.g., TCON.TRx) in this chapter denotes either 0 or 1.

Each timer consists of two 8-bit registers - TLx (low byte) and THx (high byte) which defaults to $00_{\rm H}$ on reset. Setting or clearing TCON.TRx does not affect the timer registers.

Timer Overflow

When a timer overflow occurs, the timer overflow flag, TCON.TFx, is set, and an interrupt may be raised if the interrupt enable control bit, IEN0.ETx, is set. The overflow flag is automatically cleared when the interrupt service routine is entered.

When Timer 0 operates in mode 3, the Timer 1 control bits, TR1, TF1 and ET1 are reserved for TH0, see **Section 13.1.2.4**.

External Control

In addition to pure software control, the timers can also be enabled or disabled through external port control. When external port control is used, SFR EXICON0 must first be configured to bypass the edge detection circuitry for EXINTx to allow direct feed-through. When the timer is enabled (TCON.TRx = 1) and TMOD.GATEx is set, the respective timer will only run if the core external interrupt EXINTx = 1. This facilitates pulse width measurements. However, this is not applicable for Timer 1 in mode 3.

If TMOD.GATEx is cleared, the timer reverts to pure software control.

13.1.2 Timer Modes

Timers 0 and 1 are fully compatible and can be configured in four different operating modes, as shown in **Table 13-1**. The bit field TxM in register TMOD selects the operating mode to be used for each timer.

In modes 0, 1 and 2, the two timers operate independently, but in mode 3, their functions are specialized.

Mode	Operation
0	13-bit timer/counter The timer is essentially an 8-bit counter with a divide-by-32 prescaler. This mode is included solely for compatibility with Intel 8048 devices.
1	16-bit timer/counter The timer registers, TLx and THx, are concatenated to form a 16-bit timer/ counter.
2	8-bit timer/counter with auto-reload The timer register TLx is reloaded with a user-defined 8-bit value in THx upon overflow.
3	Timer 0 operates as two 8-bit timers/countersThe timer registers, TL0 and TH0, operate as two separate 8-bit counters.Timer 1 is halted and retains its count even if enabled.

Table 13-1 Timer 0 and Timer 1 Modes

13.1.2.1 Mode 0

Putting either Timer 0 or Timer 1 into mode 0 configures it as an 8-bit timer/counter with a divide-by-32 prescaler. **Figure 13-1** shows the mode 0 operation.

In this mode, the timer register is configured as a 13-bit register. As the count rolls over from all 1s to all 0s, it sets the timer overflow flag TFx. The overflow flag TFx can then be used to request an interrupt. The counted input is enabled for the timer when TRx = 1 and either GATEx = 0 or EXINTx = 1 (setting GATEx = 1 allows the timer to be controlled by external input EXINTx to facilitate pulse width measurements). TRx is a control bit in the register TCON; bit GATEx is in register TMOD..

The 13-bit register consists of all the 8 bits of THx and the lower 5 bits of TLx. The upper 3 bits of TLx are indeterminate and should be ignored. Setting the run flag (TRx) does not clear the registers..

Mode 0 operation is the same for Timer 0 and Timer 1.

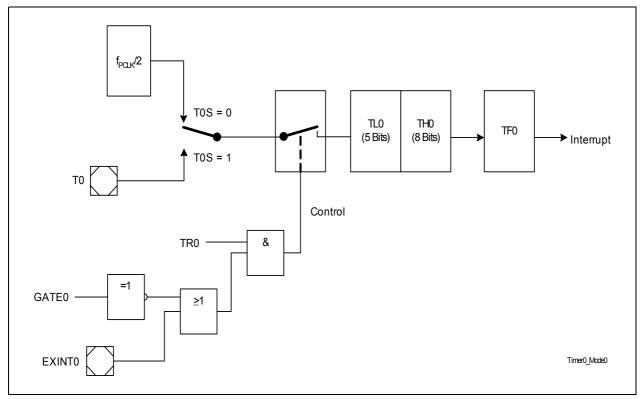


Figure 13-1 Timer 0, Mode 0: 13-Bit Timer/Counter

13.1.2.2 Mode 1

Mode 1 operation is similar to that of mode 0, except that the timer register runs with all 16 bits. Mode 1 operation for Timer 0 is shown in **Figure 13-2**.

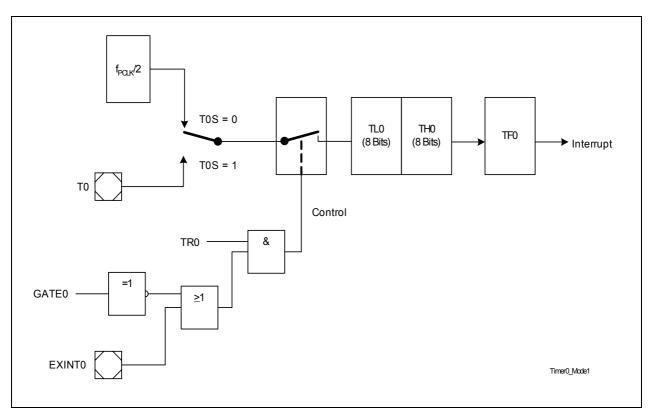


Figure 13-2 Timer 0, Mode 1: 16-Bit Timer/Counter

13.1.2.3 Mode 2

In Mode 2 operation, the timer is configured as an 8-bit counter (TLx) with automatic reload, as shown in **Figure 13-3** for Timer 0.

An overflow from TLx not only sets TFx, but also reloads TLx with the contents of THx that has been preset by software. The reload leaves THx unchanged.

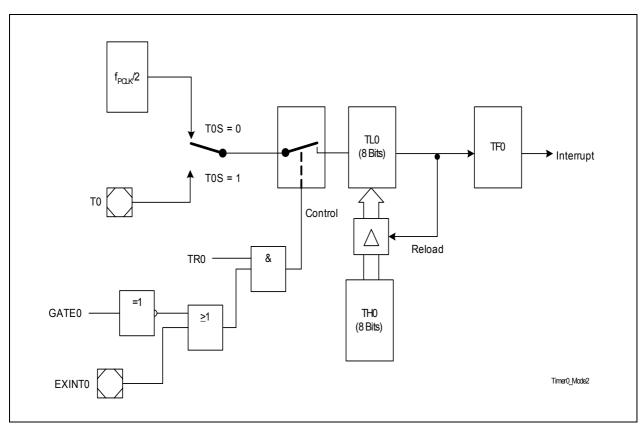


Figure 13-3 Timer 0, Mode 2: 8-Bit Timer/Counter with Auto-Reload

13.1.2.4 Mode 3

In mode 3, Timer 0 and Timer 1 behave differently. Timer 0 in mode 3 establishes TL0 and TH0 as two separate counters. Timer 1 in mode 3 simply holds its count. The effect is the same as setting TR1 = 0

The logic for mode 3 operation for Timer 0 is shown in **Figure 13-4**. TL0 uses the Timer 0 control bits GATE0, TR0 and TF0, while TH0 is locked into a timer function (counting machine cycles) and takes over the use of TR1 and TF1 from Timer 1. Thus, TH0 now sets TF1 upon overflow and generates an interrupt if ET1 is set.

Mode 3 is provided for applications requiring an extra 8-bit timer. When Timer 0 is in mode 3 and TR1 is set, Timer 1 can be turned on by switching it to any of the other modes and turned off by switching it into mode 3.

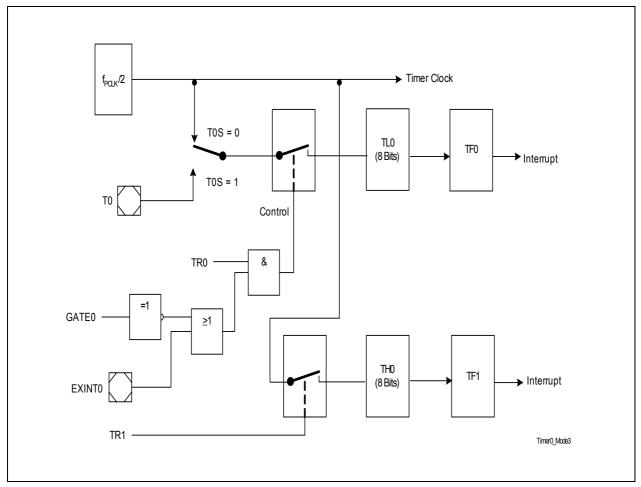


Figure 13-4 Timer 0, Mode 3: Two 8-Bit Timers/Counters

13.1.3 Port Control

When functioning as an event counter, Timer 0 and 1 count 1-to-0 transitions at their external input pins, T0 and T1, which can be selected from two different sources, T0_0 and T0_1 for Timer 0, and T1_0 and T1_1 for Timer 1. This selection is performed by the SFR bits MODPISEL2.T0IS and MODPISEL2.T1IS.

MODPISEL2

Peripheral Input Select Register 2					Reset	Value: 00 _H	
7	6	5	4	3	2	1	0
	0	I T	T2EXIS	T21IS	T2IS	T1IS	TOIS
	r		rw	rw	rw	rw	rw

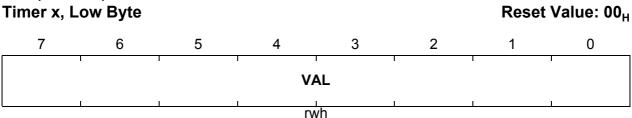
Field	Bits	Туре	Description		
TOIS	0	rw	T0 Input Select0Timer 0 Input T0_0 is selected.1Timer 0 Input T0_1 is selected.		
T1IS	1	rw	T1 Input Selectt0Timer 1 Input T1_0 is selected.1Timer 1 Input T1_1 is selected.		
0	[7:5]	r	ReservedI Returns 0 if read; should be written with 0.		

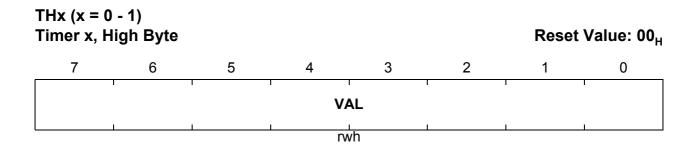
13.1.4 Register Map

Seven SFRs control the operations of Timer 0 and Timer 1. They can be accessed from both the standard (non-mapped) and mapped SFR area.

Table 13-2 lists the addresses of these SFRs.

Table 13-2Register Map


Address	Register
88 _H	TCON
89 _H	TMOD
8A _H	TLO
8B _H	TL1
8C _H	ТНО
$ \frac{8A_{H}}{8B_{H}} $ $ \frac{8C_{H}}{8D_{H}} $ $ \overline{A8_{H}} $	TH1
A8 _H	IEN0


13.1.5 **Register Description**

The low bytes(TL0, TL1) and high bytes(TH0, TH1)of both Timer 0 and Timer 1 can be combined to a one-timer configuration depending on the mode used. Register TCON controls the operations of Timer 0 and Timer 1. The operating modes of both timers are selected using register TMOD. Register IEN0 contains bits that enable interrupt operations in Timer 0 and Timer 1.

TLx (x = 0 - 1)

Field	Bits	Туре	Description				
TLx.VAL(x = 0, 1)	[7:0]	rwh	 Timer 0/1 Low Register 00 TLx holds the 5-bit prescaler value. 01 TLx holds the lower 8-bit part of the 16-bit timer value. 10 TLx holds the 8-bit timer value. 11 TL0 holds the 8-bit timer value; TL1 is not used. 				

Field	Bits	Туре	Description
THx.VAL(x = 0, 1)	[7:0]	rwh	 Timer 0/1 High Register 00 THx holds the 8-bit timer value. 01 THx holds the higher 8-bit part of the 16-bit timer value. 10 THx holds the 8-bit reload value. 11 TH0 holds the 8-bit timer value; TH1 is not
			used.

TCON Timer 0/1 Control Registers

Reset Value: 00_H

7	6	5	4	3	2	1	0
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
rwh	rw	rwh	rw	rwh	rw	rwh	rw

Field	Bits	Туре	Description				
TR0	4	rw	Timer 0 Run Control0Timer is halted1Timer runs				
TF0	5	rwh	Timer 0 Overflow Flag Set by hardware when Timer 0 overflows. Cleared by hardware when the processor calls the interrupt service routine.				
TR1	6	rw	Timer 1 Run Control0Timer is halted1Timer runsNote: Timer 1 Run Control affects TH0 also if Timer 0 operates in Mode 3.				
TF1	7	rwh	Timer 1 Overflow Flag Set by hardware when Timer 1 ¹⁾ overflows. Cleared by hardware when the processor calls the interrupt service routine.				

¹⁾ TF1 is set by TH0 instead if Timer 0 operates in Mode 3.

TMOD Timer Mode Register

Reset Value: 00_H

7	6	5	4	3	2	1	0
GATE1	T1S	T1M		GATE0	TOS	том	
rw	rw	rv	/	rw	rw	r	W

Field	Bits	Туре	Description
TOM[1:0]	[1:0]	rw	 Mode select bits 00 13-bit timer (M8048 compatible mode) 01 16-bit timer 10 8-bit auto-reload timer 11 Timer 0 is split into two halves. TL0 is an 8- bit timer controlled by the standard Timer 0 control bits, and TH0 is the other 8-bit timer controlled by the standard Timer 1 control bits. TH1 and TL1 of Timer 1 are held (Timer 1 is stopped).
T1M[1:0]	[5:4]	rw	 Mode select bits 00 13-bit timer (M8048 compatible mode) 01 16-bit timer 10 8-bit auto-reload timer 11 Timer 0 is split into two halves. TL0 is an 8- bit timer controlled by the standard Timer 0 control bits, and TH0 is the other 8-bit timer controlled by the standard Timer 1 control bits. TH1 and TL1 of Timer 1 are held (Timer 1 is stopped).
TOS	2	rw	Timer 0 Selector0Input is from internal system clock1Input is from T0 pin
GATE0	3	rw	Timer 0 Gate Flag0Timer 0 will only run if TCON.TR0 = 1 (software control)1Timer 0 will only run if EXINT0 pin = 1 (hardware control) and TCON.TR0 is set

XC878CLM

Timers

Field	Bits	Туре	Description
T1S	6	rw	Timer 1 Selector0Input is from internal system clock1Input is from T1 pin
GATE1	7	rw	Timer Gate Flag0Timer 1 will only run if TCON.TR1 = 1 (software control)1Timer 1 will only run if EXINT1 pin = 1 (hardware control) and TCON.TR1 is set

IEN0 Interrupt Enable Register

Reset Value: 00_H

7	6	5	4	3	2	1	0
EA	0	ET2	ES	ET1	EX1	ET0	EX0
rw	r	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description
ET0	1	rw	Timer 0 Overflow Interrupt Enable0Timer 0 interrupt is disabled1Timer 0 interrupt is enabled
ET1	3	rw	Timer 1 Overflow Interrupt Enable0Timer 1 interrupt is disabled1Timer 1 interrupt is enabledNote: When Timer 0 operates in Mode 3, this interrupt indicates an overflow in the Timer 0 register, TH0.

13.2Timer 2 and Timer 21

Timer 2(refers to the Timer 2 in T2CCU module) and Timer 21 are 16-bit general purpose timers that are functionally identical. Timer 2 is running at T2CCU clock frequency, f_{T2CCU} , which could be PCLK or 2 times PCLK frequency. As for Timer 21, it is running at PCLK frequency. Both timers have two modes of operation, a 16-bit auto-reload mode and a 16-bit one channel capture mode and can function as a timer or counter in each of its modes. As a timer, the timers count with an input clock of $f_{T2CCU}/12$ (if prescaler is disabled) for Timer 2 and $f_{PCLK}/12$ for Timer 21. As a counter, they count 1-to-0 transitions on pin T2 for Timer 2 or on pin T21 for Timer 21. In the counter mode, the maximum resolution for the count is $f_{T2CCU}/24$ (if prescaler is disabled) for Timer 21.

Note: Subsequent sections describe the functionalities of Timer 2, which is valid also for Timer 21 unless otherwise stated. As for the description of the CCU functions in T2CCU module, please refer to **Chapter 14**.

13.2.1 Basic Timer Operations

Timer 2 can be started by using TR2 bit by hardware or software. Timer 2 can be started by setting TR2 bit by software. If bit T2RHEN is set, Timer 2 can be started by hardware. Bit T2REGS defines the event on pin T2EX, falling edge or rising edge, that can set the run bit TR2 by hardware. Timer 2 can only be stopped by resetting TR2 bit by software.

13.2.2 Auto-Reload Mode

The auto-reload mode is selected when the bit CP/RL2 in register T2CON is zero. In this mode, Timer 2 counts to an overflow value and then reloads its register contents with a 16-bit start value for a fresh counting sequence. The overflow condition is indicated by setting bit TF2 in the T2CON register. At the same time, an interrupt request to the core will be generated (if interrupt is enabled). The overflow flag TF2 must be cleared by software.

The auto-reload mode is further classified into two categories depending upon the DCEN control bit in register T2MOD.

13.2.2.1 Up/Down Count Disabled

If DCEN = 0, the up-down count selection is disabled. The timer, therefore, functions as a pure up counting timer only. The operational block diagram is shown in **Figure 13-5**.

If the T2CON register bit EXEN2 = 0, the timer starts to count up to a maximum of $FFFF_H$ once the timer is started by setting the bit TR2 in register T2CON to 1. Upon overflow, bit TF2 is set and the timer register is reloaded with the 16-bit reload value of the RC2 register. This reload value is chosen by software, prior to the occurrence of an overflow condition. A fresh count sequence is started and the timer counts up from this reload value as in the previous count sequence.

If EXEN2 = 1, the timer counts up to a maximum of $FFFF_H$ once TR2 is set. A 16-bit reload of the timer registers from register RC2 is triggered either by an overflow condition or by a negative/positive edge (chosen by the bit EDGESEL in register T2MOD) at input pin T2EX. If an overflow caused the reload, the overflow flag TF2 is set. If a negative/positive transition at pin T2EX caused the reload, bit EXF2 in register T2CON is set. In either case, an interrupt is generated to the core if the related interrupt enable bit EXF2EN/TF2EN in register T2CON1 is enabled and the timer proceeds to its next count sequence. The EXF2 flag, similar to the TF2, must be cleared by software.

If bit T2RHEN is set, Timer 2 is started by first falling edge/rising edge at pin T2EX, which is defined by bit T2REGS. If bit EXEN2 is set, bit EXF2 is also set at the same point when Timer 2 is started with the same falling edge/rising edge at pin T2EX, which is defined by bit EDGESEL. The reload will happen with the following negative/positive transitions at pin T2EX, which is defined by bit EDGESEL.

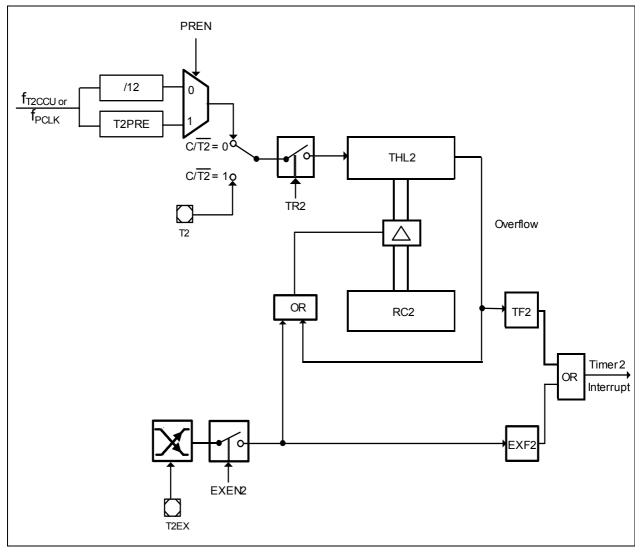


Figure 13-5 Auto-Reload Mode (DCEN = 0)

13.2.2.2 Up/Down Count Enabled

If DCEN = 1, the up-down count selection is enabled. The direction of count is determined by the level at input pin T2EX. The operational block diagram is shown in **Figure 13-6**.

A logic 1 at pin T2EX sets the Timer 2 to up counting mode. The timer, therefore, counts up to a maximum of $FFFF_{H}$. Upon overflow, bit TF2 is set and the timer register is reloaded with a 16-bit reload value of the RC2 register. A fresh count sequence is started and the timer counts up from this reload value as in the previous count sequence. This reload value is chosen by software, prior to the occurrence of an overflow condition.

A logic 0 at pin T2EX sets the Timer 2 to down counting mode. The timer counts down and underflows when the THL2 value reaches the value stored at register RC2. The underflow condition sets the TF2 flag and causes $FFFF_H$ to be reloaded into the THL2 register. A fresh down counting sequence is started and the timer counts down as in the previous counting sequence.

If bit T2RHEN is set, Timer 2 can only be started either by rising edge (T2REGS = 1) at pin T2EX and then proceed with the up counting, or be started by falling edge (T2REGS = 0) at pin T2EX and then proceed with the down counting.

In this mode, bit EXF2 toggles whenever an overflow or an underflow condition is detected. This flag, however, does not generate an interrupt request.

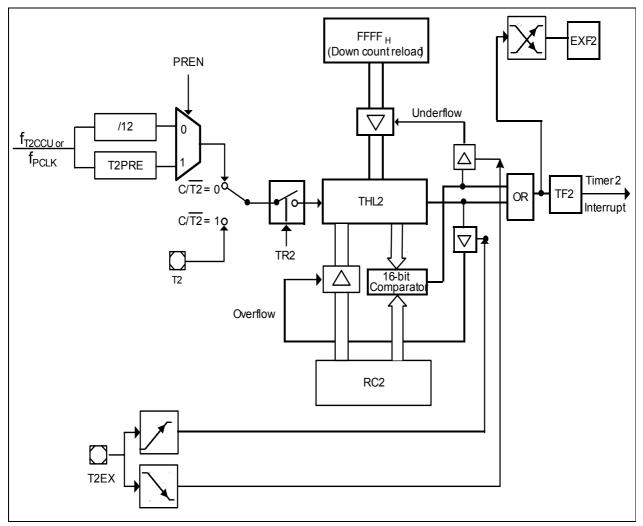


Figure 13-6 Auto-Reload Mode (DCEN = 1)

13.2.3 Capture Mode

In order to enter the 16-bit capture mode, bits CP/RL2 and EXEN2 in register T2CON must be set. In this mode, the down count function must remain disabled. The timer functions as a 16-bit timer and always counts up to $FFFF_H$, after which, an overflow condition occurs. Upon overflow, bit TF2 is set and the timer reloads its registers with 0000_H . The setting of TF2 generates an interrupt request to the core.

Additionally, with a falling/rising edge (chosen by T2MOD.EDGESEL) on pin T2EX, the contents of the timer register (THL2) are captured into the RC2 register. The external input is sampled in every T2CCU clock cycle. When a sampled input shows a low (high) level in one T2CCU clock cycle and a high (low) in the next T2CCU clock cycle, a transition is recognized. If the capture signal is detected while the counter is being incremented, the counter is first incremented before the capture operation is performed. This ensures that the latest value of the timer register is always captured.

If bit T2RHEN is set, Timer 2 is started by first falling edge/rising edge at pin T2EX, which is defined by bit T2REGS. If bit EXEN2 is set, bit EXF2 is also set at the same point when Timer 2 is started with the same falling edge/rising edge at pin T2EX, which is defined by bit EDGESEL. The capture will happen with the following negative/positive transitions at pin T2EX, which is defined by bit EDGESEL.

When the capture operation is completed, bit EXF2 is set and can be used to generate an interrupt request. **Figure 13-7** describes the capture function of Timer 2.

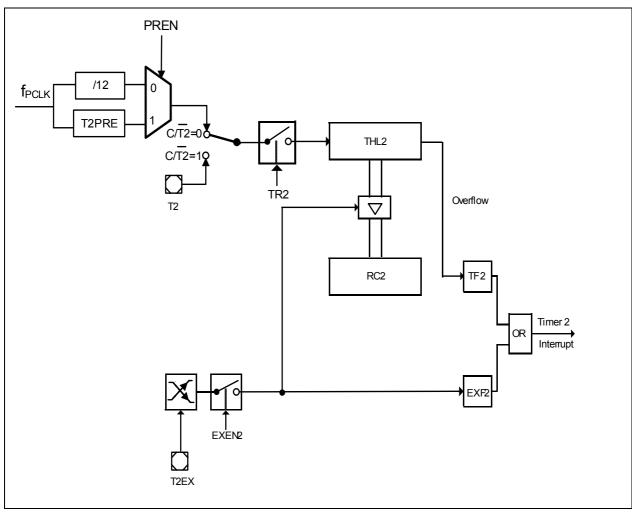


Figure 13-7 Capture Mode

13.2.4 Count Clock

The count clock for the auto-reload mode is chosen by the bit $C/\overline{T2}$ in register T2CON. If $C/\overline{T2} = 0$, a count clock of $f_{T2CCU}/12$ (if prescaler is disabled) is used for the count operation.

If $C/\overline{T2} = 1$, Timer 2 behaves as a counter that counts 1-to-0 transitions of input pin T2. The counter samples pin T2 over 2 T2CCU clock cycles. If a 1 was detected during the first clock and a 0 was detected in the following clock, then the counter increments by one. Therefore, the input levels should be stable for at least 1 clock.

If bit T2RHEN is set, Timer 2 can be started by the falling edge/rising edge on pin T2EX, which is defined by bit T2REGS.

Note: The C501 compatible feature requires a count resolution of at least 24 clocks.

13.2.5 External Interrupt Function

While the timer/counter function is disabled (TR2 = 0), it is still possible to generate a Timer 2 interrupt to the core via an external event at T2EX, as long as Timer 2 remains enabled (PMCON1.T2_DIS = 0). To achieve this, bit EXEN2 in register T2CON must be set. As a result, any transition on T2EX will cause either a dummy reload or a dummy capture, depending on the CP/ RL2 bit selection.

By disabling the timer/counter function, T2EX can be alternatively used to provide an edge-triggered (rising or falling) external interrupt function, with bit EXF2 serving as the external interrupt flag.

13.2.6 Port Control

When functioning as an event counter, Timer 2 and Timer 21 count 1-to-0 transitions at their external input pin, T2 and T21, which can be selected from two different sources, T2_0 and T2_1 for Timer 2, and T21_0 and T21_1 for Timer 21. This selection is performed by the SFR bits MODPISEL2.T2IS and MODPISEL2.T2IS. In addition, there are two sources of T2EX pin for Timer 2 and T21EX pin for Timer 21. They can be selected by MODPISEL2.T2EXIS and MODPISEL1.T21EXIS

MODPISEL2

Peripheral Input Select Register

Reset Value: 00_H

7	6	5	4	3	2	1	0
	0	1	T2EXIS	T21IS	T2IS	T1IS	TOIS
	r		rw	rw	rw	rw	rw

Field	Bits	Туре	Description
T2IS	2	rw	T2 Input Select0Timer 2 Input T2_0 is selected.1Timer 2 Input T2_1 is selected.
T21IS	3	rw	T21 Input Select0Timer 21 Input T21_0 is selected.1Timer 21 Input T21_1 is selected.
T2EXIS	4	rw	T2 External Input Select0Timer 2 Input T2EX_0 is selected.1Timer 2 Input T2EX_1 is selected.
0	[7:5]	r	Reserved Returns 0 if read; should be written with 0.

MODPISEL1 Peripheral Input Select Register 1

Reset Value: 00_H

7	6	5	4	3	2	1	0
	EXINT6IS		UR1RIS		T21EXIS	0	
	rw		rv	/	rw		r

Field	Bits	Туре	Description
T21EXIS	2	rw	T21 External Input Select0Timer 21 Input T21EX_0 is selected.1Timer 21 Input T21EX_1 is selected.
0	[1:0]	r	Reserved Returns 0 if read; should be written with 0.

13.2.7 Low Power Mode

If the Timer 2 together with the Capture/Compare and Timer 21 functionalities are not required at all, they can be completely disabled by gating off their clock inputs for maximal power reduction. This is done by setting bits T2CCU_DIS in register PMCON1 and T21_DIS in register PMCON2 as described below. Refer to **Table 8.1.4** for details on peripheral clock management.

PMCON1

F	ower Mo	de Contro	Register	1			Reset	Value: 00 _H
	7	6	5	4	3	2	1	0
	0	CDC_DIS	CAN_DIS	MDU_DIS	T2CCU _DIS	CCU_DIS	SSC_DIS	ADC_DIS
_	r	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description
T2CCU_DIS	3	rw	Timer 2 Capture/Compare Unit Disable Request.Active high.0111
0	7	r	Reserved Returns 0 if read; should be written with 0.

- -

PMCON2 Power Mode Control Register 2

Reset Value: 00_H

7	6	5	4	3	2	1	0
	1	()			UART1_ DIS	T21_DIS
·	-	l	r			rw	rw

Field	Bits	Туре	Description
T21_DIS	0	rw	 Timer 21 Disable Request. Active high. 0 Timer 21 is in normal operation (default). 1 Request to disable the Timer 21.
0	[7:2]	r	Reserved Returns 0 if read; should be written with 0.

13.2.8 Module Suspend Control

Timer 2 can be configured to stop their counting when the OCDS enters monitor mode (see **Chapter 18.3**) by setting their respective module suspend bits, T2SUSP, in SFR MODSUSP.

While the timers are suspended, their module settings and configuration are not to be changed.

MODSUSP

Module Su	ispend Co	ontrol Regis	ster			Reset	Value: 01 _H
7	6	5	4	3	2	1	0
C)	CCTSUSP	T21SUSP	T2SUSP	T13SUSP	T12SUSP	WDTSUSP
r	•	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description
T2SUSP	3	rw	Timer 2 Debug Suspend Bit0Timer 2 will not be suspended.1Timer 2 will be suspended.
T21SUSP	4	rw	Timer 21 Debug Suspend Bit0Timer 21 will not be suspended.1Timer 21 will be suspended.

XC878CLM

Timers

Field	Bits	Туре	Description
0	[7:6]	r	Reserved Returns 0 if read; should be written with 0.

13.2.9 Register Map

Timer 2 and Timer 21 contain an identical set of SFRs.

All Timer 2 register names described in the following sections are referenced in other chapters of this document with the module name prefix "T2_", e.g., T2_T2CON, while those of Timer 21 are referenced with "T21_", e.g., T21_T2CON.

The Timer 2 SFRs are located in Page 0 of the standard (non-mapped) SFR area. The corresponding set of SFRs for Timer 21 are assigned the same address as the Timer 2 SFRs, except that they are located instead in the mapped area. **Table 13-3** lists these addresses.

Address	Register
C0 _H	T2CON
CO _H CO _H	T2MOD
C2 _H	RC2L
C3 _H	RC2H
C4 _H	T2L
C3 _H C4 _H C5 _H C6 _H	T2H
C6 _H	T2CON1

Table 13-3SFR Address List

13.2.10 Register Description

Register T2MOD is used to configure Timer 2 for the various modes of operation.

T2MOD

Timer 2 Mode Register

Reset Value: 00_H

7	6	5	4	3	2	1	0
T2REGS	T2RHEN	EDGESEL	PREN		T2PRE		DCEN
rw	rw	rw	rw		rw		rw

Field	Bits	Туре	Description
DCEN	0	rw	 Up/Down Counter Enable Up/Down Counter function is disabled. Up/Down Counter function is enabled and controlled by pin T2EX (Up = 1, Down = 0).
T2PRE	[3:1]	rw	Timer 2 Prescaler Bit Selects the input clock for Timer 2 which is derived from the T2CCU clock. 000 $f_{T2} = f_{T2CCU}$ 001 $f_{T2} = f_{T2CCU}/2$ 010 $f_{T2} = f_{T2CCU}/4$ 011 $f_{T2} = f_{T2CCU}/8$ 100 $f_{T2} = f_{T2CCU}/16$ 101 $f_{T2} = f_{T2CCU}/32$ 110 $f_{T2} = f_{T2CCU}/64$ 111 $f_{T2} = f_{T2CCU}/128$ Note: T2CCU clock could be running at PCLK or 2 times PCLK frequency. As for T21, it is derived based on PCLK clock only.
PREN	4	rw	 Prescaler Enable 0 Prescaler is disabled and the divider 12 takes effect. 1 Prescaler is enabled (see T2PRE bit) and the divider 12 is bypassed.
EDGESEL	5	rw	Edge Select in Capture Mode/Reload Mode0The falling edge at pin T2EX is selected.1The rising edge at pin T2EX is selected.

Field	Bits	Туре	Description
T2RHEN	6	rw	Timer 2 External Start Enable
			0 Timer 2 External Start is disabled.
			1 Timer 2 External Start is enabled.
T2REGS	7	rw	Edge Select for Timer 2 External Start
			0 The falling edge at Pin T2EX is selected.
			1 The rising edge at Pin T2EX is selected.

Register T2CON controls the operating modes of Timer 2. In addition, it contains the status flags for interrupt generation.

T2CON Timer 2 Control Register

Reset Value: 00_H

 7	6	5	4	3	2	1	0
TF2	EXF2	0		EXEN2	TR2	C/T2	CP/RL2
rwh	rwh	r		rw	rwh	rw	rw

Field	Bits	Туре	Description
CP/RL2	0	rw	 Capture/Reload Select Reload upon overflow or upon negative/positive transition at pin T2EX (when EXEN2 = 1). Capture Timer 2 data register contents on the negative/positive transition at pin T2EX, provided EXEN2 = 1. The negative or positive transition at pin T2EX is selected by bit EDGESEL.
C/T2	1	rw	Timer or Counter Select0Timer function selected1Count upon negative edge at pin T2
TR2	2	rwh	Timer 2 Start/Stop Control0Stop Timer 21Start Timer 2
EXEN2	3	rw	Timer 2 External Enable Control0External events are disabled.1External events are enabled in capture/reload mode.

Field	Bits	Туре	Description
EXF2 6 rwh		rwh	Timer 2 External Flag In capture/reload mode, this bit is set by hardware when a negative/positive transition occurs at pin T2EX, if bit EXEN2 = 1. This bit must be cleared by software.
			Note: When bit DCEN = 1 in auto-reload mode, no interrupt request to the core is generated.
TF2	7	rwh	Timer 2 Overflow/Underflow Flag Set by a Timer 2 overflow/underflow. Must be cleared by software.
0	[5:4]	r	Reserved Returns 0 if read; should be written with 0.

Register T2CON1is used to enable the external interrupt and the overflow interrupt.

T2CON1 Timer 2 Control Register 1

Reset Value: 03_H

7	6	5	4	3	2	1	0
	Ι	Ι	0	1	T	TF2EN	EXF2EN
	1	1	1	l	L		
			r			rw	rw

Field	Bits	Туре	Description			
EXF2EN	0	rw	 External Interrupt Enable 0 External interrupt is disabled. 1 External interrupt is enabled. 			
TF2EN	1	rw	Overflow/Underflow Interrupt Enable0Overflow/underflow interrupt is disabled1Overflow/underflow interrupt is enabled			
0	[7:2]	r	Reserved Returns 0 if read; should be written with 0.			

Register RC2 is used for a 16-bit reload of the timer count upon overflow or a capture of current timer count depending on the mode selected.

RC2L Timer 2 Reload/Capture Register Low Reset Value: 00_H 7 6 5 4 3 2 1 0 RC2 rwh

Field	Bits	Туре	Description
RC2	[7:0]	rwh	Reload/Capture Value [7:0] If CP/RL2 = 0, these contents are loaded into the timer register upon an overflow condition. If CP/RL2 = 1, this register is loaded with the current timer count upon a negative/positive transition at pin T2EX when EXEN2 = 1.

RC2H Timer 2 Reload/Capture Register High Reset Value: 00 _H									
7	6	5	4	3	2	1	0		
	1		1	C2 / vh	I				

Field	Bits	Туре	Description
RC2	[7:0]	rwh	Reload/Capture Value [15:8] If CP/RL2 = 0, these contents are loaded into the timer register upon an overflow condition. If CP/RL2 = 1, this register is loaded with the current timer count upon a negative/positive transition at pin T2EX when EXEN2 = 1.

Register T2 holds the current 16-bit value of the Timer 2 count.

T2LReset Value: 00 _H Timer 2 Register LowReset Value: 00 _H									
7	6	5	4	3	2	1	0		
	THL2								
			rw	/h					

Field	Bits	Туре	Description	
THL2	[7:0]	rwh	Timer 2 Value [7:0] These bits indicate the current timer value.	

T2H Timer 2 Register High Reset Value: 00 _H									
7	6	5	4	3	2	1	0		
		'	TF	IL2		'			
	I	1	rv	wh	1	1	1		

Field	Bits	Туре	Description		
THL2	[7:0]	rwh	Timer 2 Value [15:8]		
			These bits indicate the current timer value.		

XC878CLM

Timers

14 T2CCU

The block diagram of the T2CCU module is shown in **Figure 14-1**. It consists of the standard Timer 2 and a Capture/compare unit (CCU). The Capture/Compare Timer (CCT) is part of the CCU. Control is available in the CCU to select individually for each of its 16-bit capture/compare channel, either the Timer 2 or its own Capture/Compare Timer (CCT) as the time base. Both timers have a resolution of 16 bits. The clock frequency of T2CCU, f_{T2CCU} , could be set at PCLK frequency or 2 times the PCLK frequency.

The T2CCU can be used for various digital signal generation and event capturing like pulse generation, pulse width modulation, pulse width measuring etc. Target applications include various automotive control as well as industrial (frequency generation, digital-to-analog conversion, process control etc.).

14.1 Features

T2CCU has the following features:

- Option to select individually for each channel, either Timer 2 or Capture/Compare Timer as time base
- Extremely flexible Capture/Compare Timer count rate by cascading with Timer 2
- Capture/Compare Timer may be 'reset' immediately by triggering overflow event
- 16-bit resolution; maximum frequency = 2 x peripheral clock frequency
- Six compare channels in total
- Four capture channels multiplexed with the compare channels, in total
- Shadow register for each compare register
- Transfer via software control or on timer overflow.
- Compare Mode 0: Compare output signal changes from the inactive level to active level on compare match. Returns to inactive level on timer overflow.
 - Active level can be defined by register bit for channel groups A and B.
 - Support of 0% to 100% duty cycle in compare mode 0.
- Compare Mode 1: Full control of the software on the compare output signal level, for the next compare match.
- Concurrent Compare Mode with channel 0
- Capture Mode 0: Capture on any external event (rising/falling/both edge) at the 4 pins T2CC0 to T2CC3.
- Capture Mode 1: Capture upon writing to the low byte of the corresponding channel capture register.
- Capture mode 0 or 1 can be established independently on the 4 capture channels.
- CCT Timer overflow event and Channel 5 compare match event can be selected to trigger a ADC conversion request. Chapter 17.4.9 has a detailed description of the feature.

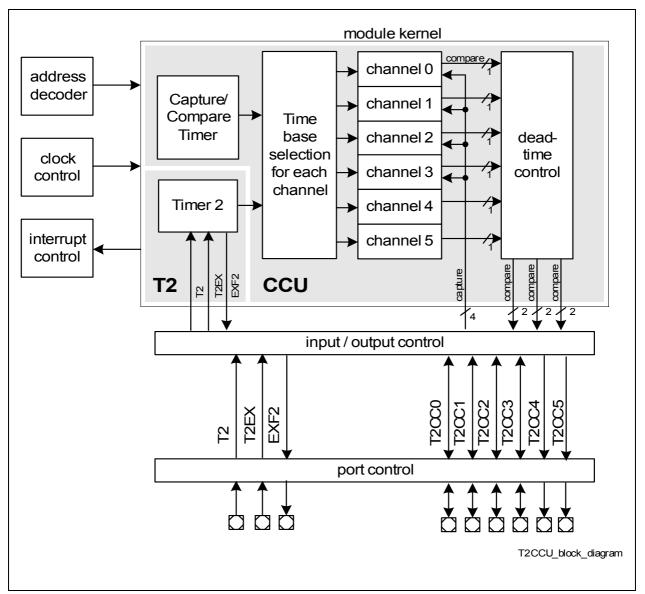


Figure 14-1 T2CCU Block Diagram

14.2 Requirements of Timer 2

By default, all T2CCU channels select the 16-bit Timer 2 as the time base. Timer 2 can be started in timer function (C/T2), by setting bit TR2 or by external start via T2EX. Prior to this, the Timer 2 reload value on overflow should be initialized in the registers RC2H/L. The Up/Down Counter function of Timer 2 must be disabled (DCEN = 0), so that Timer 2 functions as a pure up timer only. T2PRE should be set to select the timer operating frequency, this setting depends on the application requirement.

Timer 2 supports operational frequencies of f_{T2CCU} , $f_{T2CCU}/2$, $f_{T2CCU}/4$, $f_{T2CCU}/8$, $f_{T2CCU}/16$, $f_{T2CCU}/32$, $f_{T2CCU}/64$, or $f_{T2CCU}/128$. Thus, the 16-bit timer is incremented in the fastest case, twice in every machine cycle and in the slowest case, once in every sixty-four machine cycles if T2CCU is clocked at PCLK frequency.

The timer overflow flag TF2 is set when there is an overflow of the timer contents, and can generate an interrupt if enabled.

Timer 2 may be stopped any time by clearing bit TR2.

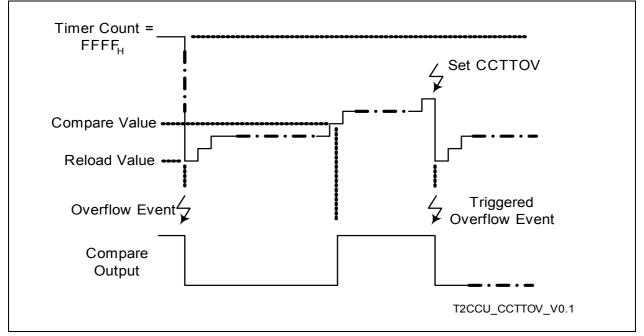
Note: **Chapter 13.2** *describes the detailed Timer 2 operations.*

14.3 Capture/Compare Timer of T2CCU

The Capture/Compare Timer (CCT) is part of the Capture/Compare Unit (CCU) in T2CCU and is a dedicated time base for the T2CCU capture/compare operations.

CCT is basically a free-running counter that is started by setting bit T2CCU_CCTCON.CCTST. When this bit is set, CCT will start counting from the value in the CCTH/L timer register. The timer counts up to FFFF_H and on overflow, the timer will be reloaded with the value initialized in the registers CCTRELH/L, and count up from this value. CCT can be clocked at frequencies of f_{T2CCU} , $f_{T2CCU}/2$, $f_{T2CCU}/4$, $f_{T2CCU}/8$, $f_{T2CCU}/16$, $f_{T2CCU}/32$, $f_{T2CCU}/64$, $f_{T2CCU}/128$, $f_{T2CCU}/256$, $f_{T2CCU}/512$, $f_{T2CCU}/1024$, or $f_{T2CCU}/2048$. Thus, CCT is incremented in the fastest case, twice in every machine cycle and in the slowest case, once in every 1024 machine cycles if T2CCU is clocked at PCLK frequency.

The timer overflow flag CCTOVF is set on overflow of the timer contents, and can generate an interrupt if enabled by bit CCTOVEN.


The CCT timer registers CCTH/L may be written any time to (re-)initialize the timer value, even when it is running. When CCT is not running, write to CCTL/H updates the corresponding byte of timer. However when CCT is running, CCTH has to be written first. On write to CCTL, the values in CCTH and CCTL will be updated to the timer which starts counting from this value.

CCT may be stopped any time by clearing bit CCTST. The timer registers will hold the last timer count.

Triggered CCT Timer Overflow

A special feature of the CCT timer is the possibility to 'reset' the timer immediately by a Triggered Timer Overflow event. By 'reset', CCT timer is reloaded and start counting from the value of the reload registers, while all actions associated with the operation mode of the timer channels on base timer overflow will be executed. On setting bit T2CCU_CCTBSEL.CCTTOV, the CCT timer overflow event is triggered asynchronously to accomplish all the above. An example usage for a channel operating in compare mode 0 is illustrated in **Figure 14-2**. For more details on compare mode 0, refer to **Section 14.5.1.1**.

Figure 14-2 Example of Channel in Compare Mode 0 on 'Triggered Timer Overflow' Event

14.3.1 Synchronized Timer Starts

As described in above sections, it is possible to individually start/stop the timers: Timer 2 by TR2 bit; Capture/Compare Timer by CCTST bit. If the user wants to synchronize the timer starts, then the procedure required is:

- 1. Ensure CCT timer is not already running,
- 2. Clear bit TR2 (stop Timer 2) and ensure timers are properly initialized,
- 3. Set bit TIMSYN to enable synchronized timer starts,
- 4. Set bit CCTST.

Step 3 and 4 can be combined in a single write operation to the sfr T2CCU_CCTCON.

Synchronized timer start is defined for the case where CCT timer is not already running. When T2CCU_CCTCON bits TIMSYN = 1 and CCTST = 0, setting CCTST sets also the

Timer 2 T2CON.TR2 bit. Therefore, both timers are started simultaneously. In the case Timer 2 is already running when CCTST is set, Timer 2 is not affected and continues normal counting operation.

To stop the timers, the respective timer bits can be cleared independently.

14.3.2 Cascading Timers For Flexible Count Rate

Especially for applications requiring the base timer to run at flexible count rate, it is allowed to cascade the Timer 2 with the CCT timer. If the bit T2CCU_CCTBSEL.CASC is set, CCT timer will count at the overflow rate of Timer 2. Refer to Figure 14-3 where Timer 2 is configured as a timer.

An example usage could modify the reload value of Timer 2 for the next overflow, whenever required by the application. If it fits the application, Timer 2 may still be used by the channels as the time base for capture or compare operations.

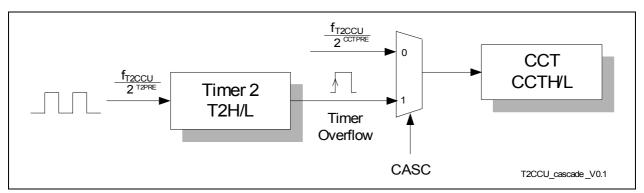


Figure 14-3 Cascading Timer 2 to CCT Timer

Note: Timer 2 may be configured in timer mode or as an external event counter via pin T2.

14.3.3 Dead-time with CCT Timer

The generation of (complementary) signals with dead-time for the highside and the lowside switches of one power inverter phase is based on twin grouping of the consecutive compare channels – one from group A and the other from group B. The three compare channel pairs therefore comprise of channel 0 with 1, channel 2 with 3, and channel 4 with 5. All channels must be enabled to run in compare mode 0 with CCT timer as the time base. The compare value must be set the same for the channels of a channel pair. It is also required that all the highside and lowside switches have the same active polarity. If the highside switch should be active while the CCT timer value is above the compare value. The polarity on compare match is controlled via the bits T2CCU_COCON.POLA and POLB for compare group A and B respectively – settings of which must be inverted.

XC878CLM

T2CCU

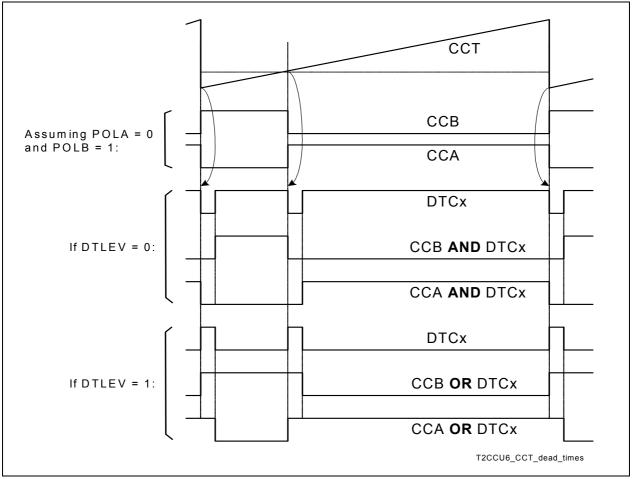
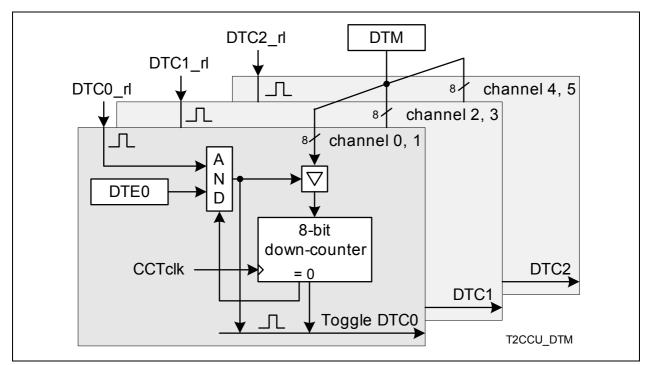


Figure 14-4 PWM-signals with Dead-time Generation (Illustrated for One Channel Pair)


In most cases, the switching behavior of the connected power switches is not symmetrical concerning the times needed to switch on and to switch off. A general problem arises if the time taken to switch on is less than the time to switch off the power device. This leads to a short-circuit in the inverter bridge leg, which may damage the complete system. In order to solve this problem by hardware, T2CCU contains a programmable dead-time counter, which delays the passive to active edge of the switching signals (the active to passive edge is not delayed); see Figure 14-4.

The dead-time generation logic (see **Figure 14-5**) is built in a similar way for all three channel pairs. Each instance of the CCT timer overflow or compare match event (of channel from group A) triggers the corresponding dead-time counter (8-bit down counter, clocked at CCT count rate) and toggles DTCx to the active level. The trigger pulse (DTCx_rl) leads to a reload of the dead-time counter with the value programmed in bit field T2CCU_CCTDTCL.DTM. This reload can only take place if the dead-time feature is enabled by bit T2CCU_CCTDTCH.DTEx and while the counter is zero.

While counting down (zero is not yet reached), the control signal DTCx stays at active level. On reaching the counter value zero, the dead-time counter stops counting and the signal DTCx toggles again to the inactive level. The DTCx signal is logically manipulated with the CCT modulation signals CCA and CCB, leading to a delay of the passive to active edge of the resulting compare output signal, which is shown in **Figure 14-4**. The active level of the DTCx and the manipulation of the modulation signals is defined and handled differently depending on setting of T2CCU_CCTDTCH.DTLEV (defines the passive level of the switches).

Note: Signal DTCx toggles only if dead-time is enabled by T2CCU_CCTDTCH.DTEx. When DTEx is set from the clear state, DTCx is held at inactive level according to setting of DTLEV until the next dead-time event.

Figure 14-5 Dead-time Counter

Each of the three channel pairs works independently with its own dead-time counter, the trigger and enable signals. The value of bit field DTM is valid for all three channel pairs.

14.4 T2CCU Capture/Compare Channels

The T2CCU allows the following operating modes:

- Compare: Up to 6 PWM output signals with 65536 steps at maximum
- Capture: Up to 4 high speed capture inputs

The capture/compare resolution for each channel is per the timer base operating frequency.

Figure 14-6 shows a diagram of Timer 2 and the Capture/Compare Unit(CCU) for a channel. The I/O pins are generally assigned as alternate function to general purpose I/O port. As shown in **Table 14-1**, the I/Os T2CCO, 1, 2 and 3 always share the same pin as the external interrupts EXINT3, 4, 5 and 6 respectively. The corresponding external interrupt request flags are set for the capture/compare function. The respective timer overflow flags are also set on timer overflow. As for the input selection of T2CCO, 1, 2 and 3, registers MODPISEL1 and MODPISEL4 are used, see **Page 5-24** and **Page 5-25**.

Pins	Function
T2CC0 / EXINT3	Compare output/Capture input for channel 0
T2CC1 / EXINT4	Compare output/Capture input for channel 1
T2CC2 / EXINT5	Compare output/Capture input for channel 2
T2CC3 / EXINT6	Compare output/Capture input for channel 3
T2CC4	Compare output for channel 4
T2CC5	Compare output for channel 5

Table 14-1Capture and Compare I/Os of T2CCU

XC878CLM

T2CCU

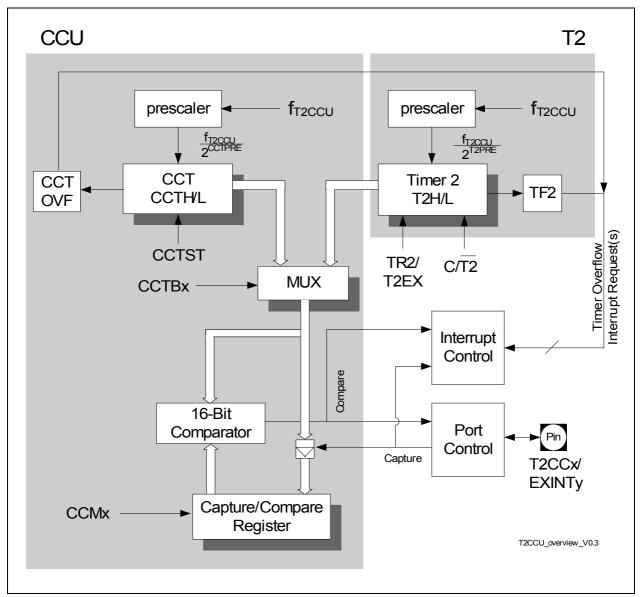


Figure 14-6 Timer 2 Capture/Compare Function for Channel x

14.5 Capture/Compare Operation

There are altogether six compare channels and altogether four capture channels, which can be individually enabled. The capture channels can be independently selected for capture mode 0 or 1. A general selection of the capture/compare function for each channel is done in register T2CCU_CCEN.

In case of compare mode selected, the register T2CCU_COCON allows to configure the compare mode for all compare channels. The compare channels are further divided into two groups - A and B. If the channels are configured for compare mode respectively, group A consists of the channels CC0, CC2 and CC4 while group B consists of the channels CC1, CC3 and CC5. In this way, the level of the output signal on compare match till timer overflow (active level) can be configured separately for the channels of the two groups.

In case of capture mode selected, the external event for the capture can be configured by the external interrupt SFR bits. The active trigger could be selected individually for each channel for rising, falling or both edge triggered.

Note: For defined behavior, it is required of the user to initialize properly all the T2CCU related SFRs before enabling any T2CCU capture or compare mode.

14.5.1 Compare Function

The T2CCU compare output is only actively driven on enabling the compare function. When the compare function is enabled by writing to a channel's CCMx bits, the respective compare output is latched (as initial value) based on the settings to the channel SFR bits.

In compare mode, the 16-bit value stored in a compare register is compared with the contents of the timer. When the timer count matches the compare register value, the corresponding channel's output signal is toggled at the pin, and an interrupt is requested if enabled.

The contents of a compare register can be regarded as a "time stamp" at which the corresponding output reacts in a predefined way (with either a positive or negative transition). Variation of this "time stamp" changes the waveform of a rectangular output signal at the pin. As a variation of the duty cycle of a periodic signal, this may be used for pulse width modulation as well as for a continually controlled generation of any kind of square waveforms. Two compare modes plus one concurrent compare mode are available to cover a wide range of possible applications.

The active compare mode is selected by bit T2CCU_COCON.COMOD, and applies to all enabled compare channels. In all compare modes, the new output value arrives at the port pin within the same T2CCU clock cycle in which the internal compare signal is activated.

The compare match signal stays high for as long as the comparator inputs are equal (at least one T2CCU clock cycle). The rising edge of the compare match signal is the active edge for all compare match operations.

Shadow Registers for Compare Registers

The compare registers of the T2CCU cannot be accessed directly by user code. Update of channel compare value is by shadow transfer from the corresponding SFR T2CCU_CCx. The user may choose to select one out of two events to start a shadow transfer to the internal compare registers.

- By setting the SFR bit T2CCU_COSHDW.TXOV = 1, shadow transfer is started for the compare channels on the overflow of their corresponding timer base. In this case, the update of the compare registers is controlled by hardware and is therefore independent from any service delay.
- By setting the SFR bit T2CCU_COSHDW.ENSHDW = 1, shadow transfer is started for each channel when the corresponding SFR bit COOUTx is set under user control. COOUTx will be cleared automatically by hardware at the next T2CCU clock cycle, after being set.

In both cases, the rising edge of the event pulse signal is the active edge for the shadow transfer of the compare register(s). The advantage of the shadow transfer mechanism is that it allows glitch-free pulse width modulation, which can occur due to the two instructions needed to update the 16-bit compare registers.

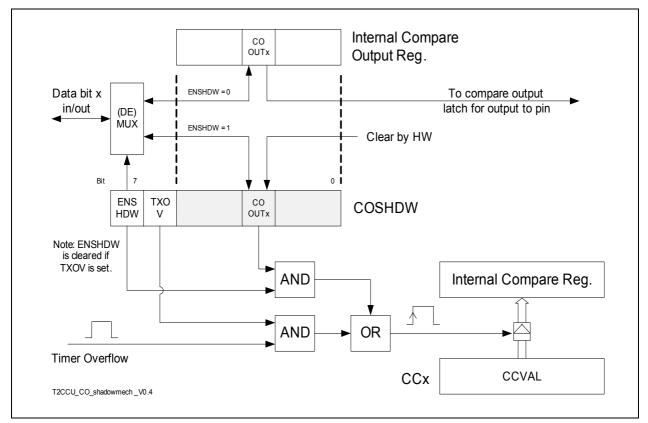

Note that it is not allowed to set both bits TXOV and ENSHDW at the same time. If bit TXOV is set to enable shadow transfer on timer overflow, bit ENSHDW will be cleared by internal hardware to disable shadow transfer by software.

Figure 14-7 illustrates the shadow transfer mechanism.

XC878CLM

T2CCU

Figure 14-7 Compare Value Shadow Transfer Mechanism and The Dual Function of Bits COOUTx

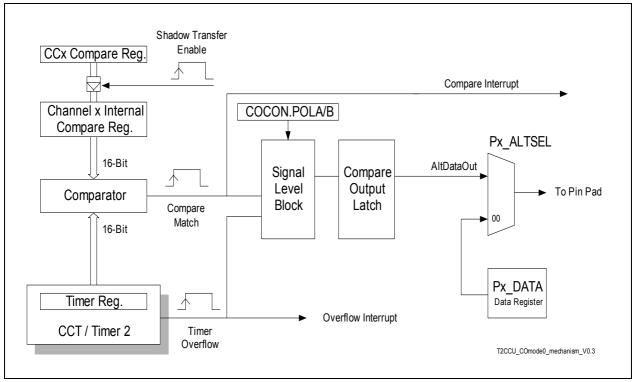
Mapped Compare Output Bits

To enable dual function on the COOUTx bits of SFR T2CCU_COSHDW, bit ENSHDW is used for the control of access to these bits. When ENSHDW = 1, the SFR bits COOUTx can be directly accessed for control of shadow transfer of compare value. When ENSHDW = 0, writing or reading to COOUTx bits actually access an internal compare output register instead of the COSHDW bits. The corresponding bits of this internal compare output register control the output polarity of the compare channels in compare mode 1 and concurrent compare mode.

Figure 14-7 illustrates the dual function of the bits COOUTx.

14.5.1.1 Compare Mode 0

When compare mode 0 is selected, on setting CCMx to enable compare function, the compare output is latched,


- To the active level if the base timer content are equal or bigger than the compare register content, or,
- To the inactive level if the base timer content is less than the compare register content.

The active level is defined for each channel by its compare group A or B, via the SFR bit T2CCU_COCON.POLA or POLB.

In compare mode 0, when the timer and compare register contents match, the output signal changes from the inactive level to active level. The compare output signal goes back to inactive level on timer overflow.

Compare mode 0 is ideal for generating pulse width modulated output signals, which in turn can be used for digital-to-analog conversion via a filter network or by the controlled device (e.g. the inductance of a DC or AC motor). Mode 0 may also be used for providing output clocks with initially defined period and duty cycle. This usage needs the least CPU time. Once set up, the output goes on oscillating without any CPU intervention.

Figure 14-8 illustrates the function of compare mode 0. In this function, the compare output signal is directly controlled by the setting of SFR bit T2CCU_COCON.POLA/B and the events: timer overflow and compare match.

Figure 14-8 Functional Diagram of Compare Mode 0

Figure 14-9 illustrates the channel output when POLA/B is set to '0'. Interrupts may be generated on timer overflow or compare match, and update the next compare value etc., in the interrupt service routine.

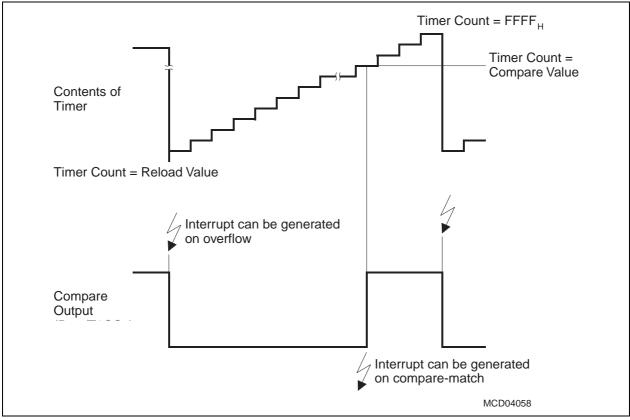


Figure 14-9 Channel Output in Compare Mode 0 (POLA/B = 0)

PWM Signal from 0% to 100% Duty Cycle in Compare Mode 0

The active level of a PWM signal refers to the compare output signal level from the time of compare match till the next timer overflow.

To support a 100% duty cycle for a compare channel with T2CCU_COCON.POLA/B = 0 (active level = high), the 16-bit channel x compare value must be set equal to the timer overflow reload value. In this case, the internal hardware will not cause the compare output signal to the inactive level on timer overflow, and the output stays at the active level until the next timer overflow when the compare value is no more equal to the timer reload value.

To support a 0% duty cycle for a compare channel with T2CCU_COCON.POLA/B = 0, the channel x compare value must be smaller than the timer overflow reload value. In this case, the timer reload value must not be zero. The compare match event will not happen and the compare output stays at the inactive level (low).

The above mechanism applies for compare channel with T2CCU_COCON.POLA/B = 1 correspondingly.

14.5.1.2 Compare Mode 1

When compare mode 1 is selected, on setting CCMx to enable compare function, the compare output is latched with the value initialized to bit COOUTx of the internal compare output register.

In compare mode 1, the software adaptively determines the transition of the output signal. It is commonly used when output signals are not related to a constant signal period (as in a standard PWM Generation) but must be controlled very precisely with high resolution and without jitter. In compare mode 1, the compare output signal level is under the full control of the software, for the next compare match.

If compare mode 1 is enabled and the software writes to COOUTx bit(s) of the internal compare output register (in this case, bit T2CCU_COSHDW.ENSHDW must be cleared), the new value will not appear at the output pin until the next compare match occurs. Thus, one can choose independently for each compare channel, whether the output signal is to toggle (1-to-0 or 0-to-1) or to remain at the same level, when the channel timer count matches the contents of the channel internal compare register.

Figure 14-10 illustrates the function of compare mode 1. In this function, the bit COOUTx of the internal compare output register will only be transferred to the compare output latch as alternate data out, on the next compare match event.

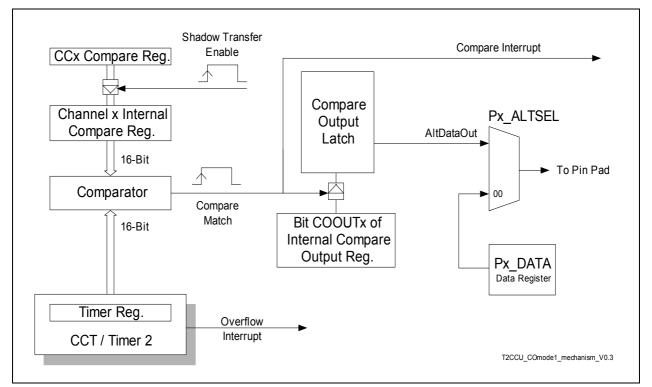


Figure 14-10 Functional Diagram of Compare Mode 1

14.5.1.3 Concurrent Compare Mode

When concurrent compare mode is selected, on setting CCMx to enable compare function, the compare outputs are latched with the corresponding values initialized to the COOUTx bits of the internal compare output register.

Concurrent Compare is similar to compare mode 1, with the additional capability to manipulate the output at more than one compare channel. Like in compare mode 1, the software updates the COOUTx bits of the internal compare output register (bit T2CCU_COSHDW.ENSHDW must be cleared), so that up to six compare channel outputs are updated concurrently when channel 0 compare match occurs. When this happens, all enabled compare channel outputs will be updated with the corresponding value in the internal compare output register.

Concurrent compare is an ideal and effective mode for applications where more than one synchronous output signal is to be generated. Such applications could include for e.g., a multiple-phase stepper motor control, or control of ignition coils of a car engine. These applications generally require predefined bit-patterns to be put to an output port at precisely predefined moment.

Figure 14-11 illustrates the function of concurrent compare mode. Compare channel 0 must be enabled and initialized for proper operation.

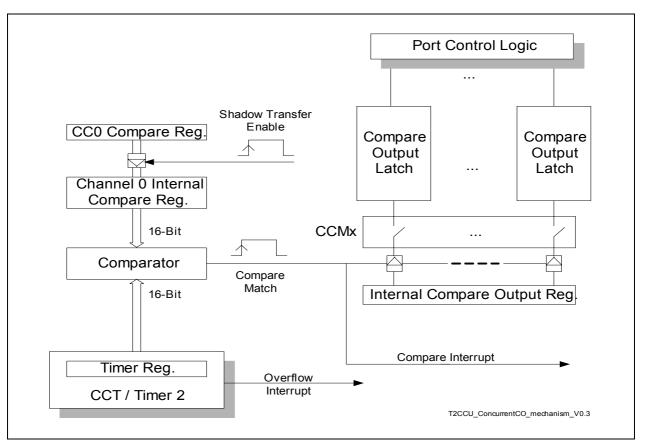


Figure 14-11 Functional Diagram of Concurrent Compare Mode

Figure 14-12 illustrates two examples of how four rectangular waveforms can be generated at the port using a pattern table. The patterns are written to the internal compare output register (with T2CCU_COSHDW.ENSHDW = 0) before the corresponding timer count is reached. The (future) timer count at which the pattern shall be available at the port must be loaded to the compare shadow registers T2CCU_CC0H and T2CCU_CC0L, and transferred to the internal compare registers. To manage the waveform generation, one example uses a time schedule table with list of compare values, the other example makes use of a fixed compare value (such as FFF0_H) with shorter timer period. In these ways, each channel can be controlled at predefined time(s) by the user on whether to toggle or not.

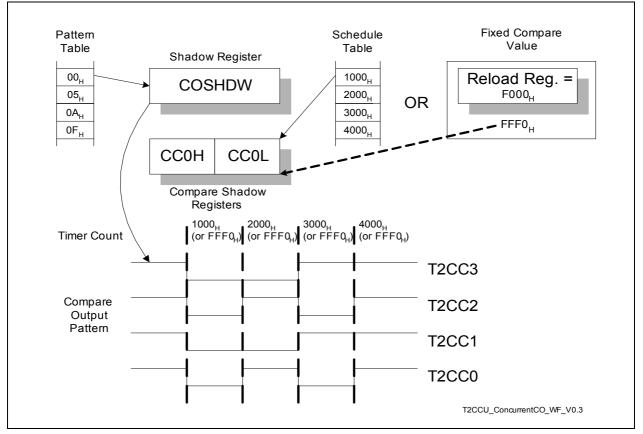


Figure 14-12 Two Examples of Waveform Generation in Concurrent Compare Mode (by Schedule Table of Compare Values or Fixed Compare Value)

14.5.1.4 Using Interrupts in Combination with the Compare Function

Reserved External Interrupts

Each of the compare channels T2CCU_CCO-3 share the same port pin with an external interrupt as alternate functions at port pins. When compare mode is enabled and the corresponding port pin is set to output mode for use as compare output, the input driver of the port pin is disabled. Therefore the corresponding external interrupt inputs cannot be used for any purpose.

However, the interrupt function of the external interrupts can still be enabled for the compare match interrupts. In this case, the corresponding external interrupt lines are connected directly to the internal compare match signal.

Compare Match Interrupt

The compare match interrupt (including that for channels 4 and 5) is enabled together with the capture interrupt by the IEN1.EXM bit for all channels. A channel compare match occurs when timer count matches the channel register contents. Besides manipulating the corresponding channel compare output, the corresponding compare match flag IRCON0.EXINTx or T2CCU_COMOD.CMxF is set for the interrupt request. For this, the interrupt edge trigger for compare match must be set to rising edge in the corresponding EXICON register. The compare match interrupt service routine can be used to set up the parameters for the next channel compare event, such as change the contents of the compare registers or to determine the level of the compare port outputs for the next "compare match".

The main advantage in using compare match interrupts is to avoid unintentional overwriting of compare/compare output registers before a match has been reached. This could happen when the CPU writes to the compare registers without knowing about the actual timer count.

Note: As an alternative, the timer overflow interrupt may be used in place of the compare match interrupt.

14.5.2 Capture Function

This mode allows the measurement of external signal pulse widths through the Capture/Compare registers CC0-3. Each of the 16-bit registers can be used to latch the current 16-bit count of the timer base of the corresponding channel. Two capture modes are provided for this function.

In mode 0, any external event (rising/falling/both edge) at pins T2CC0 to T2CC3 latches the channel timer contents to the corresponding channel capture register. The capture edge is defined by the corresponding external interrupt set up (each capture input share the same pin with an external interrupt). The external input(s) is sampled in every CCLK cycle. When a sampled input shows a low (high) level in one CCLK cycle and a high (low) in the next CCLK cycle, a transition is recognized. The corresponding external interrupt request flag(s) (EXINT3 to EXINT6) is set. If the interrupt(s) is enabled, the CPU will vector to the appropriate interrupt service routine. The timer contents are latched to the corresponding capture register in the T2CCU clock cycle following the one in which the transition was identified.

In mode 1, a capture will occur upon writing to the low byte of the corresponding channel capture register. The software is able to read the contents of the channel timer "on-the-fly". The value written to the capture register is irrelevant for this function. The timer contents will be latched into the channel capture register following the write instruction. In this mode no interrupt request will be generated.

Figure 14-13 shows the capture operation of the Capture/Compare channels.

The two capture modes can be established individually for each capture channel by bits in SFR T2CCU_CCEN (Capture/Compare enable register). That means, in contrast to the compare modes, it is possible to simultaneously select mode 0 for one capture channel and mode 1 for another channel.

XC878CLM

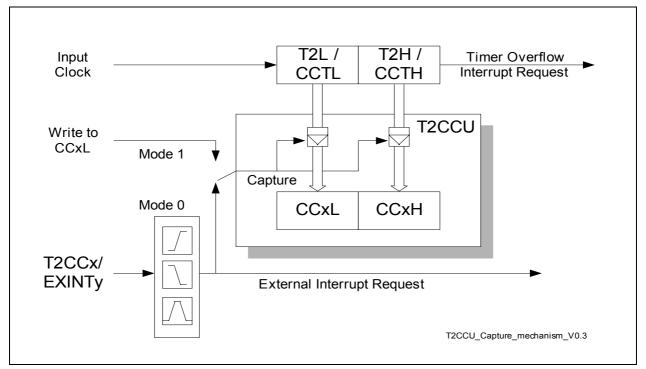


Figure 14-13 Functional Diagram of Capture Mode

14.6 T2CCU Registers

This section describes all T2CCU special function registers. The Timer 2 and interrupt related SFRs are also listed, as shown in **Table 14-2**.

Note: All T2CCU register names shall be referenced fully with the module name prefix "T2CCU_".

Name	Description
T2CCU Special F	unction Registers
CCTBSEL	Capture/Compare Time Base Select Register
CCTRELL	Capture/Compare Timer Reload Register Low
CCTRELH	Capture/Compare Timer Reload Register High
CCTL	Capture/Compare Timer Register Low
ССТН	Capture/Compare Timer Register High
CCTCON	Capture/Compare Timer Control Register
CCTDTCL	Capture/Compare Timer Dead-Time Control Register Low
ССТДТСН	Capture/Compare Timer Dead-Time Control Register High
CCEN	Capture/Compare Enable Register
COSHDW	Compare Shadow Register
COCON	Compare Control Register
CC0L	Capture/Compare Register 0 Low
CC0H	Capture/Compare Register 0 High
CC1L	Capture/Compare Register 1 Low
CC1H	Capture/Compare Register 1 High
CC2L	Capture/Compare Register 2 Low
CC2H	Capture/Compare Register 2 High
CC3L	Capture/Compare Register 3 Low
ССЗН	Capture/Compare Register 3 High
CC4L	Compare Register 4 Low
CC4H	Compare Register 4 High
CC5L	Compare Register 5 Low

Table 14-2Registers Overview

Name	Description
CC5H	Compare Register 5 High
Related Timer 2 S	pecial Function Registers
T2_T2CON	Timer 2 Control Register
T2_T2CON1	Timer 2 Control Register 1
T2_T2MOD	Timer 2 Mode Register
T2_RC2L	Timer 2 Reload Register, Low Byte
T2_RC2H	Timer 2 Reload Register, High Byte
T2_T2L	Timer 2, Low Byte
T2_T2H	Timer 2, High Byte
Related Interrupt	Special Function Registers
IEN0	Interrupt Enable Register 0
IEN1	Interrupt Enable Register 1
EXICON0	External Interrupt Control Register 0
EXICON1	External Interrupt Control Register 1
IRCON0	Interrupt Request Register 0

Table 14-2 Registers Overview (cont'd)

14.6.1 Register Mapping

T2CCU supports local address extension mechanism. The SFRs of the Timer 2 are accessed in Page 0, while SFRs of the T2CCU are accessed from Page 1 to Page 3. Please refer to **Chapter 4** for details on the local address extension.

The addresses (non-mapped) of the SFRs are listed in **Table 14-3**.

······································							
Address	Page 0	Page 1	Page 2	Page 3	Page 4		
C0 _H	T2CON	CCEN	COSHDW	COCON			
C1 _H	T2MOD	CCTBSEL	CC0L	CC3L			
C2 _H	RC2L	CCTRELL	CC0H	CC3H	CCTDTCL		
C3 _H	RC2H	CCTRELH	CC1L	CC4L	CCTDTCH		
C4 _H	T2L	CCTL	CC1H	CC4H			

 Table 14-3
 SFR Address List for Pages 0-4

Address	Page 0	Page 1	Page 2	Page 3	Page 4
C5 _H	T2H	CCTH	CC2L	CC5L	
C6 _H	T2CON1	CCTCON	CC2H	CC5H	

 Table 14-3
 SFR Address List for Pages 0-4 (cont'd)

Note: The Timer 2 SFRs in T2CCU must be accessed via the paging mechanism at Page 0.

SFR T2_PAGE, at address $C7_{H}$, contains the page value and the page control information.

T2_PAGE Page Register for T2CCU

Reset Value: 00_H

7	6	5	4	3	2	1	0
0	P	STNR		0		PAGE	1
N	1	Ŵ	1	r	•	rwh	·

Field	Bits	Туре	Description
PAGE	[2:0]	rwh	Page Bits When written, the value indicates the new page address. When read, the value indicates the currently active page = addr [y:x+1]
STNR	[5:4]	w	Storage NumberThis number indicates which storage bit field is the target of the operation defined by bit OP.If $OP = 10_B$, the contents of PAGE are saved in STx before being overwritten with the new value.If $OP = 11_B$, the contents of PAGE are overwritten by the contents of STx. The value written to the bit positions of PAGE is ignored.00ST0 is selected. O101ST1 is selected.
_			 ST2 is selected. ST3 is selected.

Field	Bits	Туре	Description
OP	[7:6]	w	 Operation 0X Manual page mode. The value of STNR is ignored and PAGE is directly written. 10 New page programming with automatic page saving. The value written to the bit positions of PAGE is stored. In parallel, the former contents of PAGE are saved in the storage bit field STx indicated by STNR. 11 Automatic restore page action. The value written to the bit positions PAGE is ignored and instead, PAGE is overwritten by the contents of the storage bit field STx indicated by STNR.
0	3	r	Reserved Returns 0 if read; should be written with 0.

14.6.2 T2CCU Registers Description

The following describes the Special Function Registers of the T2CCU kernel.

T2CCU_CCTBSEL T2CCU Capture/Compare Time Base Select Register

Reset Value: 00_H

_	7	6	5	4	3	2	1	0
	CASC	ссттоу	CCTB5	CCTB4	ССТВ3	CCTB2	CCTB1	ССТВ0
	rw	rwh	rw	rw	rw	rw	rw	rw

Field	Bits	Тур	Description
CCTBx (x = 0-5)	[5:0]	rw	Channel x Time Base Select0Selects Timer 21Selects Capture/Compare Timer (CCT)
CCTTOV	6	rwh	Trigger CCT Timer Overflow Event0No action1CCT overflow event is triggered immediatelyOn set, this bit is held for one T2CCU clock cycle,then cleared by hardware.Reading this bit always return 0.

Field	Bits	Тур	Description	
CASC	7	rw	Cascade Timers0Timer 2 and CCT timer operate independently1Timer 2 is cascaded with CCT timer	

	T2CCU_CCTRELL T2CCU Capture/Compare Timer Reload Register Low Reset Value: 00 _H							
7	6	5	4	3	2	1	0	
	ı ı		CCTRE				1	
			n	N				

Field	Bits	Тур	Description
CCTREL[7:0]	7:0	rw	Capture/Compare Timer Low Byte Reload Value The contents of the registers are loaded into the CCT timer low byte register upon an overflow condition.

T2CCU_CCTRELH T2CCU Capture/Compare Timer Reload Register High Reset Value: 00 _H											
7	6	5	4	3	2	1	0				
CCTREL[15:8]											
			r	w							

Field	Bits	Тур	Description
CCTREL[15:8]	7:0	rw	Capture/Compare Timer High Byte Reload Value The contents of the registers are loaded into the CCT timer high byte register upon an overflow condition.

T2CCU_C T2CCU Ca		ipare Time	er Register	Low		Reset	Value: 00 _H			
7	6	5	4	3	2	1	0			
CCT[7:0]										
	<u> </u>		rw	h	1	L				

Field	Bits	Тур	Description
CCT[7:0]	7:0	rwh	Capture/Compare Timer Low Byte Value The register represents the low byte counter value of the Capture/Compare Timer. When CCT is not running, write to CCTL updates the lower byte of timer. To (re-)initialize CCT when it is running, CCTH has to be written first. On write to CCTL, the values CCTH and CCTL will be updated to the timer which counts from this value.

T2CCU_CCTH T2CCU Capture/Compare Timer Register High Reset Value: 00 _H										
7	6	5	4	3	2	1	0			
CCT[15:8]										
-	rwh									

Field	Bits	Тур	Description
CCT[15:8]	7:0	rwh	Capture/Compare Timer High Byte Value The register represents the high byte counter value of the Capture/Compare Timer. When CCT is not running, write to CCTH updates the upper byte of timer. To (re-)initialize CCT when it is running, CCTH has to be written first. On write to CCTL, the values CCTH and CCTL will be updated to the timer which counts from this value.

T2CCU_CCTCON T2CCU Capture/Compare Timer Control Register

Reset Value: 00_H

7	6	5	4	3	2	1	0
	ССТІ	PRE	1	CCTOVF	CCTOVEN	TIMSYN	сстят
	rv	V		rwh	rw	rw	rw

Field	Bits	Тур	Description
CCTST	0	rw	 Capture/Compare Timer Start/Stop Control Stop Capture/Compare Timer Start Capture/Compare Timer. If bit TIMSYN = 1 and CCTST was 0, start also Timer 2 (if it was not already running). Note: Setting CCTST while the bit was already set will not disturb the running CCT timer operation.
TIMSYN	1	rw	 Enable Synchronized Timer Starts 0 Disable synchronized timer starts 1 Enable synchronized timer starts
CCTOVEN	2	rw	Capture/Compare Timer Overflow Interrupt Enable Set to enable CCT overflow interrupt.
CCTOVF ¹⁾	3	rwh	Capture/Compare Timer Overflow Flag Set by hardware on CCT overflow. This bit has to be cleared by software.

Field	Bits	Тур	Description
CCTPRE	[7:4]	rw	Compare/Compare Timer Prescaler Bit Selects the input clock for CCT, which is derived from the peripheral clock. 0000 $f_{CCT} = f_{T2CCU}$ 0001 $f_{CCT} = f_{T2CCU}/2$ 0010 $f_{CCT} = f_{T2CCU}/4$ 0011 $f_{CCT} = f_{T2CCU}/4$ 0100 $f_{CCT} = f_{T2CCU}/16$ 0101 $f_{CCT} = f_{T2CCU}/32$ 0110 $f_{CCT} = f_{T2CCU}/32$ 0110 $f_{CCT} = f_{T2CCU}/128$ 1000 $f_{CCT} = f_{T2CCU}/256$ 1001 $f_{CCT} = f_{T2CCU}/2512$ 1010 $f_{CCT} = f_{T2CCU}/1024$ 1011 $f_{CCT} = f_{T2CCU}/2048$ Others Reserved Note: It is not recommended to change CCTPRE when CCTST = 1.

¹⁾ In case of software and hardware access to a flag bit at the same time, hardware will have higher priority.

T2CCU_CCTDTCL T2CCU Capture/Compare Timer Dead-Time Control Register Low Reset Value: 00_H

7	6	5	4	3	2	1	0				
	Г Г	T			1 1		1				
	DTM										
	1 1	1			1 1		1				
	rw										

Field	Bits	Тур	Description
DTM	[7:0]	rw	Dead-Time This 8-bit value defines the programmable delay between switching from the passive state to the active state of the selected outputs. The switching from the active state to the passive state is not delayed.

T2CCU_CCTDTCH T2CCU Capture/Compare Timer Dead-Time Control Register HighReset Value: 00_H

7	6	5	4	3	2	1	0
DTRES	DTR2	DTR1	DTR0	DTLEV	DTE2	DTE1	DTE0
rwh	rh	rh	rh	rw	rw	rw	rw

Field	Bits	Тур	Description
DTEx (x = 0-2)	[2:0]	rw	 Dead-Time Enable for Channel Pair x 0 Dead-time generation is disabled. 1 Dead-time generation is enabled for channel pair x. The corresponding outputs switch from the passive state to the active state (according to compare status) with the delay programmed in DTM.
			Note: This bit shall only be set after enabling the corresponding channels in compare mode 0 with CCT timer as the time base.
DTLEV	3	rw	 Dead-Time Level This bit defines the active level of all DTCx during dead-time counting. 0 Low (switches are active high). 1 High (switches are active low).
DTRx (x = 0-2)	[6:4]	rh	 Dead-Time Run Indication Bits The value of the corresponding dead-time counter is 0. The value of the corresponding dead-time counter is not 0.
DTRES	7	rwh	 Reset Dead-Time Counters 0 No action. 1 The three dead-time counters are reset to 0. On set, this bit is held for one T2CCU clock cycle, then cleared by hardware. Reading this bit always return 0.

T2CCU_CCEN T2CCU Capture/Compare Enable Register

Reset Value: 00_H

7	6	5	4	3	2	1	0
СС	M3	CCM2		CCM1		ССМО	
	1			<u> </u>			
r	W	rw		rw		rw	

Field	Bits	Тур	Description
CCM0	[1:0]	rw	 Capture/Compare Enable for Channel 0 Capture/Compare disabled Capture on active edge at pin T2CC0 Compare enabled Capture on write operation into register CC0L
CCM1	[3:2]	rw	 Capture/Compare Enable for Channel 1 Capture/Compare disabled Capture on active edge at pin T2CC1 Compare enabled Capture on write operation into register CC1L
CCM2	[5:4]	rw	 Capture/Compare Enable for Channel 2 Capture/Compare disabled Capture on active bedge at pin T2CC2 Compare enabled Capture on write operation into register CC2L
ССМЗ	[7:6]	rw	 Capture/Compare Enable for Channel 3 Capture/Compare disabled Capture on active edge at pin T2CC3 Compare enabled Capture on write operation into register CC3L

Note: The T2CCU output is only actively driven on enabling the compare function.

T2CCU_COSHDW T2CCU Compare Shadow Register

Reset Value: 00_H

7	6	5	4	3	2	1	0
ENSHDW	τχον	COOUT5	COOUT4	COOUT3	COOUT2	COOUT1	COOUT0
rwh	rw	rwh	rwh	rwh	rwh	rwh	rwh

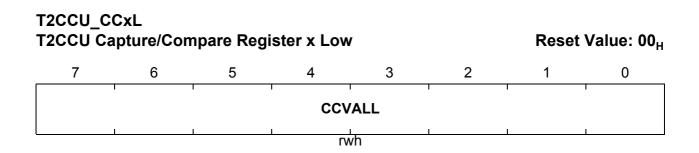
Field	Bits	Тур	Description
COOUTx (x = 0-5)	[5:0]	rwh	Compare Channel x Output <u>ENSHDW = 0</u> Any access to bit COOUTx accesses the corresponding bit of the internal 6-bit compare output register. Write to bit COOUTx will change the corresponding bit of the internal compare output register. Read to bit COOUTx returns the value of the bit in the internal compare output register. The content of the internal compare output register is output on the corresponding T2CCx pins when a valid compare match occurs for a channel in compare mode 1 or concurrent compare mode. Note: A concurrent write operation to clear bit ENSHDW and set/clear bit(s) COOUTx is effective for initializing the internal compare output register.
			ENSHDW = 1 In this case, accessing bit COOUTx accesses the actual SFR bits. If COOUTx is set, the contents of register CCx will be transferred to corresponding channel x internal compare register. On set, COOUTx is held for one T2CCU clock cycle, then cleared automatically by hardware. Note: A concurrent write operation to set bit ENSHDW and bit(s) COOUTx (and clear bit TXOV) is effective for starting shadow transfer(s).
ΤΧΟΥ	6	rw	Enable Shadow Transfer On Timer Overflow Set to enable for all compare channels, transfer of shadow value in T2CCU_CCx to the corresponding internal compare registers on overflow of their respective timer base.

Field	Bits	Тур	Description
ENSHDW	7	rwh	Enable Shadow Transfer With COOUTx Clear to enable access of the internal compare output register via the COOUTx bits. Set to enable use of COOUTx bits for transfer of shadow value in T2CCU_CCx to the corresponding channel x internal compare register.
	Note: When setting bit TXOV, bit ENSHDW will be cleared by internal hardware. To ensure bit ENSHDW is set, user must ensure bit TXOV is cleared.		

T2CCU_COCON T2CCU Compare Control Register

Reset Value: 00_H

7	6	5	4	3	2	1	0
CCM5	CCM4	CM5F	CM4F	POLB	POLA	сомо	D
rw	rw	rwh	rwh	rw	rw	rw	


Field	Bits	Тур	Description
COMOD	[1:0]	rw	Compare Mode Control (for compare channels)00Compare Mode 0 selected01Compare Mode 1 selected10Concurrent Compare mode selectedOthers Reserved
POLA	2	rw	 Compare Active Level for Channel Group A In compare mode 0, the bit defines the active level of the outputs of the compare channels belonging to the group. 0 High on Compare Match 1 Low on Compare Match
POLB	3	rw	Compare Active Level for Channel Group BIn compare mode 0, the bit defines the active level ofthe outputs of the compare channels belonging tothe group.0High on Compare Match1Low on Compare Match

Field	Bits	Тур	Description
CM4F ¹⁾	4	rwh	Compare Channel 4 Interrupt Flag Set on a compare match event on compare channel 4. This bit has to be cleared by software.
CM5F ¹⁾	5	rwh	Compare Channel 5 Interrupt Flag Set on a compare match event on compare channel 5. This bit has to be cleared by software.
CCM4	6	rw	Compare Enable for Channel 40Compare disabled1Compare enabledSee note below.
CCM5	7	rw	Compare Enable for Channel 50Compare disabled1Compare enabledSee note below.

¹⁾ In case of software and hardware access to a flag bit at the same time, hardware will have higher priority.

- Note: Compare channels 4 and 5 should be enabled in a separate step after setting the compare mode via bits COMOD (and active level POLA/B if compare mode 0). This is to ensure defined compare output according to the selected mode on starting the respective compare channel.
- Note: The interrupt enable for compare channels 4 and 5 is controlled by the respective bit of SCU SFR MODIEN.CM4EN and CM5EN.

Field	Bits	Тур	Description
CCVALL	[7:0]	rwh	Capture/Compare Low Byte Value for Channel x Capture On read, CCVALL returns the low byte of the last captured value.
			<u>Compare</u> CCVALL holds the low byte written. CCx acts as a shadow register to the channel x internal compare register. The value written is only transferred to the internal compare register when corresponding bit T2CCU_COSHDW.COOUTx is being set (with ENSHDW = 1), or on overflow of the channel timer base. The read value always return the last written value.
			Note: With T2CCU_CC4 and T2CCU_CC5, only the compare function is available.

2CCU_CCxH 2CCU Capture/Compare Register x High Reset Value: 00 _H							
7	6	5	4	3	2	1	0
CCVALH							
rwh							

Field	Bits	Тур	Description
Field CCVALH	Bits [7:0]	Typ rwh	Capture/Compare High Byte Value for Channel xCaptureOn read, CCVALH returns the high byte of the last captured value.CompareCCVALH holds the high byte written. CCx acts as a shadow register to the channel x internal compare register. The value written is only transferred to the internal compare register when corresponding bit T2CCU_COSHDW.COOUTx is being set (with ENSHDW = 1), or on overflow of the channel timer
			base. The read value always return the last written value.
			Note: With T2CCU_CC4 and T2CCU_CC5, only the compare function is available.

XC878CLM

15 Capture/Compare Unit 6

The Capture/Compare Unit 6 (CCU6) provides two independent timers (T12, T13), which can be used for Pulse Width Modulation (PWM) generation, especially for AC-motor control. The CCU6 also supports special control modes for block commutation and multi-phase machines. The block diagram of the CCU6 module is shown in **Figure 15-1**.

The timer T12 can function in capture and/or compare mode for its three channels. The timer T13 can work in compare mode only.

The multi-channel control unit generates output patterns, which can be modulated by T12 and/or T13. The modulation sources can be selected and combined for the signal modulation.

Timer T12 Features:

- Three capture/compare channels, each channel can be used either as a capture or as a compare channel
- Supports generation of a three-phase PWM (six outputs, individual signals for highside and lowside switches)
- 16-bit resolution
- 2 selectable operating frequency: peripheral clock or double the peripheral clock.
- · Dead-time control for each channel to avoid short-circuits in the power stage
- Concurrent update of the required T12/13 registers
- Generation of center-aligned and edge-aligned PWM
- Supports single-shot mode
- · Supports many interrupt request sources
- · Hysteresis-like control mode

Timer T13 Features:

- · One independent compare channel with one output
- 16-bit resolution, maximum count frequency = 2 x peripheral clock frequency
- Can be synchronized to T12
- Interrupt generation at period-match and compare-match
- Supports single-shot mode

Additional Features:

- Implements block commutation for Brushless DC-drives
- Position detection via Hall-sensor pattern
- Automatic rotational speed measurement for block commutation
- Integrated error handling
- Fast emergency stop without CPU load via external signal (CTRAP)
- Control modes for multi-channel AC-drives
- Output levels can be selected and adapted to the power stage

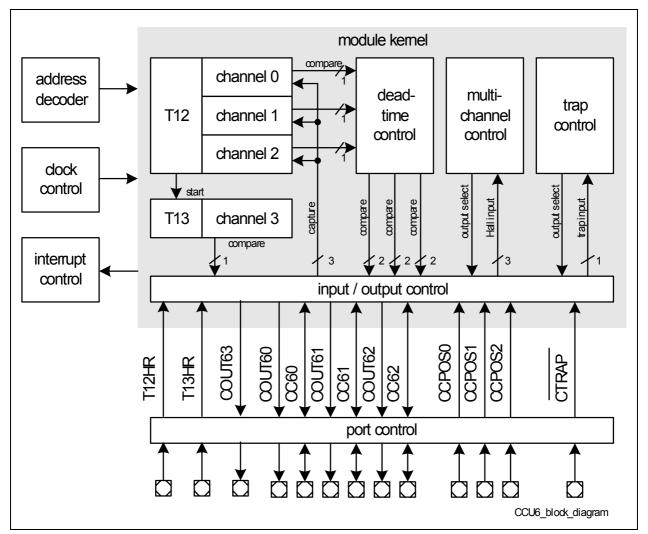


Figure 15-1 CCU6 Block Diagram

15.1 Functional Description

15.1.1 Timer T12

The timer T12 is built with three channels in capture/compare mode. The input clock for timer T12 can be from f_{CCU6} to a maximum of $f_{CCU6}/128$ and is configured by bit field T12CLK. In order to support higher clock frequencies, an additional prescaler factor of 1/256 can be enabled for the prescaler of T12 if bit T12PRE = 1.

The timer period, compare values, passive state selects bits and passive levels bits are written to shadow registers and not directly to the actual registers, while the read access targets the registers actually used (except for the three compare channels, where both the actual and the shadow registers can be read). The transfer from the shadow registers to the actual registers is enabled by setting the shadow transfer enable bit STE12.

If this transfer is enabled, the shadow registers are copied to the respective registers as soon as the associated timer reaches the value zero the next time (being cleared in edge-aligned mode or counting down to 1 in center-aligned mode). When timer T12 is operating in center-aligned mode, it will also copy the registers (if enabled by STE12) if it reaches the currently programmed period value (counting up).

When timer T12 is stopped, the shadow transfer takes place immediately if the corresponding bit STE12 is set. Once the transfer is complete, the respective bit STE12 is cleared automatically.

Figure 15-2 shows an overview of Timer T12.

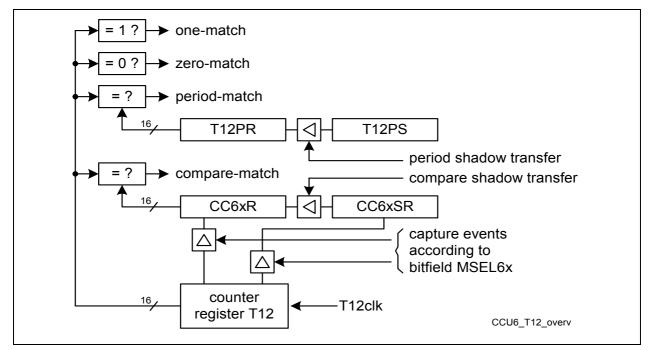


Figure 15-2 T12 Overview

15.1.1.1 Timer Configuration

Register T12 represents the counting value of timer T12. It can be written only while timer T12 is stopped. Write actions while T12 is running are not taken into account. Register T12 can always be read by software.

In edge-aligned mode, T12 only counts up, whereas in center-aligned mode, T12 can count up and down.

Timer T12 can be started and stopped by using bit T12R by hardware or software.

- Bit field T12RSEL defines the event on pin T12HR: rising edge, falling edge, or either of these two edges, that can set the run bit T12R by hardware.
- If bit field T12RSEL = 00_B , the external setting of T12R is disabled and the timer run bit can only be controlled by software. Bit T12R is set/reset by software by setting bit T12RS or T12RR.
- In single-shot mode, bit T12R is reset by hardware according to the function defined by bit T12SSC. If bit T12SSC = 1, the bit T12R is reset by hardware when:
 - T12 reaches its period value in edge-aligned mode
 - T12 reaches the value 1 while counting down in center-aligned mode

Register T12 can be reset to zero by setting bit T12RES. Setting of T12RES has no impact on run bit T12R.

15.1.1.2 Counting Rules

With reference to the T12 input clock, the counting sequence is defined by the following counting rules:

T12 in edge-aligned mode (Bit CTM = 0)

The count direction is set to counting up (CDIR = 0). The counter is reset to zero if a period-match is detected, and the T12 shadow register transfer takes place if STE12 = 1.

T12 in center-aligned mode (Bit CTM = 1)

- The count direction is set to counting up (CDIR = 0) if a one-match is detected while counting down.
- The count direction is set to counting down (CDIR = 1) if a period-match is detected while counting up.
 - If STE12 = 1, shadow transfer takes place when:
 - a period-match is detected while counting up
 - a one-match is detected while counting down

The timer T12 prescaler is reset when T12 is not running to ensure reproducible timings and delays.

15.1.1.3 Switching Rules

Compare actions take place in parallel for the three compare channels. Depending on the count direction, the compare matches have different meanings. In order to get the PWM information independent of the output levels, two different states have been introduced for the compare actions: the active state and the passive state. Both these states are used to generate the desired PWM as a combination of the control by T13, the trap control unit and the multi-channel control unit. If the active state is interpreted as a 1 and the passive state as a 0, the state information is combined with a logical AND function.

- active AND active = active
- active AND passive = passive
- passive AND passive = passive

The compare states change with the detected compare-matches and are indicated by the CC6xST bits. The compare states of T12 are defined as follows:

- · passive if the counter value is below the compare value
- · active if the counter value is above the compare value

This leads to the following switching rules for the compare states:

- set to the active state when the counter value reaches the compare value while counting up
- reset to the passive state when the counter value reaches the compare value while counting down
- reset to the passive state in case of a zero-match without compare-match while counting up
- set to the active state in case of a zero-match with a parallel compare-match while counting up

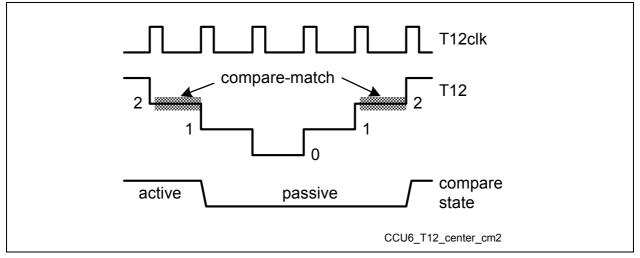


Figure 15-3 Compared States for Compare Value = 2

The switching rules are considered only while the timer is running. As a result, write actions to the timer registers while the timer is stopped do not lead to compare actions.

15.1.1.4 Compare Mode of T12

In compare mode, the registers CC6xR (x = 0 - 2) are the actual compare registers for T12. The values stored in CC6xR are compared (all three channels in parallel) to the counter value of T12. The register CC6xR can only be read by software and the modification of the value is done by a shadow register transfer from register CC6xSR.

Register T12PR contains the period value for timer T12. The period value is compared to the actual counter value of T12 and the resulting counter actions depend on the defined counting rules.

Figure 15-4 shows an example in the center-aligned mode without dead-time. The bit CC6xST indicates the occurrence of a capture or compare event of the corresponding channel. It can be set (if it is 0) by the following events:

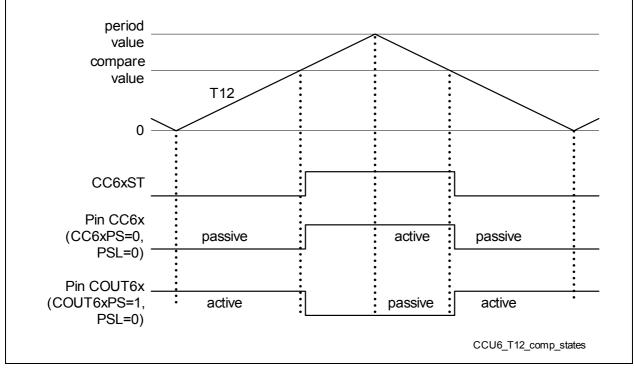
- a software set (MCC6xS)
- a compare set event (T12 counter value above the compare value) if the T12 runs and if the T12 set event is enabled
- upon a capture set event

The bit CC6xST can be reset (if it is 1) by the following events:

- a software reset (MCC6xR)
- a compare reset event (T12 counter value below the compare value) if the T12 runs and if the T12 reset event is enabled (including in single-shot mode at the end of the T12 period)
- a reset event in the hysteresis-like control mode

The bit CC6xPS represents passive state select bit. The timer T12's two output lines (CC6x, COUT6x) can be selected to be in the passive state while CC6xST is 0 (with CC6xPS = 0) or while CC6xST is 1 (with CC6xPS = 1).

The output level that is driven while the output is in the passive state is defined by the corresponding bit in bit field PSL.


Figure 15-5 shows the settings of CC6xPS/COUT6xPS and PSL for different applications. The examples are in the center-aligned mode with dead-time.

Hardware modifications of the compare state bits are only possible while timer T12 is running. Therefore, the bit T12R can be used to enable/disable the modification by hardware.

XC878CLM

Capture/Compare Unit 6

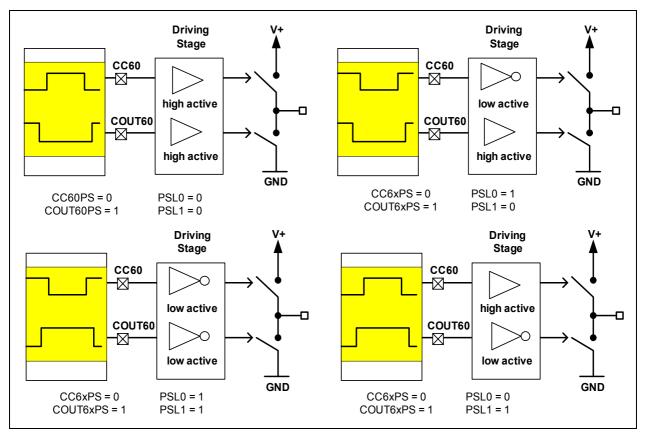


Figure 15-5 Different settings of CC6xPS/COUT6xPS and PSL

For the hysteresis-like compare mode (MSEL6x = 1001_B) (see Section 15.1.1.9), the setting of the compare state bit is possible only while the corresponding input CCPOSx = 1 (inactive).

If the hall sensor mode (MSEL6x = 1000_B) is selected (see Section 15.1.6), the compare state bits of the compare channels 1 and 2 are modified by the timer T12 in order to indicate that a programmed time interval has elapsed.

The set is only generated when bit CC6xST is reset; a reset can only take place when the bit is set. Thus, the events triggering the set and reset actions of the CC6xST bit must be combined. This OR-combination of the resulting set and reset permits the reload of the dead-time counter to be triggered (see **Figure 15-6**). This is triggered only if bit CC6xST is changed, permitting a correct PWM generation with dead-time and the complete duty cycle range of 0% to 100% in edge-aligned and center-aligned modes.

15.1.1.5 Duty Cycle of 0% and 100%

These counting and switching rules ensure a PWM functionality in the full range between 0% and 100% duty cycle (duty cycle = active time/total PWM period). In order to obtain a duty cycle of 0% (compare state never active), a compare value of T12P+1 must be programmed (for both compare modes). A compare value of 0 will lead to a duty cycle of 100% (compare state always active).

15.1.1.6 Dead-time Generation

In most cases, the switching behavior of the connected power switches is not symmetrical with respect to the times needed to switch on and to switch off. A general problem arises if the time taken to switch on is less than the time to switch off the power device. This leads to a short-circuit in the inverter bridge leg, which may damage the entire system. In order to solve this problem by hardware, the CCU6 contains a programmable dead-time counter, which delays the passive to active edge of the switching signals (the active to passive edge is not delayed).

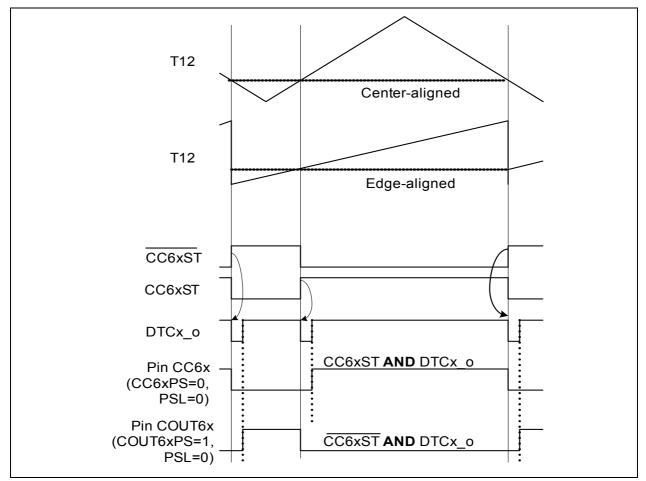


Figure 15-6 PWM-signals with Dead-time Generation

Register T12DTC controls the dead-time generation for the timer T12 compare channels. Each channel can be independently enabled/disabled for dead-time generation by bit DTEx. If enabled, the transition from passive state to active state is delayed by the value defined by bit field DTM (8-bit down counter, clocked with T12CLK). The dead-time counter can only be reloaded when it is zero.

Each of the three channels works independently with its own dead-time counter, trigger and enable signals. The value of bit field DTM is valid for all three channels.

15.1.1.7 Capture Mode

In capture mode, the bits CC6xST indicate the occurrence of the selected capture event according to the bit fields MSEL6x.

- MSEL6x = 01XX_B, double register capture mode (see **Table 15-6**)
- MSEL6x = $101X_B$ or $11XX_B$, multi-input capture modes (see **Table 15-8**)

A rising and/or a falling edge on the pins CC6x or CCPOSx can be selected as the capture event that is used to transfer the contents of timer T12 to the CC6xR and

CC6xSR registers. In order to work in capture mode, the capture pins must be configured as inputs.

There are several ways to store the captured values in the registers. For example, in double register capture mode, the timer value is stored in the channel shadow register CC6xSR. The value previously stored in this register is simultaneously copied to the channel register CC6xR. The software can then check the newly captured value while still preserving the possibility of reading the value captured earlier.

Note: In capture mode, a shadow transfer can be requested according to the shadow transfer rules, except for the capture/compare registers that are left unchanged.

15.1.1.8 Single-Shot Mode

The single-shot mode of timer T12 is selected when bit T12SSC is set to 1. In single-shot mode, the timer T12 stops automatically at the end of its counting period. Figure 15-7 shows the functionality at the end of the timer period in edge-aligned and center-aligned modes. If the end of period event is detected while bit T12SSC is set, the bit T12R and all CC6xST bits are reset.

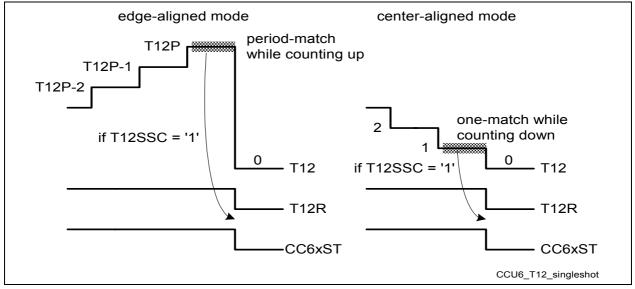


Figure 15-7 End of Single-Shot Mode of T12

15.1.1.9 Hysteresis-Like Control Mode

The hysteresis-like control mode (MSEL6x = 1001_B) offers the possibility of switching off the PWM output, if the input CCPOSx becomes 0, by resetting bit CC6xST. This can be used as a simple motor control feature by using a comparator to indicate, for example, over-current. While CCPOSx = 0, the PWM outputs of the corresponding channel are driving their passive levels. The setting of bit CC6xST is only possible while CCPOSx = 1. Figure 15-8 shows an example of hysteresis-like control mode.

This mode can be used to introduce a timing-related behavior to a hysteresis controller. A standard hysteresis controller detects if a value exceeds a limit and switches its output according to the compare result. Depending on the operating conditions, the switching frequency and the duty cycle may change constantly.

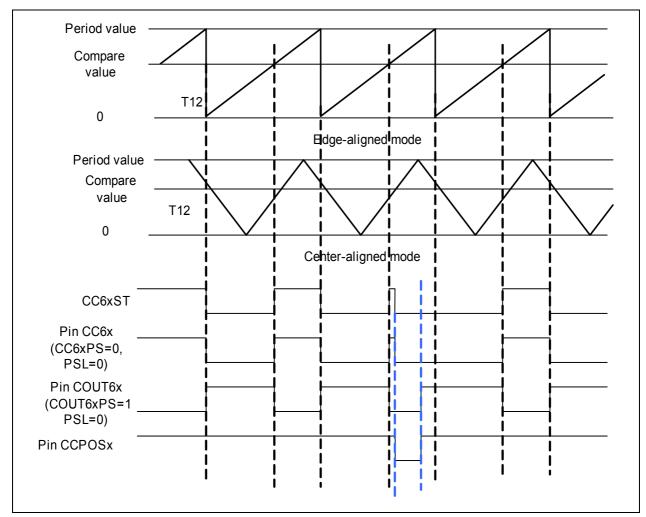


Figure 15-8 Hysteresis-Like Control Mode

15.1.2 Timer T13

The timer T13 is similar to timer T12, except that it has only one channel in compare mode. The counter can only count up (similar to the edge-aligned mode of T12). The input clock for timer T13 can be from $f_{\rm CCU6}$ to a maximum of $f_{\rm CCU6}$ /128 and is configured by bit field T13CLK. In order to support higher clock frequencies, an additional prescaler factor of 1/256 can be enabled for the prescaler of T13 if bit T13PRE = 1.

The T13 shadow transfer, in case of a period-match, is enabled by bit STE13. During the T13 shadow transfer, the contents of register CC63SR are transferred to register CC63R. Both registers can be read by software, while only the shadow register can be written by software.

The bits CC63PS, T13IM and PSL63 have shadow bits. The contents of these shadow bits are transferred to the actually used bits during the T13 shadow transfer. Write actions target the shadow bits, while read actions deliver the value of the actually used bits.

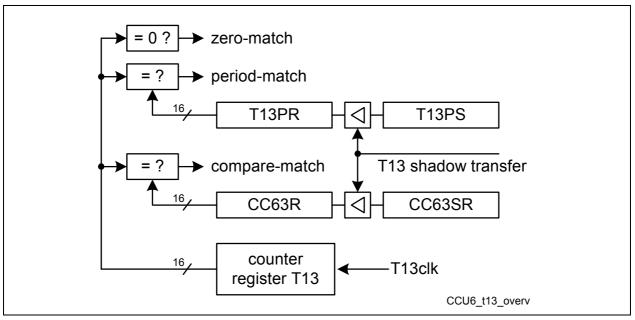


Figure 15-9 T13 Overview

Timer T13 counts according to the same counting and switching rules as timer T12 in edge-aligned mode. **Figure 15-9** shows an overview of Timer T13.

15.1.2.1 Timer Configuration

Register T13 represents the counting value of timer T13. It can be written only while the timer T13 is stopped. Write actions are not taken into account while T13 is running. Register T13 can always be read by software. Timer T13 supports only edge-aligned mode (counting up).

Timer T13 can be started and stopped by using bit T13R by hardware or software.

- Bit T13R is set/reset by software by setting bit T13RS or T13RR.
- In single-shot mode, if bit T13SSC = 1, the bit T13R is reset by hardware when T13 reaches its period value.
- Bit fields T13TEC and T13TED select the trigger event that will set bit T13R for synchronization of different T12 compare events.

The T13 counter register can be reset to zero by setting bit T13RES. Setting of T13RES has no impact on bit T13R.

15.1.2.2 Compare Mode

Register CC63R is the actual compare register for T13. The value stored in CC63R is compared to the counter value of T13. The register CC63R can only be read by software and the modification of the value is done by a shadow register transfer from register CC63SR. The corresponding shadow register CC63SR can be read and written by software.

Register T13PR contains the period value for timer T13. The period value is compared to the actual counter value of T13 and the resulting counter actions depend on the defined counting rules.

The bit CC63ST indicates the occurrence of a compare event of the corresponding channel. It can be set (if it is 0) by the following events:

- a software set (MCC63S)
- a compare set event (T13 counter value above the compare value) if the T13 runs and if the T13 set event is enabled

The bit CC63ST can be reset (if it is 1) by the following events:

- a software reset (MCC63R)
- a compare reset event (T13 counter value below the compare value) if the T13 runs and if the T13 reset event is enabled (including in single-shot mode at the end of the T13 period)

Timer T13 is used to modulate the other output signals with a T13 PWM. In order to decouple COUT63 from the internal modulation, the compare state can be selected independently by bits T13IM and COUT63PS.

15.1.2.3 Single-Shot Mode

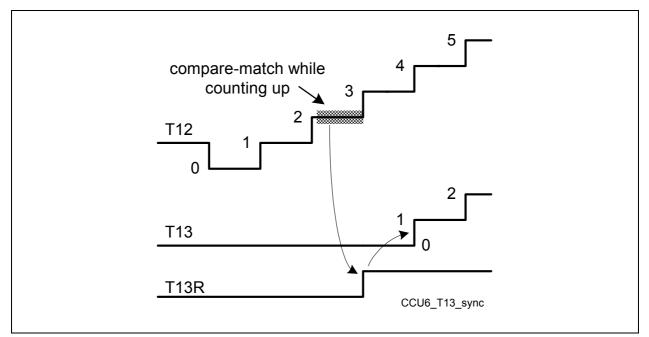
The single-shot mode of timer T13 is selected when bit T13SSC is set to 1. In single-shot mode, the timer T13 stops automatically at the end of its counting period. If the end of period event is detected while bit T13SSC is set, the bit T13R and the bit CC63ST are reset.

15.1.2.4 Synchronization of T13 to T12

The timer T13 can be synchronized on a T12 event. The events include:

- a T12 compare event on channel 0
- a T12 compare event on channel 1
- a T12 compare event on channel 2
- any T12 compare event on channel 0, 1, or 2
- a period-match of T12
- a zero-match of T12 (while counting up)
- any edge of inputs CCPOSx

The bit fields T13TEC and T13TED select the event that is used to start timer T13. This event sets bit T13R by hardware and T13 starts counting. Combined with the single-shot mode, this can be used to generate a programmable delay after a T12 event.



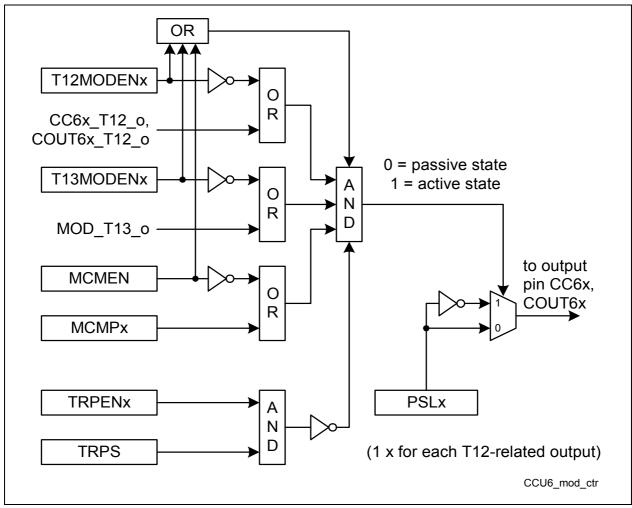

Figure 15-10 Synchronization of T13 to T12

Figure 15-10 shows the synchronization of T13 to a T12 event. The selected event in this example is a compare-match (compare value = 2) while counting up. The clocks of T12 and T13 can be different (use other prescaler factor), but in this example T12CLK is shown as equal to T13CLK for the sake of simplicity.

15.1.3 Modulation Control

The modulation control part combines the different modulation sources (CC6x_T12_o and COUT6x_T12_o are the output signals that are configured with CC6xPS/COUT6xPS; MOD_T13_o is the output signal after T13 Inverted Modulation (T13IM)). Each modulation source can be individually enabled per output line. Furthermore, the trap functionality is taken into account to disable the modulation of the corresponding output line during the trap state (if enabled).

Figure 15-11 Modulation Control of T12-related Outputs

For each of the six T12-related output lines (represented by "x") in the Figure 15-11:

- T12MODENx enables the modulation by a PWM pattern generated by timer T12
- T13MODENx enables the modulation by a PWM pattern generated by timer T13
- MCMPx chooses the multi-channel patterns
- TRPENx enables the trap functionality
- PSLx defines the output level that is driven while the output is in the passive state

As shown in **Figure 15-12**, the modulation control part for the T13-related output COUT63 combines the T13 output signal (COUT63_T13_o is the output signal that is configured by COUT63PS) and the enable bit ECT13O with the trap functionality. The output level of the passive state is selected by bit PSL63.

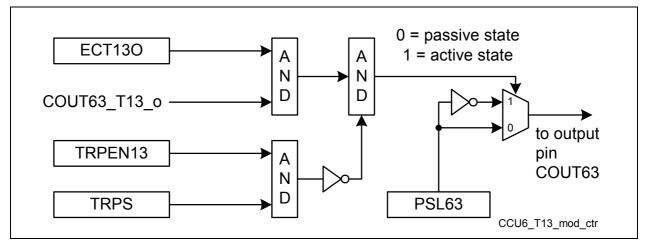
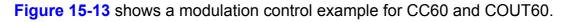



Figure 15-12 Modulation Control of the T13-related Output COUT63

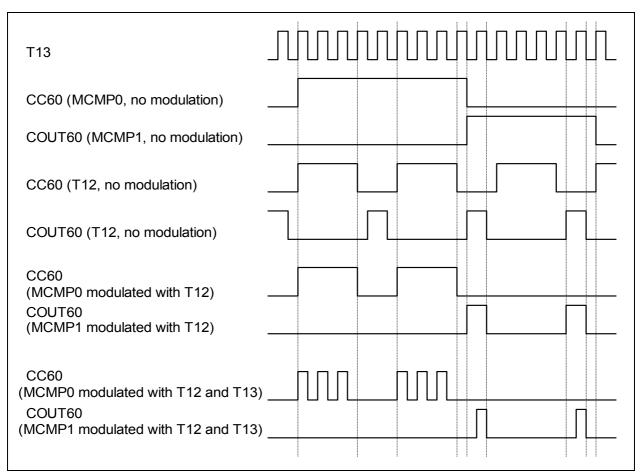


Figure 15-13 Modulation Control Example for CC60 and COUT60

15.1.4 Trap Handling

<u>The trap</u> functionality permits the PWM outputs to react to the state of the input pin CTRAP. This functionality can be used to switch off the power devices if the trap input becomes active (e.g., as emergency stop).

During the trap state, the selected outputs are forced into the passive state and no active modulation is possible. The trap state is entered immediately by hardware if the CTRAP input signal becomes active and the trap function is enabled by bit TRPPEN. It can also be entered by software by setting bit TRPF (trap input flag), thus leading to TRPS = 1 (trap state indication flag). The trap state can be left when the input is inactive by software control and synchronized to the following events:

- TRPF is automatically reset after $\overline{\text{CTRAP}}$ becomes inactive (if TRPM2 = 0)
- TRPF must be reset by software after $\overline{\text{CTRAP}}$ becomes inactive (if TRPM2 = 1)
- synchronized to T12 PWM after TRPF is reset

(T12 period-match in edge-aligned mode or one-match while counting down in center-aligned mode)

- synchronized to T13 PWM after TRPF is reset (T13 period-match)
- no synchronization to T12 or T13

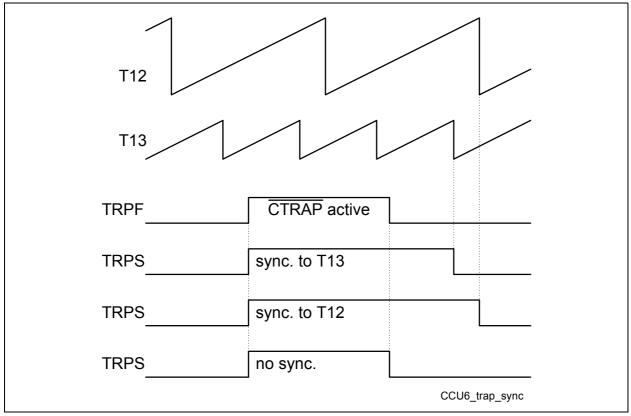


Figure 15-14 Trap State Synchronization (with TRPM2 = 0)

15.1.5 Multi-Channel Mode

The multi-channel mode offers the possibility of modulating all six T12-related outputs. The bits in bit field MCMP are used to select the outputs that may become active. If the multi-channel mode is enabled (bit MCMEN = 1), only those outputs that have a 1 at the corresponding bit positions in bit field MCMP may become active.

This bit field has its own shadow bit field MCMPS, which can be written by software. The transfer of the new value in MCMPS to the bit field MCMP can be triggered by and synchronized to T12 or T13 events. This structure permits the software to write the new value, which is then taken into account by the hardware at a well-defined moment and synchronized to a PWM period. This avoids unintended pulses due to unsynchronized modulation sources (T12, T13, SW).

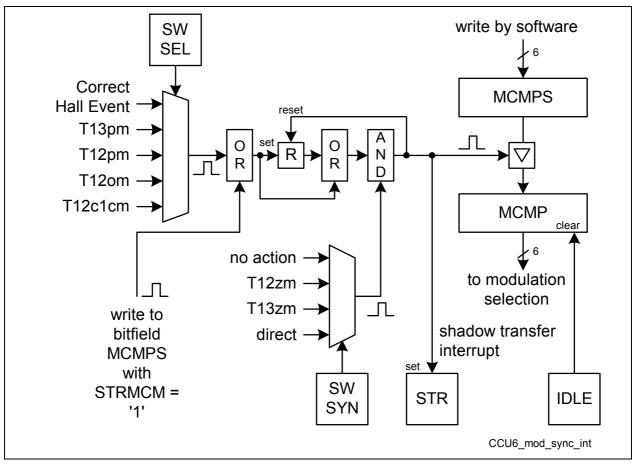


Figure 15-15 Modulation Selection and Synchronization

Figure 15-15 shows the modulation selection for the multi-channel mode. The event that triggers the update of bit field MCMP is chosen by SWSEL. If the selected switching event occurs, the reminder flag R is set. This flag monitors the update request and it is automatically reset when the update takes place. In order to synchronize the update of MCMP to a PWM generated by T12 or T13, bit field SWSYN allows the selection of the

synchronization event, which leads to the transfer from MCMPS to MCMP. Due to this structure, an update takes place with a new PWM period.

The update can also be requested by software by writing to bit field MCMPS with the shadow transfer request bit STRMCM set. If this bit is set during the write action to the register, the flag R is automatically set. By using this, the update takes place completely under software control.

A shadow transfer interrupt can be generated when the shadow transfer takes place. The possible hardware request events are:

- a T12 period-match while counting up (T12pm)
- a T12 one-match while counting down (T12om)
- a T13 period-match (T13pm)
- a T12 compare-match of channel 1 (T12c1cm)
- a correct Hall event

The possible hardware synchronization events are:

- a T12 zero-match while counting up (T12zm)
- a T13 zero-match (T13zm)

15.1.6 Hall Sensor Mode

In **Brushless-DC** motors, the next multi-channel state values depend on the pattern of the Hall inputs. There is a strong correlation between the **Hall pattern** (CURH) and the **modulation pattern** (MCMP). Because of different machine types, the modulation pattern for driving the motor can vary. Therefore, it is beneficial to have wide flexibility in defining the correlation between the Hall pattern and the corresponding modulation pattern. The CCU6 offers this by having a register which contains the actual Hall pattern (CURHS), the next expected Hall pattern (EXPHS), and its output pattern (MCMPS). At every correct Hall event, a new Hall pattern with its corresponding output pattern can be loaded (from a predefined table) by software into the register MCMOUTS. This shadow register can also be loaded by a write action on MCMOUTS with bit STRHP = 1. In case of a phase delay (generated by T12 channel 1), a new pattern can be loaded when the multi-channel mode shadow transfer (indicated by bit STR) occurs.

15.1.6.1 Sampling of the Hall Pattern

The Hall pattern (on CCPOSx) is sampled with the module clock f_{CCU6} . By using the dead-time counter DTC0 (mode MSEL6x = 1000_B), a hardware **noise filter** can be implemented to suppress spikes on the Hall inputs. In case of a Hall event, the DTC0 is reloaded, and it starts counting and generates a delay between the detected event and the sampling point. After the counter value of 1 is reached, the CCPOSx inputs are sampled (without noise and spikes) and are compared to the current Hall pattern (CURH) and to the expected Hall pattern (EXPH). If the sampled pattern equals to the current pattern, it means that the edge on CCPOSx was due to a noise spike and no action will be triggered (implicit noise filter by delay). If the sampled pattern equals to the next expected pattern, the edge on CCPOSx was a correct Hall event, and the bit CHE is set which causes an interrupt.

If it is required that the multi-channel mode and the Hall pattern comparison work independently of timer T12, the delay generation by DTC0 can be bypassed. In this case, timer T12 can be used for other purposes.

Bit field HSYNC defines the source for the sampling of the Hall input pattern and the comparison to the current and the expected Hall pattern bit fields. The hall compare action can also be triggered by software by writing a 1 to bit SWHC. The triggering sources for the sampling by hardware include:

- Any edge at one of the inputs CCPOSx (x = 0 2)
- A T13 compare-match
- A T13 period-match
- A T12 period-match (while counting up)
- A T12 one-match (while counting down)
- A T12 compare-match of channel 0 (while counting up)
- A T12 compare-match of channel 0 (while counting down)

This correct Hall event can be used as a transfer request event for register MCMOUTS. The transfer from MCMOUTS to MCMOUT transfers the new CURH-pattern as well as the next EXPH-pattern. In case the sampled Hall inputs were neither the current nor the expected Hall pattern, the bit WHE (wrong Hall event) is set, which can also cause an interrupt and set the IDLE mode to clear MCMP (modulation outputs are inactive). To restart from IDLE, the transfer request of MCMOUTS must be initiated by software (bit STRHP and bit fields SWSEL/SWSYN).

15.1.6.2 Brushless-DC Control

For **Brushless-DC** motors, there is a special mode ($MSEL6x = 1000_B$) which is triggered by a change of the Hall inputs (CCPOSx). In this case, T12's channel 0 acts in capture function, channel 1 and 2 act in compare function (without output modulation), and the multi-channel-block is used to trigger the output switching together with a possible modulation of T13.

After the detection of a valid Hall edge, the T12 count value is captured to channel 0 (representing the actual motor speed) and the T12 is reset. When the timer reaches the compare value in channel 1, the next multi-channel state is switched by triggering the shadow transfer of bit field MCMP. This trigger event can be combined with several conditions which are necessary to implement noise filtering (correct Hall event) and to synchronize the next multi-channel state to the modulation sources (avoiding spikes on the output lines). This compare function of channel 1 can be used as a phase delay for the position input to the output switching which is necessary if a sensorless back-EMF technique is used instead of Hall sensors. The compare value in channel 2 can be used as a time-out trigger (interrupt) indicating that the motor's destination speed is far below the desired value (which can be caused by an abnormal load change). In this mode, the modulation of T12 must be disabled (T12MODENx = 0).

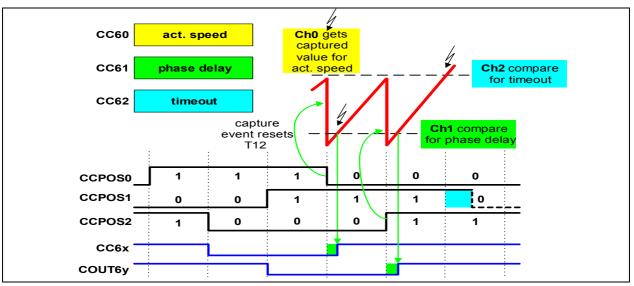


Figure 15-16 Timer T12 Brushless-DC Mode (all MSEL6x = 1000_B)

Table 15-1 lists an example of block commutation in BLDC motor control. If the input signal combination CCPOS0-CCPOS2 changes its state, the outputs CC6x and COUT6x are set to their new states.

Figure 15-17 shows the block commutation in rotate left mode and **Figure 15-18** shows the block commutation in rotate right mode. These figures are derived directly from **Table 15-1**.

Mode	CCPOS0- CCPOS2 Inputs		CC60 - CC62 Outputs			COUT60 - COUT62 Outputs			
	CCP OS0	CCP OS1	CCP OS2	CC60	CC61	CC62	COUT 60	COUT 61	COUT 62
Rotate left,	1	0	1	inactive	inactive	active	inactive	active	inactive
0° phase shift	1	0	0	inactive	inactive	active	active	inactive	inactive
	1	1	0	inactive	active	inactive	active	inactive	inactive
	0	1	0	inactive	active	inactive	inactive	inactive	active
	0	1	1	active	inactive	inactive	inactive	inactive	active
	0	0	1	active	inactive	inactive	inactive	active	inactive
Rotate right	1	1	0	active	inactive	inactive	inactive	active	inactive
	1	0	0	active	inactive	inactive	inactive	inactive	active
	1	0	1	inactive	active	inactive	inactive	inactive	active
	0	0	1	inactive	active	inactive	active	inactive	inactive
	0	1	1	inactive	inactive	active	active	inactive	inactive
	0	1	0	inactive	inactive	active	inactive	active	inactive
Slow-down	Х	Х	Х	inactive	inactive	inactive	active	active	active
Idle ¹⁾	Х	Х	Х	inactive	inactive	inactive	inactive	inactive	inactive

 Table 15-1
 Block Commutation Control Table

¹⁾ In case the sampled Hall inputs were neither the current nor the expected Hall pattern, the bit WHE (Wrong Hall Event) is set, which can also cause an interrupt and set the IDLE mode to clear MCMP (modulation outputs are inactive).

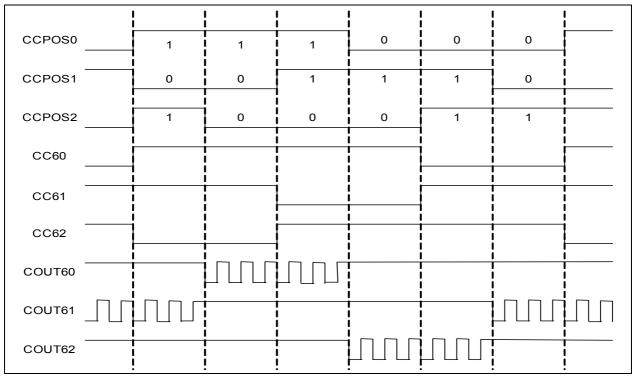


Figure 15-17 Block Commutation in Rotate Left Mode

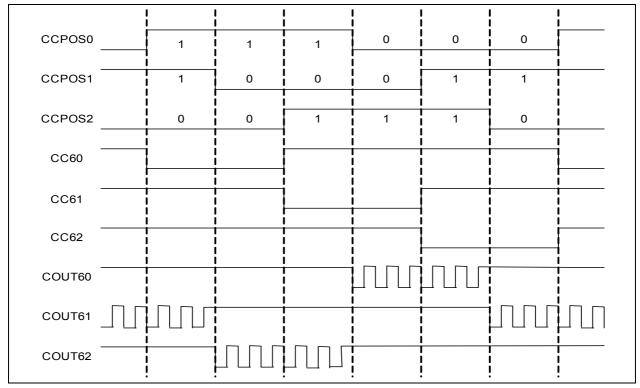


Figure 15-18 Block Commutation in Rotate Right Mode

15.1.7 Interrupt Generation

The interrupt generation can be triggered by the interrupt event or the setting of the corresponding interrupt bit in register IS by software. The interrupt is generated independently of the interrupt flag in register IS. Register IS can only be read; write actions have no impact on the contents of this register. The software can set or reset the bits individually by writing to register ISS or register ISR, respectively.

If enabled by the related interrupt enable bit in register IEN, an interrupt will be generated. The interrupt sources of the CCU6 module can be mapped to four interrupt output lines by programming the interrupt node pointer register INP.

15.1.8 Low Power Mode

If the CCU6 functionality is not required at all, it can be completely disabled by gating off its clock input for maximal power reduction. This is done by setting bit CCU_DIS in register PMCON1 as described below. Refer to **Chapter 8.1.4** for details on peripheral clock management.

PMCON1

Power Mode Control Register 1	
-------------------------------	--

Reset Value: 00_H

_	7	6	5	4	3	2	1	0
	0	CDC_DIS	CAN_DIS	MDU_DIS	T2CCU _DIS	CCU_DIS	SSC_DIS	ADC_DIS
	r	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description
CCU_DIS	2	rw	 CCU6 Disable Request. Active high. 0 CCU6 is in normal operation (default). 1 Request to disable the CCU6.
0	7	r	Reserved Returns 0 if read; should be written with 0.

15.1.9 Module Suspend Control

The timers of CCU6, Timer 12 and Timer 13, can be configured to stop their counting when the OCDS enters monitor mode (see **Chapter 18.3**) by setting their respective module suspend bits, T12SUSP and T13SUSP, in SFR MODSUSP.

MODSUSP

Reset Value: 01_H

7	6	5	4	3	2	1	0
	0	CCTSUSP	T21SUSP	T2SUSP	T13SUSP	T12SUSP	WDTSUSP
	r	rw	rw	rw	rw	rw	rw

Field	Bits	Тур	Description
T12SUSP	1	rw	Timer 12 Debug Suspend Bit0Timer 12 will not be suspended.1Timer 12 will be suspended.
T13SUSP	2	rw	Timer 13 Debug Suspend Bit0Timer 13 will not be suspended.1Timer 13 will be suspended.
0	[7:6]	r	Reserved Returns 0 if read; should be written with 0.

15.1.10 Port Connection

Table 15-2 shows how bits and bit fields must be programmed for the required I/O functionality of the CCU6 I/O lines. This table also shows the values of the peripheral input select registers.

Port Lines	PISEL Register Bit	Input/Output Control Register Bits	I/O
P3.6/CTRAP_0	ISTRP = 00 _B	P3_DIR.P6 = 0	Input
P5.5/CTRAP_1	ISTRP = 01 _B	P5_DIR.P5 = 0	Input
P0.2/CTRAP_2	ISTRP = 10 _B	P0_DIR.P2 = 0	Input
P4.7/CTRAP_3	ISTRP = 11 _B	P4_DIR.P7 = 0	Input
P5.3/CCPOS0_0	ISPOS0 = 00 _B	P5_DIR.P3 = 0	Input
P1.5/CCPOS0_1	ISPOS0 = 01 _B	P1_DIR.P5 = 0	Input
P3.1/CCPOS0_2	ISPOS0 = 10 _B	P3_DIR.P1 = 0	Input
P4.4/CCPOS0_3	ISPOS0 = 11 _B	P4_DIR.P4 = 0	Input
P5.4/CCPOS1_0	ISPOS1 = 00 _B	P5_DIR.P4 = 0	Input
P1.6/CCPOS1_1	ISPOS1 = 01 _B	P1_DIR.P6 = 0	Input
P3.0/CCPOS1_2	ISPOS1 = 10 _B	P3_DIR.P0 = 0	Input
P4.5/CCPOS1_3	ISPOS1 = 11 _B	P4_DIR.P5 = 0	Input
P5.5/CCPOS2_0	ISPOS2 = 00 _B	P5_DIR.P5 = 0	Input
P1.7/CCPOS2_1	ISPOS2 = 01 _B	P1_DIR.P7 = 0	Input
P3.2/CCPOS2_2	ISPOS2 = 10 _B	P3_DIR.P2 = 0	Input
P4.6/CCPOS2_3	ISPOS2 = 11 _B	P4_DIR.P6 = 0	Input
P3.0/CC60_0	ISCC60 = 00 _B	P3_DIR.P0 = 0	Input
	-	P3_DIR.P0 = 1	Output
		P3_ALTSEL0.P0 = 1	
		P3_ALTSEL1.P0 = 0	
P4.0/CC60_1	-	P4_DIR.P0 = 1	Output
		P4_ALTSEL0.P0 = 1	
		P4_ALTSEL1.P0 = 0	
P5.5/CC60_3	ISCC60 = 11 _B	P5_DIR.P5 = 0	Input

Table 15-2	Control Selection

Table 15-2	CCU6 I/O Control Selec	tion (cont'd)

Port Lines	PISEL Register Bit	Input/Output Control Register Bits	I/O
P3.1/COUT60_0	-	P3_DIR.P1 = 1	Output
		P3_ALTSEL0.P1 = 1	
		P3_ALTSEL1.P1 = 0	
P4.1/COUT60_1	-	P4_DIR.P1 = 1	Output
		P4_ALTSEL0.P1 = 1	
		P4_ALTSEL1.P1 = 0	
P3.2/CC61_0	ISCC61 = 00 _B	P3_DIR.P2 = 0	Input
	-	P3_DIR.P2 = 1	Output
		P3_ALTSEL0.P2 = 1	
		P3_ALTSEL1.P2 = 0	
P0.0/CC61_1	ISCC61 = 01 _B	P0_DIR.P0 = 0	Input
	_	P0_DIR.P0 = 1	Output
		P0_ALTSEL0.P0 = 0	
		P0_ALTSEL1.P0 = 1	
P3.1/CC61_2	ISCC61 = 10 _B	P3_DIR.P1 = 0	Input
	_	P3_DIR.P1 = 1	Output
		P3_ALTSEL0.P1 = 0	
		P3_ALTSEL1.P1 = 1	
P5.3/CC61_3	ISCC61 = 11 _B	P5_DIR.P3 = 0	Input
P4.4/CC61_4	-	P4_DIR.P4 = 1	Output
		P4_ALTSEL0.P4 = 1	
		P4_ALTSEL1.P4 = 0	
P3.3/COUT61_0	-	P3_DIR.P3 = 1	Output
		P3_ALTSEL0.P3 = 1	
		P3_ALTSEL1.P3 = 0	
P0.1/COUT61_1	-	P0_DIR.P1 = 1	Output
		P0_ALTSEL0.P1 = 0	
		P0_ALTSEL1.P1 = 1	

Table 15-2	CCU6 I/O Control Selection	(cont'd)

Port Lines	PISEL Register Bit	Input/Output Control Register Bits	I/O
P4.5/COUT61_2	-	P4_DIR.P5 = 1	Output
		P4_ALTSEL0.P5 = 1	
		P4_ALTSEL1.P5 = 0	
P3.4/CC62_0	ISCC62= 00 _B	P3_DIR.P4 = 0	Input
	-	P3_DIR.P4 = 1	Output
		P3_ALTSEL0.P4 = 1	
		P3_ALTSEL1.P4 = 0	
P0.4/CC62_1	ISCC62 = 01 _B	P0_DIR.P4 = 0	Input
	-	P0_DIR.P4 = 1	Output
		P0_ALTSEL0.P4 = 0	
		P0_ALTSEL1.P4 = 1	
P4.6/CC62_2	-	P4_DIR.P6 = 1	Output
		P4_ALTSEL0.P6 = 1	
		P4_ALTSEL1.P6 = 0	
P5.4/CC62_3	ISCC62 = 11 _B	P5_DIR.P4 = 0	Input
P3.5/COUT62_0	-	P3_DIR.P5 = 1	Output
		P3_ALTSEL0.P5 = 1	
		P3_ALTSEL1.P5 = 0	
P0.5/COUT62_1	-	P0_DIR.P5 = 1	Output
		P0_ALTSEL0.P5 = 0	
		P0_ALTSEL1.P5 = 1	
P4.7/COUT62_2	-	P4_DIR.P7 = 1	Output
		P4_ALTSEL0.P7 = 1	
		P4_ALTSEL1.P7 = 0	
P3.7/COUT63_0	-	P3_DIR.P7 = 1	Output
		P3_ALTSEL0.P7 = 1	
		P3_ALTSEL1.P7 = 0	
P0.3/COUT63_1	-	P0_DIR.P3 = 1	Output
		P0_ALTSEL0.P3 = 0	
		P0_ALTSEL1.P3 = 1	

Table 15-2 CCU6 I/O Control Selection (cont of	Table 15-2	CCU6 I/O Control Selection (cont'd)
--	------------	-------------------------------------

Port Lines	PISEL Register Bit	Input/Output Control Register Bits	I/O
P4.3/COUT63_2	-	P4_DIR.P3 = 1	Output
		P4_ALTSEL0.P3 = 0	
		P4_ALTSEL1.P3 = 1	
P1.6/T12HR_0	IST12HR = 00 _B	P1_DIR.P6 = 0	Input
P0.0/T12HR_1	IST12HR = 01 _B	P0_DIR.P0 = 0	Input
P5.3/T12HR_2	IST12HR = 10 _B	P5_DIR.P3 = 0	Input
P1.7/T13HR_0	IST13HR = 00 _B	P1_DIR.P7 = 0	Input
P0.1/T13HR_1	IST13HR = 01 _B	P0_DIR.P1 = 0	Input
P5.4/T13HR_2	IST13HR = 10 _B	P5_DIR.P4 = 0	Input

15.1.11 Synchronous Start of Timers

Timer 12 and Timer 13 can be started synchronously to the CCT timer of the T2CCU module. This is enabled by selecting T12HR_3 as the T12HR input and T13HR_3 as the T13HR input. In XC878, CCTST signal from T2CCU module is connected to both T12HR_3 and T13HR_3. If rising edge on T12HR_3 is selected as active edge by T12RSEL bit in TCTR2H register, the setting of bit CCTST in T2CCU_CCTCON register from 0 sets T12R bit. T13 can also be started synchronously with T12 and CCT as described in Table 15-3.

CCU Timer Input	PISEL Register Bit	Timer Run Selection
T12HR_3	IST12HR = 11 _B	TCTR2H.T12RSEL
T13HR_3	IST13HR = 11 _B	TCTR2H.T13RSEL

Table 15-3 Selection for Synchronous Start of Timer

15.2 Register Map

The CCU6 SFRs are located in the standard memory area (RMAP = 0) and are organized into 4 pages. The CCU6_PAGE register is located at address $A3_{H}$. It contains the page value and the page control information.

All CCU6 register names described in the following sections are referenced in other chapters of this document with the module name prefix "CCU6_", e.g., CCU6_CC63SRL.

The addresses (non-mapped) of the kernel SFRs are listed in Table 15-4.

Address	Page 0	Page 1	Page 2	Page 3	
9A _H	CC63SRL	CC63RL	T12MSELL	MCMOUTL	
9B _H	CC63SRH	CC63RH	T12MSELH	MCMOUTH	
9C _H	TCTR4L	T12PRL	IENL	ISL	
9D _H	TCTR4H	T12PRH	IENH	ISH	
9E _H	MCMOUTSL	T13PRL	INPL	PISEL0L	
9F _H	MCMOUTSH	T13PRH	INPH	PISEL0H	
A4 _H	ISRL	T12DTCL	ISSL	PISEL2	
A5 _H	ISRH	T12DTCH	ISSH		
A6 _H	CMPMODIFL	TCTR0L	PSLR		
A7 _H	TH CMPMODIFH		MCMCTR		
FA _H	CC60SRL	CC60RL	TCTR2L	T12L	
FB _H	CC60SRH	CC60RH	TCTR2H	T12H	
FC _H	CC61SRL	CC61RL	MODCTRL	T13L	
FD _H	CC61SRH	CC61RH	MODCTRH	T13H	
FE _H	CC62SRL	CC62RL	TRPCTRL	CMPSTATL	
FF _H	CC62SRH	CC62RH	TRPCTRH	CMPSTATH	

Table 15-4 SFR Address List for Pages 0-3

CCU6_PAGE Page Register for CCU6

Reset Value: 00_H

7	6	5	4	3	2	1	0
0	Ρ	STN	IR	0		PAGE	1
W	V	Ŵ		r		rwh	· · · · · · · · · · · · · · · · · · ·

Field	Bits	Туре	Description
PAGE	[2:0]	rwh	Page Bits When written, the value indicates the new page address. When read, the value indicates the currently active page = addr [y:x+1].
STNR	[5:4]	w	Storage NumberThis number indicates which storage bit field is the target of the operation defined by bit field OP.If $OP = 10_B$, the contents of PAGE are saved in STx before being overwritten with the new value.If $OP = 11_B$, the contents of PAGE are overwritten by the contents of STx. The value written to the bit positions of PAGE is ignored.00ST0 is selected.01ST1 is selected.10ST2 is selected.11ST3 is selected.

XC878CLM

Field	Bits	Туре	Description
OP	[7:6]	w	 Operation 0X Manual page mode. The value of STNR is ignored and PAGE is directly written. 10 New page programming with automatic page saving. The value written to the bit positions of PAGE is stored. In parallel, the previous contents of PAGE are saved in the storage bit field STx indicated by STNR. 11 Automatic restore page action. The value written to the bit positions PAGE is ignored and instead, PAGE is overwritten by the contents of the storage bit field STx indicated by STNR.
0	3	r	Reserved Returns 0 if read; should be written with 0.

15.3 Register Description

 Table 15-5 shows all registers associated with the CCU6 module.

For all CCU6 registers, the write-only bit positions (indicated by "w") always deliver the value of 0 when they are read out. If a hardware and a software request to modify a bit occur simultaneously, the software wins.

Register Short Name	Register Long Name	Description see	
System Regis	ters		
PISEL0L	Port Input Select Register 0 Low	Page 15-38	
PISEL0H	Port Input Select Register 0 High	Page 15-39	
PISEL2	Port Input Select Register 2	Page 15-40	
Timer T12 Reg	jisters		
T12L	Timer T12 Counter Register Low	Page 15-47	
T12H	Timer T12 Counter Register High	Page 15-47	
T12PRL	Timer T12 Period Register Low	Page 15-48	
T12PRH	Timer T12 Period Register High	Page 15-48	
CC6xRL	Capture/Compare Register for Channel CC6x Low	Page 15-49	
CC6xRH	Capture/Compare Register for Channel CC6x High	Page 15-49	
CC6xSRL	Compare Shadow Register for Channel CC6x Low	Page 15-49	
CC6xSRH	C6xSRH Compare Shadow Register for Channel CC6x High		
T12DTCL	Timer T12 Dead-Time Control Register Low	Page 15-51	
T12DTCH	Timer T12 Dead-Time Control Register High	Page 15-51	
Timer T13 Reg	gisters		
T13L	Timer T13 Counter Register Low	Page 15-52	
T13H	Timer T13 Counter Register High	Page 15-53	
T13PRL	Timer T13 Period Register Low	Page 15-53	
T13PRH	Timer T13 Period Register High	Page 15-54	
CC63RL	Page 15-54		

Table 15-5Registers Overview

Register Short Name	Register Long Name	Description see	
CC63RH	Capture/Compare Register for Channel CC63 High	CC63 Page 15-54	
CC63SRL	Capture/Compare Shadow Register for Channel CC63 Low	Page 15-55	
CC63SRH	Capture/Compare Shadow Register for Channel CC63 High	Page 15-55	
CCU6 Control	Registers		
CMPSTATL	Compare State Register High	Page 15-56	
CMPSTATH	Compare State Register High	Page 15-57	
CMPMODIFL	Compare State Modification Register Low	Page 15-59	
CMPMODIFH	Compare State Modification Register High	Page 15-59	
TCTR0L	Timer Control Register 0 Low	Page 15-60	
ICTR0H	Timer Control Register 0 High	Page 15-61	
TCTR2L	Timer Control Register 2 Low	Page 15-63	
TCTR2H	H Timer Control Register 2 High		
TCTR4L	R4L Timer Control Register 4 Low		
TCTR4H	Timer Control Register 4 High	Page 15-67	
Modulation Co	ntrol Registers		
MODCTRL	Modulation Control Register Low	Page 15-68	
MODCTRH	Modulation Control Register High	Page 15-69	
TRPCTRL	Trap Control Register Low	Page 15-70	
TRPCTRH	Trap Control Register High	Page 15-72	
PSLR	Passive State Level Register	Page 15-73	
MCMOUTSL	Multi_Channel Mode Output Shadow Register Low	Page 15-74	
MCMOUTSH	Multi_Channel Mode Output Shadow Register High	Page 15-75	
MCMOUTL	Multi_Channel Mode Output Register Low	Page 15-76	
мсмоитн	Multi_Channel Mode Output Register High	Page 15-78	
MCMCTR	Multi_Channel Mode Control Register	Page 15-79	

Table 15-5 Registers Overview (cont'd)

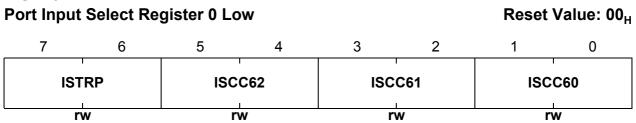

Register Short Name	Register Long Name	Description see		
T12MSELL	T12 Capture/Compare Mode Select Register Low	Page 15-43		
T12MSELH	T12 Capture/Compare Mode Select Register High	Page 15-45		
Interrupt Cont	rol Registers	·		
ISL	Interrupt Status Register Low	Page 15-80		
ISH	Interrupt Status Register High Pag			
ISSL	Interrupt Status Set Register Low	Page 15-84		
ISSH	Interrupt Status Set Register High Page 1			
ISRL	Interrupt Status Reset Register Low Page 15-8			
ISRH	Interrupt Status Reset Register High	Page 15-87		
IENL	Interrupt Enable Register Low	Page 15-88		
IENH	Interrupt Enable Register High Page 1			
INPL	Interrupt Node Pointer Register Low	Page 15-91		
INPH	Interrupt Node Pointer Register High			

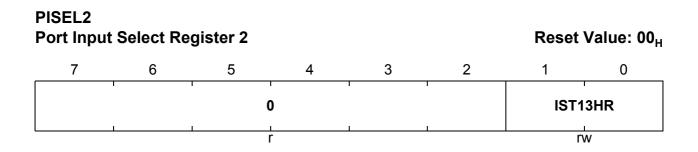
Table 15-5 Registers Overview (cont'd)

15.3.1 System Registers

Registers PISEL0 and PISEL2 contain bit fields that select the actual input port for the module inputs. This permits the adaptation of the pin functionality of the device to the application's requirements. The output pins are chosen according to the registers in the ports.

PISEL0L

Field	Bits	Туре	Description
ISCC60	1:0	rw	Input Select for CC60This bit field defines the port pin that is used for theCC60 capture input signal.00The input pin for CC60_0.01Reserved10Reserved11The input pin for CC60_3.
ISCC61	3:2	rw	Input Select for CC61This bit field defines the port pin that is used for theCC61 capture input signal.00The input pin for CC61_0.01The input pin for CC61_1.10The input pin for CC61_2.11The input pin for CC61_3.
ISCC62	5:4	rw	Input Select for CC62This bit field defines the port pin that is used for theCC62 capture input signal.00The input pin for CC62_0.01The input pin for CC62_1.10Reserved11The input pin for CC62_3.
ISTRP	7:6	rw	Input Select for CTRAPThis bit field defines the port pin that is used for theCTRAP input signal.00The input pin for CTRAP_0.01The input pin for CTRAP_1.10The input pin for CTRAP_2.11The input pin for CTRAP_3


PISEL0H Port Input Select Register 0 High

Reset Value: 00_H

7	6	5	4	3	2	1	0
IST1	2HR	ISPO	DS2	ISPO	OS1	ISP	OS0
rw		rv	N	۳۱	N	r	W

Field	Bits	Туре	Description
ISPOS0	1:0	rw	Input Select for CCPOS0This bit field defines the port pin that is used for theCCPOS0 input signal.00The input pin for CCPOS0_0.01The input pin for CCPOS0_1.10The input pin for CCPOS0_2.11The input pin for CCPOS0_3.
ISPOS1	3:2	rw	Input Select for CCPOS1This bit field defines the port pin that is used for theCCPOS1 input signal.00The input pin for CCPOS1_0.01The input pin for CCPOS1_1.10The input pin for CCPOS1_2.11The input pin for CCPOS1_3
ISPOS2	5:4	rw	Input Select for CCPOS2This bit field defines the port pin that is used for theCCPOS2 input signal.00The input pin for CCPOS2_0.01The input pin for CCPOS2_1.10The input pin for CCPOS2_2.11The input pin for CCPOS2_3
IST12HR	7:6	rw	Input Select for T12HRThis bit field defines the port pin that is used for theT12HR input signal.00The input pin for T12HR_0.01The input pin for T12HR_1.10The input pin for T12HR_2.11The input pin for T12HR_3.

Field	Bits	Туре	Description
IST13HR	1:0	rw	 Input Select for T13HR This bit field defines the port pin that is used for the T13HR input signal. 00 The input pin for T13HR_0. 01 The input pin for T13HR_1. 10 The input pin for T13HR_2. 11 The input pin for T13HR_3.
0	7:2	r	Reserved Returns 0 if read; should be written with 0.

15.3.2 Timer 12 – Related Registers

The generation of the patterns for a 3-channel PWM is based on timer T12. The registers related to timer T12 can be concurrently updated (with well-defined conditions) in order to ensure consistency of the three PWM channels.

Timer T12 supports capture and compare modes, which can be independently selected for the three channels CC60, CC61, and CC62.

Register T12MSEL contains control bits to select the capture/compare functionality of the three channels of timer T12. **Table 15-6**, **Table 15-7** and **Table 15-8** define and elaborate some of the capture/compare modes selectable. Refer to the following register description for the selection.

Table 15-6 Double-Register Capture Modes

Description

- 0100 The contents of T12 are stored in CC6nR after a rising edge and in CC6nSR after a falling edge on the input pin CC6n.
- 0101 The value stored in CC6nSR is copied to CC6nR after a rising edge on the input pin CC6n. The actual timer value of T12 is simultaneously stored in the shadow register CC6nSR. This feature is useful for time measurements between consecutive rising edges on pins CC6n. COUT6n is I/O.

Table 15-6 Double-Register Capture Modes (cont'd)

Description	
0110 The value stored in CC6nSR is copied to CC6nR after	r a falling edge on the
nin CCCn. The actual timer value of T12 is simultane	walv stared in the sk

- 0110 The value stored in CC6nSR is copied to CC6nR after a falling edge on the input pin CC6n. The actual timer value of T12 is simultaneously stored in the shadow register CC6nSR. This feature is useful for time measurements between consecutive falling edges on pins CC6n. COUT6n is I/O.
- 0111 The value stored in CC6nSR is copied to CC6nR after any edge on the input pin CC6n. The actual timer value of T12 is simultaneously stored in the shadow register CC6nSR. This feature is useful for time measurements between consecutive edges on pins CC6n. COUT6n is I/O.

Table 15-7 Combined T12 Modes

Description

1000 Hall Sensor mode:

Capture mode for channel 0, compare mode for channels 1 and 2. The contents of T12 are captured into CC60 at a valid hall event (which is a reference to the actual speed). CC61 can be used for a phase delay function between hall event and output switching. CC62 can act as a time-out trigger if the expected hall event comes too late. The value 1000_B must be programmed to MSEL0, MSEL1 and MSEL2 if the hall signals are used. In this mode, the contents of timer T12 are captured in CC60 and T12 is reset after the detection of a valid hall event. In order to avoid noise effects, the dead-time counter channel 0 is started after an edge has been detected at the hall inputs. On reaching the value of 000001_B , the hall inputs are sampled and the pattern comparison is done.

1001 Hysteresis-like control mode with dead-time generation: The negative edge of the CCPOSx input signal is used to reset bit CC6nST. As a result, the output signals can be switched to passive state immediately and switch back to active state (with dead-time) if the CCPOSx is high and the bit CC6nST is set by a compare event.

Table 15-8 Multi-Input Capture Modes

Description

- 1010 The timer value of T12 is stored in CC6nR after a rising edge at the input pin CC6n. The timer value of T12 is stored in CC6nSR after a falling edge at the input pin CCPOSx.
- 1011 The timer value of T12 is stored in CC6nR after a falling edge at the input pin CC6n. The timer value of T12 is stored in CC6nSR after a rising edge at the input pin CCPOSx.

Table 15-8 Multi-Input Capture Modes

Description 1100 The timer value of T12 is stored in CC6nR after a rising edge at the input pin CC6n. The timer value of T12 is stored in CC6nSR after a rising edge at the input

pin CCPOSx.

- 1101 The timer value of T12 is stored in CC6nR after a falling edge at the input pin CC6n. The timer value of T12 is stored in CC6nSR after a falling edge at the input pin CCPOSx.
- 1110 The timer value of T12 is stored in CC6nR after any edge at the input pin CC6n. The timer value of T12 is stored in CC6nSR after any edge at the input pin CCPOSx.
- 1111 reserved (no capture or compare action)

T12MSELL

T12 Capture/Compare Mode Select Register Low Reset Value: 00 _H								
7	6	5	4	3	2	1	0	
MSEL61 MSEL60								
	r	w	l	r	w	ı		

Field	Bits	Туре	Description
Field MSEL60, MSEL61	Bits 3:0, 7:4	Type rw	 Description Capture/Compare Mode Selection These bit fields select the operating mode of the three timer T12 capture/compare channels. Each channel (n = 0, 1, 2) can be programmed individually either for compare or capture operation according to: 0000 Compare outputs disabled, pins CC6n and COUT6n can be used for I/O. No capture action. 0001 Compare output on pin CC6n, pin COUT6n can be used for I/O. No capture action. 0010 Compare output on pin COUT6n, pin CC6n can be used for I/O. No capture action. 0010 Compare output on pins COUT6n and CC6n. 0111 Compare output on pins COUT6n and CC6n. 011X Double-Register Capture modes, see Table 15-6. 1000 Hall Sensor mode, see Table 15-7. In order to enable the hall edge detection, all three MSEL6x must be programmed to Hall Sensor mode. 1001 Hysteresis-like mode, see Table 15-7. 101X Multi-Input Capture modes, see Table 15-8. 11XX Multi-Input Capture modes, see Table 15-8.

T12 Capture/Compare Mode Select Register High Reset Value: 00 _H									
7	6	5	4	3	2	1	0		
D BYP HSYNC MSEL62									
rw	rw				rv	v	·		

Field	Bits	Туре	Description
MSEL62	3:0	rw	Capture/Compare Mode Selection
			These bit fields select the operating mode of the three
			timer T12 capture/compare channels. Each channel
			(n = 0, 1, 2) can be programmed individually either for
			compare or capture operation according to:
			0000 Compare outputs disabled, pins CC6n and
			COUT6n can be used for I/O. No capture action.
			0001 Compare output on pin CC6n, pin COUT6n can
			be used for I/O. No capture action.
			0010 Compare output on pin COUT6n, pin CC6n can
			be used for I/O. No capture action.
			0011 Compare output on pins COUT6n and CC6n.
			01XX Double-Register Capture modes,
			see Table 15-6.
			1000 Hall Sensor mode, see Table 15-7.
			In order to enable the hall edge detection, all
			three MSEL6x must be programmed to Hall
			Sensor mode.
			1001 Hysteresis-like mode, see Table 15-7.
			101X Multi-Input Capture modes, see Table 15-8 .
			11XX Multi-Input Capture modes, see Table 15-8 .

Field	Bits	Туре	Description				
HSYNC	6:4	rw	 Hall Synchronization Bit field HSYNC defines the source for the sampling of the Hall input pattern and the comparison to the current and the expected Hall pattern bit fields. In all modes, a trigger by software by writing a 1 to bit SWHC is possible. 000 Any edge at one of the inputs CCPOSx (x = 0, 1, 2) triggers the sampling. 001 A T13 compare-match triggers the sampling. 000 A T13 period-match triggers the sampling. 011 The Hall sampling triggered by hardware sources is switched off. 100 A T12 period-match (while counting up) triggers the sampling. 101 A T12 one-match (while counting down) triggers the sampling. 101 A T12 compare-match of channel 0 (while counting up) triggers the sampling. 111 A T12 compare-match of channel 0 (while counting down) triggers the sampling. 				
DBYP	7	rw	 Delay Bypass Bit DBYP defines if the source signal for the sampling of the Hall input pattern (selected by HSYNC) uses the dead-time counter DTC0 of timer T12 as additional delay or if the delay is bypassed. 0 The delay bypass is not active. The dead-time counter DTC0 is generating a delay after the source signal becomes active. 1 The delay bypass is active. The dead-time counter DTC0 is not used by the sampling of the Hall pattern. 				

Note: In the capture modes, all edges at the CC6x inputs lead to the setting of the corresponding interrupt status flags in register IS. In order to monitor the selected capture events at the CCPOSx inputs in the multi-input capture modes, the CC6xST bits of the corresponding channel are set when detecting the selected event. The interrupt status bits and the CC6xST bits must be reset by software.

Register T12 represents the counting value of timer T12. It can only be written while the timer T12 is stopped. Write actions while T12 is running are not taken into account. Register T12 can always be read by software.

In edge-aligned mode, T12 only counts up, whereas in center-aligned mode, T12 can count up and down.

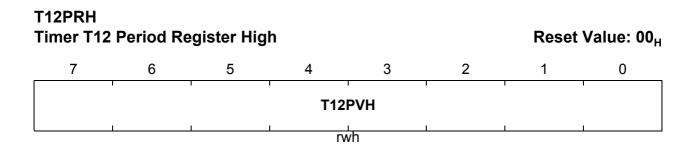
T12L

Timer T12 Counter Register Low							Value: 00 _H	
7	6	5	4	3	2	1	0	
	1	1	T120	CVL	· · ·		1	
rwh								

Field	Bits	Туре	Description
T12CVL	7:0	rwh	Timer T12 Counter Value Low Byte This register represents the lower 8-bit counter value of timer T12.

T12H

Timer T12 Counter Register HighReset Value: 00 _H									
7	6	5	4	3	2	1	0		
	I	1 1	T120	ЛИ	I		1		
	1	1 1	1120	, v n					
	•		rw	h					


Field	Bits	Туре	Description
T12CVH	7:0	rwh	Timer T12 Counter Value High Byte This register represents the upper 8-bit counter value of timer T12.

Note: While timer T12 is stopped, the internal clock divider is reset in order to ensure reproducible timings and delays.

T12PRL Timer T12 Period Register Low Reset Value: 00 _H											
7	6	5	4	3	2	1	0				
T12PVL											
	rwh										

Bits	Туре	Description
7:0	rwh	T12 Period Value Low Byte The value T12PV defines the counter value for T12, which leads to a period-match. On reaching this value, the timer T12 is set to zero (edge- aligned mode) or changes its count direction to down counting (center-aligned mode).

Field	Bits	Туре	Description
T12PVH	7:0	rwh	T12 Period Value High Byte
			The value T12PV defines the counter value for
			T12, which leads to a period-match. On reaching
			this value, the timer T12 is set to zero (edge-
			aligned mode) or changes its count direction to
			down counting (center-aligned mode).

CC6xRL (x Capture/C	-		⁻ Channel C	C6x Low		Reset	Value: 00 _H			
7	6	5	4	3	2	1	0			
CC6xVL (x = 0, 1, 2)										

Field	Bits	Туре	Description
CC6xVL (x = 0, 1, 2)	7:0	rh	Channel x Capture/Compare Value Low Byte In compare mode, the bit fields CC6xV contain the values that are compared to the T12 counter value. In capture mode, the captured value of T12 can be read from these registers.

CC6xRH (x = 0, 1, 2) Capture/Compare Register for Channel CC6x High Reset Value: 00 _H										
7	6	5	4	3	2	1	0			
CC6xVH (x = 0, 1, 2)										

Field	Bits	Туре	Description
CC6xVH (x = 0, 1, 2)	7:0	rh	Channel x Capture/Compare Value High Byte In compare mode, the bit fields CC6xV contain the values that are compared to the T12 counter value. In capture mode, the captured value of T12 can be read from these registers.

7 6 5 4 3 2 1 0	

	6	5	4	3	2		0			
	I	1	1	1	1	I	1			
CC6xSL(x = 0, 1, 2)										
	L	1	1	1	1	1	1			
rwh										

Field	Bits	Туре	Description
CC6xSL (x = 0, 1, 2)	7:0	rwh	Shadow Register for Channel x Capture/Compare Value Low Byte In compare mode, the contents of bit field CC6xS are transferred to the bit field CC6xV during a shadow transfer. In capture mode, the captured
			value of T12 can be read from these registers.

CC6xSRH (x = 0, 1, 2) Capture/Compare Shadow Register for Channel CC6x High Reset Value: 00 _H							
7	6	5	4	3	2	1	0
CC6xSH (x = 0, 1, 2)							
	rwh						

Field	Bits	Туре	Description
CC6xSH	7:0	rwh	Shadow Register for Channel x Capture/Compare Value High Byte
(x = 0, 1, 2)			In compare mode, the contents of bit field CC6xS are transferred to the bit field CC6xV during a shadow transfer. In capture mode, the captured value of T12 can be read from these registers.

T12DTCL Dead-Time Control Register for Timer T12 Low Reset Value: 00_H 7 6 5 4 3 2 1 0 DTM rw

Field	Bits	Туре	Description
DTM	7:0	rw	Dead-Time Bit field DTM determines the programmable delay between switching from the passive state to the active state of the selected outputs. The switching from the active state to the passive state is not delayed.

T12DTCH Dead-Time Control Register for Timer T12 High

Reset Value: 00_H

	7	6	5	4	3	2	1	0
	0	DTR2	DTR1	DTR0	0	DTE2	DTE1	DTE0
,	r	rh	rh	rh	r	rw	rw	rw

Field	Bits	Туре	Description	
DTEx (x = 0, 1, 2)	2:0	rw	 Dead-Time Enable Bits Bits DTE0DTE2 enable and disable the dead-time generation for each compare channel (0, 1, 2) of timer T12. 0 Dead-time generation is disabled. The corresponding outputs switch from the passive state to the active state (according to the actual compare status) without any delay. 1 Dead-time generation is enabled. The corresponding outputs switch from the passive state to the active state (according to the actual compare status) without any delay. 1 Dead-time generation is enabled. The corresponding outputs switch from the passive state to the active state (according to the compare status) with the delay programmed in bit field DTM. 	

Field	Bits	Туре	Description
DTRx (x = 0, 1, 2)	6:4	rh	 Dead-Time Run Indication Bits Bits DTR0DTR2 indicate the status of the dead-time generation for each compare channel (0, 1, 2) of timer T12. 0 The value of the corresponding dead-time counter channel is 0. 1 The value of the corresponding dead-time counter channel is not 0.
0	3, 7	r	Reserved Returns 0 if read; should be written with 0.

Note: The dead-time counters are clocked with the same frequency as T12. This structure allows symmetrical dead-time generation in center-aligned and in edge-aligned PWM mode. A duty cycle of 50% leads to CC6x, COUT6x switched on for: 0.5 * period - dead-time.

Note: The dead-time counters are not reset by bit T12RES, but by bit DTRES.

15.3.3 Timer 13 – Related Registers

The generation of the patterns for a single channel PWM is based on timer T13. The registers related to timer T13 can be concurrently updated (with well-defined conditions) in order to ensure consistency of the PWM signal. T13 can be synchronized to several timer T12 events.

Timer T13 supports only compare mode on its compare channel CC63.

Register T13 represents the counting value of timer T13. It can only be written while the timer T13 is stopped. Write actions while T13 is running are not taken into account. Register T13 can always be read by software.

Timer T13 supports only edge-aligned mode (counting up).

T13L Timer T13	Counter R	Register Lo	w			Reset	Value: 00 _H
7	6	5	4	3	2	1	0
			T13C	:VL			
L	rwh						

Field	Bits	Туре	Description
T13CVL	7:0	rwh	Timer T13 Counter Value Low Byte This register represents the lower 8-bit counter value of timer T13.

T13H	
Timer T13 Counter Register High	

Reset Value: 00_H

7	6	5	4	3	2	1	0	
T13CVH								
	rwh							

Field	Bits	Туре	Description
T13CVH	7:0		Timer T13 Counter Value High Byte This register represents the upper 8-bit counter value of timer T13.

Note: While timer T13 is stopped, the internal clock divider is reset in order to ensure reproducible timings and delays.

T13PRL

Timer T13	۲imer T13 Period Register Low Reset Value: 00 _H								
7	6	5	4	3	2	1	0		
	T13PVL								
	I	i	rv	/h	I		1		

FieldBitsTypeDescriptionT13PVL7:0rwhT13 Period Value Low Byte
The value T13PV defines the counter value for T13,
which leads to a period-match. On reaching this
value, the timer T13 is set to zero.

T13PRH Timer T13	T13PRH Timer T13 Period Register High Reset Value: 00 _H								
7	6	5	4	3	2	1	0		
	T13PVH								
	rwh								

Field	Bits	Туре	Description
T13PVH	7:0	rwh	T13 Period Value High Byte The value T13PV defines the counter value for T13, which leads to a period-match. On reaching this value, the timer T13 is set to zero.

CC63RL Capture/C	CC63RL Capture/Compare Register for Channel CC63 Low Reset Value: 00 _H								
7	6	5	4	3	2	1	0		
	CC63VL								
	rh								

Field	Bits	Туре	Description
CC63VL	7:0		Channel CC63 Compare Value Low Byte The bit field CC63V contains the value that is compared to the T13 counter value.

CC63RH Capture/Compare Register for Channel CC63 High Reset Value: 00_H 7 6 5 4 3 2 1 0 CC63VH

Field	Bits	Туре	Description
CC63VH	7:0		Channel CC63 Compare Value High Byte The bit field CC63V contains the value that is compared to the T13 counter value.

CC63SRL Capture/Compare Shadow Register for Channel CC63 Low Reset Value: 00 _H										
7	6	5	4	3	2	1	0			
	I	I I	CC6				1			
	rw									

Field	Bits	Туре	Description
CC63SL	7:0	rw	Shadow Register for Channel CC63 Compare Value Low Byte The contents of bit field CC63S are transferred to the bit field CC63V during a shadow transfer.

CC63SRH Capture/Compare Shadow Register for Channel CC63 High Reset Value: 00 _H									
7	6	5	4	3	2	1	0		
			CC6	L					

 Field
 Bits
 Type
 Description

 CC63SH
 7:0
 rw
 Shadow Register for Channel CC63 Compare
Value High Byte
The contents of bit field CC63S are transferred to
the bit field CC63V during a shadow transfer.

15.3.4 Capture/Compare Control Registers

The Compare State Register CMPSTAT contains status bits monitoring the current capture and compare state, and control bits defining the active/passive state of the compare channels.

CMPSTATL

Compare State Register Low

7	6	5	4	3	2	1	0
0	CC 63ST	CC POS 2	CC POS 1	CC POS 0	CC 62ST	CC 61ST	CC 60ST
r	rh	rh	rh	rh	rh	rh	rh

Field	Bits	Туре	Description
CC6xST (x = 0, 1, 2, 3)	0, 1, 2, 6	rh	 Capture/Compare State Bits Bits CC6xST monitor the state of the capture/compare channels. Bits CC6xST are related to T12; bit CC63ST is related to T13. In compare mode, the timer count is less than the compare value. In capture mode, the selected edge has not yet been detected since the bit has been reset by software the last time. In compare mode, the counter value is greater than or equal to the compare value. In capture mode, the selected edge has been detected. These bits are set and reset according to the T12 and T13 switching rules.
CCPOSx (x = 0, 1, 2)	3, 4, 5	rh	 Sampled Hall Pattern Bits Bits CCPOSx indicate the value of the input Hall pattern that has been compared to the current and expected value. The value is sampled when the event hcrdy (Hall compare ready) occurs. 0 The input CCPOSx has been sampled as 0. 1 The input CCPOSx has been sampled as 1.
0	7	r	Reserved Returns 0 if read; should be written with 0.

CMPSTATH Compare State Register High

Reset Value: 00_H

_	7	6	5	4	3	2	1	0
	T13 IM	C OUT63PS	C OUT62PS	CC 62PS	C OUT61PS	CC 61PS	C OUT60PS	CC 60PS
L	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh

Field	Bits	Туре	Description
CC6xPS (x = 0, 1, 2) COUT6xPS (x = 0, 1, 2, 3)	0, 2, 4 1, 3, 5, 6	rwh	 Passive State Select for Compare Outputs Bits CC6xPS, COUT6xPS select the state of the corresponding compare channel, which is considered to be the passive state. During the passive state, the passive level (defined in register PSLR) is driven by the output pin. Bits CC6xPS, COUT6xPS (x = 0, 1, 2) are related to T12, bit COUT63PS is related to T13. 0 The corresponding compare output drives passive level while CC6xST is 0. 1 The corresponding compare output drives passive level while CC6xST is 1. These bits have shadow bits and are updated in parallel to the capture/compare registers of T12 and T13, respectively. A read action targets the actually used values, whereas a write action targets the shadow bits. In capture mode, these bits are not used.
T13IM	7	rwh	T13 Inverted Modulation Bit T13IM inverts the T13 signal for the modulation of the CC6x and COUT6x ($x = 0, 1, 2$) signals.0T13 output is not inverted.1T13 output is inverted for further modulation.This bit has a shadow bit and is updated in parallel to the compare and period registers of T13. A read action targets the actually used values, whereas a write action targets the shadow bit.

The Compare Status Modification Register contains control bits allowing for modification by software of the Capture/Compare state bits.

CMPMODIFL

Compare	Compare State Modification Register Low Reset Value: 00 _H								
7	6	5	4	3	2	1	0		
0	MCC 63S		0		MCC 62S	MCC 61S	MCC 60S		
r	W		r		W	W	W		

Field	Bits	Туре	Description
MCC6xS (x = 0, 1, 2, 3)	0, 1, 2, 6	w	Capture/Compare Status Modification Bits (Set) These bits are used to set the corresponding CC6xST bits by software. This feature allows the user to individually change the status of the output lines by software, e.g. when the corresponding compare timer is stopped. This allows a bit manipulation of CC6xST-bits by a single data write action. The following functionality of a write access to bits concerning the same capture/compare state bit is provided: MCC6xR, MCC6xS = 0,0 Bit CC6xST is not changed. 0,1 Bit CC6xST is set. 1,0 Bit CC6xST is reset. 1,1 Reserved (toggle)
0	5:3,7	r	Reserved Returns 0 if read; should be written with 0.

CMPMODIFH

Compare	State Modi	ification R	egister Hig	Jh		Reset	Value: 00 _H	
7	6	5	4	3	2	1	0	
0	MCC 63R		0	I	MCC 62R	MCC 61R	MCC 60R	
r	W		r		W	W	W	

Field	Bits	Туре	Description
MCC6xR (x = 0, 1, 2, 3)	0, 1, 2, 6	W	Capture/Compare Status Modification Bits (Reset)These bits are used to reset the correspondingCC6xST bits by software.This feature allows the user to individually change thestatus of the output lines by software, e.g. when thecorresponding compare timer is stopped. This allows abit manipulation of CC6xST-bits by a single data writeaction.The following functionality of a write access to bitsconcerning the same capture/compare state bit isprovided:MCC6xR, MCC6xS =0,0Bit CC6xST is not changed.0,1Bit CC6xST is set.1,0Bit CC6xST is reset.1,1Reserved (toggle)
0	5:3,7	r	Reserved Returns 0 if read; should be written with 0.

Register TCTR0 controls the basic functionality of both timers T12 and T13.

TCTR0L Timer Control Register 0 Low

7	6	5	4	3	2	1	0
СТМ	CDIR	STE12	T12R	T12 PRE		T12CLK	
rw	rh	rh	rh	rw	•	rw	

Field	Bits	Туре	Description
T12CLK	2:0	rw	Timer T12 Input Clock Select Selects the input clock for timer T12 which is derived from the peripheral clock according to the equation $f_{T12} = f_{CCU}/2^{}$. 000 $f_{T12} = f_{CCU}/2$ 001 $f_{T12} = f_{CCU}/2$ 010 $f_{T12} = f_{CCU}/4$ 011 $f_{T12} = f_{CCU}/4$ 011 $f_{T12} = f_{CCU}/8$ 100 $f_{T12} = f_{CCU}/16$ 101 $f_{T12} = f_{CCU}/32$ 110 $f_{T12} = f_{CCU}/64$ 111 $f_{T12} = f_{CCU}/128$
T12PRE	3	rw	Timer T12 Prescaler BitIn order to support higher clock frequencies, an additional prescaler factor of 1/256 can be enabled for the prescaler for T12.0The additional prescaler for T12 is disabled.1The additional prescaler for T12 is enabled.
T12R	4	rh	Timer T12 Run BitT12R starts and stops timer T12. It is set/reset bysoftware by setting bits T12RS or T12RR, or it is resetby hardware according to the function defined by bitfield T12SSC.0011 <t< td=""></t<>

XC878CLM

Capture/Compare Unit 6

Field	Bits	Туре	Description
STE12	5	rh	Timer T12 Shadow Transfer EnableBit STE12 enables or disables the shadow transfer of the T12 period value, the compare values and passive state select bits and levels from their shadow registers to the actual registers if a T12 shadow transfer event is detected. Bit STE12 is cleared by hardware after the shadow transfer.A T12 shadow transfer event is a period-match while counting up or a one-match while counting down.0The shadow register transfer is disabled. 11The shadow register transfer is enabled.
CDIR	6	rh	 Count Direction of Timer T12 This bit is set/reset according to the counting rules of T12. T12 counts up. T12 counts down.
СТМ	7	rw	 T12 Operating Mode Edge-aligned Mode: T12 always counts up and continues counting from zero after reaching the period value. Center-aligned Mode: T12 counts down after detecting a period-match and counts up after detecting a one-match.

TCTR0H Timer Control Register 0 High

7	6	5	4	3	2	1	0
0		STE 13	T13R	T13 PRE		T13CLK	
 r	•	rh	rh	rw	•	rw	

Field	Bits	Туре	Description
T13CLK	2:0	rw	Timer T13 Input Clock Select Selects the input clock for timer T13 which is derived from the peripheral clock according to the equation $f_{T13} = f_{CCU}/2^{}$. 000 $f_{T13} = f_{CCU}/2$ 001 $f_{T13} = f_{CCU}/2$ 010 $f_{T13} = f_{CCU}/4$ 011 $f_{T13} = f_{CCU}/8$ 100 $f_{T13} = f_{CCU}/16$ 101 $f_{T13} = f_{CCU}/16$ 101 $f_{T13} = f_{CCU}/32$ 110 $f_{T13} = f_{CCU}/64$ 111 $f_{T13} = f_{CCU}/128$
T13PRE	3	rw	Timer T13 Prescaler BitIn order to support higher clock frequencies, an additional prescaler factor of 1/256 can be enabled for the prescaler for T13.0The additional prescaler for T13 is disabled.1The additional prescaler for T13 is enabled.
T13R	4	rh	Timer T13 Run BitT13R starts and stops timer T13. It is set/reset bysoftware by setting bits T13RS or T13RR or it isset/reset by hardware according to the functiondefined by bit fields T13SSC, T13TEC and T13TED.0Timer T13 is stopped.1Timer T13 is running.A concurrent set/reset action on T13R (from T13SSC, T13TEC, T13RR or T13RS) will have no effect. The bitT13R will remain unchanged.
STE13	5	rh	Timer T13 Shadow Transfer EnableBit STE13 enables or disables the shadow transfer of the T13 period value, the compare value and passive state select bit and level from their shadow registers to the actual registers if a T13 shadow transfer event is detected. Bit STE13 is cleared by hardware after the shadow transfer.A T13 shadow transfer event is a period-match.0The shadow register transfer is disabled.1The shadow register transfer is enabled.

Field	Bits	Туре	Description	
0	7:6	r	Reserved	
			Returns 0 if read; should be written with 0.	

Note: A write action to the bit fields T12CLK or T12PRE is only taken into account when the timer T12 is not running (T12R = 0). A write action to the bit fields T13CLK or T13PRE is only taken into account when the timer T13 is not running (T13R = 0).

Register TCTR2 controls the single-shot and the synchronization functionality of both timers T12 and T13. Both timers can run in single-shot mode. In this mode, they stop their counting sequence automatically after one counting period with a count value of zero. The single-shot mode and the synchronization feature of T13 to T12 allow the generation of events with a programmable delay after well-defined PWM actions of T12. For example, this feature can be used to trigger AD conversions, after a specified delay (to avoid problems due to switching noise), synchronously to a PWM event.

TCTR2L Timer Cor	TCTR2L Timer Control Register 2 Low							
7	6	5	4	3	2	1	0	
0	T13 TED			T13 TEC	1	T13 SSC	T12 SSC	
r	rw		•	rw	•	rw	rw	

Field	Bits	Туре	Description
T12SSC	0	rw	 Timer T12 Single Shot Control This bit controls the single shot-mode of T12. The single-shot mode is disabled, no hardware action on T12R. The single shot mode is enabled, the bit T12R is reset by hardware if: T12 reaches its period value in edge-aligned mode T12 reaches the value 1 while down counting in center-aligned mode. In parallel to the reset action of bit T12R, the bits CC6xST (x = 0, 1, 2) are reset.

Field	Bits	Туре	Description	
T13SSC	1	rw	Timer T13 Single Shot ControlThis bit controls the single shot-mode of T13.0No hardware action on T13R1The single-shot mode is enabled, the bit T13R is reset by hardware if T13 reaches its period value. In parallel to the reset action of bit T13R, the bit CC63ST is reset.	
T13TEC	4:2	rw	 T13 Trigger Event Control Bit field T13TEC selects the trigger event to start T13 (automatic set of T13R for synchronization to T12 compare signals) according to following combinations: 000 no action 001 set T13R on a T12 compare event on channel 0 010 set T13R on a T12 compare event on channel 1 011 set T13R on a T12 compare event on channel 2 100 set T13R on any T12 compare event on the channels 0, 1, or 2 101 set T13R upon a period-match of T12 110 set T13R upon a zero-match of T12 (while counting up) 111 set T13R on any edge of inputs CCPOSx 	
T13TED	6:5	rw	Timer T13 Trigger Event DirectionBit field T13TED delivers additional information to control the automatic set of bit T13R in the case that the trigger action defined by T13TEC is detected.00no action01while T12 is counting up10while T12 is counting down11independent on the count direction of T12	
0	7	r	Reserved Returns 0 if read; should be written with 0.	

Example:

If the timer T13 is intended to start at any compare event on T12 (T13TEC = 100_B), the trigger event direction can be programmed to:

- counting up >> a T12 channel 0, 1, 2 compare match triggers T13R only while T12 is

counting up

- counting down >> a T12 channel 0, 1, 2 compare match triggers T13R only while T12 is counting down

- independent from bit CDIR >> each T12 channel 0, 1, 2 compare match triggers T13R The timer count direction is taken from the value of bit CDIR. As a result, if T12 is running in edge-aligned mode (counting up only), T13 can only be started automatically if bit field T13TED = $01_{\rm B}$ or $11_{\rm B}$.

TCTR2H Timer Control Register 2 High

7	6	5	4	3	2	1	0
	0				3 ≣L	T1 RS	
	r			rw	/	r١	N

Field	Bits	Туре	Description
T12RSEL	1:0	rw	 Timer T12 External Run Selection Bit field T12RSEL defines the event of signal T12HR that can set the run bit T12R by hardware. 00 The external setting of T12R is disabled. 01 Bit T12R is set if a rising edge of signal T12HR is detected. 10 Bit T12R is set if a falling edge of signal T12HR is detected. 11 Bit T12R is set if an edge of signal T12HR is detected.
T13RSEL	3:2	rw	 Timer T13 External Run Selection Bit field T13RSEL defines the event of signal T13HR that can set the run bit T13R by hardware. 00 The external setting of T13R is disabled. 01 Bit T13R is set if a rising edge of signal T13HR is detected. 10 Bit T13R is set if a falling edge of signal T13HR is detected. 11 Bit T13R is set if an edge of signal T13HR is detected.
0	7:4	r	Reserved Returns 0 if read; should be written with 0.

Register TCTR4 allows the software control of the run bits T12R and T13R by independent set and reset conditions. Furthermore, the timers can be reset (while running) and the bits STE12 and STE13 can be controlled by software.

TCTR4L

Timer Control Register 4 Low

7	6	5	4	3	2	1	0
T12 STD	T12 STR	C)	DT RES	T12 RES	T12 RS	T12 RR
w	W	r	•	w	W	w	w

Field	Bits	Туре	Description			
T12RR	0	W	Timer T12 Run ResetSetting this bit resets the T12R bit.0T12R is not influenced.1T12R is cleared, T12 stops counting.			
T12RS	1	W	Timer T12 Run SetSetting this bit sets the T12R bit.0T12R is not influenced.1T12R is set, T12 counts.			
T12RES	2	w	 Timer T12 Reset No effect on T12. The T12 counter register is reset to zero. The switching of the output signals is according to the switching rules. Setting of T12RES has no impact on bit T12R. 			
DTRES	3	W	 Dead-Time Counter Reset No effect on the dead-time counters. The three dead-time counter channels are reset to zero. 			
T12STR	6	W	Timer T12 Shadow Transfer Request0No action1STE12 is set, enabling the shadow transfer.			
T12STD	7	w	 Timer T12 Shadow Transfer Disable No action STE12 is reset without triggering the shadow transfer. 			

Field	Bits	Туре	Description	
0	5:4	r	Reserved	
			Returns 0 if read; should be written with 0.	

TCTR4H Timer Control Register 4 High

7	6	5	4	3	2	1	0
T13 STD	T13 STR		0	1	T13 RES	T13 RS	T13 RR
w	w		r		W	W	w

Field	Bits	Туре	Description
T13RR	0	W	Timer T13 Run ResetSetting this bit resets the T13R bit.0T13R is not influenced.1T13R is cleared, T13 stops counting.
T13RS	1	W	Timer T13 Run SetSetting this bit sets the T13R bit.0T13R is not influenced.1T13R is set, T13 counts.
T13RES	2	w	 Timer T13 Reset No effect on T13. The T13 counter register is reset to zero. The switching of the output signals is according to the switching rules. Setting of T13RES has no impact on bit T13R.
T13STR	6	w	Timer T13 Shadow Transfer Request0No action1STE13 is set, enabling the shadow transfer.
T13STD	7	W	Timer T13 Shadow Transfer Disable0No action1STE13 is reset without triggering the shadow transfer.
0	5:3	r	Reserved Returns 0 if read; should be written with 0.

Note: A simultaneous write of a 1 to bits which set and reset the same bit will trigger no action. The corresponding bit will remain unchanged.

15.3.5 Global Modulation Control Registers

Register MODCTR contains control bits enabling the modulation of the corresponding output signal by PWM pattern generated by the timers T12 and T13. Furthermore, the multi-channel mode can be enabled as additional modulation source for the output signals.

MODCTRL

Modulation	Modulation Control Register Low						Value: 00 _H
7	6	5	4	3	2	1	0
MCMEN	0		1	T12M	ODEN	1	1
rw	r	-		r١	N	•	

Field	Bits	Туре	Description
T12MODEN	5:0	rw	T12 Modulation Enable
			Setting these bits enables the modulation of the
			corresponding compare channel by a PWM pattern
			generated by timer T12. The bit positions are
			corresponding to the following output signals:
			Bit 0 modulation of CC60
			Bit 1 modulation of COUT60
			Bit 2 modulation of CC61
			Bit 3 modulation of COUT61
			Bit 4 modulation of CC62
			Bit 5 modulation of COUT62
			The enable feature of the modulation is defined as
			follows:
			0 The modulation of the corresponding output
			signal by a T12 PWM pattern is disabled.
			1 The modulation of the corresponding output
			signal by a T12 PWM pattern is enabled.

XC878CLM

Capture/Compare Unit 6

Field	Bits	Туре	Description
MCMEN	7	rw	 Multi-Channel Mode Enable The modulation of the corresponding output signal by a multi-channel pattern according to bit field MCMPis disabled. The modulation of the corresponding output signal by a multi-channel pattern according to bit field MCMP is enabled.
0	6	r	Reserved Returns 0 if read; should be written with 0.

MODCTRH Modulation Control Register High

7	6	5	4	3	2	1	0
ECT 130	0			T13M	ODEN		
rw	r			r	W		

Field	Bits	Туре	Description
T13MODEN	5:0	rw	 T13 Modulation Enable Setting these bits enables the modulation of the corresponding compare channel by a PWM pattern generated by timer T13. The bit positions are corresponding to the following output signals: Bit 0 modulation of CC60 Bit 1 modulation of COUT60 Bit 2 modulation of CC61 Bit 3 modulation of CC62 Bit 4 modulation of CC0UT62 The enable feature of the modulation is defined as follows: 0 The modulation of the corresponding output signal by a T13 PWM pattern is disabled. 1 The modulation of the corresponding output signal by a T13 PWM pattern is enabled.

Field	Bits	Туре	Description	
ECT13O	7	rw	 Enable Compare Timer T13 Output The alternate output function COUT63 is disabled. The alternate output function COUT63 is enabled for the PWM signal generated by T13. 	
0	6	r	Reserved Returns 0 if read; should be written with 0.	

The register TRPCTR controls the trap functionality. It contains independent enable bits for each output signal and control bits to select the behavior in case of a trap condition. The trap condition is a low-level on the CTRAP input pin, which is monitored (inverted level) by bit TRPF (in register IS). While TRPF = 1 (trap input active), the trap state bit TRPS (in register IS) is set to 1.

TRPCTRL Trap Control Register Low Reset Value: 00_H 7 5 2 0 6 4 3 1 TRP TRP TRP 0 M2 M1 M0 rw rw r rw

Field	Bits	Туре	Description
TRPM0, TRPM1	1:0	rw	 Trap Mode Control Bits 1, 0 These two bits define the behavior of the selected outputs when leaving the trap state after the trap condition has become inactive again. A synchronization to the timer driving the PWM pattern permits to avoid unintended short pulses when leaving the trap state. The combination (TRPM1, TRPM0) leads to: 00 The trap state is left (return to normal operation according to TRPM2) when a zero-match of T12 (while counting up) is detected (synchronization to T12). 01 The trap state is left (return to normal operation according to TRPM2) when a zero-match of T13 is detected (synchronization to T13). 10 reserved 11 The trap state is left (return to normal operation according to TRPM2) immediately without any synchronization to T12 or T13.
TRPM2	2	rw	 Trap Mode Control Bit 2 The trap state can be left (return to normal operation = bit TRPS = 0) as soon as the input CTRAP becomes inactive. Bit TRPF is automatically cleared by hardware if the input pin CTRAP becomes 1. Bit TRPS is automatically cleared by hardware if bit TRPF is 0 and if the synchronization condition (according to TRPM0,1) is detected. The trap state can be left (return to normal operation = bit TRPS = 0) as soon as bit TRPF is reset by software after the input CTRAP becomes inactive (TRPF is not cleared by hardware). Bit TRPS = 0 and if the synchronization condition (according to TRPM0,1) is detected.
0	7:3	r	Reserved Returns 0 if read; should be written with 0.

TRPCTRHTrap Control Register HighReset Value: 00							
7	6	5	4	3	2	1	0
TRP PEN	TRP EN 13		1	TRP	EN		
rw	rw		1	rv	V		

Field	Bits	Туре	Description
TRPEN	5:0	rw	 Trap Enable Control Setting these bits enables the trap functionality for the following corresponding output signals: Bit 0 trap functionality of CC60 Bit 1 trap functionality of COUT60 Bit 2 trap functionality of CC61 Bit 3 trap functionality of CC62 Bit 5 trap functionality of CC62 Bit 5 trap functionality of COUT62 The enable feature of the trap functionality is defined as follows: 0 The trap functionality of the corresponding output signal is disabled. The output state is independent from bit TRPS. 1 The trap functionality of the corresponding output signal is enabled. The output is set to the passive state while TRPS = 1.
TRPEN13	6	rw	 Trap Enable Control for Timer T13 The trap functionality for T13 is disabled. Timer T13 (if selected and enabled) provides PWM functionality even while TRPS = 1. The trap functionality for T13 is enabled. The timer T13 PWM output signal is set to the passive state while TRPS = 1.

Field	Bits	Туре	Description
TRPPEN	7	rw	 Trap Pin Enable The trap functionality based on the input pin CTRAP is disabled. A trap can only be generated by software by setting bit TRPF. The trap functionality based on the input pin CTRAP is enabled. A trap can be generated by software by setting bit TRPF or by CTRAP = 0.

Register PSLR defines the passive state level driven by the output pins of the module. The passive state level is the value that is driven by the port pin during the passive state of the output. During the active state, the corresponding output pin drives the active state level, which is the inverted passive state level. The passive state level permits the adaptation of the driven output levels to the driver polarity (inverted, not inverted) of the connected power stage.

PSLR

Passive S	tate Level		Reset	Value: 00 _H			
7	6	5	4	3	2	1	0
PSL 63	0		I	PS	L	T	
rwh	r	•	•	rw	h	•	

Field	Bits	Туре	Description
PSL	5:0	rwh	DescriptionCompare Outputs Passive State LevelThe bits of this bit field define the passive level drivenby the module outputs during the passive level drivenby the module outputs during the passive level drivenby the module outputs during the passive state. The bitpositions are:Bit 0passive level for output CC60Bit 1passive level for output CC60Bit 2passive level for output COUT60Bit 2passive level for output CC61Bit 3passive level for output COUT61Bit 4passive level for output COUT61Bit 5passive level for output COUT62The value of each bit position is defined as:00The passive level is 0.1The passive level is 1.

Field	Bits	Туре	Description
PSL63	7	rwh	 Passive State Level of Output COUT63 This bit field defines the passive level of the output pin COUT63. 0 The passive level is 0. 1 The passive level is 1.
0	6	r	Reserved Returns 0 if read; should be written with 0.

- Note: Bit field PSL has a shadow register to allow for updates without undesired pulses on the output lines. The bits are updated with the T12 shadow transfer. A read action targets the actually used values, whereas a write action targets the shadow bits.
- Note: Bit field PSL63 has a shadow register to allow for updates without undesired pulses on the output line. The bit is updated with the T13 shadow transfer. A read action targets the actually used values, whereas a write action targets the shadow bits.

15.3.6 Multi-Channel Modulation Control Registers

Register MCMOUTS contains bits controlling the output states for multi-channel mode. Furthermore, the appropriate signals for the block commutation by Hall sensors can be selected. This register is a shadow register (that can be written) for register MCMOUT, which indicates the currently active signals.

MCMOUTSL

Multi-Channel Mode Output Shadow Register Low					Reset	Value: 00 _H	
7	6	5	4	3	2	1	0
STR MCM	0			MCN	IPS	1	1
w	r			rv	V		

Field	Bits	Туре	Description
MCMPS	5:0	rw	Multi-Channel PWM Pattern Shadow Bit field MCMPS is the shadow bit field for bit field MCMP. The multi-channel shadow transfer is triggered according to the transfer conditions defined by register MCMCTR.

Field	Bits	Туре	Description
STRMCM	7	w	 Shadow Transfer Request for MCMPS Setting this bit during a write action leads to an immediate update of bit field MCMP by the value written to bit field MCMPS. This functionality permits an update triggered by software. When read, this bit always delivers 0. 0 Bit field MCMP is updated according to the defined hardware action. The write access to bit field MCMPS does not modify bit field MCMP. 1 Bit field MCMP is updated by the value written to bit field MCMPS.
0	6	r	Reserved Returns 0 if read; should be written with 0.

MCMOUTSH Multi-Channel Mode Output Shadow Register High Reset Value: 00							
7	6	5	4	3	2	1	0
STF HP	8 0		CURHS			EXPHS	
w	r		rw	•	•	rw	

Field	Bits	Туре	Description
EXPHS	2:0	rw	Expected Hall Pattern Shadow Bit field EXPHS is the shadow bit field for bit field EXPH. The bit field is transferred to bit field EXPH if an edge on the hall input pins CCPOSx ($x = 0, 1, 2$) is detected.
CURHS	5:3	rw	Current Hall Pattern Shadow Bit field CURHS is the shadow bit field for bit field CURH. The bit field is transferred to bit field CURH if an edge on the hall input pins CCPOSx ($x = 0, 1, 2$) is detected.

Field	Bits	Туре	Description
STRHP	7	W	 Shadow Transfer Request for the Hall Pattern Setting these bits during a write action leads to an immediate update of bit fields CURH and EXPH by the value written to bit fields CURHS and EXPHS. This functionality permits an update triggered by software. When read, this bit always delivers 0. The bit fields CURH and EXPH are updated according to the defined hardware action. The write access to bit fields CURHS and EXPHS does not modify the bit fields CURH and EXPH. The bit fields CURH and EXPH are updated by the value written to the bit fields CURHS and EXPHS.
0	6	r	Reserved Returns 0 if read; should be written with 0.

Register MCMOUT shows the multi-channel control bits that are currently used. Register MCMOUT is defined as follows:

MCMOUTL

Multi-Cha	nnel Mode	Output Re	gister Low	1		Reset	Value: 00 _H
7	6	5	4	3	2	1	0
0	R		1	МС	:MP	1	
r	rh			r	ĥ	·	·

Field	Bits	Туре	Description	
MCMP	5:0	rh	 Multi-Channel PWM Pattern Bit field MCMP is written by a shadow transfer from bit field MCMPS. It contains the output pattern for the multi-channel mode. If this mode is enabled by bit MCMEN in register MODCTR, the output state of the following output signal can be modified: Bit 0 multi-channel state for output CC60 Bit 1 multi-channel state for output COUT60 Bit 2 multi-channel state for output CC61 Bit 3 multi-channel state for output CC62 Bit 5 multi-channel state for output COUT62 The multi-channel patterns can set the related output to the passive state. 0 The output is set to the passive state. The PWM generated by T12 or T13 is not taken into account. 1 The output can deliver the PWM generated by T12 or T13 (according to register MODCTR). While IDLE = 1, bit field MCMP is cleared. 	
R	6	rh	 While IDLE = 1, bit field MCMP is cleared. Reminder Flag This reminder flag indicates that the shadow transfer from bit field MCMPS to MCMP has been requested by the selected trigger source. This bit is cleared when the shadow transfer takes place and while MCMEN = 0. 0 Currently, no shadow transfer from MCMPS to MCMP is requested. 1 A shadow transfer from MCMPS to MCMP has been requested by the selected trigger source, but it has not yet been executed, because the selected synchronization condition has not yet occurred. 	
0	7	r	Reserved Returns 0 if read; should be written with 0.	

MCMOUTH

Multi-Channel Mode Output Register High Reset Value: 0							
7	6	5	4	3	2	1	0
()		CURH			ЕХРН	
l	r		rh			rh	

Field	Bits	Туре	Description
EXPH	2:0	rh	Expected Hall Pattern Bit field EXPH is written by a shadow transfer from bit field EXPHS. The contents are compared after every detected edge at the hall input pins with the pattern at the hall input pins in order to detect the occurrence of the next desired (=expected) hall pattern or a wrong pattern. If the current hall pattern at the hall input pins is equal to the bit field EXPH, bit CHE (correct hall event) is set and an interrupt request is generated (if enabled by bit ENCHE). If the current hall pattern at the hall input pins is not equal to the bit fields CURH or EXPH, bit WHE (wrong hall event) is set and an interrupt request is generated (if enabled by bit ENWHE).
CURH	5:3	rh	Current Hall Pattern Bit field CURH is written by a shadow transfer from bit field CURHS.The contents are compared after every detected edge at the hall input pins with the pattern at the hall input pins in order to detect the occurrence of the next desired (=expected) hall pattern or a wrong pattern. If the current hall input pattern is equal to bit field CURH, the detected edge at the hall input pins has been an invalid transition (e.g. a spike).
0	7:6	r	Reserved Returns 0 if read; should be written with 0.

Note: The bits in the bit fields EXPH and CURH correspond to the hall patterns at the input pins CCPOSx (x = 0, 1, 2) in the following order (EXPH.2, EXPH.1, EXPH.0), (CURH.2, CURH.1, CURH.0), (CCPOS2, CCPOS.1, CCPOS0).

Register MCMCTR contains control bits for the multi-channel functionality.

MCMCTR

Multi-Char	nnel Mode	Reset	Value: 00 _H				
7	6	5	4	3	2	1	0
C)	SWSYN		0		SWSEL	
ľ	٢	r١	N	r		rw	

Field	Bits	Туре	Description
SWSEL	2:0	rw	 Switching Selection Bit field SWSEL selects one of the following trigger request sources (next multi-channel event) for the shadow transfer from MCMPS to MCMP. The trigger request is stored in the reminder flag R until the shadow transfer is done and flag R is cleared automatically with the shadow transfer. The shadow transfer takes place synchronously with an event selected in bit field SWSYN. 000 no trigger request will be generated 001 correct hall pattern on CCPOSx detected 010 T13 period-match detected (while counting up) 011 T12 channel 1 compare-match detected (phase delay function) 101 T12 period match detected (while counting up) else reserved, no trigger request will be generated

Field	Bits	Туре	Description
SWSYN	5:4	rw	 Switching Synchronization Bit field SWSYN triggers the shadow transfer between MCMPS and MCMP if it has been requested before (flag R set by an event selected by SWSEL). This feature permits the synchronization of the outputs to the PWM source, that is used for modulation (T12 or T13). 00 direct; the trigger event directly causes the shadow transfer 01 T13 zero-match triggers the shadow transfer 10 a T12 zero-match (while counting up) triggers the shadow transfer 11 reserved; no action
0	3, 6, 7	r	Reserved Returns 0 if read; should be written with 0.

Note: The generation of the shadow transfer request by hardware is only enabled if bit MCMEN = 1.

15.3.7 Interrupt Control Registers

ISL

Capture/Compare Interrupt Status Register Low

_	7	6	5	4	3	2	1	0
	T12	T12	ICC	ICC	ICC	ICC	ICC	ICC
	PM	ОМ	62F	62R	61F	61R	60F	60R
	rh							

Field	Bits	Туре	Description
ICC6xR	0, 2,	rh	Capture, Compare-Match Rising Edge Flag
(x = 0, 1, 2)	4		 In compare mode, a compare-match has been detected while T12 was counting up. In capture mode, a rising edge has been detected at the input CC6x. The event has not yet occurred since this bit has been reset for the last time. The event described above has been detected.

XC878CLM

Capture/Compare Unit 6

Field	Bits	Туре	Description
ICC6xF (x = 0, 1, 2)	1, 3, 5	rh	 Capture, Compare-Match Falling Edge Flag In compare mode, a compare-match has been detected while T12 was counting down. In capture mode, a falling edge has been detected at the input CC6x. 0 The event has not yet occurred since this bit has been reset for the last time. 1 The event described above has been detected.
Т12ОМ	6	rh	 Timer T12 One-Match Flag A timer T12 one-match (while counting down) has not yet been detected since this bit has been reset for the last time. A timer T12 one-match (while counting down) has been detected.
Т12РМ	7	rh	 Timer T12 Period-Match Flag A timer T12 period-match (while counting up) has not yet been detected since this bit has been reset for the last time. A timer T12 period-match (while counting up) has been detected.

ISH Capture/Compare Interrupt Status Register High Reset Value: 00_H

7	6	5	4	3	2	1	0
STR	IDLE	WHE	CHE	TRP S	TRP F	T13 PM	Т13 СМ
rh	rh	rh	rh	rh	rh	rh	rh

Field	Bits	Туре	Description
T13CM	0	rh	 Timer T13 Compare-Match Flag A timer T13 compare-match has not yet been detected since this bit has been reset for the last time. A timer T13 compare-match has been detected.

XC878CLM

Field	Bits	Туре	Description
T13PM	1	rh	 Timer T13 Period-Match Flag A timer T13 period-match has not yet been detected since this bit has been reset for the last time. A timer T13 period-match has been detected.
TRPF	2	rh	Trap FlagThe trap flag TRPF will be set by hardware ifTRPPEN = 1 and CTRAP = 0 or by software. IfTRPM2 = 0, bit TRPF is reset by hardware if the inputCTRAP becomes inactive (TRPPEN = 1). IfTRPM2 = 1, bit TRPF must be reset by software inorder to leave the trap state.0The trap condition has not been detected.1The trap condition has been detected (input CTRAP has been 0 or by software).
TRPS	3	rh	 Trap State 0 The trap state is not active. 1 The trap state is active. Bit TRPS is set while bit TRPF = 1. It is reset according to the mode selected in register TRPCTR. During the trap state, the selected outputs are set to the passive state. The logic level driven during the passive state is defined by the corresponding bit in register PSLR. Bit TRPS = 1 and TRPF = 0 can occur if the trap condition is no longer active but the selected synchronization has not yet taken place.
CHE	4	rh	 Correct Hall Event On every valid hall edge, the contents of EXPH are compared with the pattern on pin CCPOSx and if equal bit CHE is set. 0 A transition to a correct (=expected) hall event has not yet been detected since this bit has been reset for the last time. 1 A transition to a correct (=expected) hall event has been detected.

Field	Bits	Туре	Description
WHE	5	rh	 Wrong Hall Event On every valid hall edge, the contents of EXPH are compared with the pattern on pin CCPOSx. If both comparisons (CURH and EXPH with CCPOSx) are not true, bit WHE (wrong hall event) is set. 0 A transition to a wrong hall event (not the expected one) has not yet been detected since this bit has been reset for the last time. 1 A transition to a wrong hall event (not the expected one) has been detected.
IDLE	6	rh	 IDLE State This bit is set together with bit WHE (wrong hall event) and it must be reset by software. 0 No action. 1 Bit field MCMP is cleared and held to 0, the selected outputs are set to passive state.
STR	7	rh	Multi-Channel Mode Shadow Transfer RequestThis bit is set when a shadow transfer fromMCMOUTS to MCMOUT takes places in multi-channelmode.0The shadow transfer has not yet taken place.1The shadow transfer has taken place.

- Note: Not all bits in register IS can generate an interrupt. Other status bits have been added, which have a similar structure for their set and reset actions.
- Note: The interrupt generation is independent from the value of the bits in register IS, e.g. the interrupt will be generated (if enabled) even if the corresponding bit is already set. The trigger for an interrupt generation is the detection of a set condition (by hardware or software) for the corresponding bit in register IS.
- Note: In compare mode (and hall mode), the timer-related interrupts are only generated while the timer is running (TxR = 1). In capture mode, the capture interrupts are also generated while the timer T12 is stopped.

Register ISS contains the individual interrupt request set bits required to generate a CCU6 interrupt request by software.

ISSL Capture/Compare Interrupt Status Set Register Low Reset Value: 00 _H									
7	6	5	4	3	2	1	0		
S T12 PM	S T12 OM	S CC 62F	S CC 62R	S CC 61F	S CC 61R	S CC 60F	S CC 60R		
w	w	w	w	w	w	w	w		

Field	Bits	Туре	Description
SCC60R	0	w	Set Capture, Compare-Match Rising Edge Flag0No action1Bit ICC60R in register IS will be set.
SCC60F	1	w	Set Capture, Compare-Match Falling Edge Flag0No action1Bit ICC60F in register IS will be set.
SCC61R	2	w	Set Capture, Compare-Match Rising Edge Flag0No action1Bit ICC61R in register IS will be set.
SCC61F	3	w	Set Capture, Compare-Match Falling Edge Flag0No action1Bit ICC61F in register IS will be set.
SCC62R	4	w	Set Capture, Compare-Match Rising Edge Flag0No action1Bit ICC62R in register IS will be set.
SCC62F	5	w	Set Capture, Compare-Match Falling Edge Flag0No action1Bit ICC62F in register IS will be set.
ST12OM	6	w	Set Timer T12 One-Match Flag0No action1Bit T12OM in register IS will be set.
ST12PM	7	w	Set Timer T12 Period-Match Flag0No action1Bit T12PM in register IS will be set.

Note: If the setting by hardware of the corresponding flags leads to an interrupt, the setting by software has the same effect.

ISSH Capture/Compare Interrupt Status Set Register High Reset Value: 00 _H								
7	6	5	4	3	2	1	0	
S STR	S IDLE	S WHE	S CHE	S WHC	S TRPF	S T13 PM	S T13 CM	
W	W	W	W	W	w	w	W	

Field	Bits	Туре	Description
ST13CM	0	w	Set Timer T13 Compare-Match Flag0No action1Bit T13CM in register IS will be set.
ST13PM	1	w	Set Timer T13 Period-Match Flag0No action1Bit T13PM in register IS will be set.
STRPF	2	w	Set Trap Flag0No action1Bits TRPF and TRPS in register IS will be set.
SWHC	3	w	Software Hall Compare0No action1The Hall compare action is triggered.
SCHE	4	w	Set Correct Hall Event Flag0No action1Bit CHE in register IS will be set.
SWHE	5	w	Set Wrong Hall Event Flag0No action1Bit WHE in register IS will be set.
SIDLE	6	w	Set IDLE Flag0No action1Bit IDLE in register IS will be set.
SSTR	7	w	Set STR Flag0No action1Bit STR in register IS will be set.

Register ISR contains the individual interrupt request reset bits to reset the corresponding flags by software.

ISRL Capture/Compare Interrupt Status Reset Register Low Reset Value: 00 _H									
7	6	5	4	3	2	1	0		
R T12 PM	R T12 OM	R CC 62F	R CC 62R	R CC 61F	R CC 61R	R CC 60F	R CC 60R		
W	w	w	w	w	w	w	w		

Field	Bits	Туре	Description
RCC60R	0	w	Reset Capture, Compare-Match Rising Edge Flag0No action1Bit ICC60R in register IS will be reset.
RCC60F	1	w	Reset Capture, Compare-Match Falling Edge Flag0No action1Bit ICC60F in register IS will be reset.
RCC61R	2	w	Reset Capture, Compare-Match Rising Edge Flag0No action1Bit ICC61R in register IS will be reset.
RCC61F	3	w	Reset Capture, Compare-Match Falling Edge Flag0No action1Bit ICC61F in register IS will be reset.
RCC62R	4	w	Reset Capture, Compare-Match Rising Edge Flag0No action1Bit ICC62R in register IS will be reset.
RCC62F	5	w	Reset Capture, Compare-Match Falling Edge Flag0No action1Bit ICC62F in register IS will be reset.
RT12OM	6	w	Reset Timer T12 One-Match Flag0No action1Bit T12OM in register IS will be reset.
RT12PM	7	w	Reset Timer T12 Period-Match Flag0No action1Bit T12PM in register IS will be reset.

ISRH Capture/Compare Interrupt Status Reset Register High Reset Value: 00 _H								
7	6	5	4	3	2	1	0	
R STR	R IDLE	R WHE	R CHE	0	R TRPF	R T13 PM	R T13 CM	
W	W	W	W	r	W	w	W	

Field	Bits	Туре	Description
RT13CM	0	w	Reset Timer T13 Compare-Match Flag0No action1Bit T13CM in register IS will be reset.
RT13PM	1	w	 Reset Timer T13 Period-Match Flag 0 No action 1 Bit T13PM in register IS will be reset.
RTRPF	2	w	Reset Trap Flag0No action1Bit TRPF in register IS will be reset (not taken into account while input CTRAP = 0 and TRPPEN = 1.
RCHE	4	w	Reset Correct Hall Event Flag0No action1Bit CHE in register IS will be reset.
RWHE	5	w	Reset Wrong Hall Event Flag0No action1Bit WHE in register IS will be reset.
RIDLE	6	w	Reset IDLE Flag0No action1Bit IDLE in register IS will be reset.
RSTR	7	w	Reset STR Flag0No action1Bit STR in register IS will be reset.
0	3	r	Reserved Returns 0 if read; should be written with 0.

IENL Capture/Compare Interrupt Enable Register Low Reset Value: 00 _H							
7	6	5	4	3	2	1	0
EN	EN	EN	EN	EN	EN	EN	EN
T12	T12	CC	CC	CC	CC	CC	CC
PM	ОМ	62F	62R	61F	61R	60F	60R
 rw	rw						

Field	Bits	Туре	Description	
ENCC60R	0	rw	 Capture, Compare-Match Rising Edge Interrupt Enable for Channel 0 0 No interrupt will be generated if the set condition for bit ICC60R in register IS occurs. 1 An interrupt will be generated if the set condition for bit ICC60R in register IS occurs. The interrupt line that will be activated is selected by bit field INPCC60. 	
ENCC60F	1	rw	 Capture, Compare-Match Falling Edge Interrupt Enable for Channel 0 0 No interrupt will be generated if the set condition for bit ICC60F in register IS occurs. 1 An interrupt will be generated if the set condition for bit ICC60F in register IS occurs. The interrupt line that will be activated is selected by bit field INPCC60. 	
ENCC61R	2	rw	 Capture, Compare-Match Rising Edge Interrupt Enable for Channel 1 No interrupt will be generated if the set condition for bit ICC61R in register IS occurs. An interrupt will be generated if the set condition for bit ICC61R in register IS occurs. The interrupt line that will be activated is selected b bit field INPCC61. 	

Field	Bits	Туре	Description	
ENCC61F	3	rw	 Capture, Compare-Match Falling Edge Interrupt Enable for Channel 1 No interrupt will be generated if the set condition for bit ICC61F in register IS occurs. An interrupt will be generated if the set condition for bit ICC61F in register IS occurs. The interrupt line that will be activated is selected by bit field INPCC61. 	
ENCC62R	4	rw	 Capture, Compare-Match Rising Edge Interrupt Enable for Channel 2 No interrupt will be generated if the set condition for bit ICC62R in register IS occurs. An interrupt will be generated if the set condition for bit ICC62R in register IS occurs. The interrupt line that will be activated is selected by bit field INPCC62. 	
ENCC62F	5	rw	 Capture, Compare-Match Falling Edge Interrupt Enable for Channel 2 No interrupt will be generated if the set condition for bit ICC62F in register IS occurs. An interrupt will be generated if the set condition for bit ICC62F in register IS occurs. The interrupt line that will be activated is selected by bit field INPCC62. 	
ENT12OM	6	rw	 Enable Interrupt for T12 One-Match No interrupt will be generated if the set conditio for bit T12OM in register IS occurs. An interrupt will be generated if the set conditio for bit T12OM in register IS occurs. The interrup line that will be activated is selected by bit field INPT12. 	
ENT12PM	7	rw	 Enable Interrupt for T12 Period-Match No interrupt will be generated if the set condition for bit T12PM in register IS occurs. An interrupt will be generated if the set condition for bit T12PM in register IS occurs. The interrupt line that will be activated is selected by bit field INPT12. 	

 IENH Capture/Compare Interrupt Enable Register High Reset Value: 00 _H							
7	6	5	4	3	2	1	0
EN STR	EN IDLE	EN WHE	EN CHE	0	EN TRPF	EN T13 PM	EN T13 CM
 rw	rw	rw	rw	r	rw	rw	rw

Field	Bits	Туре	Description
ENT13CM	0	rw	 Enable Interrupt for T13 Compare-Match No interrupt will be generated if the set condition for bit T13CM in register IS occurs. An interrupt will be generated if the set condition for bit T13CM in register IS occurs. The interrupt line that will be activated is selected by bit field INPT13.
ENT13PM	1	rw	 Enable Interrupt for T13 Period-Match No interrupt will be generated if the set condition for bit T13PM in register IS occurs. An interrupt will be generated if the set condition for bit T13PM in register IS occurs. The interrupt line that will be activated is selected by bit field INPT13.
ENTRPF	2	rw	 Enable Interrupt for Trap Flag No interrupt will be generated if the set condition for bit TRPF in register IS occurs. An interrupt will be generated if the set condition for bit TRPF in register IS occurs. The interrupt line that will be activated is selected by bit field INPERR.
ENCHE	4	rw	 Enable Interrupt for Correct Hall Event No interrupt will be generated if the set condition for bit CHE in register IS occurs. An interrupt will be generated if the set condition for bit CHE in register IS occurs. The interrupt line that will be activated is selected by bit field INPCHE.

Field	Bits	Туре	Description	
ENWHE	5	rw	 Enable Interrupt for Wrong Hall Event No interrupt will be generated if the set condition for bit WHE in register IS occurs. An interrupt will be generated if the set condition for bit WHE in register IS occurs. The interrupt line that will be activated is selected by bit field INPERR. 	
ENIDLE	6	rw	 Enable Idle This bit enables the automatic entering of the idle state (bit IDLE will be set) after a wrong hall event has been detected (bit WHE is set). During the idle state, the bit field MCMP is automatically cleared. 0 The bit IDLE is not automatically set when a wrong hall event is detected. 1 The bit IDLE is automatically set when a wrong hall event is detected. 	
ENSTR	7	rw	 hall event is detected. Enable Multi-Channel Mode Shadow Transfer Interrupt No interrupt will be generated if the set condition for bit STR in register IS occurs. An interrupt will be generated if the set condition for bit STR in register IS occurs. The interrupt line that will be activated is selected by bit field INPCHE. 	
0	3	r	Reserved Returns 0 if read; should be written with 0.	

INPL Capture/Compare Interrupt Node Pointer Register Low Reset Value: 40_H

7	6	5	4	3	2	1	0
IN	IP	IN	Р	IN	IP	IN	IP
CH	CHE		CC62		61		60
۳۱	N	rv	V	r	N	r	W

Field	Bits	Туре	Description
INPCC60	1:0	rw	Interrupt Node Pointer for Channel 0 InterruptsThis bit field defines the interrupt output line, which is activated due to a set condition for bit ICC60R (if enabled by bit ENCC60R) or for bit ICC60F (if enabled by bit ENCC60F).00Interrupt output line SR0 is selected.01Interrupt output line SR1 is selected.10Interrupt output line SR2 is selected.11Interrupt output line SR3 is selected.
INPCC61	3:2	rw	Interrupt Node Pointer for Channel 1 InterruptsThis bit field defines the interrupt output line, which is activated due to a set condition for bit ICC61R (if enabled by bit ENCC61R) or for bit ICC61F (if enabled by bit ENCC61F).00Interrupt output line SR0 is selected.01Interrupt output line SR1 is selected.10Interrupt output line SR2 is selected.11Interrupt output line SR3 is selected.
INPCC62	5:4	rw	Interrupt Node Pointer for Channel 2 InterruptsThis bit field defines the interrupt output line, which is activated due to a set condition for bit ICC62R (if enabled by bit ENCC62R) or for bit ICC62F (if enabled by bit ENCC62F).00Interrupt output line SR0 is selected.01Interrupt output line SR1 is selected.10Interrupt output line SR2 is selected.11Interrupt output line SR3 is selected.
INPCHE	7:6	rw	Interrupt Node Pointer for the CHE InterruptThis bit field defines the interrupt output line, which is activated due to a set condition for bit CHE (if enabled by bit ENCHE) or for bit STR (if enabled by bit ENSTR).00Interrupt output line SR0 is selected.01Interrupt output line SR1 is selected.10Interrupt output line SR2 is selected.11Interrupt output line SR3 is selected.

INPH Capture/Compare Interrupt Node Pointer Register High Reset Value: 39 _H								
7	6	5	4	3	2	1	0	
0 INP T13			IN T	IP 12		IP RR		
r		rw		rw		rw		

Field	Bits	Туре	Description		
INPERR	1:0	rw	Interrupt Node Pointer for Error InterruptsThis bit field defines the interrupt output line, which isactivated due to a set condition for bit TRPF (if enabledby bit ENTRPF) or for bit WHE (if enabled by bitENWHE).0000Interrupt output line SR0 is selected.01Interrupt output line SR1 is selected.10Interrupt output line SR2 is selected.11Interrupt output line SR3 is selected.		
INPT12	3:2	rw	Interrupt Node Pointer for Timer T12 InterruptsThis bit field defines the interrupt output line, which is activated due to a set condition for bit T12OM (if enabled by bit ENT12OM) or for bit T12PM (if enabled by bit ENT12PM).00Interrupt output line SR0 is selected.01Interrupt output line SR1 is selected.10Interrupt output line SR2 is selected.		
INPT13	5:4	rw	 11 Interrupt output line SR3 is selected. Interrupt Node Pointer for Timer T13 Interrupts This bit field defines the interrupt output line, which is activated due to a set condition for bit T13CM (if enabled by bit ENT13CM) or for bit T13PM (if enabled by bit ENT13PM). 00 Interrupt output line SR0 is selected. 01 Interrupt output line SR1 is selected. 10 Interrupt output line SR2 is selected. 11 Interrupt output line SR3 is selected. 12 Interrupt output line SR3 is selected.		
0	7:6	r	Reserved Returns 0 if read; should be written with 0.		

16 Controller Area Network (MultiCAN) Controller

The MultiCAN module contains 2 Full-CAN nodes operating independently or exchanging data and remote frames via a gateway function. Transmission and reception of CAN frames is handled in accordance to CAN specification V2.0 B active. Each CAN node can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers.

Two CAN nodes share a common set of message objects. Each message object can be individually allocated to one of the CAN nodes. Besides serving as a storage container for incoming and outgoing frames, message objects can be combined to build gateways between the CAN nodes or to setup a FIFO buffer.

The message objects are organized in double-chained lists, where each CAN node has its own list of message objects. A CAN node stores frames only into message objects that are allocated to the message object list of the CAN node, and it only transmits messages belonging to this message object list. A powerful, command driven list controller performs all message object list operations.

The bit timings for the CAN nodes are derived from the module clock (f_{CAN}) and are programmable up to a data rate of 1 Mbit/s. External bus transceivers are connected with a CAN node via a pair of receive and transmit pins.

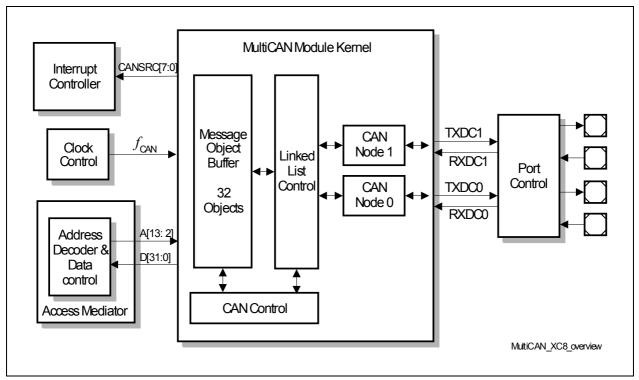


Figure 16-1 Overview of the MultiCAN Module

Features

- Compliant with ISO 11898
- CAN functionality according to CAN specification V2.0 B active
- Dedicated control registers for each CAN node
- Data transfer rates up to 1 Mbit/s
- Flexible and powerful message transfer control and error handling capabilities
- Advanced CAN bus bit timing analysis and baud rate detection for each CAN node via a frame counter
- Full-CAN functionality: A set of 32 message objects can be individually
 - Allocated (assigned) to any CAN node
 - Configured as transmit or receive object
 - Set up to handle frames with 11-bit or 29-bit identifier
 - Identified by a timestamp via a frame counter
 - Configured to remote monitoring mode
- Advanced acceptance filtering
 - Each message object provides an individual acceptance mask to filter incoming frames
 - A message object can be configured to accept standard or extended frames or to accept both standard and extended frames
 - Message objects can be grouped into four priority classes for transmission and reception
 - The selection of the message to be transmitted first can be based on frame identifier, IDE bit and RTR bit according to CAN arbitration rules, or according to its order in the list
- Advanced message object functionality
 - Message objects can be combined to build FIFO message buffers of arbitrary size, limited only by the total number of message objects
 - Message objects can be linked to form a gateway that automatically transfers frames between two different CAN buses. A single gateway can link any two CAN nodes. An arbitrary number of gateways can be defined.
- Advanced data management
 - The message objects are organized in double-chained lists
 - List reorganizations can be performed at any time, even during full operation of the CAN nodes
 - A powerful, command-driven list controller manages the organization of the list structure and ensures consistency of the list
 - Message FIFOs are based on the list structure and can easily be scaled in size during CAN operation
 - Static allocation commands offer compatibility with TwinCAN applications that are not list-based
- Advanced interrupt handling

- Up to 8 interrupt output lines are available. Interrupt requests can be individually routed to one of the 8 interrupt output lines
- Message post-processing notifications can be combined flexibly into a dedicated register field of 64 notification bits

16.1 MultiCAN Kernel Functional Description

This section describes the functionality of the MultiCAN module.

16.1.1 Module Structure

Figure 16-2 shows the general structure of the MultiCAN module.

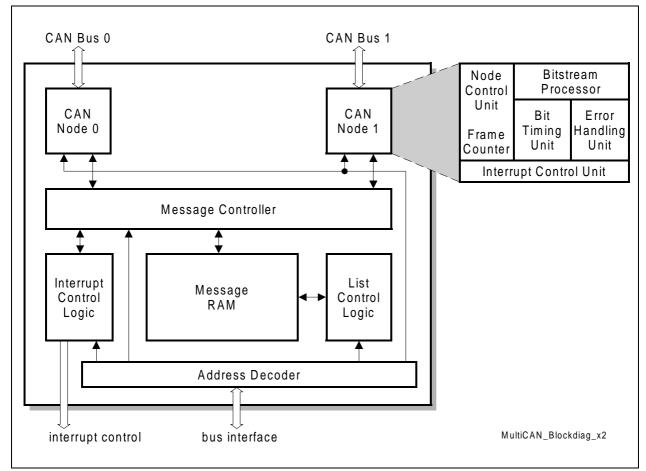


Figure 16-2 MultiCAN Block Diagram

CAN Nodes

Each CAN node consists of several sub-units.

Bitstream Processor

The Bitstream Processor performs data, remote, error and overload frame processing according to the ISO 11898 standard. This includes conversion between the serial data stream and the input/output registers.

• Bit Timing Unit

The Bit Timing Unit defines the length of a bit time and the location of the sample point according to the user settings, taking into account propagation delays and phase shift errors. The Bit Timing Unit also performs re-synchronization.

• Error Handling Unit

The Error Handling Unit manages the receive and transmit error counter. According to the contents of both counters, the CAN node is set into an error-active, error passive or bus-off state.

Node Control Unit

The Node Control Unit coordinates the operation of the CAN node:

- Enable/disable CAN transfer of the node
- Enable/disable and generate node-specific events that lead to an interrupt request (CAN bus errors, successful frame transfers etc.)
- Administration of the Frame Counter

Interrupt Control Unit

The Interrupt Control Unit in the CAN node controls the interrupt generation for the different conditions that can occur in the CAN node.

Message Controller

The Message Controller handles the exchange of CAN frames between the CAN nodes and the message objects that are stored in the Message RAM. The Message Controller performs several functions:

- Receive acceptance filtering to determine the correct message object for storing of a received CAN frame
- Transmit acceptance filtering to determine the message object to be transmitted first, individually for each CAN node
- Transfer contents between message objects and the CAN nodes, taking into account the status/control bits of the message objects
- Handling of the FIFO buffering and gateway functionality
- Aggregation of message-pending notification bits

List Controller

The List Controller performs all operations that lead to a modification of the doublechained message object lists. Only the list controller is allowed to modify the list structure. The allocation/deallocation or reallocation of a message object can be requested via a user command interface (command panel). The list controller state machine then performs the requested command autonomously.

Interrupt Control

The general interrupt structure is shown in **Figure 16-3**. The interrupt event can trigger the interrupt generation. The interrupt pulse is generated independently from the interrupt flag in the interrupt status register. The interrupt flag can be reset by software by writing a 0 to it.

If enabled by the related interrupt enable bit in the interrupt enable register, an interrupt pulse can be generated at one of the 8 interrupt output lines CANSRCm of the MultiCAN

module. If more than one interrupt source is connected to the same interrupt node pointer (in the interrupt node pointer register), the requests are combined to one common line.

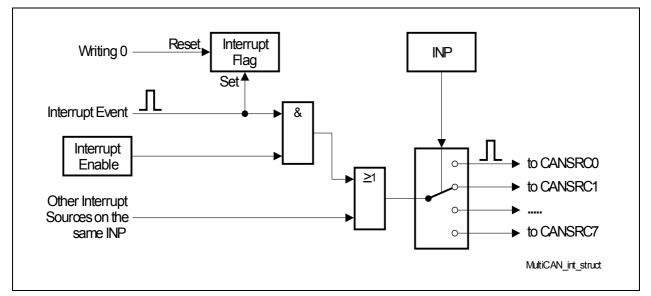


Figure 16-3 General Interrupt Structure

16.1.2 Clock Control

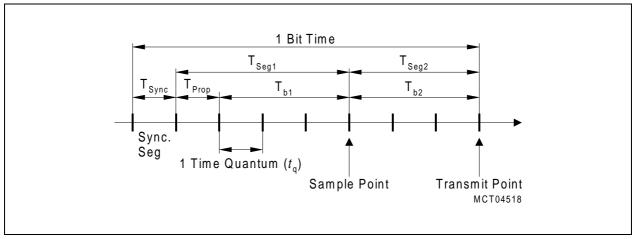
Table 16-1 indicates the minimum operating frequencies in MHz for f_{CAN} that are required for a baud rate of 1 Mbit/s for the active CAN nodes. If less baud rate is desired, the values can be scaled linearly (e.g. for a maximum of 500 kbit/s, 50% of the indicated value are required).

The values imply that the CPU executes maximum access to the MultiCAN module. The values may contain rounding effects.

Table 16-1	Minimum Opera	ting Frequencies [MHz]
------------	---------------	------------------------

Number of Allocated Message Objects ¹⁾	with 1 CAN Node Active	with 2 CAN Nodes Active
16 Message Objects	12	19
32 Message Objects	15	23

1) Only those message objects that are allocated to a CAN node must be taken into account. The unallocated message objects have no influence on the minimum operating frequency.


16.1.3 CAN Node Control

Each CAN node may be configured and run independently from the other CAN nodes. Each CAN node is equipped with an individual set of SFR registers to control and to monitor the CAN node.

Note: In the following descriptions, index "x" stands for the node number and index "n" represents the message object number.

16.1.3.1 Bit Timing Unit

According to the ISO 11898 standard, a CAN bit time is subdivided into different segments (**Figure 16-4**). Each segment consists of multiples of a time quantum t_q . The magnitude of t_q is adjusted by bit fields NBTRx.BRP and NBTRx.DIV8, both controlling the baud rate prescaler. The baud rate prescaler is driven by the module clock f_{CAN} .

Figure 16-4 CAN Bus Bit Timing Standard

The Synchronization Segment (T_{Sync}) allows a phase synchronization between transmitter and receiver time base. The Synchronization Segment length is always one t_q . The Propagation Time Segment (T_{Prop}) takes into account the physical propagation delay in the transmitter output driver on the CAN bus line and in the transceiver circuit. For a working collision detection mechanism, T_{Prop} must be two times the sum of all propagation delay quantities rounded up to a multiple of t_q . The phase buffer segments 1 and 2 (T_{b1} , T_{b2}) before and after the signal sample point are used to compensate for a mismatch between transmitter and receiver clock phases detected in the synchronization segment.

The maximum number of time quanta allowed for re-synchronization is defined by bit field NBTRx.SJW. The Propagation Time Segment and the Phase Buffer Segment 1 are combined to parameter T_{Seg1} , which is defined by the value NBTRx.TSEG1. A minimum of 3 time quanta is requested by the ISO standard. Parameter T_{Seg2} , which is defined by the value of NBTRx.TSEG2, covers the Phase Buffer Segment 2. A minimum of 2 time

quanta is requested by the ISO standard. According to ISO standard, a CAN bit time, calculated as the sum of T_{Sync} , T_{Seg1} and T_{Seg2} , must not fall below 8 time quanta. Calculation of the bit time:

t _q	= (BRP + 1) / f _{CAN}	if DIV8 = 0
	= 8 ×(BRP+1) / f_{CAN}	if DIV8 = 1
T _{Sync}	= 1 \times t _q	
T_{Seg1}	= (TSEG1 + 1) $\times t_q$	(min. 3 <i>t</i> _q)
T _{Seg2}	= (TSEG2 + 1) $\times t_q$	(min. 2 <i>t</i> _q)
bit time	$= T_{Sync} + T_{Seg1} + T_{Seg2}$	(min. 8 <i>t</i> _q)

To compensate phase shifts between clocks of different CAN controllers, the CAN controller must synchronize on any edge from the recessive to the dominant bus level. If the hard synchronization is enabled (at the start of frame), the bit time is restarted at the synchronization segment. Otherwise, the re-synchronization jump width T_{SJW} defines the maximum number of time quanta, a bit time may be shortened or lengthened by one re-synchronization. The value of SJW is defined by bit field NBTRx.SJW.

 $\begin{array}{ll} \mathsf{T}_{\mathsf{SJW}} & = (\mathsf{SJW}+1) \times t_{\mathsf{q}} \\ \mathsf{T}_{\mathsf{Seg1}} & \geq \mathsf{T}_{\mathsf{SJW}} + \mathsf{T}_{\mathsf{prop}} \\ \mathsf{T}_{\mathsf{Seg2}} & \geq \mathsf{T}_{\mathsf{SJW}} \end{array}$

The maximum relative tolerance for $f_{\rm CAN}$ depends on the Phase Buffer Segments and the re-synchronization jump width.

 $\begin{array}{ll} df_{\text{CAN}} & \leq \min\left(\mathsf{T}_{\text{b1}},\,\mathsf{T}_{\text{b2}}\right) / \, 2 \times (13 \times \text{bit time} - \mathsf{T}_{\text{b2}}) & \text{AND} \\ df_{\text{CAN}} & \leq \mathsf{T}_{\text{SJW}} / \, 20 \times \text{bit time} \end{array}$

A valid CAN bit timing must be written to the register NBTR before resetting the bit NCRx. INIT, i.e., before enabling the operation of the CAN node. The register NBTRx may be written only if bit NCRx.CCE (Configuration Change Enable) is set.

16.1.3.2 Bitstream Processor

Based on the message objects in the message buffer, the Bit Stream Processor generates the remote and data frames to be transmitted via the CAN bus. It controls the CRC generator and adds the checksum information to the new remote or data frame. After including the 'Start of Frame Bit' and the 'End of Frame Field', the Bit Stream

Processor starts the CAN bus arbitration procedure and continues with the frame transmission when the bus was found in idle state. While the data transmission is running, the Bit Stream Processor monitors continuously the I/O line. If (outside the CAN bus arbitration phase or the acknowledge slot) a mismatch is detected between the voltage level on the I/O line and the logic state of the bit currently sent out by the transmit shift register, a 'Last Error' interrupt request is generated and the error code is indicated by the bit field NSRx.LEC.

The data consistency of an incoming frame is verified by checking the associated CRC field. When an error has been detected, the 'Last Error' interrupt request is generated and the error code is indicated by the bit field NSRx.LEC. Furthermore, an error frame is generated and transmitted on the CAN bus. After decomposing a faultless frame into identifier and data portion, the received information is transferred to the message buffer executing remote and data frame handling, interrupt generation and status processing.

16.1.3.3 Error Handling Unit

The Error Handling Unit of a CAN node x is responsible for the fault confinement of the CAN device. Its two counters, the Receive Error Counter NECNTx.REC and the Transmit Error Counter NECNTx.TEC are incremented and decremented by commands from the Bit Stream Processor. If the Bit Stream Processor itself detects an error while a transmit operation is running, the Transmit Error Counter is incremented by 8. An increment of 1 is used, when the error condition was reported by an external CAN node via an error frame generation. For error analysis, the transfer direction of the disturbed message and the node, recognizing the transfer error, are indicated for the respective CAN node x in register NECNTx. According to the values of the error counters, the CAN node is set into the states "error active", "error passive", and "bus-off".

The CAN node is in error active state, if both error counters are below the error passive limit of 128. The CAN node is in error passive state, if at least one of the error counters is equal or greater than 128.

The "bus-off" state is activated if the Transmit Error Counter is equal or greater than the "bus-off" limit of 256. This state is reported by flag NSRx.BOFF. The device remains in this state, until the "bus-off" recovery sequence is finished. Additionally, bit NSRx.EWRN is set when at least one of the error counters is equal or greater than the error warning limit defined by bit field NECNTx.EWRNLVL. Bit NSRx.EWRN is reset if both error counters fall below the error warning limit again.

16.1.3.4 CAN Frame Counter

Each CAN node is equipped with a frame counter which enables the counting of transmitted/received CAN frames or helps obtain information on the time instant when a frame has started to transmit or received by the CAN node. CAN frame counting/bit time counting is performed by a 16-bit counter which is controlled by register NFCRx. Bit field NFCRx.CFSEL defines the operation mode of the frame counter:

• Frame Count Mode:

The frame counter is incremented after the successful transmission and/or reception of a CAN frame. The incremented value is stored to the bit field NFCRx.CFC and copied to the bit field MOIPRn.CFCVAL of the message object involved in the transfer.

• Time Stamp Mode:

The frame counter is incremented with the beginning of a new bit time. When the transmission/reception of a frame starts, the value of the frame counter is captured and stored to the bit field NFCRx.CFC. After the successful transfer of the frame, the captured value is copied to the bit field MOIPRn.CFCVAL of the message object involved in the transfer.

• Bit Timing Mode:

Used for baud rate detection and analysis of the bit timing (Chapter 16.1.5.3).

16.1.3.5 CAN Node Interrupts

Each CAN node is equipped with four interrupt sources to generate an interrupt request upon:

- the successful transmission/reception of a frame
- a CAN protocol error with a last error code
- an alert condition occurs: transmit/receive error counters reach the warning limit, bus-off state changes, a list length error occurs, or a list object error occurs
- an overflow of the frame counter

Besides the hardware generated interrupts, software initiated interrupts can be generated using the register MITR. Writing a 1 to bit n of bit field MITR.IT generates an interrupt request signal on the corresponding interrupt output line CANSRCm. When writing MITR.IT more than one bit can be set resulting in the activation of multiple CANSRCm interrupt output lines at the same time.

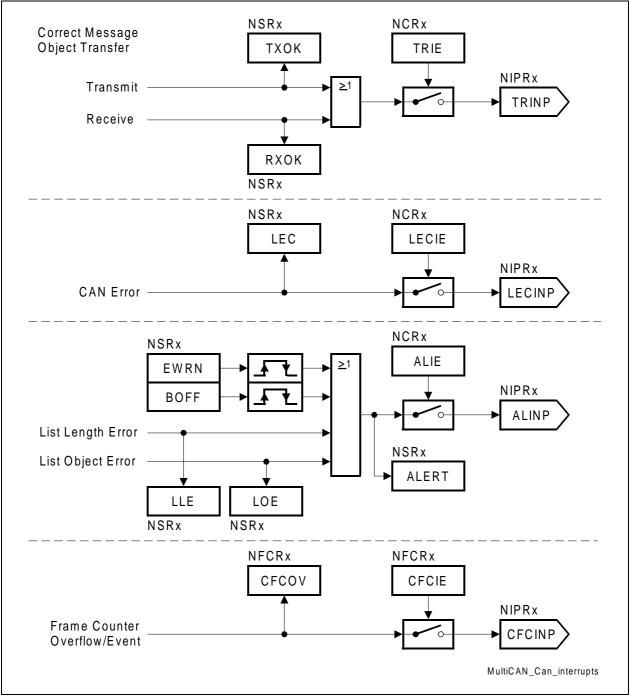


Figure 16-5 CAN Node Interrupts

16.1.4 Message Object List Structure

This section describes the structure of the message object lists in the MultiCAN module.

16.1.4.1 Basics

The message objects of the MultiCAN module are organized in double-chained lists, where each message object has a pointer to the previous message object in the list as well as a pointer to the next message object in the list. The MultiCAN module provides eight lists. Each message object is allocated to one of these lists. In the example in **Figure 16-6**, the three message objects (3, 5, and 16) are allocated to the list with index 2 (List Register LIST2).

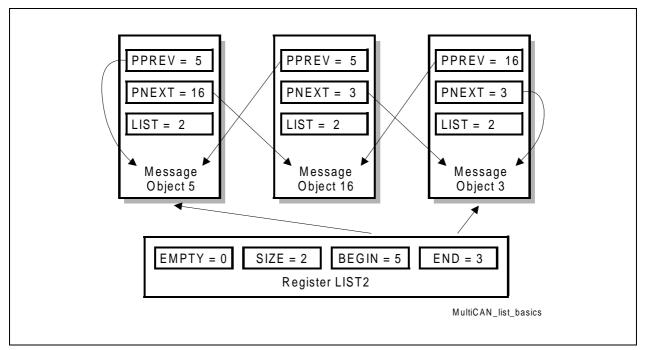


Figure 16-6 Example Allocation of Message Objects to a List

Bit field LIST.BEGIN points to the first element in the list (object 5 in the example), and bit field LIST.END points to the last element in the list (object 3 in the example). The number of elements in the list is indicated by bit field LIST.SIZE (SIZE = number of list elements - 1, thus SIZE = 2 for the 3 elements in the example). The bit LIST.EMPTY indicates whether a list is empty or not (EMPTY = 0 in the example, because list 2 is not empty).

Each message object n has a pointer MOCTRn.PNEXT that points to the next message object in the list and a pointer MOCTRn.PPREV that points to the previous message object in the list. PPREV of the first message object points to the message object itself because the first message object has no predecessor (in the example message object 5 is the first message object in the list, indicated by PPREV = 5). PNEXT of the last message object also points to the message object itself because the last message object

has no successor (in the example object 3 is the last message object in the list, indicated by PNEXT = 3).

Bit field MOCTRn.LIST indicates the list index number to which the message object is currently allocated. The message object of the example are allocated to list 2. Therefore, all LIST bit fields for the message objects assigned to list 2 are set to LIST = 2.

16.1.4.2 List of Unallocated Elements

The list with list index 0 has a special meaning: it is the list of all unallocated elements. An element is called unallocated if it belongs to list 0 (MOCTRn.LIST = 0). It is called allocated if it belongs to a list with an index not equal to 0 (MOCTRn.LIST > 0).

After reset, all message objects are unallocated. This means that they are assigned to the list of unallocated elements with MOCTRn.LIST = 0. After this initial allocation of the message objects caused by reset, the list of all unallocated message objects is ordered by message number (predecessor of message object n is object n-1, successor of object n is object n+1).

16.1.4.3 Connection to the CAN Nodes

Each CAN node is linked to one unique list of message objects. A CAN node performs message transfer only with the message objects that are allocated to the list of the CAN node. This is illustrated in **Figure 16-7**. Frames that are received on a CAN node may only be stored in one of the message objects that belongs to the CAN node; frames to be transmitted on a CAN node are selected only from the message objects that are allocated to that node, as indicated by the vertical arrows.

There are more lists (eight) than CAN nodes (two). This means that some lists are not linked to one of the CAN nodes. A message object that is allocated to one of these unlinked lists cannot receive messages directly from a CAN node and it may not transmit messages.

FIFO and gateway mechanisms refer to message object numbers and not directly to a specific list. The user must take care that the message objects targeted by FIFO/gateway belong to the desired list. The mechanisms allow working with lists that do not belong to this CAN node.

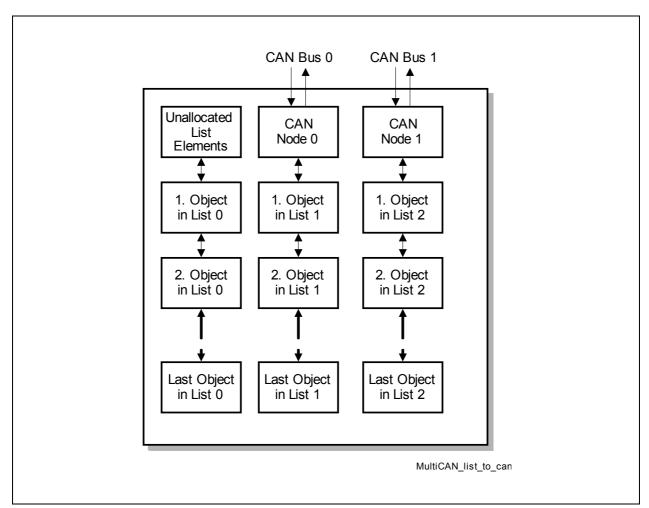


Figure 16-7 Message Objects Linked to CAN Nodes

16.1.4.4 List Command Panel

The list structure cannot be modified directly by means of write accesses to the LIST registers and the PPREV, PNEXT and LIST bit fields in the register MOSTATn as they are read-only. The management of the list structure is performed by and limited to the list controller inside the MultiCAN module. The list controller is controlled via a command panel allowing the user to issue list allocation commands to the list controller. The list controller basically serves two purposes:

- 1. Ensure that all operations that modify the list structure result in a consistent list structure.
- 2. Present flexibility to the user.

The list controller and the associated command panel allows the programmer to concentrate on the final properties of the list, which are characterized by the allocation of message objects to a CAN node, and the ordering relation between objects that are allocated to the same list. The process of list (re-)building is done in the list controller.

 Table 16-2 gives an overview on the available panel commands while Table 16-7 describes the panel commands in more detail.

Command Name	Description	
No Operation	No new command is started.	
Initialize Lists	Run the initialization sequence to reset the CTRL and LIST field of all message objects.	
Static Allocate	Allocate message object to a list.	
Dynamic Allocate	Allocate the first message object of the list of unallocated objects to the selected list.	
Static Insert Before	Remove a message object (source object) from the list that it currently belongs to, and insert it before a given destination object into the list structure of the destination object.	
Dynamic Insert Before	Insert a new message object before a given destination object.	
Static Insert Behind	Remove a message object (source object) from the list that it currently belongs to, and insert it behind a given destination object into the list structure of the destination object.	
Dynamic Insert Behind	Insert a new message object behind a given destination object.	

Table 16-2Panel Commands Overview

A panel command is started by writing the respective command code to the bit field PANCTR.PANCMD. The corresponding command arguments must be written to bit fields PANCTR.PANAR1 and PANCTR.PANAR2 before writing the command code or together with the command code in a single 32-bit write access to the PANCTR Register.

With the write operation of a valid command code, the PANCTR.BUSY flag is set and further write accesses to the Panel Control Register are ignored. The BUSY flag remains active and the control panel remains locked until the execution of the requested command has been completed. After a reset, the list controller builds up list 0. During this operation, BUSY is set and other accesses to the CAN RAM are forbidden. The CAN RAM can be accessed again when BUSY becomes inactive.

Note: The CAN RAM is automatically initialized after reset by the list controller in order to ensure correct list pointers in each message object. The end of this CAN RAM initialization is indicated by bit PANCTR.BUSY becoming inactive.

In case of a dynamic allocation command that takes an element from the list of unallocated objects, the PANCTR.RBUSY bit becomes set together with the BUSY bit (RBUSY = BUSY = 1). This indicates that bit fields PANCTR.PANAR1 and PANCTR.PANAR2 are going to be updated by the list controller in the following way:

- 1. The message number of the message object taken from the list of unallocated elements is written to PANAR1.
- 2. If ERR (bit 7 of PANAR2) is set to 1, the list of unallocated elements was empty and the command is aborted. If ERR is 0, the list was not empty and the command will be performed successfully.

The results of a dynamic allocation command are written before the list controller starts the actual allocation process. As soon as the results are available, RBUSY becomes inactive (RBUSY = 0) again, while BUSY still remains active until completion of the command. This allows the user to set up the new message object while it is still in the process of list allocation. The access to message objects is not limited during ongoing list operations. However, any access to a register resource located inside the RAM delays the ongoing allocation process by one access cycle.

As soon as the command is finished, the BUSY flag becomes inactive (BUSY = 0) and write accesses to the Panel Control Register are enabled again. Additionally, the "No Operation" command code is automatically written to the bit field PANCTR.PANCMD. A new command may be started any time when BUSY = 0.

All fields of the register PANCTR except BUSY and RBUSY may be written by the user. This allows the register PANCTR to be saved and restored if the Command Panel is used within independent (mutually interruptible) interrupt routines. If this is the case, then any task that uses the Command Panel (and that may interrupt another task also using the Command Panel) should poll the BUSY flag until it becomes inactive and save the whole PANCTR register to a memory location before issuing a command. At the end of the interrupt service routine, it should restore PANCTR from the memory location.

Before a message object that is allocated to the list of an active CAN node is moved to another list or to another position within the same list, bit MOCTRn.MSGVAL ("Message Valid") of message object n must be cleared.

16.1.5 CAN Node Analysis Features

This section describes the CAN node analysis capabilities of the MultiCAN module.

16.1.5.1 Analyze Mode

The CAN analyze mode allows the CAN traffic to be monitored without affecting the logical state of the CAN bus. The CAN analyze mode is selected by setting bit NCRx.CALM.

In CAN analyze mode, the transmit pin of a CAN node is held on recessive level permanently. The CAN node may receive frames (data, remote, and error frames) but is not allowed to transmit. Received data/remote frames are not acknowledged (i.e., acknowledge slot is sent recessive) but will be received and stored in matching message objects as long as there is any other node that acknowledges the frame. The complete message object functionality is available but no transmit request will be executed.

16.1.5.2 Loop-Back Mode

The MultiCAN module provides a loop-back mode to enable an in-system test of the MultiCAN module as well as the development of CAN driver software without access to an external CAN bus.

The loop-back feature consists of an internal CAN bus (inside the MultiCAN module) and a bus select switch for each CAN node. With the switch, each CAN node can be connected either to the internal CAN bus (loop-back mode activated) or the external CAN bus, respectively to its transmit or receive pin (normal operation). The CAN bus which is currently not selected is driven recessive, this means the transmit pin is held at 1 and the receive pin is ignored by the CAN nodes that are in loop-back mode.

The loop-back mode is selected by setting bit NPCRx.LBM. All CAN nodes that are in loop-back mode may communicate together via the internal CAN bus without affecting the normal operation of the other CAN nodes that are not in loop-back mode.

Controller Area Network (MultiCAN) Controller

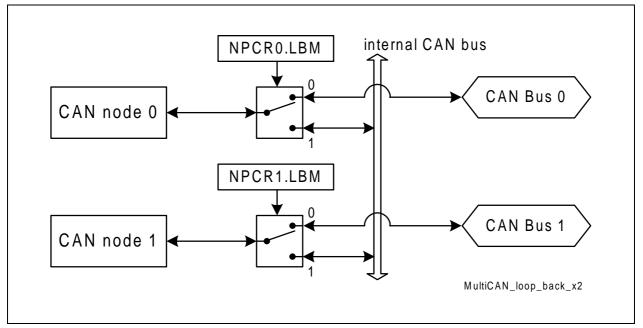


Figure 16-8 Loop-Back Mode

16.1.5.3 Bit Timing Analysis

Detailed analysis of the bit timing can be performed for each CAN node using the analysis modes of the CAN frame counter. The bit timing analysis functionality of the frame counter may be used for automatic detection of the CAN baud rate as well as for the analysis of the timing of the CAN network.

Bit timing analysis is selected by NFCRx.CFMOD = 10_B . Bit timing analysis does not affect the operation of the CAN node. The bit timing measurement results are written into the NFCRx.CFC bit field. Whenever NFCRx.CFC is updated in bit timing analysis mode, the bit NFCRx.CFCOV is set to indicate the CFC update event. If NFCRx.CFCIE is set, an interrupt request can be generated (see Figure 16-5).

Automatic Baud Rate Detection

For automatic baud rate detection, the time between the observation of subsequent dominant edges on the CAN bus must be measured. This measurement is automatically performed if bit field NFCRx.CFSEL = 000_B . With each dominant edge monitored on the CAN receive input line, the time (measured in f_{CAN} clock cycles) between this edge and the most recent dominant edge is stored in the NFCRx.CFC bit field.

Synchronization Analysis

The bit time synchronization is monitored if NFCRx.CFSEL = 010_B . The time between the first dominant edge and the sample point is measured and stored in the NFCRx.CFC bit field. The bit timing synchronization offset may be derived from this time as the first edge after the sample point triggers synchronization and there is only one synchronization between consecutive sample points.

Synchronization analysis can be used, for example, for fine tuning of the baud rate during reception of the first CAN frame with the measured baud rate.

Driver Delay Measurement

The delay between a transmitted edge and the corresponding received edge is measured when NFCRx.CFSEL = 011_B (dominant to dominant) and NFCRx.CFSEL = 100_B (recessive to recessive). These delays indicate the time needed to represent a new bit value on the physical implementation of the CAN bus.

16.1.6 Message Acceptance Filtering

This section describes the Message Acceptance Filtering capabilities of the MultiCAN module.

16.1.6.1 Receive Acceptance Filtering

When a CAN frame is received by a CAN node, a unique message object is determined in which the received frame is stored after successful frame reception. A message object is qualified for reception of a frame if the following six conditions are fulfilled.

- The message object is allocated to the message object list of the CAN node by which the frame is received.
- Bit MOSTATn.MSGVAL is set.
- Bit MOSTATn.RXEN is set.
- Bit MOSTATn.DIR is equal to bit RTR of the received frame.
 If bit MOSTATn.DIR = 1 (transmit object), the message object accepts only remote frames. If bit MOSTATn.DIR = 0 (receive object), the message object accepts only data frames.
- If bit MOAMRn.MIDE = 1, the IDE bit of the received frame is evaluated in the following way: If MOARn.IDE = 1, the IDE bit of the received frame must be set (indicates extended identifier). If MOARn.IDE = 0, the IDE bit of the received frame must be cleared (indicates standard identifier).
 If bit MOAMRn MIDE = 0, the IDE bit of the received frame is "den't care". In this

If bit MOAMRn.MIDE = 0, the IDE bit of the received frame is "don't care". In this case, message objects with standard and extended frames are accepted.

• The identifier of the received frame matches the identifier stored in the register MOARn as qualified by the acceptance mask in the MOAMRn register. This means that each bit of the received message object identifier is equal to the bit field MOARn.ID, except those bits for which the corresponding acceptance mask bits in bit field MOAMRn.AM are cleared. These identifier bits are "don't care" for reception.

Among all messages that fulfill all six qualifying criteria the message object with the highest receive priority wins receive acceptance filtering and becomes selected to store the received frame. All other message objects lose receive acceptance filtering.

The following priority scheme is defined for the message objects:

A message object a (MOa) has higher receive priority than a message object b (MOb) if the following two conditions are fulfilled (see Page 16-93):

- 1. MOa has a higher priority class than MOb. This means, the 2-bit priority bit field MOARa.PRI must be equal or less than bit field MOARb.PRI.
- 2. If both message objects have the same priority class (MOARa.PRI = MOARb.PRI), MOb is a list successor of MOa. This means that MOb can be reached by means of successively stepping forward in the list, starting from a.

16.1.6.2 Transmit Acceptance Filtering

A message is requested for transmission by setting a transmit request in the message object that holds the message. If more than one message object have a valid transmit request for the same CAN node, one of these message objects is chosen for transmission, because only a single message object can be transmitted at one time on a CAN bus.

A message object is qualified for transmission on a CAN node if the following four conditions are are fulfilled.

- 1. The message object is allocated to the message object list of the CAN node.
- 2. Bit MOSTATn.MSGVAL is set.
- 3. Bit MOSTATn.TXRQ is set.
- 4. Bit MOSTATn.TXEN0 and MOSTATn.TXEN1 are set.

A priority scheme determines which of all qualifying message objects is transmitted first. The following assumption is made: message object a (MOa) and message object b (MOb) are two message objects qualified for transmission. MOb is a list successor of MOa. This means, MOb can be reached by means of successively stepping forward in the list, starting from a.

If both message objects belong to a different priority class (different value of bit field MOARn.PRI), then the message object with lower MOAR.PRI value has higher transmit priority and will be transmitted first.

If both message objects belong to the same priority class (identical PRI bit field in register MOARn), MOa has a higher transmit priority than MOb if one of the following conditions is fulfilled.

- $PRI = 10_B$ and CAN message MOa has higher or equal priority than CAN message MOb with respect to CAN arbitration rules (see Table 16-13).
- $PRI = 01_B \text{ or } PRI = 11_B \text{ (priority by list order).}$

The message object that is qualified for transmission and has highest transmit priority wins the transmit acceptance filtering, and will be transmitted first. All other message objects lose the current transmit acceptance filtering round. They get a new chance in subsequent acceptance filtering rounds.

The priority rules are valid for normal CAN operation.

16.1.7 Message Postprocessing

After a message object has successfully received or transmitted a frame, the CPU can be notified to perform a message postprocessing on the message object. The postprocessing of the MultiCAN module consists of two elements:

- 1. Message interrupts to trigger postprocessing.
- 2. Message pending registers to collect pending message interrupts into a common structure for postprocessing.

16.1.7.1 Message Interrupts

When the storage of a received frame into a message object or the successful transmission of a frame is completed, a message interrupt can be issued. For each message object, a transmit and a receive interrupt can be generated and routed to one of the eight CAN interrupt output lines (see Figure 16-9). A receive interrupt occurs also after a frame storage event has been induced by a FIFO or a gateway action. The status bits MOSTATn.TXPND and MOSTATn.RXPND are always set after a successful transmission/reception, regardless if the respective message interrupt is enabled or not.

A FIFO full interrupt condition of a message object is provided. If bit field MOFCRn.OVIE is set, the FIFO full interrupt will become activated depending on the actual message object type.

In case of a Receive FIFO Base Object (MOFCRn.MMC = 0001_B), the FIFO full interrupt is routed to the interrupt output line CANSRCm as defined by the transmit interrupt node pointer MOIPRn.TXINP.

In case of a Transmit FIFO Base Object (MOFCRn.MMC = 0010_B), the FIFO full interrupt is routed to the interrupt output line CANSRCm as defined by the receive interrupt node pointer MOIPRn.RXINP.

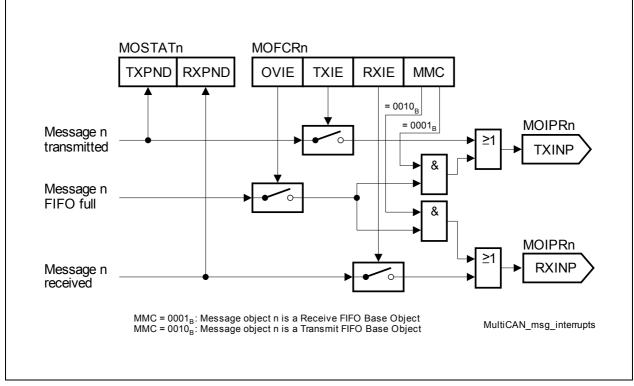


Figure 16-9 Message Interrupt Request Routing

16.1.7.2 Pending Messages

With a message interrupt request generation, a message pending bit is set in one of the Message Pending Registers. There are two Message Pending Registers MSPNDk (k = 1-0) with 32 pending bits available to each, resulting in 64 pending bits. Figure 16-10 shows the allocation of the message pending bits.

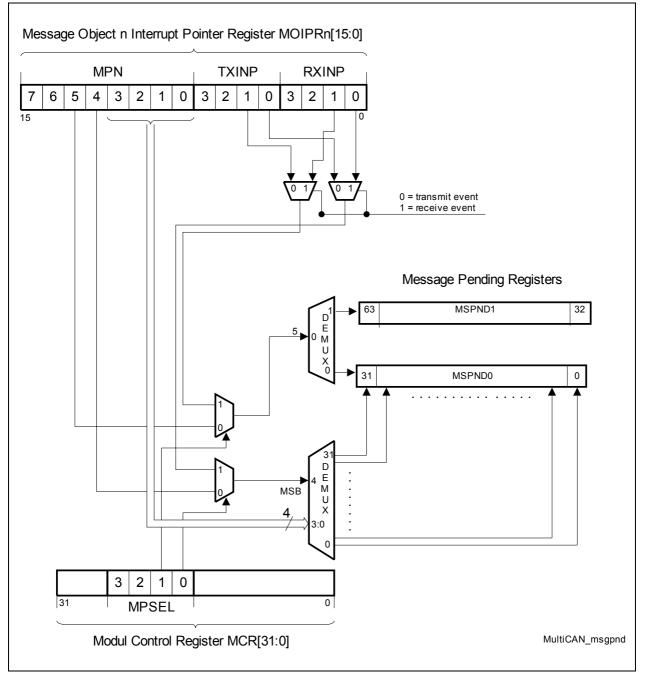


Figure 16-10 Message Pending Bit Allocation

The location of a pending bit is defined by two demultiplexers selecting the number k of the MSPNDk registers (1-bit demux), and the bit location within the corresponding MSPNDk register (5-bit demux).

Allocation Case 1

In this allocation case, bit field MCR.MPSEL = 0000_{B} . Here, the location selection consists of two parts:

- The bit 5 of MOIPRn.MPN (MPN[5]) select the number k [k=1-0] of a Message Pending Register MSPNDk in which the pending bit will be set.
- The lower five bits of MOIPRn.MPN (MPN[4:0]) select the bit position (31-0) in MSPNDk for the pending bit to be set.

Allocation Case 2

In this allocation case, bit field MCR.MPSEL is taken into account for pending bit allocation. Bit field MCR.MPSEL allows the inclusion of the interrupt request node pointer for reception (MOIPRn.RXINP) or transmission (MOIPRn.TXINP) for pending bit allocation in a way that different target locations for the pending bits are used in receive and transmit cases. If MPSEL = 1111_B , the location selection operates in the following way:

- At a transmit event, the bit 1 of TXINP define the number k of a Pending Register MSPNDk in which the pending bit will be set. At a receive event, the bit 1 of RXINP define the number k.
- The bit position (31-0) in MSPNDk for the pending bit to be set is selected by the lowest bit of TXINP or RXINP and the four least significant bits of MPN.

General Hints

The Message Pending Registers MSPNDk can be written by software. Bits that are written with 1 are left unchanged and bits which are written with 0 are cleared. This allows individual MSPNDk bits to be cleared with a single register write access. Therefore, access conflicts are avoided when the MultiCAN module (hardware) sets another pending bit at the same time when software writes to the register.

Each Message Pending Register MSPNDk is associated with a Message Index Register MSIDk which indicates the lowest bit position of all set (1) bits in Message Pending Register k. The MSIDk register is a read-only register which is updated immediately when a value in the corresponding Message Pending Register k is changed.

16.1.8 Message Object Data Handling

This section describes the handling capabilities for the Message Object Data of the MultiCAN module.

16.1.8.1 Frame Reception

After the reception of a message, it is stored in a message object according to the scheme shown in **Figure 16-11**. The MultiCAN module not only copies the received data into the message object, but it provides advanced features to enable consistent data exchange between MultiCAN and CPU.

MSGVAL

During the frame reception, information is stored only in the message object when MOSTATn.MSGVAL = 1. If bit MSGVAL is reset by the CPU, the MultiCAN module stops all ongoing write accesses to the message object so that the message object can be reconfigured by the CPU with subsequent write accesses to it without being disturbed by the MultiCAN.

RTSEL

When the CPU re-configures a message object during CAN operation (for example, clears MSGVAL, modifies the message object and sets MSGVAL again), the following scenario can occur:

- 1. The message object wins receive acceptance filtering.
- 2. The CPU clears MSGVAL to re-configure the message object.
- 3. The CPU sets MSGVAL again after re-configuration.
- 4. The end of the received frame is reached. As MSGVAL is set, the received data is stored in the message object, a message interrupt request is generated, gateway and FIFO actions are processed, etc.

After the re-configuration of the message object (after step 3 above) the storage of further received data may be undesirable. This can be achieved through bit MOCTRn.RTSEL ("Receive/Transmit Selected") that allows a message object to be disconnected from an ongoing frame reception.

When a message object wins the receive acceptance filtering, its RTSEL bit is set by the MultiCAN module to indicate an upcoming frame delivery. The MultiCAN module checks RTSEL whether it is set on successful frame reception to verify that the object is still ready for receiving the frame. The received frame is then stored in the message object (along with all subsequent actions such as message interrupts, FIFO & gateway actions, flag updates) only if RTSEL = 1.

When a message object is invalidated during CAN operation (resetting bit MSGVAL), RTSEL should be cleared before setting MSGVAL again (latest with the same write access that sets MSGVAL) to prevent the storage of a frame that belongs to the old

context of the message object. Therefore, a message object re-configuration should consist of the following steps:

- 1. Clear MSGVAL bit
- 2. Re-configure the message object while MSGVAL = 0
- 3. Clear RTSEL bit and set MSGVAL again

RXEN

Bit MOSTATn.RXEN enables a message object for frame reception. A message object can receive CAN messages from the CAN bus only if RXEN = 1. The MultiCAN module evaluates RXEN only during receive acceptance filtering. After receive acceptance filtering, RXEN is ignored and has no further influence on the actual storage of a received message in a message object.

Bit RXEN enables the "soft phase out" of a message object: after clearing RXEN, a currently received CAN message for which the message object has won acceptance filtering is still stored in the message object but for subsequent messages the message object no longer wins receive acceptance filtering.

RXUPD, NEWDAT and MSGLST

An ongoing frame storage process is indicated by the bit MOSTATn.RXUPD ("Receive Updating"). RXUPD is set with the start and cleared with the end of a message object update (which consists of frame storage as well as flag updates).

After storing the received frame (identifier, IDE bit, DLC and the data field for data frames as well) the bit MOSTATn.NEWDAT ("New Data") is set. If NEWDAT was already set before it becomes set again, bit MOSTATn.MSGLST ("Message Lost") is set to indicate a data loss condition.

The RXUPD and NEWDAT flags can help to read consistent frame data from the message object during an ongoing CAN operation. The following steps are recommended to be executed:

- 1. Clear NEWDAT bit.
- 2. Read message content (identifier, data etc.) from the message object.
- 3. Check that both NEWDAT and RXUPD are cleared. If this is not the case, go back to step 1.
- 4. As step 3 was successful, the message object content is consistent, i.e., has not been updated by the MultiCAN module while reading.

Bits RXUPD, NEWDAT and MSGLST have the same behavior for the reception of data as well as remote frames.

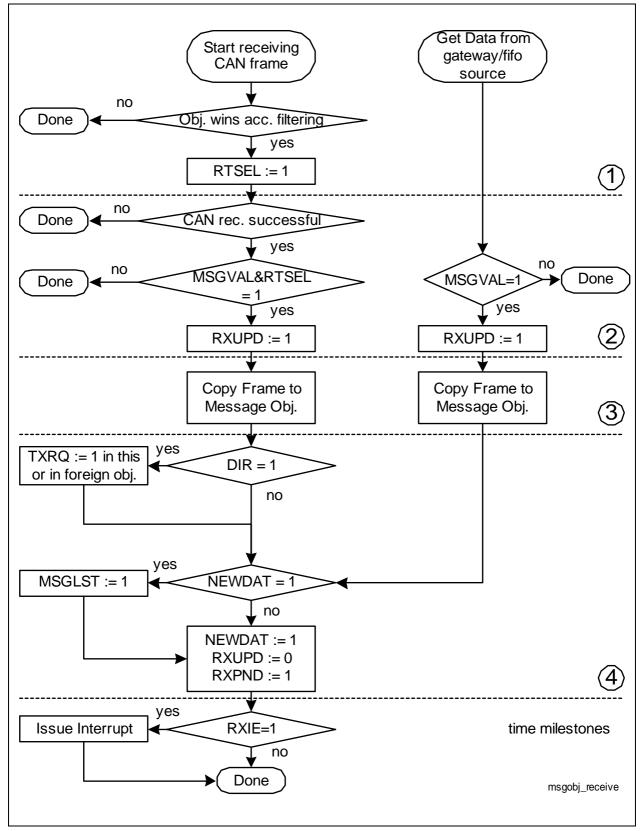


Figure 16-11 Reception of a Message Object

16.1.8.2 Frame Transmission

The process of a message object transmission is shown in **Figure 16-12**. With the copy of the message object content to be transmitted (identifier, IDE bit, RTR = DIR bit, DLC, and for data frames also the data field) into the internal transmit buffer of the assigned CAN node, also several status flags are served and monitored to control consistent data handling.

The transmission process of a message object starting after the transmit acceptance filtering is identical for remote and data frames.

MSGVAL, TXRQ, TXEN0, TXEN1

A message can only be transmitted if all four bits in MOSTATn Register MSGVAL ("Message Valid"), TXRQ ("Transmit Request"), TXEN0 ("Transmit Enable 0"), TXEN1 ("Transmit Enable 1") are set. Although these bits are equivalent with respect to the transmission process, they have different semantics:

Bit	Description
MSGVAL	Message Valid This is the main switch bit of the message object.
TXRQ	Transmit Request This is the standard transmit request bit. This bit must be set whenever a message object is to be transmitted. TXRQ is cleared by hardware at the end of a successful transmission, except when there is new data (indicated by NEWDAT = 1) to be transmitted. When bit MOFCRn.STT ("Single Transmit Trial") is set, TXRQ is already cleared when the content of the message object is copied into the transmit frame buffer of the CAN node. A received remote request (after a remote frame reception) sets bit TXRQ to request the transmission of the requested data frame.
TXEN0	Transmit Enable 0 This bit can be temporarily cleared by software to suppress the transmission of this message object when it writes new content to the data field. This avoids transmission of inconsistent frames that consist of a mixture of old and new data. Remote requests are still accepted when TXEN0 = 0, but transmission of the data frame is suspended until transmission is re-enabled by software (setting TXEN0).

 Table 16-3
 Message Transmission Bit Definitions

Table 16-3	Message Transmission Bit Definitions (c	cont'd)
------------	---	---------

Bit	Description
TXEN1	Transmit Enable 1This bit is used in transmit FIFOs to select the message object that is transmit active within the FIFO structure.For message objects that are not transmit FIFO elements, TXEN1 can either be set permanently to 1 or can be used as a second independent transmission enable bit.

RTSEL

When a message object has been identified after transmission acceptance filtering to be transmitted next, bit MOCTRn.RTSEL ("Receive/Transmit Selected") becomes set.

When the message object is copied into the internal transmit buffer, bit RTSEL is checked, and the message is only transmitted if RTSEL = 1. After the successful transmission of the message, bit RTSEL is checked again and the message postprocessing is only executed if RTSEL = 1.

For a complete re-configuration of a valid message object, the following steps should be executed:

- 1. Clear MSGVAL bit
- 2. Re-configure the message object while MSGVAL = 0
- 3. Clear RTSEL and set MSGVAL

Clearing of RTSEL ensures that the message object is disconnected from an ongoing/scheduled transmission and no message object processing (copying message to transmit buffer including clearing NEWDAT, clearing TXRQ, time stamp update, message interrupt, etc.) within the old context of the object can occur after the message object becomes valid again, but within a new context.

NEWDAT

When the content of a message object has been transferred to the internal transmit buffer of the CAN node, bit MOSTATn.NEWDAT (New Data) is cleared by hardware to indicate that the transmit message object data is no longer new.

When the transmission of the frame is successful and NEWDAT is still cleared (if no new data has been copied into the message object meanwhile), TXRQ (Transmit Request) is cleared automatically by hardware.

If, however, the NEWDAT bit has been set again by the software (because a new frame is to be transmitted), TXRQ is not cleared to enable the transmission of the new data.

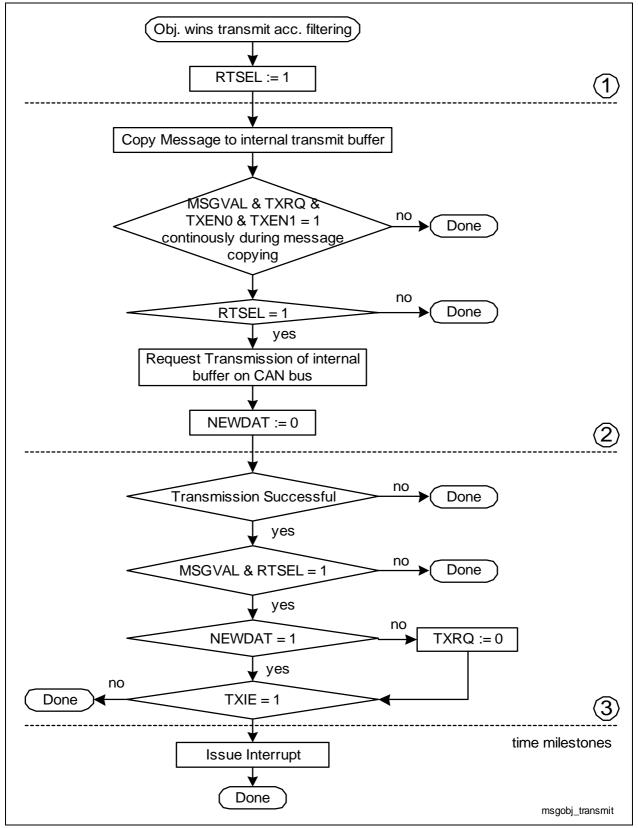


Figure 16-12 Transmission of a Message Object

16.1.9 Message Object Functionality

This section describes the functionality of the Message Objects in the MultiCAN module.

16.1.9.1 Standard Message Object

A message object is selected as Standard Message Object when bit field MOFCRn.MMC = 0000_B . The Standard Message Object can transmit and receive CAN frames according to the basic rules as described in the previous sections. Additional services such as Single Data Transfer Mode or Single Transmit Trial (see following sections) are available and can be individually selected.

16.1.9.2 Single Data Transfer Mode

Single data transfer mode is a useful feature in order to broadcast data over the CAN bus without unintended doubling of information. Single data transfer mode is selected via bit MOFCRn.SDT.

Message Reception

When a received message stored in a message object is overwritten by a new received message, the content of the first message gets lost and is replaced with the content of the new received message (indicated by MSGLST = 1).

In single data transfer mode (SDT = 1), bit MSGVAL of the message object is automatically cleared by hardware after the storage of a received data frame. This prevents the reception of further messages.

After the reception of a remote frame, bit MSGVAL is not automatically cleared.

Message Transmission

When a message object receives a series of multiple remote requests, then it transmits several data frames in response to the remote requests. If the data within the message object has not been updated in the time between the transmissions, the same data can be sent more than once on the CAN bus.

In single data transfer mode (SDT = 1), this is avoided because MSGVAL is automatically cleared after the successful transmission of a data frame.

After the transmission of a remote frame, bit MSGVAL is not automatically cleared.

16.1.9.3 Single Transmit Trial

If bit MOFCRn.STT is set, then the transmission request is cleared (TXRQ = 0) when the frame content of the message object has been copied to the internal transmit buffer of the CAN node. Thus, the transmission of the message object is not tried again when it fails due to CAN bus errors.

16.1.9.4 Message Object FIFO Structure

In case of high CPU load it may be difficult to process a series of CAN frames in time. This may happen if multiple messages are received or must be transmitted in short time.

Therefore, a FIFO buffer structure is available to avoid loss of incoming messages and to minimize the setup time for outgoing messages. The FIFO structure can also be used to automate the reception or transmission of a series of CAN messages and to generate a single message interrupt when the whole CAN frame series is done.

There can be several FIFOs in parallel. The number of FIFOs and their size are only limited by the number of available message objects. A FIFO can be installed, resized and de-installed at any time, even during CAN operation.

The basic structure of a FIFO is shown in **Figure 16-13**. A FIFO consists of one base object and n slave objects. The slave objects are chained together in a list structure (similar as in message object lists). The base object may be allocated to any list. Although **Figure 16-13** shows the base object as a separate part beside the slave objects, it is also possible to integrate the base object at any place into the chain of slave objects. This means that the base object is slave object, too (not possible for gateways). The absolute object numbers of the message objects have no impact on the operation of the FIFO.

The base object need not to be allocated to the same list as the slave objects. Only the slave object must be allocated to a common list (as they are chained together). Several pointers (BOT, CUR and TOP) that are located in the Register MOFGPRn link the base object to the slave objects, regardless whether the base object is allocated to the same or to another **list** than the slave objects.

The smallest FIFO would be a single message object which is both FIFO base and FIFO slave (not very useful). The biggest possible FIFO structure would include all message objects of the MultiCAN module. Any FIFO sizes between these limits are possible.

In the FIFO base object, the FIFO boundaries are defined. Bit field MOFGPRn.BOT of the base object points to (includes the number of) the bottom slave object in the FIFO structure. The MOFGPRn.TOP bit field points to (includes the number of) the top slave object in the FIFO structure. The MOFGPRn.CUR bit field points to (includes the number of) the slave object that is actually selected by the MultiCAN module for message transfer. When a message transfer occurs with this object, CUR is set to the next message object in the list structure of the slave objects (CUR = PNEXT of current object). If CUR was equal to TOP (top of the FIFO reached), the next update of CUR will result in CUR = BOT (wrapped around from the top to the bottom of the FIFO). This scheme represents a circular FIFO structure where the bit fields BOT and TOP establish the link from the last to the first element.

Bit field MOFGPRn.SEL of the base object can be used for monitoring purposes. It allows a slave object to be defined within the list at which a message interrupt is generated whenever the CUR pointer reaches the value of the SEL pointer. Thus, SEL

allows the end of a predefined message transfer series to be detected or to issue a warning interrupt when the FIFO becomes full.

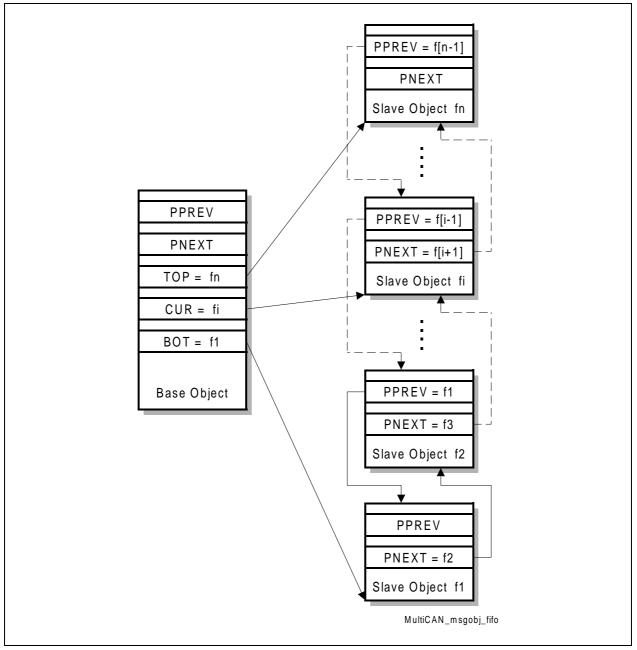


Figure 16-13 FIFO Structure with FIFO Base Object and n FIFO Slave Objects

16.1.9.5 Receive FIFO

The Receive FIFO structure is used to buffer incoming (received) remote or data frames.

A Receive FIFO is selected by setting MOFCRn.MMC = 0001_B in the FIFO base object. This MMC code automatically designates a message object as FIFO base object. The message modes of the FIFO slave objects are not relevant for the operation of the Receive FIFO.

When the FIFO base object receives a frame from the CAN node it belongs to, the frame is not stored in the base object itself but in the message object that is selected by the base object's MOFGPRn.CUR pointer. This message object receives the CAN message as if it is the direct receiver of the message. However, MOFCRn.MMC = 0000_B is implicitly assumed for the FIFO slave object, and a standard message delivery is performed. The actual message mode (MMC setting) of the FIFO slave object is ignored. For the slave object, no acceptance filtering takes place that checks the received frame for a match with the identifier, IDE bit, and DIR bit.

With the reception of a CAN frame, the current pointer CUR of the base object is set to the number of the next message object in the FIFO structure. This message object will then be used to store the next incoming message.

If bit field MOFCRn.OVIE ("Overflow Interrupt Enable") of the FIFO base object is set and the current pointer MOFGPRn.CUR becomes equal to MOFGPRn.SEL, a FIFO overflow interrupt request is generated. This interrupt request is generated on interrupt node TXINP of the base object immediately after the storage of the received frame in the slave object. Transmit interrupts are still generated if TXIE is set.

A CAN message is stored in FIFO base and slave object only if MSGVAL = 1.

16.1.9.6 Transmit FIFO

The Transmit FIFO structure is used to buffer a series of data or remote frames that must be transmitted.

A Transmit FIFO is selected by setting MOFCRn.MMC = 0010_B in the FIFO base object. Unlike the Receive FIFO, slave objects assigned to the Transmit FIFO are required to set explicitly their bit fields MOFCRn.MMC = 0011_B . The CUR pointer in all slave objects must point back to the Transmit FIFO Base Object (to be initialized by software).

The MOSTATn.TXEN1 bits (Transmit Enable 1) of all message objects except the one which is selected by the CUR pointer of the base object must be cleared by software. TXEN1 of the message (slave) object selected by CUR must be set. CUR (of the base object) may be initialized to any FIFO slave object.

When tagging the message objects of the FIFO as valid to start the operation of the FIFO, then the base object must be tagged valid (MSGVAL = 1) first.

Before a Transmit FIFO becomes de-installed during operation, its slave objects must be tagged invalid (MSGVAL = 0).

The Transmit FIFO uses the bit MOCTRn.TXEN1 of all FIFO elements to select the actual message for transmission. Transmit acceptance filtering evaluates TXEN1 for each message object and a message object can win transmit acceptance filtering only if its TXEN1 bit is set. When a FIFO object has transmitted a message, the hardware clears its TXEN1 bit in addition to standard transmit postprocessing (clear TXRQ, transmit interrupt etc.) and moves the CUR pointer to the next message object to be transmitted. TXEN1 is set automatically (by hardware) in the next message object. Thus, TXEN1 moves along the Transmit FIFO structure like a token that selects the active element.

If bit field MOFCRn.OVIE ("Overflow Interrupt Enable") of the FIFO base object is set and the current pointer CUR becomes equal to MOFGPRn.SEL, a FIFO overflow interrupt request is generated. The interrupt request is generated on interrupt node RXINP of the base object after postprocessing of the received frame. Receive interrupts are still generated for the Transmit FIFO base object if bit RXIE is set.

16.1.9.7 Gateway Mode

The gateway mode allows an automatic information transfer to be established between two independent CAN buses without CPU interaction.

The gateway mode operates on message object level. In gateway mode, information is transferred between two message objects, resulting in an information transfer between the two CAN nodes to which the message objects are allocated. A gateway may be established with any pair of CAN nodes, and there can be as many gateways as there are message objects available to build the gateway structure.

Gateway mode is selected by setting MOFCRs.MMC = 0100_B of the gateway source object s. The gateway destination object d is selected by the MOFGPRd.CUR pointer of the source object. The gateway destination object only needs to be valid (its MSGVAL = 1). All other settings are not relevant for the information transfer from the source object to the destination object.

A gateway source object s behaves like a standard message object except some additional actions are performed by the MultiCAN module when a CAN frame has been received and stored in the source object (see Figure 16-14):

- 1. If bit MOFCRs.DLCC is set, the data length code MOFCRs.DLC is copied from the gateway source object to the gateway destination object.
- 2. If bit MOFCRs.IDC is set, the identifier MOARs.ID and the identifier extension MOARs.IDE are copied from the gateway source object to the gateway destination object.
- 3. If bit MOFCRs.DATC is set, the data bytes stored in the two data registers MODATALs and MODATAHs are copied from the gateway source object to the gateway destination object. All 8 data bytes are copied, even if MOFCRs.DLC indicates less than 8 data bytes.
- 4. If bit MOFCRs.GDFS is set, the transmit request flag MOSTATd.TXRQ is set in the gateway destination object.
- 5. The receive pending bit MOSTATd.RXPND and the new data bit MOSTATd.NEWDAT are set in the gateway destination object.
- 6. A message interrupt request is generated for the gateway destination object if its MOSTATd.RXIE is set.
- The current object pointer MOFGPRs.CUR of the gateway source object is moved to the next destination object according to the FIFO rules as described on Page 16-34.
 A gateway with a single (static) destination object is obtained by setting MOFGPRs.TOP = MOFGPRs.BOT = MOFGPRs.CUR = destination object.

The link from the gateway source object to the gateway destination object works in the same way as the link from a FIFO base to a FIFO slave. This means that a gateway with an integrated destination FIFO may be created; in **Figure 16-13**, where the object on the left is the gateway source object and the message object on the right side is the gateway destination objects.

The gateway operates in the same way for the reception of data frames (source object is receive object, i.e., DIR = 0) as well as for the reception of remote frames (source object is transmit object).

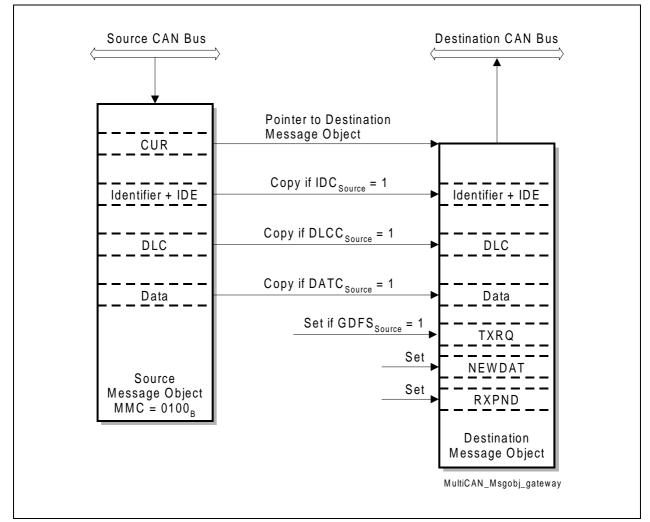


Figure 16-14 Gateway Transfer from Source to Destination

16.1.9.8 Foreign Remote Requests

When a remote frame has been received on a CAN node and is stored in a message object, a transmit request is set to trigger the answer (transmission of a data frame) to the request or to automatically issue a secondary request. If the Foreign Remote Request Enable bit MOFCRn.FRREN is cleared in the message object in which the remote request is stored, MOSTATn.TXRQ is set in the same message object.

If bit FRREN is set, TXRQ is set in the message object that is referenced by pointer MOFGPRn.CUR. The value of CUR is, however, not changed by this feature.

Although the foreign remote request feature works independently of the selected message mode, it is especially useful for gateways to issue a remote request on the source bus of a gateway after the reception of a remote request on the gateway destination bus. According to the setting of FRREN in the gateway destination object, there are two capabilities to handle remote requests that appear on the destination side (assuming that the source object is a receive object and the destination is a transmit object, i.e. $DIR_{source} = 0$ and $DIR_{destination} = 1$):

FRREN = 0 in the Gateway Destination Object

- 1. A remote frame is received by gateway destination object.
- 2. TXRQ is set automatically in the gateway destination object.
- 3. A data frame with the current data stored in the destination object is transmitted on the destination bus.

FRREN = 1 in the Gateway Destination Object

- 1. A remote frame is received by gateway destination object.
- 2. TXRQ is set automatically in the gateway source object (must be referenced by CUR pointer of the destination object).
- 3. A remote request is transmitted by the source object (which is a receive object) on the source CAN bus.
- 4. The receiver of the remote request responds with a data frame on the source bus.
- 5. The data frame is stored in the source object.
- 6. The data frame is copied to the destination object (gateway action).
- 7. TXRQ is set in the destination object (assuming $GDFS_{source} = 1$).
- 8. The new data stored in the destination object is transmitted on the destination bus, as response to the initial remote request on the destination bus.

16.1.10 Access Mediator

The MultiCAN needs to cover a maximum of 16 Kbytes SFR kernel address range, which is much greater than the XC878 can provide. To meet this demand, an address extension decoding mechanism is built in the unit called "Access Mediator" to decode the SFRs in the MultiCAN kernel. The address lines are not directly controlled by the CPU instruction itself, but they are derived from register bits that have to be programmed before accessing the MultiCAN kernel.

To decode the address of the MultiCAN kernel registers, at least 14-bit address line is needed. As the MultiCAN registers are 32-bit wide (4 Bytes), then the address lines A[1:0] are not needed for decoding and are tied to "00". The address lines A[13:2] are implemented and they are programmed from the register bits CA2 to CA9 in the register CAN_ADL and CA10 to CA13 in the register CAN_ADH. The address registers need to be programmed before accessing the MultiCAN registers.

The data bus are 32 bit (D[31:0]) between the Access Mediator and MultiCAN kernel. Four data registers CAN_DATAn (n = 3-0) are implemented in the Access Mediator. Each register in the MultiCAN kernel is read and written via these 4 data registers.

When writing to MultiCAN kernel, the data in the registers CAN_DATAn (n = 3-0) are set valid or not valid by configuring the register bits Vn (n = 3-0) in the register CAN_ADCON. Only the valid data (bytes) are sent during the write process. The register bits Vn (n = 3-0) has no effect on the read process. During the read process, 32-bit data will be read from the MultiCAN kernel.

The register bit CAN_ADCON.BSY is used to indicate if the transmission is complete or not. When the BSY register bit is set, the data registers and address registers will not accept any read/write access. The write/read action to the MultiCAN kernel only takes place when <u>writing</u> the CAN_ADCON register. The write/read action to the MultiCAN kernel is defined by the bit CAN_ADCON.RWEN. Reading the CAN_ADCON register has no effect on write/read data to/from the MultiCAN kernel. Each write/read action to the MultiCAN kernel only writes/reads data once.

Furthermore, there is an additional functionality for auto increment/decrement the address by configuring the bit field CAN_ADCON.AUAD. The address can be auto incremented/decremented by 1 or auto incremented by 8 (which is useful when programming the message objects). If this function is enabled, after a read/write process is finished, the address pointer will automatically point to the next register address. The address registers CAN_ADL and CAN_ADH also reflect the address that the address pointer pointed to. The next read/write action to the next register can be taken immediately without writing the address to the registers CAN_ADL and CAN_ADH again.

Write Process to the MultiCAN Kernel

• Write the address of the MultiCAN kernel register to the CAN_ADL and CAN_ADH registers.

- Write the data to the CAN_DATA0/CAN_DATA1/CAN_DATA2/CAN_DATA3 registers.
- Write the register CAN_ADCON, including setting the valid bit of the data registers and setting register bit RWEN to 1.
- The valid data will be written to the MultiCAN kernel only once. Register bit BSY will become 1.
- When Register bit BSY becomes 0, the transmission is finished.

Read Process to the MultiCAN Kernel

- Write the address of the MultiCAN kernel register to the CAN_ADL and CAN_ADH registers.
- Write the register CAN_ADCON, setting register bit RWEN to 0.
- The 32-bit data will be read from the MultiCAN kernel only once. Register bit BSY will become 1.
- When register bit BSY becomes 0, the transmission is finished.
- Read the data from the CAN_DATA0/CAN_DATA1/CAN_DATA2/CAN_DATA3 registers.
- Note: The address registers and data registers should be only written/read when register bit BSY is 0.

16.1.11 Port Control

The interconnections between the MultiCAN module and the port I/O lines are controlled in the port logics. In addition to the I/O control selection, the selection of a CAN node's receive input line is configured by a bit field RXSEL in its node port control register NPCRx (x = 1-0).

Table 16-4 shows how bits and bit fields must be programmed for the required I/O functionality of the CAN I/O lines.

Port Lines	PISEL Register Bit	Input/Output Control Register Bits	I/O	
P1.0/RXDC0_0	NPCR0.RXSEL = 000 _B	P1_DIR.P0 = 0 _B	Input	
P1.1/TXDC0_0	-	P1_DIR.P1 = 1 _B	Output	
		P1_ALTSEL0.P1 = 1 _B		
		P1_ALTSEL1.P1 = 1 _B		
P3.4/RXDC0_1	NPCR0.RXSEL = 001 _B	P3_DIR.P4 = 0 _B	Input	
P3.5/TXDC0_1	-	P3_DIR.P5 = 1 _B	Output	
		P3_ALTSEL0.P5 = 1 _B		
		P3_ALTSEL1.P5 = 1 _B		
P1.6/RXDC0_2	NPCR0.RXSEL = 010 _B	P1_DIR.P6 = 0 _B	Input	
P1.7/TXDC0_2	-	P1_DIR.P7 = 1 _B	Output	
		P1_ALTSEL0.P7 = 1 _B		
		P1_ALTSEL1.P7 = 1 _B		
P4.0/RXDC0_3	NPCR0.RXSEL = 011 _B	$P4_DIR.P0 = 0_B$	Input	
P4.1/TXDC0_3	-	$P4_DIR.P1 = 1_B$	Output	
		P4_ALTSEL0.P1 = 1 _B		
		P4_ALTSEL1.P1 = 1 _B		
P0.1/RXDC1_0	NPCR1.RXSEL = 000 _B	P0_DIR.P1 = 0 _B	Input	
P0.2/TXDC1_0	-	P0_DIR.P2 = 1 _B	Output	
		P0_ALTSEL0.P2 = 1 _B		
		P0_ALTSEL1.P2= 1 _B		
P3.2/RXDC1_1	NPCR1.RXSEL = 001 _B	P3_DIR.P2 = 0 _B	Input	

Table 16-4 CAN I/O Control Selection

Table 16-4 CAN I/O Control Selection ((cont'd) (cont'd)
--	-------------------

Port Lines	PISEL Register Bit	Input/Output Control Register Bits	I/O
P3.3/TXDC1_1	-	P3_DIR.P3 = 1 _B	Output
		P3_ALTSEL0.P3 = 1 _B	
		P3_ALTSEL1.P3 = 1 _B	
P1.4/RXDC1_3	NPCR1.RXSEL = 011 _B	P1_DIR.P4 = 0 _B	Input
P1.3/TXDC1_3	-	P1_DIR.P3 = 1 _B	Output
		P1_ALTSEL0.P3 = 1 _B	
		P1_ALTSEL1.P3 = 1 _B	

16.1.12 Low Power Mode

If the MultiCAN functionality is not required at all, it can be completely disabled by gating off its clock input for maximal power reduction. This is done by setting bit CAN_DIS in register PMCON1 as described below. Refer to **Chapter 8.1.4** for details on peripheral clock management.

PMCON1

Power Mode Control Register 1

Reset Value: 00_H

7	6	5	4	3	2	1	0
0	UART1_ DIS	CAN_DIS	MDU_DIS	T2_DIS	CCU_DIS	SSC_DIS	ADC_DIS
r	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description
CAN_DIS	5	rw	 CAN Disable Request. Active high CAN is in normal operation (default). CAN is disabled.
0	7	r	Reserved Returns 0 if read; should be written with 0.

16.2 Registers Description

This section describes the registers of the MultiCAN module. All MultiCAN register names described in this section are also referenced in other parts of the User's Manual by the module name prefix "CAN_".

MultiCAN Kernel Register Overview

The MultiCAN Kernel include three blocks of registers:

- Global Module Registers
- Node Registers, for each CAN node x
- Message Object Registers, for each message object n

1 able 16-5	Registers Overview - MultiCAN Kernel Registers					
Register Short Name	Register Long Name	Offset Address ¹⁾	Description see			
Global Modu	ile Registers	•				
LISTm	List Register m	0100 _H + m × 4 _H	Page 16-54			
MSPNDk	Message Pending Register k	0120 _H + k × 4 _H	Page 16-56			
MSIDk	Message Index Register k	0140 _H + k × 4 _H	Page 16-57			
MSIMASK	Message Index Mask Register	01C0 _H	Page 16-58			
PANCTR	Panel Control Register	01C4 _H	Page 16-48			
MCR	Module Control Register	01C8 _H	Page 16-52			
MITR	Module Interrupt Trigger Reg.	01CC _H	Page 16-53			
Node Regist	ers	·	·			
NCRx	Node x Control Register	$0200_{\rm H}$ + x × $100_{\rm H}$	Page 16-59			
NSRx	Node x Status Register	$0204_{\rm H}$ + x × $100_{\rm H}$	Page 16-63			
NIPRx	Node x Interrupt Pointer Reg.	$0208_{\rm H}$ + x × $100_{\rm H}$	Page 16-66			
NPCRx	Node x Port Control Register	$020C_{\rm H}$ + x × $100_{\rm H}$	Page 16-68			
NBTRx	Node x Bit Timing Register	0210 _H + x × 100 _H	Page 16-69			
NECNTx	Node x Error Counter Register	$0214_{\rm H}$ + x × $100_{\rm H}$	Page 16-71			
NFCRx	Node x Frame Counter Register	$0218_{\rm H}$ + x × $100_{\rm H}$	Page 16-72			
Message Ob	ject Registers		1			
MOFCRn	Message Object n Function Control Register	1000 _H + n × 20 _H	Page 16-86			
MOFGPRn	Message Object n FIFO/Gateway Pointer Register	1004 _H + n × 20 _H	Page 16-90			

 Table 16-5
 Registers Overview - MultiCAN Kernel Registers

Register Short Name	Register Long Name	Offset Address ¹⁾	Description see
MOIPRn	Message Object n Interrupt Pointer Register	1008 _H + n × 20 _H	Page 16-84
MOAMRn	Message Object n Acceptance Mask Register	100C _H + n × 20 _H	Page 16-91
MODATALn	Message Object n Data Register Low	1010 _H + n × 20 _H	Page 16-95
MODATAHn	Message Object n Data Register High	1014 _H + n × 20 _H	Page 16-96
MOARn	Message Object n Arbitration Register	1018 _H + n × 20 _H	Page 16-92
MOCTRn MOSTATn	Message Object n Control Reg. Message Object n Status Reg.	101C _H + n × 20 _H	Page 16-76 Page 16-79

Table 16-5 Registers Overview - MultiCAN Kernel Registers (cont'd)

1) The following ranges for parameters m, k, x, and n are valid:m = 7-0, k = 1-0, x = 1-0, n = 31-0

MultiCAN Access Mediator Register Overview

Table 16-6 shows the addresses (non-mapped) of the following MultiCAN Access Mediator SFRs.

Register Name	Physical Address	Description See
CAN_DATA3	DE _H (non mapped)	Page 16-100
CAN_DATA2	DD _H (non mapped)	Page 16-99
CAN_DATA1	DC _H (non mapped)	Page 16-99
CAN_DATA0	DB _H (non mapped)	Page 16-99
CAN_ADH	DA _H (non mapped)	Page 16-98
CAN_ADL	D9 _H (non mapped)	Page 16-98
CAN_ADCON	D8 _H (non mapped)	Page 16-97

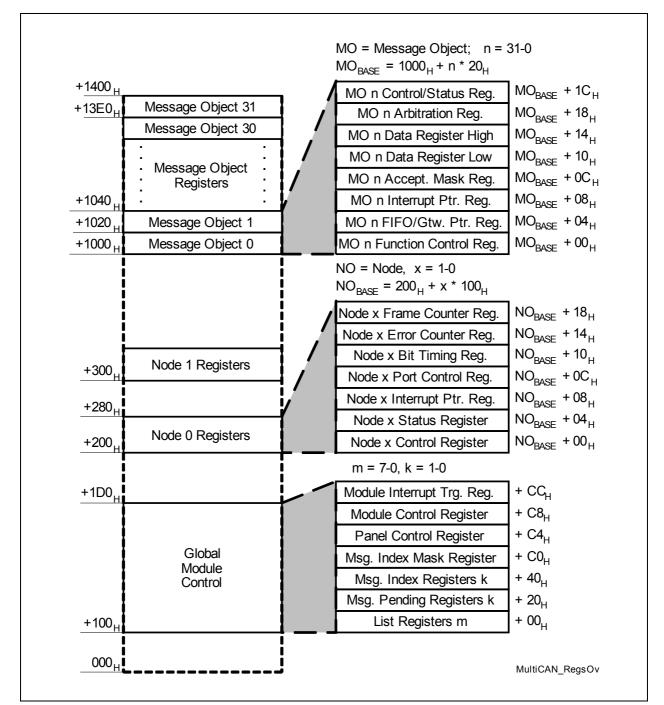


Figure 16-15 shows the MultiCAN kernel register address map.

Figure 16-15 MultiCAN Kernel Register Address Map

16.2.1 Global Module Registers

All list operations such as allocation, de-allocation and relocation of message objects within the list structure are performed via the Command Panel. It is not possible to modify the list structure directly by software by writing to the message objects and the LIST registers.

The Panel Control Register PANCTR is used to start a new command by writing the command arguments and the command code into its bit fields.

PANCTR

Pane	l Con	trol F	Regis	ter							Res	et Va	lue: C	0000	0301 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	PAN	AR2	1		1		1	1	PAN	AR1	1	1	
		I	rv	vh							rv	vh			L]
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	, ,	, D	1	1	RBU SY	BUS Y		1	1	PAN	CMD	1	1	
	•		r	•	•	rh	rh		•	•	rv	vh		•	

Field	Bits	Туре	Description
PANCMD	[7:0]	rwh	Panel Command This bit field is used to start a new command by writing a panel command code into it. At the end of a panel command, the NOP (no operation) command code is automatically written into PANCMD. The coding of PANCMD is defined in Table 16-7 .
BUSY	8	rh	 Panel Busy Flag Panel has finished command and is ready to accept a new command. Panel operation is in progress.
RBUSY	9	rh	 Result Busy Flag No update of PANAR1 and PANAR2 is scheduled by the list controller. A list command is running (BUSY = 1) that will write results to PANAR1 and PANAR2, but the results are not yet available.

Field	Bits	Туре	Description
PANAR1	[23:16]	rwh	Panel Argument 1 See Table 16-7.
PANAR2	[31:24]	rwh	Panel Argument 2 See Table 16-7.
0	[15:10]	r	Reserved Read as 0; should be written with 0.

Panel Commands

A panel operation consists of a command code (PANCMD) and up to two panel arguments (PANAR1, PANAR2). Commands that have a return value deliver it to the PANAR1 bit field. Commands that return an error flag deliver it to bit 31 of the Panel Control Register, this means bit 7 of PANAR2.

PANCMD	PANAR2	PANAR1	Command Description
00 _H	-	-	No Operation Writing 00 _H to PANCMD has no effect. No new command is started.
01 _H	Result: Bit 7: ERR Bit 6-0: undefined		Initialize ListsRun the initialization sequence to resetthe CTRL and LIST fields of all messageobjects. List registers LIST[7:0] are set totheir reset values. This results in the de-allocation of all message objects.The initialization command requires thatbits NCRx.INIT and NCRx.CCE are setfor all CAN nodes (x = 0-1).Bit 7 of PANAR2 (ERR) reports thesuccess of the operation:01Not all NCRx.INIT and NCRx.CCEbits are set. Therefore, noinitialization is performed.The initialized list command isautomatically performed with each resetof the MultiCAN module, but with theexception that all message objectregisters are reset.

Table 16-7Panel Commands

Table 16-7 Panel Commands (cont'd)

PANCMD	PANAR2	PANAR1	Command Description
02 _H	Argument: List Index	Argument: Message Object Number	Static Allocate Allocate message object to a list. The message object is removed from the list that it currently belongs to and appended to the end of the list given by PANAR2. This command is also used to deallocate a message object. In this case, the target list is the list of unallocated elements (PANAR2 = 0).
03 _H	Argument: List Index Result: Bit 7: ERR Bit 6-0: undefined	Result: Message Object Number	Dynamic AllocateAllocate the first message object of thelist of unallocated objects to the selectedlist. The message object is appended tothe end of the list. The message numberof the message object is returned inPANAR1.An ERR bit (bit 7 of PANAR2) reports thesuccess of the operation:0Success.1The operation has not beenperformed because the list ofunallocated elements was empty.
04 _H	Argument: Destination Object Number	Argument: Source Object Number	Static Insert Before Remove a message object (source object) from the list that it currently belongs to and insert it before a given destination object into the list structure of the destination object. The source object thus becomes the predecessor of the destination object.

Table 16-7 Panel Commands (cont'd)

PANCMD	PANAR2	PANAR1	Command Description
05 _H	Argument: Destination Object Number Result: Bit 7: ERR Bit 6-0: undefined	Result: Object Number of inserted object	Dynamic Insert BeforeInsert a new message object before agiven destination object. The new objectis taken from the list of unallocatedelements (the first element is chosen).The number of the new object isdelivered as a result to PANAR1.An ERR bit (bit 7 of PANAR2) reports thesuccess of the operation:0Success.1The operation has not been performed because the list of unallocated elements was empty.
06 _H	Argument: Destination Object Number	Argument: Source Object Number	Static Insert Behind Remove a message object (source object) from the list that it currently belongs to and insert it behind a given destination object into the list structure of the destination object. The source object thus becomes the successor of the destination object.
07 _H	Argument: Destination Object Number Result: Bit 7: ERR Bit 6-0: undefined	Result: Object Number of inserted object	 Dynamic Insert Behind Insert a new message object behind a given destination object. The new object is taken from the list of unallocated elements (the first element is chosen). The number of the new object is delivered as result to PANAR1. An ERR bit (bit 7 of PANAR2) reports the success of the operation: 0 Success. 1 The operation has not been performed because the list of unallocated elements was empty.
08 _H - FF _H	-	_	Reserved

The Module Control Register MCR contains basic settings that define the operation of the MultiCAN module.

MCR Module Control Register

Reset Value: 0000 0000_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	I	I	I		I	. ()	I	I	I	I	I	I	1
	1	L	I	I		L	1	l	I	I	I	I	I	L	
							l								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	MDG	201	I				I	I			I	I	I		I
	MPS	DEL													
L	٢١	N	1	1			1	1		r	1	1	1		

Field	Bits	Туре	Description
MPSEL	[15:12]	rw	Message Pending Selector Bit field MPSEL allows the bit position of the message pending bit to be selected after a message reception/transmission by a mixture of the MOIPRn register bit fields RXINP, TXINP, and MPN. Selection details are given in Figure 16-10 on Page 16-25.
0	[31:16], [11:0]	r	Reserved Read as 0; should be written with 0.

The Interrupt Trigger Register ITR allows interrupt requests to be triggered on each interrupt output line by software.

MITR

Modu	ule In	terru	pt Tri	gger	Regis	ster				Res	et Va	lue: (0000	0000 _H	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I	I	I	I	1	I	1	0	I	I	I	1	I	I	1
	1	1	1	1	1	1	1	r	I	1	1	1	1	1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I	I	(0	I	I	I		1	I	ľ	T	I	I	
L	I	i	I	r	I	i	i		<u>i</u>	I	<u>ا</u>	N	i	I	<u> </u>

Field	Bits	Туре	Description
IT	[7:0]	w	Interrupt Trigger Writing a 1 to IT[n] (n = 0-7) generates an interrupt request on interrupt output line CANSRC[n]. Writing a 0 to IT[n] has no effect. Bit field IT is always read as 0. Multiple interrupt requests can be generated with a single write operation to MITR by writing a 1 to several bit positions of IT.
0	[31:8]	r	Reserved Read as 0; should be written with 0.

Controller Area Network (MultiCAN) Controller

List Pointer and List Register

Each of the two CAN nodes has a list which defines the allocated message objects. Additionally, a list of all unallocated objects is available. Further, general purpose lists are available which are not associated to a CAN node. The List Registers are assigned in the following way:

- LIST0 defines the list of all unallocated objects
- LIST1 defines the list for CAN node 0
- LIST2 defines the list for CAN node 1
- LIST[7:3] are not associated to a CAN node (free lists)

LIST List F LIST List F	Regis	= 1-7	-												IF00 _н 0000 _н
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		0	1			EMP TY		1	1	SI	ZE	1	1	
			r				rh				r	h		1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	13	ND	1	1			1	1	BE	GIN	1		
L	I	1	r	'n	1				1	I	r	h			LI

Field	Bits	Туре	Description
BEGIN	[7:0]	rh	List Begin BEGIN indicates the number of the first message object in list m.
END	[15:8]	rh	List End END indicates the number of the last message object in list m.
SIZE	[23:16]	rh	List Size SIZE indicates the number of elements in the list m. SIZE = number of list elements - 1
ΕΜΡΤΥ	24	rh	 List Empty Indication At least one message object is allocated to list m. No message object is allocated to the list m. List m is empty.

Field	Bits	Туре	Description
0	[31:25]	r	Reserved
			ead as 0; should be written with 0.

Message Notifications

When a message object n generates an interrupt request upon the transmission or reception of a message, then the request is routed to the interrupt output line selected by the bit field MOIPRn.TXIPND or MOIPRn.RXIPND of the message object n. As there are more message objects than interrupt output lines, an interrupt routine typically processes requests from more than one message object. Therefore, a priority selection mechanism is implemented in the MultiCAN module to select the highest priority object within a collection of message objects.

The Message Pending Register MSPNDk contains the pending interrupt notification of list m.

	MSPNDk (k = 0-1) Message Pending Register k Reset Value: 0000 0000 _H														0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	1	1		1		' Iq	ND	1		1	1	1	1	
		1					rv	vh	1		1		1		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PND														
							rv	vh							

Field	Bits	Туре	Description
PND	[31:0]	rwh	Message Pending When a message interrupt occurs, the message object sets a bit in one of the MSPND register, where the bit position is given by the MPN[4:0] field of the IPR register of the message object. The register selection k is given by the bit 5 of MPN. The register bits can be cleared by software (write 0). Writing a 1 has no effect.

Each Message Pending Register has a Message Index Register MSIDk associated with it. The Message Index Register shows the active (set) pending bit with lowest bit position within groups of pending bits.

MSID Mess	-	-		ster I	¢						Res	et Va	lue: C	0000	0020 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	1	1	1	1	1	, ,	D	1	1	1	1	1	1	1
								r							·
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	1	, (1	' INC) DEX	1	1					
	•	•	•		•	•	r	h	•	·					

Field	Bits	Туре	Description
INDEX	[5:0]	rh	Message Pending Index The value of INDEX is given by the bit position i of the pending bit of MSPNDk with the following properties: 1. MSPNDk[i] & IM[i] = 1 2. i = 0 or MSPNDk[i-1:0] & IM[i-1:0] = 0 If no bit of MSPNDk satisfies these conditions then INDEX reads 10000_{B} . Thus INDEX shows the position of the first pending bit of MSPNDk, in which only those bits of MSPNDk that are selected in the Message Index Mask Register are taken into account.
0	[31:6]	r	Reserved Read as 0; should be written with 0.

The Message Index Mask Register MSIMASK selects individual bits for the calculation of the Message Pending Index. The Message Index Mask Register is used commonly for all Message Pending registers and their associated Message Index registers.

MSIN Mess			Masl	k Reg	ister						Res	et Va	lue: C	0000 (0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	1	1	1	1	1	' 	м	1	1	1	1	1	1	
		I	I				r	W	I		I	I	I	I	II
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-		•	•	•			r	W	•		•	•	•	•	<u> </u>

Field	Bits	Туре	Description
IM	[31:0]	rw	Message Index Mask Only those bits in MSPNDk for which the corresponding Index Mask bits are set contribute to the calculation of the Message Index.

16.2.2 CAN Node Registers

The CAN node registers are built in for each CAN node of the MultiCAN module. They contain information that is directly related to the operation of the CAN nodes and are shared among the nodes.

The Node Control Register NCRx contains basic settings that define the operation of the CAN node.

NCRx (x = 0-1)

Node	x Co	ontrol	Regi	ster							Res	et Va	lue: 0	0000 (0001 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	1	1	1	1	1	1	0				1	1	1	
15	14	13	12	11	10	9	8	r 7	6	5	4	3	2	1	0
										0	CAN DIS	ALIE	LECI E	TRIE	ΙΝΙΤ
				r				rw	rw	r	rw	rw	rw	rw	rwh

Field	Bits	Туре	Description
INIT	0	rwh	 Node Initialization Resetting bit INIT enables the participation of the node in the CAN traffic. If the CAN node is in the bus-off state then the ongoing bus-off recovery (which does not depend on the INIT bit) is continued. With the end of the bus-off recovery sequence, the CAN node is allowed to take part in the CAN traffic. If the CAN node is not in the bus-off state, a sequence of 11 consecutive recessive bits must be detected before the node is allowed to take part in the CAN traffic. Setting this bit terminates the participation of this node in the CAN traffic. Any ongoing frame transfer is cancelled and the transmit line goes recessive. If the CAN node is in the bus-off state then the running bus-off recovery sequence is continued. If the INIT bit is still set after the successful completion of the bus-off recovery sequence, i.e. after detecting 128 sequences of 11 consecutive recessive bits (11 × 1) then the CAN node leaves the bus-off state but remains inactive as long as INIT remains set. Bit INIT is automatically set when the CAN node enters the bus-off state.
TRIE	1	rw	 Transfer Interrupt Enable TRIE enables the transfer interrupt of CAN node x. This interrupt is generated after the successful reception or transmission of a CAN frame in node x. 0 Transfer interrupt is disabled. 1 Transfer interrupt is enabled. Bit field NIPRx.TRINP selects the interrupt output line which becomes activated at this type of interrupt.

Field	Bits	Туре	Description					
LECIE	2	rw	LEC Indicated Error Interrupt EnableLECIE enables the last error code interrupt of CANnode x. This interrupt is generated with each update of bitfield NSRx.LEC with LEC > 0 (CAN protocol error).0Last error code interrupt is disabled.1Last error code interrupt is enabled.Bit field NIPRx.LECINP selects the interrupt output linewhich becomes activated at this type of interrupt.					
ALIE	3	rw	 Alert Interrupt Enable ALIE enables the alert interrupt of CAN node x. This interrupt is generated by any one of the following events: A change of bit NSRx.BOFF A change of bit NSRx.EWRN A List Length Error, which also sets bit NSRx.LLE A List Object Error, which also sets bit NSRx.LOE A Bit INIT is set by hardware Alert interrupt is disabled. Alert interrupt is enabled. Bit field NIPRx.ALINP selects the interrupt output line which becomes activated at this type of interrupt. 					
CANDIS	4	rw	CAN Disable Setting this bit disables the CAN node. The CAN node first waits until it is bus-idle or bus-off. Then bit INIT is automatically set, and an alert interrupt is generated if bit ALIE is set.					
CCE	6	rw	 Configuration Change Enable The Bit Timing Register, the Port Control Register, and the Error Counter Register may only be read. All attempts to modify them are ignored. The Bit Timing Register, the Port Control Register, and the Error Counter Register may be read and written. 					
CALM	7	rw	CAN Analyze Mode If this bit is set, then the CAN node operates in Analyze Mode. This means that messages may be received, but not transmitted. No acknowledge is sent on the CAN bus upon frame reception. Active-error flags are sent recessive instead of dominant. The transmit line is continuously held at recessive (1) level. Bit CALM can be written only while bit INIT is set.					

Field	Bits	Туре	Description
0	[31:8], 5	r	Reserved Read as 0; should be written with 0.

The Node Status Register NSRx reports errors as well as successfully transferred CAN frames.

	NSRx (x = 0-1) Node x Status Register Reset Value: 0000 0000 _H														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	1	1	1	1	1	, ,	0			1				
								r							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	LOE	LLE	BOF F	EWR N	ALE RT	RXO K	тхо К		LEC						
			r			rwh	rwh	rh	rh	rwh	rwh	rwh		rwh	

Field	Bits	Туре	Description
LEC	[2:0]	rwh	Last Error Code This bit field indicates the type of the last (most recent) CAN error. The encoding of this bit field is described in Table 16-8.
ТХОК	3	rwh	 Message Transmitted Successfully No successful transmission since last (most recent) flag reset. A message has been transmitted successfully (error-free and acknowledged by at least another node). TXOK must be reset by software (write 0). Writing 1 has no effect.
RXOK	4	rwh	 Message Received Successfully No successful reception since last (most recent) flag reset. A message has been received successfully. RXOK must be reset by software (write 0). Writing 1 has no effect.

Field	Bits	Туре	Description
ALERT	5	rwh	 Alert Warning The ALERT bit is set upon the occurrence of one of the following events (the same events which also trigger an alert interrupt if NCRx.ALIE is set): A change of bit NSRx.BOFF A change of bit NSRx.EWRN A List Length Error, which also sets bit NSRx.LLE A List Object Error, which also sets bit NSRx.LOE Bit INIT has been set by hardware ALERT must be reset by software (write 0). Writing 1 has no effect.
EWRN	6	rh	 Error Warning Status No warning limit exceeded. One of the error counters NECNTx.REC or NECNTx.TEC reached the warning limit NECNTx.EWRNLVL.
BOFF	7	rh	Bus-off Status0CAN controller is not in the bus-off state.1CAN controller is in the bus-off state.
LLE	8	rwh	 List Length Error No List Length Error since last (most recent) flag reset. A List Length Error has been detected during message acceptance filtering. The number of elements in the list that belongs to this CAN node differs from the list SIZE given in the list termination pointer. LLE must be reset by software (write 0). Writing 1 has no effect.
LOE	9	rwh	 List Object Error No List Object Error since last (most recent) flag reset. A List Object Error has been detected during message acceptance filtering. A message object with wrong LIST index entry in the Message Object Control Register has been detected. LOE must be reset by software (write 0). Writing 1 has no effect.

Field	Bits	Туре	Description
0	[31:10]	r	Reserved
			Read as 0; should be written with 0.

Encoding of the LEC Bit Field

Table 16-8 Encoding of the LEC Bit Field

LEC Value	Signification				
000 _B	No Error: No error was detected for the last (most recent) message on the CAN bus.				
001 _B	Stuff Error: More than 5 equal bits in a sequence have occurred in a part of a received message where this is not allowed.				
010 _B	Form Error: A fixed format part of a received frame has the wrong format.				
011 _B	Ack Error: The transmitted message was not acknowledged by another node.				
100 _B	Bit1 Error: During a message transmission, the CAN node tried to send a recessive level (1) outside the arbitration field and the acknowledge slot, but the monitored bus value was dominant.				
101 _B	 Bit0 Error: Two different conditions are signaled by this code: 1. During transmission of a message (or acknowledge bit, active-error flag, overload flag), the CAN node tried to send a dominant level (0), but the monitored bus value was recessive. 2. During bus-off recovery, this code is set each time a sequence of 11 recessive bits has been monitored. The CPU may use this code as indication that the bus is not continuously disturbed. 				
110 _B	CRC Error: The CRC checksum of the received message was incorrect.				
111 _B	CPU write to LEC: Whenever the CPU writes the value 111_B to LEC, it takes the value 111_B . Whenever the CPU writes another value to LEC, the written LEC value is ignored.				

The four interrupt pointers in the NIPR register select one out of the eight interrupt outputs individually for each type of CAN node interrupt. See also Page 16-11 for more CAN node interrupt details.

	x (x = x Int	-	ot Poi	nter l	Regis	ter					Res	et Va	lue: (0000 (0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	1	1	1	1	1	'	D	1	1	1	1	1		1
		1		1	1	1		r	1		1	1		1	I]
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CFC	INP			TRI	INP			LEC	INP	1		AL	INP	'
L	r	W		1	n	N	1	1	n	N	1	1	r	w	<u> </u>

Field	Bits	Туре	Description
ALINP	[3:0]	rw	Alert Interrupt Node PointerALINP selects the interrupt output line CANSRCm $(m = 0.7)$ for an alert interrupt of CAN Node x. 0000_B Interrupt output line CANSRC0 is selected. 0001_B Interrupt output line CANSRC1 is selected. 0.111_B Interrupt output line CANSRC7 is selected. 1000_B-1111_B Reserved
LECINP	[7:4]	rw	Last Error Code Interrupt Node PointerLECINP selects the interrupt output line CANSRCm $(m = 0.7)$ for an LEC interrupt of CAN Node x. 0000_B Interrupt output line CANSRC0 is selected. 0001_B Interrupt output line CANSRC1 is selected 0111_B Interrupt output line CANSRC7 is selected. 1000_B-1111_B IReserved

Field	Bits	Туре	Description
TRINP	[11:8]	rw	Transfer OK Interrupt Node PointerTRINP selects the interrupt output line CANSRCm $(m = 0.7)$ for a transfer OK interrupt of CAN Node x. 0000_B Interrupt output line CANSRC0 is selected. 0001_B Interrupt output line CANSRC1 is selected. 0.001_B Interrupt output line CANSRC7 is selected.
CFCINP	[15:12]	rw	Frame Counter Interrupt Node PointerCFCINP selects the interrupt output line CANSRCm $(m = 0.7)$ for a frame counter overflow interrupt ofCAN Node x. 0000_B Interrupt output line CANSRC0 is selected. 0001_B Interrupt output line CANSRC1 is selected 0111_B Interrupt output line CANSRC7 is selected. 1000_B-1111_B Reserved
0	[31:16]	r	Reserved Read as 0; should be written with 0.

The Node Port Control Register NPCRx configures the CAN bus transmit/receive ports. NPCRx can be written only if bit NCRx.CCE is set.

NPCI Node	•		•	Regi	ster						Res	et Va	lue: C	0000 (0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1			1	1	1	()	1		1	1		1	
	1			1	1	1	l	-	1		1	1		1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		0	1	1	1	LBM		1	0	1	1	I	RXSEI	-
L	1		r	1	1	1	rw		1	r	1	1		rw	

Field	Bits	Туре	Description
RXSEL	[2:0]	rw	Receive SelectRXSEL selects one out of 8 possible receive inputs.The CAN receive signal is performed only through theselected input.Note: In XC878, only specific combinations of RXSELare available (see also Page 16-43).
LBM	8	rw	 Loop-Back Mode Loop-Back Mode is disabled. Loop-Back Mode is enabled. This node is connected to an internal (virtual) loop-back CAN bus. All CAN nodes which are in Loop- Back Mode are connected to this virtual CAN bus so that they can communicate with each other internally. The external transmit line is forced recessive in Loop-Back Mode.
0	[7:3], [31:9]	r	Reserved Read as 0; should be written with 0.

The Node Bit Timing Register NBTRx contains all parameters to set up the bit timing for the CAN transfer. NBTRx can be written only if bit NCRx.CCE is set.

NBTF Node	•	-		egist	er						Res	et Va	lue: C	0000 (0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				1	1	1	•	D	1		1		1	1	1
				I	1	I		r	I		I		1	I	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DIV8	-	TSEG2	2		TSE	EG1		SJ	w		1	BI	RP	1	1
rw		rw		1	n	N	1	r	N		1	r	W	1	ıI

Field	Bits	Туре	Description
BRP	[5:0]	rw	Baud Rate Prescaler The duration of one time quantum is given by (BRP + 1) clock cycles if DIV8 = 0. The duration of one time quantum is given by $8 \times (BRP + 1)$ clock cycles if DIV8 = 1.
SJW	[7:6]	rw	(Re) Synchronization Jump Width (SJW + 1) time quanta are allowed for re- synchronization.
TSEG1	[11:8]	rw	Time Segment Before Sample Point (TSEG1 + 1) time quanta is the user-defined nominal time between the end of the synchronization segment and the sample point. It includes the propagation segment, which takes into account signal propagation delays. The time segment may be lengthened due to re-synchronization. Valid values for TSEG1 are 2 to 15.
TSEG2	[14:12]	rw	Time Segment After Sample Point (TSEG2 + 1) time quanta is the user-defined nominal time between the sample point and the start of the next synchronization segment. It may be shortened due to re-synchronization. Valid values for TSEG2 are 1 to 7.

Field	Bits	Туре	Description
DIV8	15	rw	Divide Prescaler Clock by 80A time quantum lasts (BRP+1) clock cycles.1A time quantum lasts 8 × (BRP+1) clock cycles.
0	[31:16]	r	Reserved Read as 0; should be written with 0.

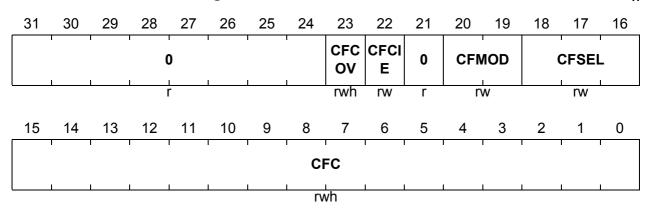
The Node Error Counter Register NECNTx contains the CAN receive and transmit error counter as well as some additional bits to ease error analysis. NECNTx can be written only if bit NCRx.CCE is set.

NECNTx (x = 0-1) Node x Error Counter Register

Reset Value: 0060 0000_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	, ()	1	1	LEIN C	LET D		1	1	EWR	NLVL			1
			r	I	1	rh	rh				n	W			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			TE	EC							R	EC			
L	1	1	rv	vh	1	<u>I</u>			1	l	rv	vh			<u> </u>

Field	Bits	Туре	Description
REC	[7:0]	rwh	Receive Error Counter Bit field REC contains the value of the receive error counter of CAN node x.
TEC	[15:8]	rwh	Transmit Error Counter Bit field TEC contains the value of the transmit error counter of CAN node x.
EWRNLVL	[23:16]	rw	Error Warning Level Bit field EWRNLVL defines the threshold value (warning level, default 96) to be reached in order to set the corresponding error warning bit NSRx.EWRN.
LETD	24	rh	 Last Error Transfer Direction The last error occurred while the CAN node x was receiver (REC has been incremented). The last error occurred while the CAN node x was transmitter (TEC has been incremented).
LEINC	25	rh	 Last Error Increment The last error led to an error counter increment of 1. The last error led to an error counter increment of 8.



Field	Bits	Туре	Description
0	[31:26]	r	Reserved
			Read as 0; should be written with 0.

The Node Frame Counter Register NFCRx contains the actual value of the frame counter as well as control and status bits of the frame counter.

NFCRx (x = 0-1) Node x Frame Counter Register

Reset Value: 0000 0000_H

Field	Bits	Туре	Description
CFC	[15:0]	rwh	CAN Frame Counter In Frame Count Mode (CFMOD = 00_B), this bit field contains the frame count value. In Time Stamp Mode (CFMOD = 01_B), this bit field contains the captured bit time count value, captured with the start of a new frame. In all Bit Timing Analysis Modes (CFMOD = 10_B), CFC always displays the number of f_{CAN} clock cycles (measurement result) minus 1. Example: a CFC value of 34 in measurement mode CFSEL = 000_B means that $35 f_{CAN}$ clock cycles have been elapsed between the most recent two dominant edges on the receive input.

Field	Bits	Туре	Description
CFSEL	[18:16]	rw	 CAN Frame Count Selection This bit field selects the function of the frame counter for the chosen frame count mode. Frame Count Mode Bit 0 If Bit 0 of CFSEL is set, then CFC is incremented each time a foreign frame (i.e. a frame not matching to a message object) has been received on the CAN bus. Bit 1 If Bit 1 of CFSEL is set, then CFC is incremented each time a frame matching to a message object on the CAN bus. Bit 2 If Bit 2 of CFSEL is set, then CFC is incremented each time a frame matching to a message object has been received on the CAN bus. Bit 2 If Bit 2 of CFSEL is set, then CFC is incremented each time a frame has been transmitted successfully by the node. Time Stamp Mode 000_B The frame counter is incremented (internally) at the beginning of a new bit time. The value is sampled during the SOF bit of a new frame. The sampled value is visible in the CFC field. Bit Timing Mode The available bit timing measurement modes are shown in Table 16-9. If CFCIE is set, then an interrupt on request node x (where x is the CAN node number) is generated with a CFC update.
CFMOD	[20:19]	rw	 CAN Frame Counter Mode This bit field determines the operation mode of the frame counter. 00_B Frame Count Mode: The frame counter is incremented upon the reception and transmission of frames. 01_B Time Stamp Mode: The frame counter is used to count bit times. 10_B Bit Timing Mode: The frame counter is used for analysis of the bit timing. 11_B Reserved. 11_B Reserved. Counter Stamp Action State /li>
CFCIE	22	rw	 CAN Frame Count Interrupt Enable CFCIE enables the CAN frame counter overflow interrupt of CAN node x. 0 CAN frame counter overflow interrupt is disabled. 1 CAN frame counter overflow interrupt is enabled. Bit field NIPRx.CFCINP selects the interrupt output line that is activated at this type of interrupt.

Field	Bits	Туре	Description
CFCOV	23	rwh	CAN Frame Counter Overflow FlagFlag CFCOV is set upon a frame counter overflow (transitionfrom $FFFF_H$ to 0000_H). In bit timing analysis mode, CFCOVis set upon an update of CFC. An interrupt request isgenerated if CFCIE = 1.0No overflow has occurred since last flag reset.1An overflow has occurred since last flag reset.CFCOV must be reset by software.
0	21, [31:24]	r	Reserved Read as 0; should be written with 0.

Bit Timing Analysis Modes

Table 16-9 Bit Timing Analysis Modes (CFMOD = 10)

CFSEL	Measurement
000 _B	Whenever a dominant edge (transition from 1 to 0) is monitored on the receive input, the time (measured in clock cycles) between this edge and the most recent dominant edge is stored in CFC.
001 _B	Whenever a recessive edge (transition from 0 to 1) is monitored on the receive input, the time (measured in clock cycles) between this edge and the most recent dominant edge is stored in CFC.
010 _B	Whenever a dominant edge is received as a result of a transmitted dominant edge, the time (clock cycles) between both edges is stored in CFC.
011 _B	Whenever a recessive edge is received as a result of a transmitted recessive edge, the time (clock cycles) between both edges is stored in CFC.
100 _B	Whenever a dominant edge that qualifies for synchronization is monitored on the receive input, the time (measured in clock cycles) between this edge and the most recent sample point is stored in CFC.
101 _B	With each sample point, the time (measured in clock cycles) between the start of the new bit time and the start of the previous bit time is stored in CFC[11:0]. Additional information is written to CFC[15:12] at each sample point: CFC[15]: Transmit value of actual bit time CFC[14]: Receive sample value of actual bit time CFC[13:12]: CAN bus information (see Table 16-10)
111 _B	Reserved, do not use this combination.

CFC[13:12]	CAN Bus State
00 _B	NoBit The CAN bus is idle, performs bit (de-) stuffing or is in one of the following frame segments: SOF, reserved bits, SRR, CRC, delimiters, first 6 EOF bits, IFS.
01 _B	NewBit This code represents the first bit of a new frame segment. The current bit is the first bit in one of the following frame segments: Bit 10 (MSB) of standard ID (transmit only), RTR, IDE, DLC(MSB), bit 7 (MSB) in each data byte and the first bit of the ID extension.
10 _B	Bit This code represents a bit inside a frame segment with a length of more than one bit (not the first bit of those frame segments that is indicated by NewBit). The current bit is processed within one of the following frame segments: ID bits (except first bit of standard ID for transmission and first bit of ID extension), DLC (3 LSB) and bits 6-0 in each data byte.
11 _B	Done The current bit is in one of the following frame segments: Acknowledge slot, last bit of EOF, active/passive-error frame, overload frame. Two or more directly consecutive Done codes signal an Error Frame.

Table 16-10 CAN Bus State Information

16.2.3 Message Object Registers

The Message Object Control Register MOCTRn and the Message Object Status Register MOSTATn are located at the same address offset within a message object address block (offset address $1C_H$). The MOCTRn is a write-only register that makes it possible to set/reset CAN transfer related control bits through software.

MOCTR0

Message Object 0 Control Register MOCTR31 Message Object 31 Control Register MOCTRn (n = 1-30) Message Object n Control Register Reset Value: 0100 0000_H

Reset Value: 1F1E 0000_H

Reset Value: ((n+1)*01000000µ)+((n-1)*00010000µ)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	()		SET DIR	SET TXE N1	SET TXE N0	SET TXR Q	SET RXE N		SET MSG VAL	MSG	SET NEW DAT	SET RXU PD	SET TXP ND	SET RXP ND
	V	V		W	W	W	W	W	W	W	W	W	W	W	W
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	()		RES DIR	RES TXE N1	RES TXE N0		RES RXE N				RES NEW DAT		RES TXP ND	RES RXP ND
•	v	v		w	w	w	W	w	W	w	w	w	W	W	W

Field	Bits	Туре	Description
RESRXPND SETRXPND	0 16	w w	Reset/Set Receive Pending These bits control the set/reset condition for RXPND (see Table 16-11).
RESTXPND SETTXPND	1 17	w w	Reset/Set Transmit Pending These bits control the set/reset condition for TXPND (see Table 16-11).
RESRXUPD SETRXUPD	2 18	w w	Reset/Set Receive Updating These bits control the set/reset condition for RXUPD (see Table 16-11).
RESNEWDAT SETNEWDAT	3 19	w w	Reset/Set New Data These bits control the set/reset condition for NEWDAT (see Table 16-11).

Field	Bits	Туре	Description					
RESMSGLST SETMSGLST	4 20	w w	Reset/Set Message Lost These bits control the set/reset condition for MSGLST (see Table 16-11).					
RESMSGVAL SETMSGVAL	5 21	w w	Reset/Set Message Valid These bits control the set/reset condition for MSGVAL (see Table 16-11).					
RESRTSEL SETRTSEL	6 22	w w	Reset/Set Receive/Transmit Selected These bits control the set/reset condition for RTS (see Table 16-11).					
RESRXEN SETRXEN	7 23	w w	Reset/Set Receive Enable These bits control the set/reset condition for RXEN (see Table 16-11).					
RESTXRQ SETTXRQ	8 24	w w	Reset/Set Transmit Request These bits control the set/reset condition for TXRQ (see Table 16-11).					
RESTXEN0 SETTXEN0	9 25	w w	Reset/Set Transmit Enable 0 These bits control the set/reset condition for TXEN0 (see Table 16-11).					
RESTXEN1 SETTXEN1	10 26	w w	Reset/Set Transmit Enable 1 These bits control the set/reset condition for TXEN1 (see Table 16-11).					
RESDIR SETDIR	11 27	w w	Reset/Set Message Direction These bits control the set/reset condition for DIR (see Table 16-11).					
0	[15:12], [31:28]	w	Reserved Should be written with 0.					

Table 16-11 Reset/Set Conditions for Bits in Register MOCTRn

RESy Bit ¹⁾	SETy Bit	Action on Write
Write 0	Write 0	Leave element unchanged
	No write	
No write	Write 0	
Write 1	Write 1	

Table 16-11 Reset/Set Conditions for Bits in Register MOCTRn (cont'd)

RESy Bit ¹⁾	SETy Bit	Action on Write	
Write 1	Write 0	Reset element	
	No write		
Write 0	Write 1	Set element	
No write			

1) The parameter "y" stands for the second part of the bit name ("RXPND", "TXPND", ... up to "DIR").

The MOSTATn is a read-only register that indicates message object list status information such as the number of the current message object predecessor and successor message object, as well as the list number to which the message object is assigned.

MOSTAT0 Message Object 0 Status Register MOSTAT31 Message Object 31Status Register MOSTATn (n = 1-30) Message Object n Status Register Rest Value: ((n+1)*01000								0000 _H)+((n·	-1)*00	Reso	et Val			0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I	I	PNI	EXT	I	I			I	I	PPF	REV	I	I	1
		L	r	h	L			I	L	I	r	h	I	I	<u> </u>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	DIR	TX EN1	TX EN0	TX RQ	RX EN	RTS EL	VAL	MSG LST	DAT	UPD		RX PND
	r	h	•	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh

Field	Bits	Туре	Description
RXPND	0	rh	 Receive Pending No CAN message has been received. A CAN message has been received by the message object n, either directly or via gateway copy action. RXPND is not reset by hardware but must be reset by software.
TXPND	1	rh	 Transmit Pending No CAN message has been transmitted. A CAN message from message object n has been transmitted successfully over the CAN bus. TXPND is not reset by hardware but must be reset by software.

Field	Bits	Туре	Description
RXUPD	2	rh	 Receive Updating 0 No receive update ongoing. 1 Message identifier, DLC, and data of the message object are currently updated.
NEWDAT	3	rh	 New Data No update of the message object n since last flag reset. Message object n has been updated. NEWDAT is set by hardware after a received CAN frame has been stored in message object n. NEWDAT is cleared by hardware when a CAN transmission of message object n has been started. NEWDAT should be set by software after the new transmit data has been stored in message object n to prevent the automatic reset of TXRQ at the end of an ongoing transmission.
MSGLST	4	rh	 Message Lost No CAN message is lost. A CAN message is lost because NEWDAT has become set again when it has been already set.
MSGVAL	5	rh	Message Valid0Message object n is not valid.1Message object n is valid.Only a valid message object takes part in CANtransfers.

Field	Bits	Туре	Description
RTSEL	6	rh	 Receive/Transmit Selected Message object n is not selected for receive or transmit operation. Message object n is selected for receive or transmit operation. Frame Reception: RTSEL is set by hardware when message object n has been identified for storage of a CAN frame that is currently received. Before a received frame becomes finally stored in message object n, a check is performed to determine if RTSEL is set. Thus, the CPU can suppress a scheduled frame delivery to this message object n by clearing RTSEL by software. Frame Transmission: RTSEL is set by hardware when message object n has been identified to be transmitted next. It is checked that RTSEL is still set before message object n is actually set up for transmission and bit NEWDAT is cleared. It is also checked that RTSEL is still set before its message object n is verified due to the successful transmission of a frame. RTSEL needs to be checked only when the context of message object n changes and interference with an ongoing frame transfer will be avoided. In all other cases, RTSEL can be ignored. RTSEL has no impact on message acceptance filtering. RTSEL is not cleared by hardware.
RXEN	7	rh	 Receive Enable Message object n is not enabled for frame reception. Message object n is enabled for frame reception. RXEN is only evaluated for receive acceptance filtering .

Field	Bits	Туре	Description
TXRQ	8	rh	 Transmit Request No transmission of message object n is requested. 1 Transmission of message object n on the CAN bus is requested. The transmit request becomes valid only if TXRQ, TXEN0, TXEN1 and MSGVAL are set. TXRQ is set by hardware if a matching remote frame has been received correctly. TXRQ is reset by hardware if message object n has been transmitted successfully and NEWDAT is not set again by software.
TXEN0	9	rh	 Transmit Enable 0 Message object n is not enabled for frame transmission. Message object n is enabled for frame transmission. Message object n can be transmitted only if both bits, TXEN0 and TXEN1, are set. The user may clear TXEN0 in order to inhibit the transmission of a message that is currently updated, or to disable automatic response of remote frames.
TXEN1	10	rh	 Transmit Enable 1 Message object n is not enabled for frame transmission. Message object n is enabled for frame transmission. Message object n can be transmitted only if both bits, TXEN0 and TXEN1, are set. TXEN1 is used by the MultiCAN module for selecting the active message object in the transmit FIFOs.

Field	Bits	Туре	Description
DIR	11	rh	 Message Direction Receive Object selected: With TXRQ = 1, a remote frame with the identifier of message object n is scheduled for transmission. On reception of a data frame with matching identifier, the message is stored in message object n. Transmit Object selected: If TXRQ = 1, message object n is scheduled for transmission of a data frame. On reception of a remote frame with matching identifier, bit TXRQ is set.
LIST	[15:12]	rh	List Allocation LIST indicates the number of the message list to which message object n is allocated. LIST is updated by hardware when the list allocation of the object is modified by a panel command.
PPREV	[23:16]	rh	Pointer to Previous Message Object PPREV holds the message object number of the previous message object in a message list structure.
PNEXT	[31:24]	rh	Pointer to Next Message Object PNEXT holds the message object number of the next message object in a message list structure.

Table 16-12 MOSTATn Reset Values

Message Object	PNEXT	PPREV	Reset Value
0	1	0	0100 0000 _H
1	2	0	0200 0000 _H
2	3	1	0301 0000 _H
3	4	2	0402 0000 _H
28	29	27	1D1B 0000 _H
29	30	28	1E1C 0000 _H
30	31	29	1F1D 0000 _H
31	31	30	1F1E 0000 _H

The Message Object Interrupt Pointer Register MOIPRn holds the message interrupt pointers, the message pending number, and the frame counter value of message object n.

MOIF Mess	•			terru	pt Po	inter	Regi	ster			Res	et Va	lue: C	0000 (0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	1		1	1	1	CFC	VAL	1	1			1	1	
	1	1		1		1	٢v	vh	1					1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	MPN								TX	INP			RX	INP	1
	•	•	r	N	•	•	•	rw rw							

Field	Bits	Туре	Description
RXINP	[3:0]	rw	Receive Interrupt Node PointerRXINP selects the interrupt output line CANSRCm $(m = 0.7)$ for a receive interrupt event of messageobject n. RXINP can also be taken for messagepending bit selection (see Page 16-25). 0000_B Interrupt output line CANSRC0 is selected. 0001_B Interrupt output line ICANSRC1 is selected 0110_B Interrupt output line CANSRC6 is selected. 0111_B Interrupt output line CANSRC7 is selected. 1000_B-1111_B Reserved
TXINP	[7:4]	rw	Transmit Interrupt Node PointerTXINP selects the interrupt output line CANSRCm $(m = 0.7)$ for a transmit interrupt event of messageobject n. TXINP can also be taken for messagepending bit selection (see Page 16-25). 0000_B Interrupt output line CANSRC0 is selected. 0001_B Interrupt output line CANSRC1 is selected 0110_B Interrupt output line CANSRC6 is selected. 0111_B Interrupt output line CANSRC7 is selected. 1000_B-1111_B Reserved

Field	Bits	Туре	Description
MPN	[15:8]	rw	Message Pending Number This bit field selects the bit position of the bit in the Message Pending Register that is set upon a message object n receive/transmit interrupt.
CFCVAL	[31:16]	rwh	CAN Frame Counter Value When a message is stored in message object n or message object n has been successfully transmitted, the CAN frame counter value NFCRx.CFC is then copied to CFCVAL.

The Message Object Function Control Register MOFCRn contains bits that select and configure the function of the message object. It also holds the CAN data length code.

MOFCRn (n = 0-31)

Message Object n Function Control Register

Reset Value: 0000 0000_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	()			DL	_C	1	STT	SDT	RMM	FRR EN	0	OVIE	TXIE	RXIE
	n	N			rv	/h		rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0		GDF S	0			1	ММС								
•	٢١	N	•	rw	rw	rw	rw	•	r	w	•		n	N	

Field	Bits	Туре	Description
ММС	[3:0]	rw	Message Mode ControlMMC controls the message mode of messageobject n. 0000_B Standard Message Object 0001_B Receive FIFO Base Object 0010_B Transmit FIFO Base Object 0011_B Transmit FIFO Slave Object 0100_B Gateway Source ObjectOthersReserved
GDFS	8	rw	 Gateway data frame Send TXRQ is unchanged in the destination object. TXRQ is set in the gateway destination object after the transfer of a data frame from the gateway source to the gateway destination object. Applicable only to a gateway source object; ignored in other nodes.

Field	Bits	Туре	Description
IDC	9	rw	 Identifier Copy The identifier of the gateway source object is not copied. The identifier of the gateway source object (after storing the received frame in the source) is copied to the gateway destination object. Applicable only to a gateway source object; ignored in other nodes.
DLCC	10	rw	 Data Length Code Copy Data length code is not copied. Data length code of the gateway source object (after storing the received frame in the source) is copied to the gateway destination object. Applicable only to a gateway source object; ignored in other nodes.
DATC	11	rw	 Data Copy Data fields are not copied. Data fields in registers MODATALn and MODATAHn of the gateway source object (after storing the received frame in the source) are copied to the gateway destination. Applicable only to a gateway source object; ignored in other nodes.
RXIE	16	rw	Receive Interrupt EnableRXIE enables the message receive interrupt ofmessage object n. This interrupt is generated afterreception of a CAN message (independent ofwhether the CAN message is received directly orindirectly via a gateway action).0Message receive interrupt is disabled.1Message receive interrupt is enabled.Bit field MOIPRn.RXINP selects the interrupt outputline which becomes activated at this type of interrupt.

Field	Bits	Туре	Description
TXIE	17	rw	Transmit Interrupt EnableTXIE enables the message transmit interrupt of message object n. This interrupt is generated after the transmission of a CAN message.0Message transmit interrupt is disabled.1Message transmit interrupt is enabled.1Bit field MOIPRn.TXINP selects the interrupt output line which becomes activated at this type of interrupt.
OVIE	18	rw	Overflow Interrupt Enable OVIE enables the FIFO full interrupt of message object n. This interrupt is generated when the pointer to the current message object (CUR) reaches the value of SEL in the FIFO/Gateway Pointer Register. 0 FIFO full interrupt is disabled. 1 FIFO full interrupt is enabled. 1 FIFO full interrupt is enabled. If message object n is a Receive FIFO base object, bit field MOIPRn.TXINP selects the interrupt output line which becomes activated at this type of interrupt. If message object n is a Transmit FIFO base object, bit field MOIPRn.RXINP selects the interrupt output line which becomes activated at this type of interrupt. For all other message object modes, bit OVIE has no effect.
FRREN	20	rw	 Foreign Remote Request Enable Specifies whether the TXRQ bit is set in message object n or in a foreign message object referenced by the pointer CUR. 0 TXRQ of message object n is set on reception of a matching remote frame. 1 TXRQ of the message object referenced by the pointer CUR is set on reception of a matching remote frame.

Field	Bits	Туре	Description
RMM	21	rw	 Transmit Object Remote Monitoring Remote monitoring is disabled: Identifier, IDE bit, and DLC of message object n remain unchanged upon the reception of a matching remote frame. Remote monitoring is enabled: Identifier, IDE bit, and DLC of a matching remote frame are copied to transmit object n in order to monitor incoming remote frames. Bit RMM applies only to transmit objects and has no effect on receive objects.
SDT	22	rw	Single Data Transfer If SDT = 1 and message object n is not a FIFO base object, then MSGVAL is reset when this object has taken part in a successful data transfer (receive or transmit). If SDT = 1 and message object n is a FIFO base object, then MSGVAL is reset when the pointer to the current object CUR reaches the value of SEL in the FIFO/Gateway Pointer Register. With SDT = 0, bit MSGVAL is not affected.
STT	23	rw	Single Transmit Trial If this bit is set, then TXRQ is cleared on transmission start of message object n. Thus, no transmission retry is performed in case of transmission failure.
DLC	[27:24]	rwh	Data Length Code Bit field determines the number of data bytes for message object n. Valid values for DLC are 0 to 8. A value of DLC > 8 results in a data length of 8 data bytes, but the DLC code is not truncated upon reception or transmission of CAN frames.
0	[7:4], [15:12], 19, [31:28]	rw	Reserved Read as 0 after reset; value last written is read back; should be written with 0.

The Message Object FIFO/Gateway Pointer register MOFGPRn contains a set of message object link pointers that are used for FIFO and gateway operations.

MOF Mess		•	-		atew	ay Po	ointer	Regi	ster		Res	et Va	lue: C	0000 (0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	SI	ËL	1				1	1	้เ	JR	1	1	
	1	1	n	W	I	I	I	1	1	1	rv	vh	1	1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	тс)P	1				1	1	B	ТС	1	1	
	•		n	W		•	•	•			r	W			

Field	Bits	Туре	Description
ВОТ	[7:0]	rw	Bottom Pointer Bit field BOT points to the first element in a FIFO structure.
ТОР	[15:8]	rw	Top Pointer Bit field TOP points to the last element in a FIFO structure.
CUR	[23:16]	rwh	Current Object Pointer Bit field CUR points to the actual target object within a FIFO/Gateway structure. After a FIFO/gateway operation, CUR is updated with the message number of the next message object in the list structure (given by PNEXT of the message control register) until it reaches the FIFO top element (given by TOP) when it is reset to the bottom element (given by BOT).
SEL	[31:24]	rw	Object Select Pointer Bit field SEL is the second (software) pointer to complement the hardware pointer CUR in the FIFO structure. SEL is used for monitoring purposes (FIFO interrupt generation).

Message Object n Acceptance Mask Register MOAMRn contains the mask bits for the acceptance filtering of the message object n.

	/IOAMRn (n = 0-31) /lessage Object n Acceptance Mask Register Reset Value: 3FFF FFFF _H														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	0	MID E		1	1	1	1	1	AM		1	1	1		
r	W	rw							rw			1			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1		1	1	1	A	M	1	I	1	1	1		
	•			•		•	r	W			•	•			

Field	Bits	Туре	Description
АМ	[28:0]	rw	Acceptance Mask for Message Identifier Bit field AM is the 29-bit mask for filtering incoming messages with standard identifiers (AM[28:18]) or extended identifiers (AM[28:0]). For standard identifiers, bits AM[17:0] are "don't care".
MIDE	29	rw	 Acceptance Mask Bit for Message IDE Bit Message object n accepts the reception of both, standard and extended frames. Message object n receives frames only with matching IDE bit.
0	[31:30]	rw	Reserved Read as 0 after reset; value last written is read back; should be written with 0.

Message Object n Arbitration Register MOARn contains the CAN identifier of the message object.

MOARn (n = 0-31)

Mess	Iessage Object n Arbitration RegisterReset Value: 0000 0000 _H														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
P	RI	IDE			1	1	1		ID				1	1	
r	W	rwh							rwh						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							rv	vh							

Field	Bits	Туре	Description
ID	[28:0]	rwh	CAN Identifier of Message Object n Identifier of a standard message (ID[28:18]) or an extended message (ID[28:0]). For standard identifiers, bits ID[17:0] are "don't care".
IDE	29	rwh	 Identifier Extension Bit of Message Object n Message object n handles standard frames with 11-bit identifier. Message object n handles extended frames with 29-bit identifier.

Field	Bits	Туре	Description
PRI	[31:30]	rw	Priority ClassPRI assigns one of the four priority classes 0, 1, 2, 3to message object n. A lower PRI number defines ahigher priority. Message objects with lower PRI valuealways win acceptance filtering for frame receptionand transmission over message objects with higherPRI value. Acceptance filtering based onidentifier/mask and list position is performed onlybetween message objects of the same priority class.PRI also determines the acceptance filtering methodfor transmission: 00_B Reserved. 01_B Transmit acceptance filtering is based on thelist order. This means that message object n isconsidered for transmission only if there is noother message object with valid transmitrequest (MSGVAL & TXEN0 & TXEN1 = 1)somewhere before this object in the list. 10_B Transmit acceptance filtering is based on theCAN identifier. This means, message object nis considered for transmission only if there is noother message object with higher priorityidentifier + IDE + DIR (with respect to CANarbitration rules) somewhere in the list (seeTable 16-13). 11_B Transmit acceptance filtering is based on thelist order (as PRI = 01_B).

Transmit Priority of Msg. Objects based on CAN Arbitration Rules

Table 16-13 Transmit Priority of Msg. Objects Based on CAN Arbitration Rules

Settings of Arbitrarily Chosen Message Objects A and B, (A has higher transmit priority than B)	Comment
A.MOAR[28:18] < B.MOAR[28:18] (11-bit standard identifier of A less than 11-bit standard identifier of B)	Messages with lower standard identifier have higher priority than messages with higher standard identifier. MOAR[28] is the most significant bit (MSB) of the standard identifier. MOAR[18] is the least significant bit of the standard identifier.
A.MOAR[28:18] = B.MOAR[28:18] A.MOAR.IDE = 0 (send Standard Frame) B.MOAR.IDE = 1 (send Extended Frame)	Standard Frames have higher transmit priority than Extended Frames with equal standard identifier.
A.MOAR[28:18] = B.MOAR[28:18] A.MOAR.IDE = B.MOAR.IDE = 0 A.MOCTR.DIR = 1 (send data frame) B.MOCTR.DIR = 0 (send Remote Fame)	Standard data frames have higher transmit priority than standard remote frames with equal identifier.
A.MOAR[28:0] = B.MOAR[28:0] A.MOAR.IDE = B.MOAR.IDE = 1 A.MOCTR.DIR = 1 (send data frame) B.MOCTR.DIR = 0 (send remote frame)	Extended data frames have higher transmit priority than Extended remote frames with equal identifier.
A.MOAR[28:0] < B.MOAR[28:0] A.MOAR.IDE = B.MOAR.IDE = 1 (29-bit identifier)	Extended Frames with lower identifier have higher transmit priority than Extended Frames with higher identifier. MOAR[28] is the most significant bit (MSB) of the overall identifier (standard identifier MOAR[28:18] and identifier extension MOAR[17:0]). MOAR[0] is the least significant bit (LSB) of the overall identifier.

Message Object n Data Register Low MODATALn contains the lowest four data bytes of message object n. Unused data bytes are set to zero upon reception and ignored for transmission.

MODATALn (n = 0-31) Message Object n Data Register Low

Reset Value: 0000 0000_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		DE	B3	1	1	1		1	1	DI	32	1	1	1
	1		rw	vh	1	1	1		1	1	rv	vh	1	1	
		10	10		10			_		_					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			DE	B1		1					DI	30	1		1
	•		rv	vh							rv	vh			

Field	Bits	Туре	Description
DB0	[7:0]	rwh	Data Byte 0 of Message Object n
DB1	[15:8]	rwh	Data Byte 1 of Message Object n
DB2	[23:16]	rwh	Data Byte 2 of Message Object n
DB3	[31:24]	rwh	Data Byte 3 of Message Object n

Message Object n Data Register High MODATAH contains the highest four data bytes of message object n. Unused data bytes are set to zero upon reception and ignored for transmission.

MODATAHn (n = 0-31) Message Object n Data Register High

Reset Value: 0000 0000_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	1	DE	37	1		1				D	36	1		
	1	l	rv	/h	1	1	1		1	1	rv	/h	1	1	<u> </u>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			DE	35					•	•	DI	34			
	I	I	rw	/h	1	I	1		I	I	rv	/h	I	I	<u> </u>

Field	Bits	Туре	Description
DB4	[7:0]	rwh	Data Byte 4 of Message Object n
DB5	[15:8]	rwh	Data Byte 5 of Message Object n
DB6	[23:16]	rwh	Data Byte 6 of Message Object n
DB7	[31:24]	rwh	Data Byte 7 of Message Object n

16.2.4 MultiCAN Access Mediator Register

CAN_ADCON

CAN Address/ Data Control Register

Reset Value: 0000 0000_B

7	6	5	4	3	2	1	0
V3	V2	V1	V0	AUAD		BSY	RWEN
rw	rw	r	r	rv	V	rh	rw

Field	Bits	Туре	Description		
RWEN	0	rw	Read/Write Enable0Read is enabled1Write is enabled.		
BSY	1	rh	 Data Transmission Busy 0 Data Transimission is finished. 1 Data Transimission is in progress. 		
AUAD	[3:2]	rw	Auto Increment/Decrement the Address00No increment/decrement the address.01Auto increment the current address (+1)10Auto decrement the current address (-1)11Auto increment the current address (+8)		
V0	4	rw	 CAN Data 0 Valid Data in CAN_DATA0 register is not valid for transmission. Data in CAN_DATA0 register is valid for transmission. 		
V1	5	rw	 CAN Data 1 Valid Data in CAN_DATA1 register is not valid for transmission. Data in CAN_DATA1 register is valid for transmission. 		
V2	6	rw	 CAN Data 2 Valid Data in CAN_DATA2 register is not valid for transmission. Data in CAN_DATA2 register is valid for transmission. 		

Field	Bits	Туре	Description
V3	7	rw	 CAN Data 3 Valid Data in CAN_DATA3 register is not valid for transmission. Data in CAN_DATA3 register is valid for transmission.

CAN_ADL Can Address Register Low

Reset Value: 0000 0000_B

7	6	5	4	3	2	1	0	
CA9	CA8	CA7	CA6	CA5	CA4	CA3	CA2	
rwh								

Field	Bits	Туре	Description
CAn (n=2 to 9)	n-2	rwh	CAN Address Bit n

CAN_ADH CAN Address Register High

Reset Value: 0000 0000_B

7	6	5	4	3	2	1	0
	1	1		CA13	CA12	CA11	CA10
		r		rwh	rwh	rwh	rwh

Field	Bits	Туре	Description
CA10	0	rwh	CAN Address Bit 10
CA11	1	rwh	CAN Address Bit 11
CA12	2	rwh	CAN Address Bit 12
CA13	3	rwh	CAN Address Bit 13
0	[7:4]	r	Reserved; read as 0; should be written with 0.

CAN_DAT CAN Data	A0 Register 0				Res	set Value: (0000 0000 _B
7	6	5	4	3	2	1	0
	1 1	Г	CD	[7:0]		Ι	Ι
	II	1	٢١	wh		1	1
Field	Bits	Туре	Descript	ion			
CD	[7:0]	rwh	CAN Dat	ta Byte 0			
CAN Data 7	CAN Data Register 1 7 6 5 4 3 CD[15:8]				Res 2	set Value: (1	0000 0000
	11	l				1	1
			ň	wh			
Field	Bits	Туре	Descript	ion			
CD	[7:0]	rwh	CAN Dat	ta Byte 1			
CAN_DAT CAN Data	A2 Register 2				Res	set Value: ()000 0000 _e
7	6	5	4	3	2	1	0
		Į		23:16]			,
[<u> </u>	I	'n	wh		1	1
Field	Rite	Туре	Descript	ion			

Field	Bits	Туре	Description
CD	[7:0]	rwh	CAN Data Byte 2

CAN_DAT CAN Data		5			Res	Reset Value: 0000 0000 _B			
7	6	5	4	3	2	1	0		
	1	I	-	1:24] vh	1	I			

Field	Bits	Туре	Description
CD	[7:0]	rwh	CAN Data Byte 3

Analog-to-Digital Converter

17 Analog-to-Digital Converter

The XC878 includes a high-performance 10-bit Analog-to-Digital Converter (ADC) with eight multiplexed analog input channels. The ADC uses a successive approximation technique to convert the analog voltage levels from up to eight different sources.

Features

- Successive approximation
- 8-bit or 10-bit resolution
- Eight analog channels
- Four independent result registers
- Result data protection for slow CPU access (wait-for-read mode)
- Single conversion mode
- Autoscan functionality
- Limit checking for conversion results
- Data reduction filter
 - (accumulation of up to 2 conversion results)
- Two independent conversion request sources with programmable priority
- Selectable conversion request trigger
- Flexible interrupt generation with configurable service nodes
- Programmable sample time
- Programmable clock divider
- Cancel/restart feature for running conversions
- Integrated sample and hold circuitry
- Compensation of offset errors
- Low power modes

17.1 Structure Overview

The ADC module consists of two main parts, i.e., analog and digital, with each containing independent building blocks.

The analog part includes:

- Analog input multiplexer (for selecting the channel to be converted)
- Analog converter stage (e.g., capacitor network and comparator as part of the ADC)
- Digital control part of the analog converter stage (for controlling the analog-to-digital conversion process and generating the conversion result)

The digital part defines and controls the overall functionality of the ADC module, and includes:

- Digital data and conversion request handling (for controlling the conversion trigger mechanisms and handling the conversion results)
- Bus interface to the device-internal data bus (for controlling the interrupts and register accesses)

The block diagram of the ADC module is shown in **Figure 17-1**. The analog input channel x (x = 0 - 7) is available at port pin ANx.

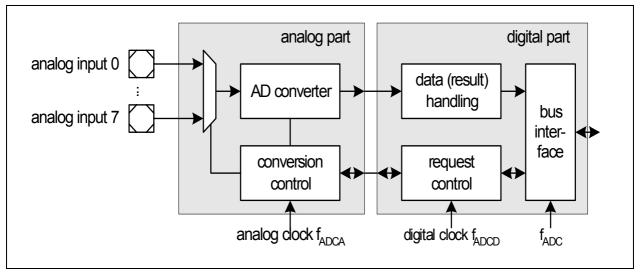
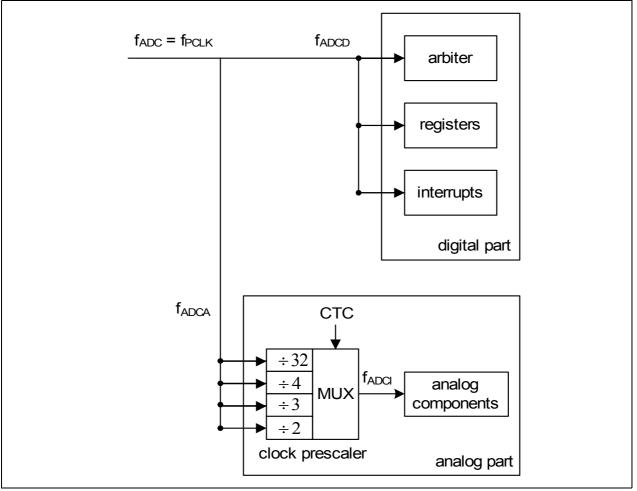


Figure 17-1 Overview of ADC Building Blocks



17.2 Clocking Scheme

A common module clock f_{ADC} generates the various clock signals used by the analog and digital parts of the ADC module:

- f_{ADCA} is input clock for the analog part.
- f_{ADCI} is internal clock for the analog part (defines the time base for conversion length and the sample time). This clock is generated internally in the analog part, based on the input clock f_{ADCA} to generate a correct duty cycle for the analog components.
- f_{ADCD} is input clock for the digital part. This clock is used for the arbiter (defines the duration of an arbitration round) and other digital control structures (e.g., registers and the interrupt generation).

The prescaler ratio is selected by bit field CTC in register GLOBCTR. A prescaling ratio of 32 can be selected when the maximum performance of the ADC is not required.

Figure 17-2 Clocking Scheme

For module clock f_{ADC} = 24 MHz, the analog clock f_{ADCI} frequency can be selected as shown in **Table 17-1**.

Module $\operatorname{Clock} f_{ADC}$	СТС	Prescaling Ratio	Analog Clock f_{ADCI}
24 MHz	00 _B	÷ 2	12 MHz
	01 _B	÷ 3	8 MHz
	10 _B	÷ 4	6 MHz
	11 _B (default)	÷ 32	750 kHz

Table 17-1 f_{ADCI} Frequency Selection

During slow-down mode where f_{ADC} may be reduced to 12 MHz, 6 MHz etc., it is important to note that the conversion error could increase due to loss of charges on the capacitors, if f_{ADC} becomes too low during slow-down mode.

17.2.1 Conversion Timing

The analog-to-digital conversion procedure consists of the following phases:

- Synchronization phase (*t*_{SYN})
- Sample phase $(t_{\rm S})$
- Conversion phase
- Write result phase (t_{WR})

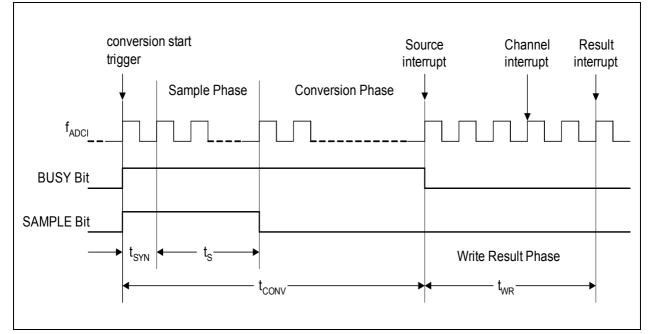


Figure 17-3 Conversion Timing

Synchronization Phase t_{SYN}

One f_{ADCI} period is required for synchronization between the conversion start trigger (from the digital part) and the beginning of the sample phase (in the analog part). The BUSY and SAMPLE bits will be set with the conversion start trigger.

Sample Phase *t*_S

During this period, the analog input voltage is sampled. The internal capacitor array is connected to the selected analog input channel and is loaded with the analog voltage to be converted. The analog voltage is internally fed to a voltage comparator. With the beginning of the sampling phase, the SAMPLE and BUSY flags in register GLOBSTR are set. The duration of this phase is common to all analog input channels and is controlled by bit field STC in register INPCR0:

$$t_{\rm S} = (2 + {\rm STC}) \times t_{\rm ADCI}$$

(17.1)

Conversion Phase

During the conversion phase, the analog voltage is converted into an 8-bit or 10-bit digital value using the successive approximation technique with a binary weighted capacitor network. At the beginning of the conversion phase, the SAMPLE flag is reset (to indicate the sample phase is over), while the BUSY flag continues to be asserted. The BUSY flag is deasserted only at the end of the conversion phase with the corresponding source interrupt (of the source that started the conversion) asserted.

Write Result Phase twR

At the end of the conversion phase, the corresponding channel interrupt (of the converted channel) is asserted three f_{ADCI} periods later, after the limit checking has been performed. The result interrupt is asserted, once the conversion result has been written into the target result register.

Total Conversion Time *t*_{CONV}

The total conversion time (synchronizing + sampling + charge redistribution) t_{CONV} is given by:

$$t_{CONV} = t_{ADC} \times (1 + r \times (3 + n + STC))$$
(17.2)

where

r = CTC + 2 for CTC = 00_B , 01_B or 10_B , r = 32 for CTC = 11_B , CTC = Conversion Time Control, STC = Sample Time Control,

n = 8 or 10 (for 8-bit and 10-bit conversion, respectively),

 $t_{ADC} = 1 / f_{ADC}$ Example: STC = 00_H,

 $CTC = 01_{B}$,

 f_{ADC} = 26.7 MHz,

n = 10,

 $t_{\text{CONV}} = t_{\text{ADC}} \times (1 + 3 \times (3 + 10 + 0)) = 1.5 \ \mu\text{s}$

17.3 Low Power Mode

The ADC module may be disabled, either partially or completely, when no conversion is required in order to reduce power consumption.

The analog part of the ADC module may be disabled by resetting the ANON bit. This causes the generation of f_{ADCI} to be stopped and results in a reduction in power consumption. Conversions are possible only by enabling the analog part (ANON = 1) again. The wake-up time is approximately 100 ns.

Refer to **Section 17.7.1** for register description of disabling the ADC analog part.

If the ADC functionality is not required at all, it can be completely disabled by gating off its clock input (f_{ADC}) for maximal power reduction. This is done by setting bit ADC_DIS in register PMCON1. Refer to **Chapter 8.1.4** for details on peripheral clock management.

PMCON1

	Power Mode Control Register 1 (B5 _H)						Reset	Value: 00 _H
	7	6	5	4	3	2	1	0
	0	CDC_DIS	CAN_DIS	MDU_DIS	T2CCU _DIS	CCU_DIS	SSC_DIS	ADC_DIS
-	r	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description
ADC_DIS	0	rw	ADC Disable Request. Active high. 0_B ADC is in normal operation (default) 1_B Request to disable the ADC
0	7	r	Reserved Returns 0 if read; should be written with 0.

17.4 Functional Description

The ADC module functionality includes:

- Two different conversion request sources (sequential and parallel) with independent registers. The request sources are used to trigger conversions due to external events (synchronization to PWM signals), sequencing schemes, etc.
- An arbiter that regularly scans the request sources to find the channel with the highest priority for the next conversion. The priority of each source can be programmed individually to obtain the required flexibility to cover the desired range of applications.
- Control registers for each of the eight channels that define the behavior of each analog input (such as the interrupt behavior, a pointer to a result register, a pointer to a channel class, etc.).
- An input class register that delivers general channel control information (sample time) from a centralized location.
- Four result registers (instead of one result register per analog input channel) for storing the conversion results and controlling the data reduction.
- A decimation stage for conversion results, adding the incoming result to the value already stored in the targeted result register. This stage allows fast consecutive conversions without the risk of data loss for slow CPU clock frequency.

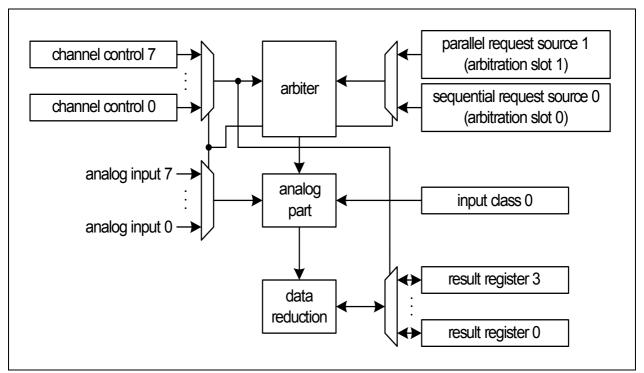


Figure 17-4 ADC Block Diagram

17.4.1 Request Source Arbiter

The arbiter can operate in two modes that are selectable by bit ARBM:

- Permanent arbitration: In this mode, the arbiter will continuously poll the request sources even when there is no pending conversion request.
- Arbitration started by pending conversion request: In this mode, the arbiter will start polling the request sources only if there is at least one conversion pending request.

Once started, the arbiter polls the two request sources (source x at slot x, x = 0 - 1) to find the analog channel with the highest priority that must be converted. For each arbitration slot, the arbiter polls the request pending signal (REQPND) and the channel number valid signal (REQCHNRV) of one request source. The sum of all arbitration slots is called an arbitration round. An arbitration slot must be enabled (ASENx = 1) before it can take part in the arbitration.

Each request source has a source priority that can be programmed via bit PRIOx. Starting with request source 0 (arbitration slot 0), the arbiter checks if a request source has a pending request (REQPND = 1) for a conversion. If more than one request source is found with the same programmed priority level and a pending conversion request, the channel specified by the request source that was found first is selected. The REQCHNRV signal is also checked by the arbiter and a conversion can only be started if REQCHNRV = 1 (and REQPND = 1). If both request sources are programmed with the same priority, the channel number specified by request source 0 will be converted first since it is connected to arbitration slot 0.

The period t_{ARB} of a complete arbitration round is fixed at:

$$t_{\text{ARB}} = 4 * t_{\text{ADCD}} \tag{17.3}$$

Refer to **Section 17.7.2** for register description of priority and arbitration control.

17.4.2 Conversion Start Modes

At the end of each arbitration round, the arbiter would have found the request source with the highest priority and a pending conversion request. It stores the arbitration result, namely the channel number, the sample time and the targeted result register for further actions.

If the analog part is idle, a conversion can be started immediately. If a conversion is currently running, the arbitration result is compared to the priority of the currently running conversion. If the current conversion has the same or a higher priority, it will continue to completion. Immediately after its completion, the next conversion can begin. As soon as the analog part is idle and the arbiter has output a conversion request, the conversion will start.

In case the new conversion request has a higher priority than the current conversion, two conversion start modes exist (selectable by bit CSMx, x = 0 - 1):

• Wait-for-Start:

In this mode, the current conversion is completed normally. The pending conversion request will be treated immediately after the conversion is completed. The conversion start takes place as soon as possible.

• Cancel-Inject-Repeat:

In this mode, the current conversion is aborted immediately if a new request with a higher priority has been found. The new conversion is started as soon as possible after the abort action. The aborted conversion request is restored in the request source that has requested the aborted conversion. As a result, it takes part in the next arbitration round. The priority of an active request source (including pending or active conversion) must not be changed by software. The abort will not be accepted during the last 3 clock cycles of a running conversion.

Refer to Section 17.7.2 for register description relating to conversion start control.

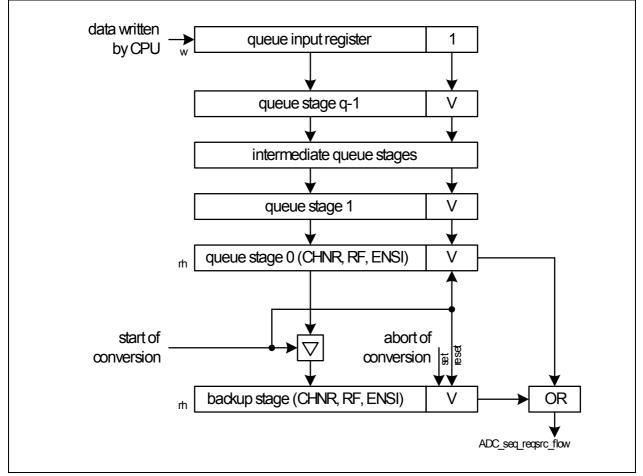
17.4.3 Channel Control

Each channel has its own control information that defines the target result register for the conversion result (see **Section 17.7.4**). The only control information that is common to all channels is the sampling time defined by the input class register (see **Section 17.7.5**).

17.4.4 Sequential Request Source

A sequential request source requests one conversion after the other. The amount of channels requested for conversion depends on the length of the sequential buffer queue (number of queue stages).

The sequential source register description can be found in Section 17.7.6.


17.4.4.1 Overview

The sequential request source at arbitration slot 0 requests one conversion after another for channel numbers between 0 and 7. The queue stage stores the requested channel number and some additional control information. As a result, the order in which the channels are to be converted is freely programmable without restrictions in the sequence. The additional control information is used to enable the request source interrupt (when the requested channel conversion is completed) and to enable the automatic refill process.

A sequential source consists of 4 queue stages, one backup stage (QBUR0) and a mode control register (QMR0). The backup stage stores the information about the latest conversion requested after it has been aborted. If the backup register contains an aborted request (V = 1), it is treated before the entries in the queue stage. This implies that only the bit V in the backup register is cleared when the requested conversion is started. If the bit V in the backup register is not set, the bit V in the queue stage 0 is reset when the requested conversion is started. The request source can take part in the source arbitration if the backup stage or queue stage contains a valid request (V = 1).

Note: Of the 4 queue stages, only the register queue 0 can be read, the register of the other stages are internal.

Figure 17-5 Multi-Stage Queue

The automatic refill feature can be activated (RF = 1) to allow automatic re-insertion of the pending request into the queue stage after a successful execution (conversion start). Otherwise, the pending request will be discarded once it is executed. While the automatic refill feature is enabled, software should not write data to the queue input register.

The write address in which to enter a conversion request is given by the write-only queue input register (QINR0). If there is still an empty stage (V=0) in the queue, the written value will be stored there (bit V becomes set), or else the write action is ignored. In the event that a requested conversion is aborted after its start, its setting is stored in the backup register (bit V becomes set).

Refer to **Section 17.7.6** for description of the sequential request source registers.

17.4.4.2 Request Source Control

If the conversion requested by the source is not related to an external trigger event (EXTR = 0), the valid bit V = 1 directly requests the conversion by setting signals REQPND and REQCHNRV to 1. In this case, no conversion will be requested if V = 0. A gating mechanism allows the user to enable/disable conversion requests according to bit ENGT.

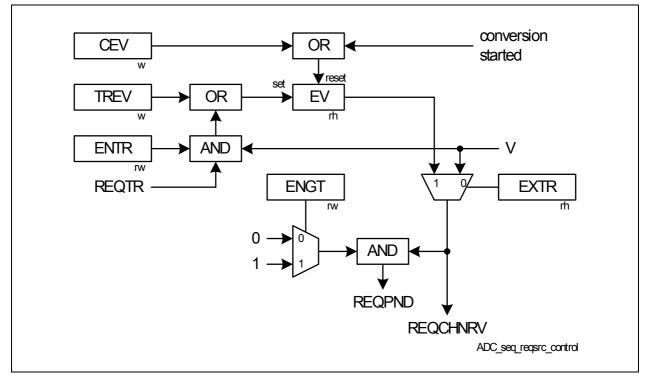


Figure 17-6 Sequential Request Source Control

If the requested conversion is sensitive to an external trigger event (EXTR = 1), the signal REQTR can be taken into account (with ENTR = 1) or the software can write TREV = 1. Both actions set the event flag EV. The event flag EV = 1 indicates that an external event has taken place and a conversion can be requested (EV can be set only if a conversion request is valid with V = 1). In this case, the signal REQCHNRV is derived from bit EV.

In the queue backup register, bit EXTR is always considered as 0. If a queue controlled conversion has been started and aborted due to a higher priority conversion, the aborted conversion will be restarted without waiting for a new trigger event.

17.4.5 Parallel Request Source

A parallel request source generates one or more channel conversion requests in parallel. The requests are always treated one after the other in a pre-defined sequence (higher channel numbers before lower channel numbers).

The parallel source register description can be found in **Section 17.7.7**.

17.4.5.1 Overview

The parallel request source at arbitration slot 1 generates one or more conversion requests for channel numbers between 4 and 7 in parallel. The requests are always treated one after the other (in separate arbitration rounds) in a predefined sequence (higher channel numbers before lower channel numbers).

The parallel request source consists of a conversion request control register (CRCR1), a conversion request pending register (CRPR1) and a conversion request mode register (CRMR1). The contents of the conversion request control register are copied (overwrite) to the conversion request pending register when a selected load event (LDE) occurs. The type of the event defines the behavior and the trigger of the request source.

The activation of a conversion request to the arbiter may be started if the content of the conversion pending register is not 0. The highest bit position number among the pending bits with values equal to 1 specifies the channel number for conversion. To take part in the source arbitration, both the REQCHNRV and REQPND signals must be 1.

Refer to **Section 17.7.7** for description of the parallel request source registers.

17.4.5.2 Request Source Control

All conversion pending bits are ORed together to deliver an intermediate signal PND for generating REQCHNRV and REQPND. The signal PND is gated with bit ENGT, allowing the user to enable/disable conversion requests. See **Figure 17-7**.

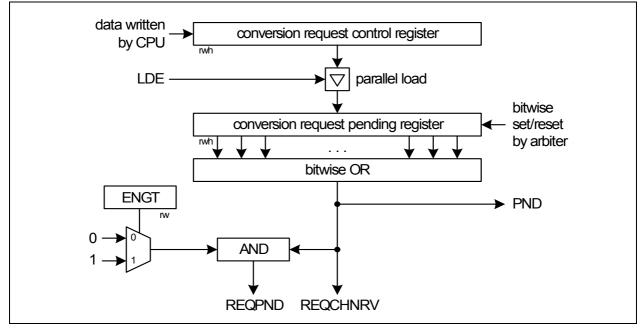


Figure 17-7 Parallel Request Source Control

The load event for a parallel load can be:

- External trigger at the input line REQTR. See Section 17.4.5.3.
- Write operation to a specific address of the conversion request control register. See Section 17.4.5.4.
- Write operation with LDEV = 1 to the request source mode register. See Section 17.4.5.4.
- Source internal action (conversion completed and PND = 0 for autoscan mode).
 See Section 17.4.5.5.

Each bit (bit x, x = 4 - 7) in the conversion request control/pending registers corresponds to one analog input channel. The bit position directly defines the channel number. The bits in the conversion request pending register can be set or reset bitwisely by the arbiter:

- The corresponding bit in the conversion request pending register is automatically reset when the arbiter indicates the start of conversion for this channel.
- The bit is automatically set when the arbiter indicates that the conversion has been aborted.

A source interrupt can be generated (if enabled) when a conversion (requested by this source) is completed while PND = 0. These rules apply only if the request source has triggered the conversion.

17.4.5.3 External Trigger

The conversion request for the parallel source (and also the sequential source) can be synchronized to an external trigger event. For the parallel source, this is done by coupling the reload event to a request trigger input, REQTR.

17.4.5.4 Software Control

The load event for the parallel source can also be generated under software control in two ways:

- The conversion request control register can be written at two different addresses (CRCR1 and CRPR1). Accessed at CRCR1, the write action changes only the bits in this register. Accessed at CRPR1, a load event will take place one clock cycle after the write access. This automatic load event can be used to start conversions with a single move operation. In this case, the information about the channels to be converted is given as an argument in the move instruction.
- Bit LDEV can be written with 1 by software to trigger the load event. In this case, the load event does not contain any information about the channels to be converted, but always takes the contents of the conversion request control register. This allows the conversion request control register to be written at a second address without triggering the load event.

17.4.5.5 Autoscan

The autoscan is a functionality of the parallel source. If autoscan mode is enabled, the load event takes place when the conversion is completed while PND = 0, provided the parallel request source has triggered the conversion. This automatic reload feature allows channels 4 to 7 to be constantly scanned for pending conversion requests without the need for external trigger or software action.

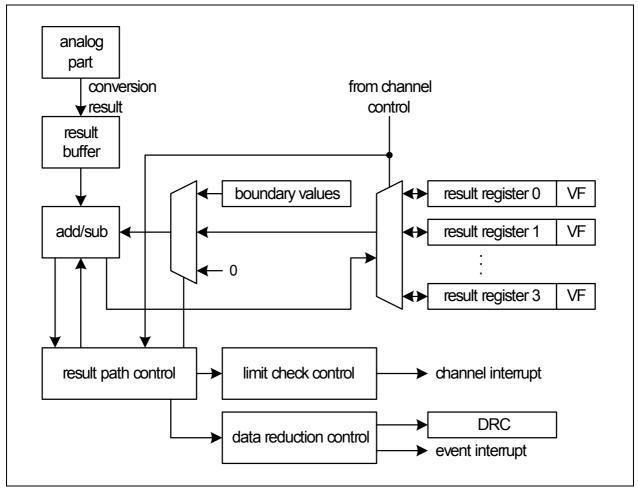
17.4.6 Wait-for-Read Mode

The wait-for-read mode can be used for all request sources to allow the CPU to treat each conversion result independently without the risk of data loss. Data loss can occur if the CPU does not read a conversion result in a result register before a new result overwrites the previous one.

In wait-for-read mode, the conversion request generated by a request source for a specific channel will be disabled (and conversion not possible) if the targeted result register contains valid data (indicated by its valid flag being set). Conversion of the requested channel will not start unless the valid flag of the targeted result register is cleared (data is invalid). The wait-for-read mode for a result register can be enabled by setting bit WFR (see Section 17.7.8).

17.4.7 Result Generation

The result generation part handles the storage of the conversion result, data decimation, limit checking and interrupt generation.


17.4.7.1 Overview

The result generation of the ADC module consists of several parts:

- A limit checking unit, comparing the conversion result to two selected boundary values (BOUND0 and BOUND1). A channel interrupt can be generated according to the limit check result.
- A data reduction filter, accumulating the conversion results. The accumulation is done by adding the new conversion result to the value stored in the selected result register.
- Four result registers, storing the conversion results. The software can read the conversion result from the result registers. The result register used to store the conversion result is selected individually for each input channel.

Figure 17-8 Result Path

Refer to **Section 17.7.8** for description of the result generation registers.

17.4.7.2 Limit Checking

The limit checking and the data reduction filter are based on a common add/subtract structure. The incoming result is compared with BOUND0, then with BOUND1. Depending on the result flags (lower-than compare), the limit checking unit can generate a channel interrupt. It can become active when the valid result of the data reduction filter is stored in the selected result register.

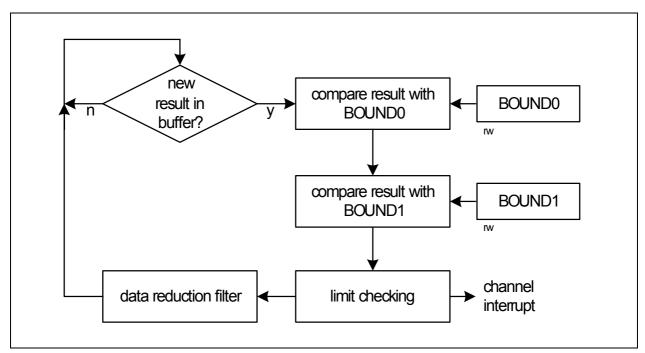


Figure 17-9 Limit Checking Flow

17.4.7.3 Data Reduction Filter

Each result register can be controlled to enable or disable the data reduction filter. The data reduction block allows the accumulation of conversion results for anti-aliasing filtering or for averaging.

		Π	Π	Π	Π	Π	Π	Π	[[conversion ready
	c0	c1	c2	ය	C4	ය	60	c7	c 8	running conversion
		rO	r1	r2	r3	r4	r5	r6	r7	delivered result
	0	1	0	1	0	1	0	1	0	data reduction counter DRC
DRCTR = 1	0	rO	r0 + r1	r2	r2 + r3	r4	r4 + r5	r6	r6+ r7	content of result register x
										valid flag for result register x VFx
	0	0	0	0	0	0	0	0	0	DRC
DRCTR = 0	0	r0	r1	r2	r3	r4	r5	r6	r7	content of result register x
										VFx
	Ň									

Figure 17-10 Data Reduction Flow

If DRC is 0 and a new conversion result comes in, DRC is reloaded with its reload value (defined by bit DRCTR in the result control register) and the value of 0 is added to the conversion result (instead of the previous result register content). Then, the complete result is stored in the selected result register. If the reload value is 0 (data reduction filter disabled), accumulation is done over one conversion. Hence, a result event is generated and the valid bit (VF) for the result register becomes set. If the reload value is 1 (data reduction filter enabled), accumulation is done over two conversions. In this case, neither a result event is generated nor the valid bit is set.

If DRC is 1 and a new conversion result comes in, the data reduction filter adds the incoming result to the value already stored in the result register and decrements DRC.

After this addition, the complete result is stored in the selected result register. The result event is generated and the valid bit becomes set.

It is possible to have an identical cycle behavior of the path to the result register, with the data reduction filter being enabled or disabled. Furthermore, an overflow of the result register is avoided, because a maximum of 2 conversion results are added (a 10-bit result added twice delivers a maximum of 11 bits).

17.4.7.4 Result Register View

In order to cover a wide range of applications, the content of result register x (x = 0 - 3) is available as different read views at different addresses (see Figure 17-11):

Normal read view RESRxL/H:

This view delivers the 8-bit or 10-bit conversion result.

Accumulated read view RESRAxL/H:

This view delivers the accumulated 9-bit or 11-bit conversion result.

All conversion results (with or without accumulation) are stored in the result registers, but can be viewed at either RESRxL/H or RESRAxL/H which shows different data alignment and width.

When the data reduction filter is enabled (DRCTR = 1), read access should be performed on RESRAxL/H as it shows the full 9-bit (R8:R0) or 11-bit (R10:R0) accumulated conversion result. Reading from RESRxL/H gives the appended (MSB unavailable) accumulated result.

When the data reduction filter is disabled (DRCTR = 0), the user can read the 8-bit or 10-bit conversion result from either RESRxL/H or RESRAxL/H. In particular, for 8-bit conversion (without accumulation), the result can be read from RESRxH with a single instruction. Hence, depending on the application requirement, the user can choose to read from the different views.

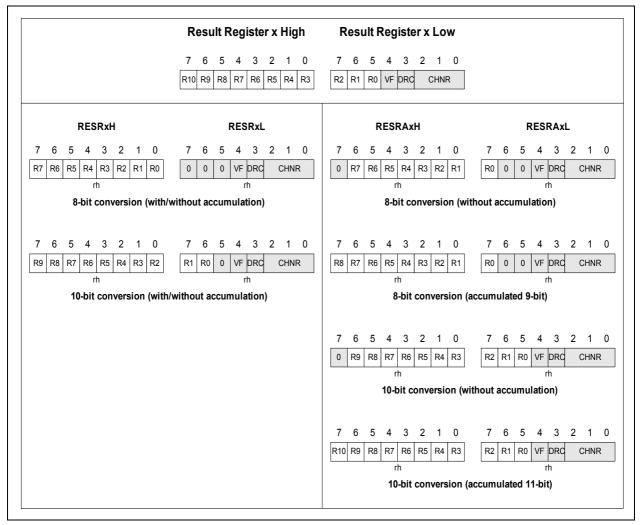


Figure 17-11 Result Register View

17.4.8 Interrupts

The ADC module provides 2 service request outputs SR[1:0] that can be activated by different interrupt sources.

The interrupt structure of the ADC supports two different types of interrupt sources:

- Event Interrupts: Activated by events of the request sources (source interrupts) or result registers (result interrupts).
- Channel Interrupts: Activated by the completion of any input channel conversion. They are enabled according to the control bits for the limit checking. The settings are defined individually for each input channel.

The interrupt compressor is an OR-combination of all incoming interrupt pulses for each of the SR lines.

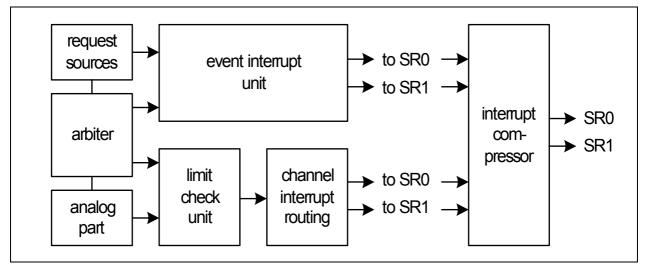


Figure 17-12 Interrupt Overview

Refer to **Section 17.7.9** for description of the interrupt registers.

17.4.8.1 Event Interrupts

Event interrupts can be generated by the request sources and the result registers. The event interrupt enable bits are located in the request sources (ENSI) and result register control (IEN). An interrupt node pointer (EVINP) for each event allows the selection of the targeted service output line.

A request source event is generated when the requested channel conversion is completed:

- Event 0: Request source event of sequential request source 0 (arbitration slot 0)
- Event 1: Request source event of parallel request source 1 (arbitration slot 1)

A result event is generated according to the data reduction control (see **Section 17.4.7.3**):

- Event 4: Result register event of result register 0
- Event 5: Result register event of result register 1
- Event 6: Result register event of result register 2
- Event 7: Result register event of result register 3

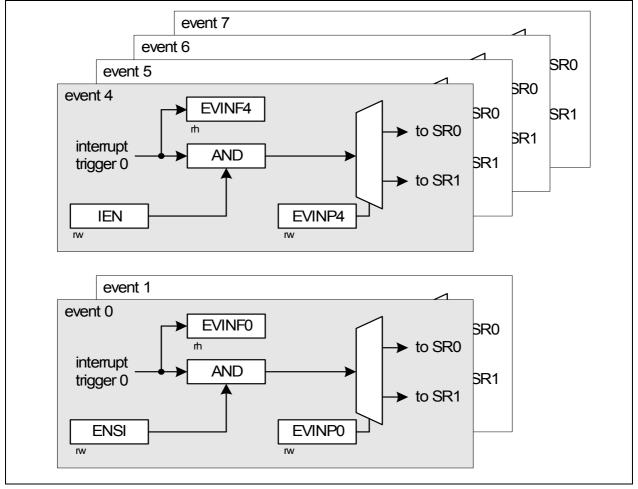


Figure 17-13 Event Interrupt Structure

17.4.8.2 Channel Interrupts

The channel interrupts occur when a conversion is completed and the selected limit checking condition is met. As a result, only one channel interrupt can be activated at a time. An interrupt can be triggered according to the limit checking result by comparing the conversion result with two selectable boundaries for each channel.

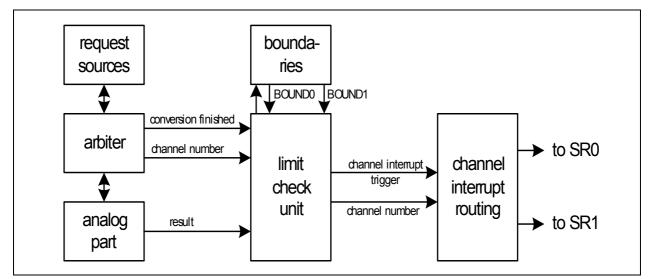


Figure 17-14 Channel Interrupt Overview

The limit checking unit uses two boundaries (BOUND0 and BOUND1) to compare with the conversion result. With these two boundaries, the conversion result space is split into three areas:

- Area I: The conversion result is below both boundaries.
- Area II: The conversion result is between the two boundaries, or is equal to one of the boundaries.
- Area III: The conversion result is above both boundaries.

After a conversion has been completed, a channel interrupt can be triggered according to the following conditions (selected by the limit check control bit field LCC):

- LCC = 000: No trigger, the channel interrupt is disabled.
- LCC = 001: A channel interrupt is generated if the conversion result is not in area I.
- LCC = 010: A channel interrupt is generated if the conversion result is not in area II.
- LCC = 011: A channel interrupt is generated if the conversion result is not in area III.
- LCC = 100: A channel interrupt is always generated (regardless of the boundaries).
- LCC = 101: A channel interrupt is generated if the conversion result is in area I.
- LCC = 110: A channel interrupt is generated if the conversion result is in area II.
- LCC = 111: A channel interrupt is generated if the conversion result is in area III.

The channel-specific interrupt node pointer CHINPx (x = 0 - 7) selects the service request output (SR[1:0]) that will be activated upon a channel interrupt trigger. See Figure 17-15.

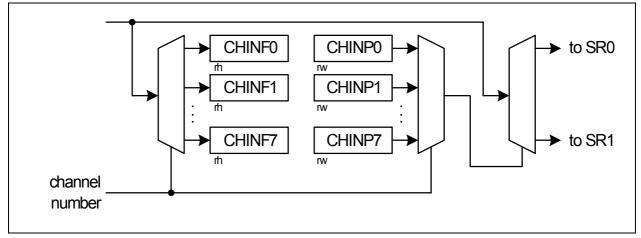


Figure 17-15 Channel Interrupt Routing

17.4.9 External Trigger Inputs

The sequential and parallel request sources has one request trigger input REQTRx (x = 0 - 1) each, through which a conversion request can be started. The input to REQTRx is selected from eight external trigger inputs (ETRx0 to ETRx7) via a multiplexer depending on bit field ETRSELx. It is possible to bypass the synchronization stages for external trigger requests that come synchronous to ADC. This selection is done via bit SYNENx.

Refer to **Section 17.7.9** for description of the external trigger control registers.

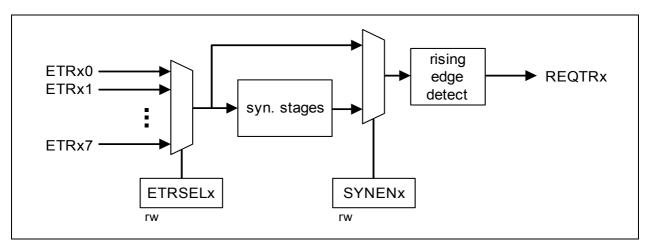


Figure 17-16 External Trigger Input

The external trigger inputs to the ADC module are driven by events occuring in the CCU6 module or T2CCU module. See **Table 17-2**. Inputs to ETRx0/1 are selectable by user via the respective bits in the MISC_CON register.

00	•
External Trigger Input	CCU6/T2CCU Event
ETRx0	T13 period-match or CCT overflow
ETRx1	T13 compare-match or T2CC5 compare-match
ETRx2	T12 period-match
ETRx3	T12 compare-match for channel 0
ETRx4	T12 compare-match for channel 1
ETRx5	T12 compare-match for channel 2
ETRx6	Shadow transfer event for multi-channel mode
ETRx7	Correct hall event for multi-channel mode

 Table 17-2
 External Trigger Input Source

MISC_CON Miscellaneous Control Register

Reset Value: 00_H

7	6	5	4	3	2	1	0
ADCETR0 _MUX	ADCETR1 _MUX		I	0	1	1	DFLASHE N
W	rw			r			rwh

Field	Bits	Туре	Description
ADCETR1 _MUX	6	rwh	ADC External Trigger Input 1 Event Select 0_B T13CM from CCU6 (default). 1_B CM5F from T2CCU.
ADCETR0 _MUX	7	w	$\begin{array}{llllllllllllllllllllllllllllllllllll$
0	[5:1]	r	Reserved Returns 0 if read; should be written with 0.

17.5 ADC Module Initialization Sequence

The following steps is meant to provide a general guideline on how to initialize the ADC module. Some steps may be varied or omitted depending on the application requirements:

- Configure global control functions:
 - Select conversion width (GLOBCTR.DW)
 - Select analog clock f_{ADCI} divider ratio (GLOBCTR.CTC)
- Configure arbitration control functions:
 - Select priority level for request source x (PRAR.PRIOx)
 - Select conversion start mode for request source x (PRAR.CSMx)
 - Enable arbitration slot x (PRAR.ASENx)
 - Select arbitration mode (PRAR.ARBM)
- Configure channel control information:
 - Select limit check control for channel x (CHCTRx.LCC)
 - Select target result register for channel x (CHCTRx.RESRSEL)
 - Select sample time for all channels (INPCR0.STC)
- Configure result control information:
 - Enable/disable data reduction for result register x (RCRx.DRCTR)
 - Enable/disable event interrupt for result register x (RCRx.IEN)
 - Enable/disable wait-for-read mode for result register x (RCRx.WFR)
 - Enable/disable valid flag reset by read access for result register x (RCRx.VFCTR)
- Configure interrupt control functions:
 - Select channel x interrupt node pointer (CHINPR.CHINPx)
 - Select event x interrupt node pointer (EVINPR.EVINPx)
- Configure limit check boundaries:
 - Select limit check boundaries for all channels (LCBR.BOUND0, LCBR.BOUND1)
- Configure external trigger control functions:
 - Select source x external trigger input (ETRCR.ETRSELx)
 - Enable/disable source x external trigger input synchronization (ETRCR.SYNENx)
- Setup sequential source:
 - Enable conversion request (QMR0.ENGT)
 - Enable/disable external trigger (QMR0.ENTR)
- Setup parallel source:
 - Enable conversion request (CRMR1.ENGT)
 - Enable/disable external trigger (CRMR1.ENTR)
 - Enable/disable source interrupt (CRMR1.ENSI)
 - Enable/disable autoscan (CRMR1.SCAN)
- Turn on analog part:
 - Set GLOBCTR.ANON (wait for 100 ns)
- Start sequential request:
 - Write to QINR0 (with information such as REQCHNR, RF, ENSI and EXTR)

- Generate a pending conversion request using any method described in Section 17.4.4.2
- Start parallel request:
 - Write to CRCR1 (no load event) or CRPR1 (automatic load event) the channels to be converted.
 - Generate a load event (if not already available) to trigger a pending conversion request, using any method described in Section 17.4.5.2
- Wait for ADC conversion to be completed:
 - The source interrupt indicates that the conversion requested by the source is completed.
 - The channel interrupt indicates that the corresponding channel conversion is completed (with limit check performed).
 - The result interrupt indicates that the result (with/without accumulation) in the corresponding result register is ready and can be read.
- Read ADC result

17.6 Register Map

All ADC register names described in the following sections are referenced in other chapters of this document with the module name prefix "ADC_", e.g., ADC_GLOBCTR. The addresses of the ADC SFRs are listed in Table 17-3 and Table 17-4

Address	Page 0	Page 1	Page 2	Page 3		
CA _H	GLOBCTR	CHCTR0	RESR0L	RESRA0L		
CB _H	GLOBSTR	CHCTR1	RESR0H	RESRA0H		
CC _H	PRAR	CHCTR2	RESR1L	RESRA1L		
CD _H	LCBR	CHCTR3	RESR1H	RESRA1H		
CE _H	INPCR0	CHCTR4	RESR2L	RESRA2L		
CF _H	ETRCR	CHCTR5	RESR2H	RESRA2H		
D2 _H	-	CHCTR6	RESR3L	RESRA3L		
D3 _H	-	CHCTR7	RESR3H	RESRA3H		

Table 17-3 SFR Address List for Pages 0 - 3

Table 17-4SFR Address List for Pages 4 - 7

Address	Page 4	Page 5	Page 6	Page 7
CA _H	RCR0	CHINFR	CRCR1	_
CB _H	RCR1	CHINCR	CRPR1	_
CC _H	RCR2	CHINSR	CRMR1	-
CD _H	RCR3	CHINPR	QMR0	_
CE _H	VFCR	EVINFR	QSR0	-
CF _H	_	EVINCR	Q0R0	-
D2 _H	-	EVINSR	QBUR0/QINR0	-
D3 _H	_	EVINPR	-	_

The ADC SFRs are located in the standard memory area (RMAP = 0) and are organized into 7 pages. The ADC_PAGE register is located at address $D1_{H}$. It contains the page value and page control information.

ADC_PAGE

Page Register for ADC		DC	(D1 _H)			Reset Value: 0		
7	6	5	4	3	2	1	0	
)P	ST	STNR		PAGE			
	Ŵ		N	r		rwh		

Field	Bits	Туре	Description
PAGE	[2:0]	rwh	Page Bits When written, the value indicates the new page address. When read, the value indicates the currently active page.
STNR	[5:4]	W	Storage NumberThis number indicates which storage bit field is the target of the operation defined by bit OP.If $OP = 10_B$, the contents of PAGE are saved in STx before being overwritten with the new value.If $OP = 11_B$, the contents of PAGE are overwritten by the contents of STx. The value written to the bit positions of PAGE is ignored. 00_B ST0 is selected. 01_B ST1 is selected. 10_B ST2 is selected. 11_B ST3 is selected.

XC878CLM

Analog-to-Digital Converter

Field	Bits	Туре	Description
OP	[7:6]	w	 Operation OX_B Manual page mode. The value of STNR is ignored and PAGE is directly written. 10_B New page programming with automatic page saving. The value written to the bit positions of PAGE is stored. In parallel, the former contents of PAGE are saved in the storage bit field STx indicated by STNR. 11_B Automatic restore page action. The value written to the bit positions PAGE is ignored and instead, PAGE is overwritten by the contents of the storage bit field STx indicated by STNR.
0	3	r	Reserved Returns 0 if read; should be written with 0.

17.7 Register Description

This section describes all the registers which are associated with the functionalities of the ADC module.

17.7.1 General Function Registers

Register GLOBCTR contains bits that control the analog converter and the conversion delay.

GLOBCTR

Global Control Register		ster	(CA _H)			Reset Value: 30 _H		
7	6	5	4	3	2	1	0	
ANON	DW	стс		C)		
rw	rw	r	W		r			

Field	Bits	Туре	Description
CTC	[5:4]	w	Conversion Time Control This bit field defines the divider ratio for the divider stage of the internal analog clock f_{ADCI} . This clock provides the internal time base for the conversion and sample time calculations. 00_{B} $f_{ADCI} = 1/2 \times f_{ADCA}$ 01_{B} $f_{ADCI} = 1/3 \times f_{ADCA}$ 10_{B} $f_{ADCI} = 1/4 \times f_{ADCA}$ 11_{B} $f_{ADCI} = 1/32 \times f_{ADCA}$ (default)
DW	6	rw	Data WidthThis bit defines the conversion resolution. 0_B The result is 10 bits wide (default). 1_B The result is 8 bits wide.

Field	Bits	Туре	Description
ANON	7	rw	Analog Part Switched OnThis bit enables the analog part of the ADC moduleand defines its operation mode. 0_B The analog part is switched off and conversions are not possible. To achieve minimal power consumption, the internal analog circuitry is in its power-down state and the generation of f_{ADCI} is stopped. 1_B The analog part of the ADC module is switched on and conversions are possible. The automatic power-down capability of the analog part is disabled.
0	[3:0]	r	Reserved Returns 0 if read; should be written with 0.

Register GLOBSTR contains bits that indicate the current status of a conversion.

GLOBSTR Global Status Register			(CB _H)			Reset Value: 00		
7	6	5	4	3	2	1	0	
)		CHNR		0	SAMPLE	BUSY	
	r		rh		r	rh	rh	

Field	Bits	Туре	Description
BUSY	0	rh	Analog Part BusyThis bit indicates that a conversion is currently active. 0_B The analog part is idle. 1_B A conversion is currently active.
SAMPLE	1	rh	Sample PhaseThis bit indicates that an analog input signal iscurrently sampled. 0_B The analog part is not in the sampling phase. 1_B The analog part is in the sampling phase.
CHNR	[5:3]	rh	Channel Number This bit field indicates which analog input channel is currently converted. This information is updated when a new conversion is started.
0	2, [7:6]	r	Reserved Returns 0 if read; should be written with 0.

17.7.2 Priority and Arbitration Register

Register PRAR contains bits that define the request source priority and the conversion start mode. It also contains bits that enable/disable the conversion request treatment in the arbitration slots.

PRAR

Priority and Arbitration Register (CC _H)						Reset Value: 00 _H	
7	6	5	4	3	2	1	0
ASEN1	ASEN0	0	ARBM	CSM1	PRIO1	CSM0	PRIO0
rw	rw	r	rw	rw	rw	rw	rw

Field	Bits	Туре	Description		
PRIO0	0	rw	Priority of Request Source 0This bit defines the priority of the sequential requestsource 0. 0_B Low priority 1_B High priority		
CSM0	1	rw	Conversion Start Mode of Request Source 0This bit defines the conversion start mode of thesequential request source 0. 0_B The wait-for-start mode is selected. 1_B The cancel-inject-repeat mode is selected.		
PRIO1	2	rw	Priority of Request Source 1This bit defines the priority of the parallel requestsource 1. 0_B Low priority 1_B High priority		
CSM1	3	rw	Conversion Start Mode of Request Source 1 This bit defines the conversion start mode of the parallel request source 1. O_B The wait-for-start mode is selected. 1_B The cancel-inject-repeat mode is selected.		
ARBM	4	rw	Arbitration ModeThis bit defines which arbitration mode is selected.0 _B Permanent arbitration (default).1 _B Arbitration started by pending conversion request		

Field	Bits	Туре	Description	
ASENx (x = 0 - 1)	[7:6]	rw	Arbitration Slot x EnableEach bit enables an arbitration slot of the arbiterround. ASEN0 enables arbitration slot 0, ASEN1enables slot 1.If an arbitration slot is disabled, a pendingconversion request of a request source connected tothis slot is not taken into account for arbitration. 0_B The corresponding arbitration slot is disabled.Conversions are not requested, pendingconversion request of a request sourceconversion request of a request sourceconversion request of a request sourceconversion request of a request sourcecontinously (ARBM = 1), no conversionrequest of the request source for arbitrationslot x must be active. Clear conversionrequests of the related request source beforedisabling an arbitration slot. 1_B The corresponding arbitration slot is enabled.Conversions are requested for the requestsource with pending request bit(s).	
0	5	r	Reserved Returns 0 if read; should be written with 0.	

17.7.3 External Trigger Control Register

Register ETRCR contains bits that select the external trigger input signal source and enable synchronization of the external trigger input.

ETRCR

External T	rigger Cor		Reset	Value: 00 _H			
7	6	5	4	3	2	1	0
SYNEN1	SYNEN0		ETRSEL1			ETRSEL0	
rw	rw		rw		•	rw	

Field	Bits	Туре	Description
ETRSELx (x = 0 - 1)	[2:0], [5:3]	rw	External Trigger Selection for Request Source x This bit field defines which external trigger input signal is selected. 000_B The trigger input ETRx0 is selected. 001_B The trigger input ETRx1 is selected. 010_B The trigger input ETRx2 is selected. 011_B The trigger input ETRx3 is selected. 100_B The trigger input ETRx4 is selected. 101_B The trigger input ETRx5 is selected. 110_B The trigger input ETRx5 is selected. 110_B The trigger input ETRx6 is selected.
SYNENx (x = 0 - 1) [7:6] rw S		rw	 Synchronization Enable 0_B Synchronizing stage is not in external trigger input REQTRx path. 1_B Synchronizing stage is in external trigger input REQTRx path.

Reset Value: 00_H

Analog-to-Digital Converter

17.7.4 Channel Control Registers

The channel control registers contain bits that select the targeted result register and control the limit check mechanism. Register CHCTRx defines the settings for the input channel x.

CHCTRx (x = 0 - 7) Channel Control Register x (CA_H + x * 1) 7 6 5 4 3

7	6	5	4	3	2	1	0
0		LCC		0		RESI	RSEL
r		rw		r		n	N

Field	Bits	Туре	Description			
RESRSEL	[1:0] rw		Result Register SelectionThis bit field defines which result register will be thetarget of a conversion of this channel. 00_B The result register 0 is selected. 01_B The result register 1 is selected. 10_B The result register 2 is selected. 11_B The result register 3 is selected.			
LCC	[6:4]	rw	Limit Check Control This bit field defines the behavior of the limit checking mechanism. See coding in Section 17.4.8.2.			
0	[3:2], 7	r	Reserved Returns 0 if read; should be written with 0.			

17.7.5 Input Class Register

Register INPCR0 contains bits that control the sample time for the input channels.

INPCR0 Input Clas	s 0 Regist	er	(C	E _H)		Reset	Value: 00 _H
7	6	5	4	3	2	1	0
		I	-	тС 	1	I	
			ſ	W			

Field	Bits	Туре	Description
STC	[7:0]	rw	Sample Time Control This bit field defines the additional length of the sample time, given in terms of f_{ADCI} clock cycles. A sample time of 2 analog clock cycles is extended by the programmed value.

17.7.6 Sequential Source Registers

These registers contain the control and status bits of sequential request source 0.

Register QMR0 contains bits that are used to set the sequential request source in the desired mode.

QMR0

Queue Mode Register			(CD _H)			Reset Value: 00 _H		
7	6	5	4	3	2	1	0	
CEV	TREV	FLUSH	CLRV	0	ENTR	0	ENGT	
W	W	W	W	r	rw	r	rw	

Field	Bits	Туре	Description	
ENGT	0	rw	 Enable Gate This bit enables the gating functionality for the request source. 0_B The gating line is permanently 0. The source is switched off. 1_B The gating line is permanently 1. The source is switched on. 	
ENTR	2	rw	Enable External Trigger This bit enables the external trigger possibility. If enabled, bit EV is set if a rising edge is detected at the external trigger input REQTR when at least one V bit is set in register Q0R0 or QBUR0. 0_B The external trigger is disabled. 1_B The external trigger is enabled.	
CLRV	4	W	Clear V Bits 0 _B No action 1 _B The bit V in register Q0R0 or QBUR0 is reset. If QBUR0.V = 1, then QBUR0.V is reset. If QBUR0.V = 0, then Q0R0.V is reset.	
FLUSH	5	W	Flush Queue0BNo action1BAll bits V in the queue registers and bit EV are reset. The queue contains no more valid entry.	

Field	Bits	Туре	Description				
TREV	REV 6 w Tr		Trigger Event D_B No action 1_B A trigger event is generated by software. If the source waits for a trigger event, a conversion request is started.				
CEV	7	w	Clear Event Bit 0_B No action 1_B Bit EV is cleared.				
0	1, 3	r	Reserved Returns 0 if read; should be written with 0.				

Register QSR0 contains bits that indicate the status of the sequential source.

QSR0

(Queue Status Register			(CE _H)			Reset Value: 20 _H		
	7	6	5	4	3	2	1	0	
	Rsv	0	EMPTY	EV		D	FI		
-	r	r	rh	rh		r	r	h	

Field	Bits	Туре	Description
FILL	[1:0]	rh	 Filling Level This bit field indicates how many entries are valid in the sequential-sourced queue. It is incremented each time a new entry is written to QINR0, decremented each time a requested conversion has been finished. A new entry is ignored if the filling level has reached its maximum value. If EMPTY bit = 1, there are no valid entries in the queue. O0_B If EMPTY bit = 0, there is 1 valid entry in the queue. O1_B If EMPTY bit = 0, there are 2 valid entries in the queue. 10_B If EMPTY bit = 0, there is 3 valid entry in the queue. 11_B If EMPTY bit = 0, there are 4 valid entries in the queue.
EV	4	rh	Event Detected This bit indicates that an event has been detected while V = 1. Once set, this bit is reset automatically when the requested conversion is started. 0_B An event has not been detected. 1_B An event has been detected.
ΕΜΡΤΥ	5	rh	Queue EmptyThis bit indicates if the sequential source containsvalid entries. A new entry is ignored if the queue isfilled (EMPTY = 0). 0_B The queue is filled with 'FILL+1' valid entries in the queue. 1_B The queue is empty, no valid entries are present in the queue.

Field	Bits	Туре	Description				
Rsv	7 r		Reserved Returns 1 if read; should be written with 0.				
			Note: This bit is initialized to 0 immediately after reset, but is updated by hardware to 1 (and remains as 1) shortly after.				
0	[3:0], 6	r	Reserved Returns 0 if read; should be written with 0.				

Register Q0R0 contains bits that monitor the status of the current sequential request.

Q0R0 Queue 0	Register 0	(CF _H)				Reset Value: 00 _H		
7	6	5	4	3	2	1	0	
EXTR	ENSI	RF	v	0	REQCHNR			
rh	rh	rh	rh	r	1	rh	·]	

Field	Bits	Туре	Description				
REQCHNR	[2:0]	rh	Request Channel Number This bit field indicates the channel number that will be or is currently requested.				
V	4	rh	Request Channel Number Valid This bit indicates if the data in REQCHNR, RF, ENS and EXTR is valid. Bit V is set when a valid entry is written to the queue input register QINR0 (or by an update by intermediate queue registers). 0_B The data is not valid. 1_B The data is valid.				
RF	5	rh	BRefillThis bit indicates if the pending request is discarded after being executed (conversion start) or if it is automatically refilled in the top position of the request queue. 0_B The request is discarded after conversion start. 1_B The request is refilled in the queue after				
ENSI	6	rh	conversion start. Enable Source Interrupt This bit indicates if a source interrupt will be generated when the conversion is completed. The interrupt trigger becomes activated if the conversion requested by the source has been completed and ENSI = 1. 0_B The source interrupt generation is disabled. 1_B The source interrupt generation is enabled.				

Field	Bits	Туре	Description						
EXTR	7	rh	External TriggerThis bit defines if the conversion request is sensitiveto an external trigger event.The event flag (bit EV) indicates if an external eventhas taken place and a conversion can be requested 0_B Bit EV is not used to start conversion request 1_B Bit EV is used to start conversion request.Reserved						
0	3	r	Reserved Returns 0 if read; should be written with 0.						

The registers QBUR0 and QINR0 share the same register address. A read operation at this register address will deliver the 'rh' bits of the QBUR0 register, while a write operation to the same address will target the 'w' bits of the QINR0 register.

Register QBUR0 contains bits that monitor the status of an aborted sequential request.

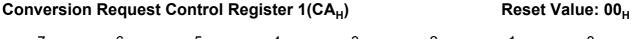
QBUR0 Queue Backup Register 0				(D	2 _H)	Reset Value: 0		
	7	6	5	4	3	2	1	0
	EXTR	ENSI	RF	v	0		REQCHNR	
L	rh	rh	rh	rh	r		rh	

Field	Bits	Туре	Description			
REQCHNR	[2:0]	rh	Request Channel Number This bit field is updated by bit field Q0R0.REQCHNR when the conversion requested by Q0R0 is started.			
V	4	rh	 Request Channel Number Valid This bit indicates if the data in REQCHNR, RF, ENSI, and EXTR is valid. Bit V is set if a running conversion is aborted. It is reset when the conversion is started. 0_B The backup register does not contain valid data, because the conversion described by this data has not been aborted. 1_B The data is valid. The aborted conversion is requested before taking into account what is requested by Q0R0. 			
RF	5	rh	Refill This bit is updated by bit Q0R0.RF when the conversion requested by Q0R0 is started.			
ENSI	6	rh	Enable Source Interrupt This bit is updated by bit Q0R0.ENSI when the conversion requested by Q0R0 is started.			
EXTR	7	rh	External Trigger This bit is updated by bit Q0R0.EXTR when the conversion requested by Q0R0 is started.			
0	3	r	Reserved Returns 0 if read; should be written with 0.			

Register QINR0 is the entry register for sequential requests.

QINR0 Queue Input Register 0				(D2	2 _H)	Reset Value: 0		
	7	6	5	4	3	2	1	0
E	XTR	ENSI	RF	0		REQCHNR		
	W	W	W	r		W		

Field	Bits	Туре	Description			
REQCHNR	[2:0]	W	Request Channel Number This bit field defines the requested channel number.			
RF	5	w	Refill This bit defines the refill functionality.			
ENSI	6	W	Enable Source Interrupt This bit defines the source interrupt functionality.			
EXTR	7	w	External Trigger This bit defines the external trigger functionality.			
0	[4:3]	r	Reserved Returns 0 if read; should be written with 0.			



17.7.7 Parallel Source Registers

These registers contain the control and status bits of parallel request source 1.

Register CRCR1 contains the bits that are copied to the pending register (CRPR1) when the load event occurs. This register can be accessed at two different addresses (one read view, two write views). The first address for read and write access is the address given for CRCR1. The second address for write actions is given for CRPR1. A write operation to CRPR1 leads to a data write to the bits in CRCR1 with an automatic load event one clock cycle later.

CRCR1

1	6	5	4	3	2	1	0
						I	I
CH7	CH6	CH5	CH4			0	
				1		1	i
rwh	rwh	rwh	rwh			r	

Field	Bits	Туре	Description
CHx (x = 4 - 7)	X	rwh	 Channel Bit x Each bit corresponds to one analog channel, the channel number x is defined by the bit position in the register. The corresponding bit x in the conversion request pending register will be overwritten by this bit when the load event occurs. O_B The analog channel x will not be requested for conversion by the parallel request source. 1_B The analog channel x will be requested for conversion by the parallel request source.
0	[3:0]	r	Reserved Returns 0 if read; should be written with 0.

Register CRPR1 contains bits that request a conversion of the corresponding analog channel. The bits in this register have only a read view. A write operation to this address leads to a data write to CRCR1 with an automatic load event one clock cycle later.

CRPR1

Reset Value: 00_H

7	6	5	4	3	2	1	C)
CHP7	CHP6	CHP5	CHP4)	1	
 rwh	rwh	rwh	rwh			r		

Field	Bits	Туре	Description
CHPx (x = 4 - 7)	X	rwh	Channel Pending Bit xWrite view:A write to this address targets the bits in registerCRCR1.Read view:Each bit corresponds to one analog channel; thechannel number x is defined by the bit position in theregister.The arbiter automatically resets (at start ofconversion) or sets it again (at abort of conversion)for the corresponding analog channel.0 _B The analog channel x is not requested for conversion by the parallel request source.1 _B The analog channel x is requested for conversion by the parallel request source.
0	[3:0]	r	Reserved Returns 0 if read; should be written with 0.

Note: The bits that can be read from this register location are generally 'rh'. They cannot be modified directly by a write operation. A write operation modifies the bits in CRCR1 (that is why they are marked 'rwh') and leads to a load event one clock cycle later.

Register CRMR1 contains bits that are used to set the request source in the desired mode.

CRMR1

Conversion Request Mode Register 1 (CC_H)

Reset Value: 00_H

7	6	5	4	3	2	1	0
Rsv	LDEV	CLRPND	SCAN	ENSI	ENTR	0	ENGT
r	W	W	rw	rw	rw	r	rw

Field	Bits	Туре	Description
ENGT	0	rw	 Enable Gate This bit enables the gating functionality for the request source. 0_B The gating line is permanently 0. The source is switched off. 1_B The gating line is permanently 1. The source is switched on.
ENTR	2	rw	Enable External Trigger This bit enables the external trigger possibility. If enabled, the load event takes place if a rising edge is detected at the external trigger input REQTR. 0_B The external trigger is disabled. 1_B The external trigger is disabled.
ENSI	3	rw	Enable Source Interrupt This bit enables the request source interrupt. This interrupt can be generated when the last pending conversion is completed for this source (while PND = 0). 0_B The source interrupt is disabled. 1_B The source interrupt is enabled.
SCAN	4	rw	Autoscan EnableThis bit enables the autoscan functionality. If enabled, the load event is automatically generated when a conversion (requested by this source) is completed and PND = 0. 0_B The autoscan functionality is disabled. 1_B The autoscan functionality is enabled.

Field	Bits	Туре	Description
CLRPND	5	W	Clear Pending Bits 0_B No action 1_B The bits in register CRPR1 are reset.
LDEV	6	W	Generate Load Event 0_B No action 1_B The load event is generated.
Rsv	7	r	Reserved Returns 1 if read; should be written with 0.
			Note: This bit is initialized to 0 immediately after reset, but is updated by hardware to 1 (and remains as 1) shortly after.
0	1	r	Reserved Returns 0 if read; should be written with 0.

17.7.8 Result Registers

The result registers deliver the conversion results and, optionally, the channel number that has lead to the latest update of the result register. The result registers are available as different read views at different addresses. The following bit fields can be read from the result registers, depending on the selected read address. For details on the conversion result alignment and width, see Section 17.4.7.4.

Normal Read View RESRx

This view delivers the 8-bit or 10-bit conversion result and a 3-bit channel number. The corresponding valid flag is cleared when the high byte of the register is accessed by a read command, provided that bit RCRx.VFCTR is set.

RESRxL	(x =	0 - 3)
--------	------	--------

F	Result Register x Low			(CA _H ·	+ x * 2)		Reset Value: 00 _H		
	7	6	5	4	3	2	1	0	
	RESU	LT[1:0]	0	VF	DRC		CHNR		
_	r	rh	r	rh	rh	•	rh		

Field	Bits	Туре	Description			
CHNR	[2:0]	rh	Channel Number This bit field contains the channel number of the latest register update.			
DRC	3	rh	Data Reduction CounterThis bit field indicates how many conversion resultshave still to be accumulated to generate the finalresult for data reduction. 0_B The final result is available in the resultregister. The valid flag is automatically setwhen this bit field is set to 0. 1_B 1 more conversion result must be added toobtain the final result in the result register. Thevalid flag is automatically reset when this bitfield is set to 1.			

Field	Bits	Туре	Description		
VF	4	rh	 Valid Flag for Result Register x This bit indicates that the contents of the result register x are valid. 0_B The result register x does not contain valid data. 1_B The result register x contains valid data. 		
RESULT[1:0]	[7:6]	rh	Conversion Result This bit field contains the conversion result or the result of the data reduction filter.		
0	5	r	Reserved Returns 0 if read; should be written with 0.		

RESRxH (x = 0 - 3) Result Register x High			(CB _H + x * 2)			Reset Value: 00 _H	
7	6	5	4	3	2	1	0
			RESU	LT[9:2]	· · · ·		
			r	ĥ			

Field	Bits	Туре	Description
RESULT[9:2]	[7:0]	rh	Conversion Result This bit field contains the conversion result or the result of the data reduction filter.

Accumulated Read View RESRAx

This view delivers the accumulated 9-bit or 11-bit conversion result and a 3-bit channel number. The corresponding valid flag is cleared when the high byte of the register is accessed by a read command, provided that bit RCRx.VFCTR is set.

	RESRAxL (x = 0 - 3) Result Register x, View A Low			+ x * 2)		Reset Value: 00 _H		
7	6	5	4	3	2	1	0	
	RESULT[2:0]		VF	DRC		CHNR		
	rh			rh		rh		

Field	Bits	Туре	Description	
CHNR	[2:0]	rh	Channel Number This bit field contains the channel number of the latest register update.	
DRC	3	rh	 Data Reduction Counter This bit field indicates how many conversion result have still to be accumulated to generate the final result for data reduction. O_B The final result is available in the result register. The valid flag is automatically set when this bit field is set to 0. 1_B 1 more conversion result must be added to obtain the final result in the result register. The valid flag is automatically set when this bit field is set to 0. 	
VF	4	rh	 Valid Flag for Result Register x This bit indicates that the contents of the result register x are valid. 0_B The result register x does not contain valid data. 1_B The result register x contains valid data. 	
RESULT[2:0]	[7:5]	rh	Conversion Result This bit field contains the conversion result or the result of the data reduction filter.	

	l (x = 0 - 3) gister x, Vi	ew A High	(CB _H	+ x * 2)		Reset	Value: 00H
7	6	5	4	3	2	1	0
	1			_T[10:3]			

Field	Bits	Туре	Description
RESULT[10:3]	[7:0]	rh	Conversion Result This bit field contains the conversion result or the result of the data reduction filter.

Writing a 1 to a bit position in register VFCR clears the corresponding valid flag in registers RESRx/RESRAx. If a hardware event triggers the setting of a bit VFx and VFCx = 1, the bit VFx is cleared (software overrules hardware).

VFCR Valid Flag	Clear Reg	ister	(C	E _H)		Reset	Value: 00 _H
7	6	5	4	3	2	1	0
	, , , , , , , , , , , , , , , , , , ,)		VFC3	VFC2	VFC1	VFC0
	r	•		w	W	W	W

Field	Bits	Туре	Description
VFCx(x = 0 - 3)	x	w	Clear Valid Flag for Result Register x 0_B No action 1_B Bit VFCx is reset.
0	[7:4]	r	Reserved Returns 0 if read; should be written with 0.

The result control registers RCRx contain bits that control the behavior of the result registers and monitor their status.

RCRx (x = Result Co	•	ster x	(CA _H +	⊦ x * 1)		Reset	: Value: 00 _H
7	6	5	4	3	2	1	0
VFCTR	WFR	0	IEN		0	1	DRCTR
rw	rw	r	rw		r	1	rw

Field	Bits	Туре	Description
DRCTR	0	rw	Data Reduction ControlThis bit defines how many conversion results areaccumulated for data reduction. It defines the reloadvalue for bit DRC. 0_B The data reduction filter is disabled. Thereload value for DRC is 0, so the accumulationis done over 1 conversion. 1_B The data reduction filter is enabled. The reloadvalue for DRC is 1, so the accumulation is done over 2 conversions.
IEN	4	rw	Interrupt EnableThis bit enables the event interrupt related to theresult register x. An event interrupt can be generatedwhen DRC is set to 0 (after decrementing or byreload). 0_B The event interrupt is disabled. 1_B The event interrupt is enabled.
WFR	6	rw	Wait-for-Read ModeThis bit enables the wait-for-read mode for resultregister x. 0_B The wait-for-read mode is disabled. 1_B The wait-for-read mode is enabled.
VFCTR	7	rw	Valid Flag ControlThis bit enables the reset of valid flag (by read access to high byte) for result register x.0BVF unchanged by read access to RESRxH/RESRAxH. (default)1BVF reset by read access to RESRxH/RESRAxH.
0	[3:1], 5	r	Reserved Returns 0 if read; should be written with 0.

17.7.9 Interrupt Registers

Register CHINFR monitors the activated channel interrupt flags.

CHINFR

Channel Ir	hannel Interrupt Flag Register			Գ _Н)		Reset	Value: 00 _H
7	6	5	4	3	2	1	0
CHINF7	CHINF6	CHINF5	CHINF4	CHINF3	CHINF2	CHINF1	CHINF0
rh	rh	rh	rh	rh	rh	rh	rh

Field	Bits	Туре	Description
CHINFx	x	rh	Interrupt Flag for Channel x
(x = 0 - 7)			 This bit monitors the status of the channel interrupt x. 0_B A channel interrupt for channel x has not occurred. 1_B A channel interrupt for channel x has occurred.

Writing a 1 to a bit position in register CHINCR clears the corresponding channel interrupt flag in register CHINFR. If a hardware event triggers the setting of a bit CHINFx and CHINCx = 1, the bit CHINFx is cleared (software overrules hardware).

CHINCR

Channel Ir	nterrupt Cl	Reset	Value: 00 _H				
7	6	5	4	3	2	1	0
CHINC7	CHINC6	CHINC5	CHINC4	CHINC3	CHINC2	CHINC1	CHINC0
W	W	W	W	W	W	W	W

Field	Bits	Туре	Description
CHINCx (x = 0 - 7)	x	W	Clear Interrupt Flag for Channel x 0_B No action 1_B Bit CHINFR.x is reset.

Writing a 1 to a bit position in register CHINSR sets the corresponding channel interrupt flag in register CHINFR and generates an interrupt pulse.

CHINSR

Channel Ir	nterrupt Se	et Register	(C0	С _н)		Reset	Value: 00 _H
7	6	5	4	3	2	1	0
CHINS7	CHINS6	CHINS5	CHINS4	CHINS3	CHINS2	CHINS1	CHINS0
W	W	W	W	W	W	W	W

7 1* *	Description
W	Set Interrupt Flag for Channel x0BNo action1BBit CHINFR.x is set and an interrupt pulse is generated.
	w

The bits in register CHINPR define the service request output line, SRx (x = 0 or 1), that is activated if a channel interrupt is generated.

CHINPR

Channel Interrupt Node Pointer Register(CD_H)

Reset Value: 00_H

7	6	5	4	3	2	1	0
CHINP7	CHINP6	CHINP5	CHINP4	CHINP3	CHINP2	CHINP1	CHINP0
rw	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description
CHINPx (x = 0 - 7)	x	rw	Interrupt Node Pointer for Channel x This bit defines which SR lines becomes activated if the channel x interrupt is generated. 0_B The line SR0 becomes activated.
			1 _B The line SR1 becomes activated.

Register EVINFR monitors the activated event interrupt flags.

EVINFR

E	Event Inte	rrupt Flag	Register	(C	E _H)		Reset	Value: 00 _H
	7	6	5	4	3	2	1	0
	EVINF7	EVINF6	EVINF5	EVINF4)	EVINF1	EVINF0
-	rh	rh	rh	rh	1	-	rh	rh

Field	Bits	Туре	Description
EVINFx (x = 0 - 1, 4 - 7)	[1:0], [7:4]	rh	Interrupt Flag for Event xThis bit monitors the status of the event interrupt x. 0_B An event interrupt for event x has not occurred. 1_B An event interrupt for event x has occurred.
0	[3:2]	r	Reserved Returns 0 if read; should be written with 0.

Writing a 1 to a bit position in register EVINCR clears the corresponding event interrupt flag in register EVINFR. If a hardware event triggers the setting of a bit EVINFx and EVINCx = 1, the bit EVINFx is cleared (software overrules hardware).

EVINCR

Event Inte	rrupt Clea	r Flag Reg	ister (C	F _H)		Reset	Value: 00 _H
7	6	5	4	3	2	1	0
EVINC7	EVINC6	EVINC5	EVINC4	0		EVINC1	EVINC0
W	W	W	W	r	•	W	W

Field	Bits	Туре	Description
EVINCx (x = 0 - 1, 4 - 7)	[1:0], [7:4]	w	Clear Interrupt Flag for Event x 0_B No action 1_B Bit EVINFR.x is reset.
0	[3:2]	r	Reserved Returns 0 if read; should be written with 0.

Writing a 1 to a bit position in register EVINSR sets the corresponding event interrupt flag in register EVINFR and generates an interrupt pulse (if the interrupt is enabled).

EVINSR

Event Inte	rrupt Set F	lag Regis	ter (D	2 _H)		Reset	Value: 00 _H
7	6	5	4	3	2	1	0
EVINS7	EVINS6	EVINS5	EVINS4	C)	EVINS1	EVINS0
W	W	W	W	r	•	W	W

Field	Bits	Туре	Description
EVINSx (x = 0 - 1, 4 - 7)	[1:0], [7:4]	w	Set Interrupt Flag for Event x 0_B No action 1_B Bit EVINFR.x is set.
0	[3:2]	r	Reserved Returns 0 if read; should be written with 0.

The bits in register EVINPR define the service request output line, SRx (x = 0 or 1), that is activated if an event interrupt is generated.

EVINPR

Event Interrupt Node Pointer Register (D3_H)

Reset Value: 00_H

7	6	5	4	3	2	1	0
EVINP7	EVINP6	EVINP5	EVINP4	0		EVINP1	EVINP0
rw	rw	rw	rw	r		rw	rw

Field	Bits	Туре	Description
EVINPx (x = 0 - 1, 4 - 7)	[1:0], [7:4]	rw	Interrupt Node Pointer for Event xThis bit defines which SR lines becomes activated ifthe event x interrupt is generated. 0_B The line SR0 becomes activated. 1_B The line SR1 becomes activated.
0	[3:2]	r	Reserved Returns 0 if read; should be written with 0.

The bit fields in register LCBR define the four MSB of the compare values (boundaries) used by the limit checking unit. The values defined in bit fields BOUND0 and BOUND1 are concatenated with either four (8-bit conversion) or six (10-bit conversion) 0s at the end to form the final value used for comparison with the converted result. For example, the reset value of BOUND1 (B_H) will translate into B0_H for an 8-bit comparison, and 2C0_H for a 10-bit comparison.

LCBR

Limit Che	mit Check Boundary Register			D _H)		Reset	Value: B7 _H
7	6	5	4	3	2	1	0
	BOU	ND1			BOU	ND0	
	rv	V			rw	/	

Field	Bits	Туре	Description
BOUNDx (x = 0 - 1)	[3:0], [7:4]	rw	Boundary for Limit Checking This bit field defines the four MSB of the compare value used by the limit checking unit. The result of the limit check is used for interrupt generation.

18 On-Chip Debug Support

The On-Chip Debug Support (OCDS) provides the basic functionality required for software development and debugging of XC800-based systems.

The OCDS design is based on these principles:

- Use the built-in debug functionality of the XC800 Core
- Add a minimum of hardware overhead
- Provide support for most of the operations by a Monitor Program
- Use standard interface to communicate with the Host (a Debugger)

18.1 Features

The main debug features supported are:

- Set breakpoints on instruction address and on address range within the Program Memory
- Set breakpoints on Internal RAM address range
- Support unlimited software breakpoints in Flash/RAM code region
- Process external breaks via JTAG and upon activating a dedicated pin
- Step through the program code

18.2 Functional Description

The OCDS functional blocks are shown in **Figure 18-1**. The Monitor Mode Control (MMC) block at the center of OCDS system brings together control signals and supports the overall functionality. The MMC communicates with the XC800 Core, primarily via the Debug Interface, and also receives reset and clock signals.

After processing memory address and control signals from the core, the MMC provides proper access to the dedicated extra-memories: a Monitor ROM (holding the firmware code) and a Monitor RAM (for work-data and Monitor-stack).

The OCDS system is accessed through the JTAG¹⁾, which is an interface dedicated exclusively for testing and debugging activities and is not normally used in an application. The dedicated MBC pin is used for external configuration and debugging control.

¹⁾ The pins of the JTAG port can be assigned to either Port 0 (primary) or Ports 1 and 2 (secondary set one) or Port 5 (secondary set two).

User must set the JTAG pins (TCK and TDI) as input during connection with the OCDS system.

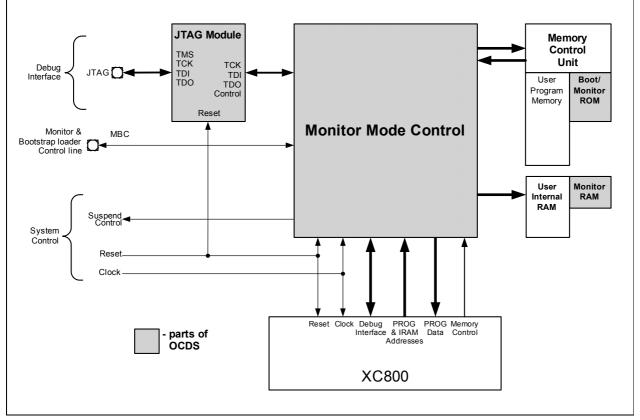


Figure 18-1 XC878 OCDS: Block Diagram

Note: All the debug functionality described here can normally be used only after XC878 has been started in OCDS mode. For more information on boot configuration options, see **Chapter 7.2.3**.

Attention: As long as the OCDS is actively used, the application software should not change the TRAP_EN bit within Extended Operation (EO) register!

18.3 Debugging

The on-chip debug system functionality can be described in two parts. The first part covers the generation of Debug Events and the second part describes the Debug Actions that are taken when a debug event is generated.

- Debug events:
 - Hardware Breakpoints
 - Software Breakpoints
 - External Breaks
 - Debug event actions:
 - Call the Monitor Program
 - Activate the MBC pin

٠

The XC878 debug operation is based on close interaction between the OCDS hardware and a specialized software called the Monitor program.

18.3.1 Debug Events

The OCDS system recognizes a number of different debug events, which are also called breakpoints or simply breaks.

Depending on how the events are processed in time, they can be classified into three types of breaks:

• Break Before Make

The break happens just before the break instruction (i.e. the instruction causing the break) is executed. Therefore, the break instruction itself will be the next instruction from the user program flow but executed only after the relevant debug action has been taken.

• Break After Make

The break happens immediately after the instruction causing it has been executed. Therefore, the break instruction itself has already been executed when the relevant debug action is taken.

Break Now

The events of this type are asynchronous to the code execution inside the XC878 and there is no "instruction causing the debug event" in this case. The debug action is performed by OCDS "as soon as possible" once the debug event is raised.

18.3.1.1 Hardware Breakpoints

Hardware breakpoints are generated by observing certain address buses within the XC878 system. The bus relevant to the hardware breakpoint type is continuously compared against certain registers where addresses for the breakpoints have been programmed.

The hardware breakpoints can be classified into different types:

- Depending on the address bus supervised
 - Breakpoints on Instruction Address
 Program Memory Address (PROGA) is observed
 - Breakpoints on IRAM Address
 Internal Data Memory Addresses for read/write (SOURCE_A, DESTIN_A) are observed
- Depending on the way comparison is done
 - Equal breakpoints
 Comparison is done only against one value; the break event is raised when just this value is matched.
 - Range breakpoints
 Comparison is done against two values; the break event is raised when a value

observed is found belonging to the range between two programmed values (inclusively).

Breakpoints on Instruction Address

These Instruction Pointer (IP) breakpoints are generated when a break address is matched for the first byte of an instruction that is going to be executed i.e., for the address within Program Memory where an instruction opcode is fetched from.

Note: In case of 2- and 3-byte instructions, the break will not be generated for addresses of the second and third instruction bytes.

The IP breakpoints are of Break Before Make type, therefore the instruction at the breakpoint is executed only after the proper debug action is taken.

The OCDS in XC878 supports both equal breakpoints and range breakpoints on Instruction address (see "Configurations of Hardware Breakpoints" on Page 18-4).

Breakpoints on IRAM Address

These breakpoints are generated when an instruction performs read or write access to a location within a defined address range from the Internal Data Memory (IRAM).

The IRAM breakpoints are of Break After Make type, therefore the proper debug action is taken immediately after the operation to the breakpoint address is performed.

The OCDS in XC878 supports only range breakpoints on IRAM address.

The OCDS differentiates between a breakpoint on read and a breakpoint on write operation to the IRAM.

Configurations of Hardware Breakpoints

The OCDS allows setting of up to 4 hardware breakpoints. In XC878, the Program Memory address is 20-bit wide, while the Internal Data Memory address (both for Read and Write) is 8-bit wide. For setting of breakpoint on instruction address, BANKBPx defines the 4-bit bank and HWBPx defines the 16-bit address within the selected bank. For setting of breakpoint on IRAM address, HWBP2/3L and HWBP2/3H define the 8-bit IRAM address range.

The configurations supported are:

- Breakpoint 0
- Breakpoint 1
 - Two equal breakpoints on Instruction Address = BANKBP0 & HWBP0 and Instruction Address = BANKBP1 & HWBP1 or
 - One range breakpoint on BANKBP0 & HWBP0 <= Instruction Address <= BANKBP1 & HWBP1
- Breakpoint 2

- One equal breakpoint on Instruction Address = BANKBP2 & HWBP2, or
- One range breakpoint on HWBP2L <= IRAM Read Address <= HWBP2H</p>
- Breakpoint 3
 - One equal breakpoint on Instruction Address = BANKBP3 & HWBP3, or
 - One range breakpoint on HWBP3L <= IRAM Write Address <= HWBP3H</p>

Setting both values for a range breakpoint to the same address leads to generation of an equal breakpoint.

18.3.1.2 Software Breakpoints

These breakpoints use the XC800-specific (not 8051-standard) TRAP instruction, decoded by the core while at the same time the TRAP_EN bit within the Extended Operation (EO) register is set to 1.

Upon fetching a TRAP instruction, a Break Before Make breakpoint is generated and the relevant Break Action is taken.

The software breakpoints are in fact similar in behavior to the equal breakpoints on Instruction address, except that they are raised by a program code instead of specialized (compare) logic.

An unlimited number of software breakpoints can be set by replacing the original instruction opcodes in the user program. However, this is possible only at addresses where a writable memory (RAM/Flash) is implemented.

Note: In order to continue user program execution after the debug event, an external Debugger must restore the original opcode at the address of the current software breakpoint.

18.3.1.3 External Breaks

These debug events are of Break Now type and can be raised in two ways:

- By a request via the JTAG interface using a special sequence, an external device connected to the JTAG can break the user program running on XC878 and start a debug session;
- By asserting low the dedicated Monitor and BootStrap loader Control line (MBC) while the XC878 is running and this type of break is enabled - used for reaction to asynchronous events from the external world.

18.3.1.4 NMI-mode priority over Debug-mode

While the core is in NMI-mode (after an NMI-request has been accepted and before the RETI instruction is executed, i.e. the time during a NMI-servicing routine), certain debug functions are blocked/restricted:

- No external break is possible while the core is servicing an NMI. External break requested inside a NMI-servicing routine will be taken only after RETI is executed.
- 2. A breakpoint into NMI-servicing routine is taken, but single-step is not possible afterwards.

If a step is requested, the servicing routine will run as coded and monitor mode will be invoked again only after a RETI is executed.

Hardware breakpoints and software breakpoints proceed as normal while CPU is in NMI-mode.

18.3.2 Debug Actions

In case of a debug event, the OCDS system can respond in two ways depending on the current configuration.

18.3.2.1 Call the Monitor Program

XC878 comes with an on-chip Monitor program, factory-stored into the non-volatile Monitor ROM (see **Figure 18-1**). Activating this program is the primary and basic OCDS reaction to recognized debug events.

The OCDS hardware ensures that the Monitor is always safely started, and fully independent of the current system status at the moment when the debug action is taken. Also, interrupt requests optionally raised during Monitor-entry will not disturb the firmware functioning.

Once started, the Monitor runs with own stack- and data- memory (see Monitor RAM in **Figure 18-1**), which guarantees that all of the core and memory resources will be found untouched when returning control back to the user program. Therefore the OCDS-debugging in XC878 is fully non-destructive.

The functions of the XC878 Monitor include:

- Communication with an external Debugger via the JTAG interface
- Read/write access to arbitrary memory locations and Special Function Registers (SFRs), including the Instruction Pointer and password-protected bits
- Configuring OCDS and setting/removing breakpoints
- Executing a single instruction (step-mode)

Note: Detailed descriptions of the Monitor program functionality and the JTAG communication protocol are not provided in this document.

18.3.2.2 Activate the MBC pin

The MBC pin can be driven actively low in reaction to debug events, if respective settings have been done in OCDS.

This functionality allows two alternative configurations:

- As an action additional to the Monitor program start in such a case MBC pin is activated for up to 77 system clock (SCLK) cycles;
- As the only OCDS action while temporarily suspending the core activity MBC pin is driven low for 4 SCLK cycles only as a fastest reaction to the program flow (breakpoint match).

18.4 Debug Suspend Control

Next to the basic debug functionality - setting breakpoints and halting the execution of user software - XC878 OCDS supports also an additional feature: module suspend during debugging.

As long as the device is in monitor mode (i.e. while the user software is not running but in break) and if debug suspend functionality is generally enabled by on-chip software (Monitor or Bootcode) OCDS activates a signal to a number of counter modules, namely:

- Watchdog Timer (WDT)
- Timer 2
- Timer 12 and Timer 13 in Capture/Compare Unit 6 (CCU6)

The Module Suspend Control Register (MODSUSP) holds control bits for these timers. When some control bit is set - the respective timer will be stopped while the monitor mode is active.

This feature could be quite useful, especially regarding the Watchdog Timer: it allows to prevent XC878 from unintentional WDT-resets while the user software is not executed and respectively - not able to service the Watchdog.

Also suspending the other timer-modules makes sense for debugging: once the application is not running, stopping counters helps for a more complete "freeze" of the device-status during a break.

It must be noted, in XC878 all of the debug suspend control bits (global enable in OCDS and individual selections in SCU) have values 0 after reset, i.e. by default no module will be suspended upon a break. But normally, for debugging the device will be started in OCDS mode and then the monitor will be invoked before to start any user code. Then it is possible using a debugger to configure suspend-controls as desired and only afterwards start the debug-session.

Note: For more information on debug-suspend, refer to the individual modules' section on Module Suspend Control.

18.5 Register Description

From a programmer's point of view, OCDS is represented in C868-1R, C868-1S by a total of 10 register-addresses (see **Table 18-1**), all located within the mapped SFR area.

Register Short Name	Address (mapped)	Register Full Name
MMCR	F1 _H	Monitor Mode Control Register
MMCR2	E9 _H	Monitor Mode Control Register 2
MMSR	F2 _H	Monitor Mode Status Register
MMBPCR	F3 _H	Monitor Mode Breakpoints Control Register
MMICR	F4 _H	Monitor Mode Interrupt Control Register
MMDR	F5 _H	Monitor Mode Data Register
HWBPSR	F6 _H	Hardware Breakpoints Select Register
HWBPDR	F7 _H	Hardware Breakpoints Data Register
MEXTCR	EA _H	Memory Extension control Register
MMWR1	EB _H	Monitor Work Register 1
MMWR2	EC _H	Monitor Work Register 2

Table 18-1 OCDS Directly Addressable Registers

Additionally, there are overall 12 indirectly accessible OCDS registers, in two groups:

• 8 Hardware Breakpoint registers, accessible via HWBPSR (Register Select) and HWBPDR (Data)

Register Short Name	Register Full Name
HWBP0L	Hardware Breakpoint 0 Low Register
HWBP0H	Hardware Breakpoint 0 High Register
HWBP1L	Hardware Breakpoint 1 Low Register
HWBP1H	Hardware Breakpoint 1 High Register
HWBP2L	Hardware Breakpoint 2 Low Register
HWBP2H	Hardware Breakpoint 2 High Register

 Table 18-2
 Hardware Breakpoint Registers (8/16-bit Addresses)

Table 18-2 Hardware Breakpoint Registers (8/16-bit Addresses) (cont'd)

Register Short Name	Register Full Name	
HWBP3L	Hardware Breakpoint 3 Low Register	
HWBP3H	Hardware Breakpoint 3 High Register	

 4 Hardware Breakpoint Bank registers, accessible via HWBPSR (Register Select) and MEXTCR (Data)

Table 18-3 Hardware Breakpoint Bank Registers

Register Short Name	Register Full Name
BANKBP0	Hardware Breakpoint 0 Bank Register
BANKBP1	Hardware Breakpoint 1 Bank Register
BANKBP2	Hardware Breakpoint 2 Bank Register
BANKBP3	Hardware Breakpoint 3 Bank Register

The OCDS registers are exclusively dedicated to the on-chip Monitor program and the user should not write into them. Anyway a big part of these registers or separate bits/fields are protected and can not be written by user software but only by the firmware in two modes of C868-1R, C868-1S:

- Startup mode while the Bootcode is executed after reset, the user code is still not started
- Monitor mode while the Monitor program is running, the user code is in break.

Therefore an unintentional access to OCDS registers by the user software can not disturb the normal debug functionality.

18.5.1 Monitor Work Register 2

Only one register - MMWR2 - can be used for general purposes when no debug-session is possible: if the XC878 is not started in OCDS mode and no external device is connected to the JTAG interface.

On-Chip Debug Support

	MMWR2 Monitor W	ork Regis	ter 2	mapped	SFR (EC _H)		Reset	value: 00 _H
_	7	6	5	4	3	2	1	0
	1		1	MM	WR2		1	
-				r	W			

Field Bits Type Description		Туре	Description
MMWR2	7:0	rw	Work Register 2 Work location 2 for the Monitor Program.

18.5.2 Input Select Registers

Bits MODPISEL.JTAGTCKS is used to select one of the two TCK inputs while bits MODPISEL.JTAGTDIS is used to select one of the two TDI inputs.

MODPISEL

Peripheral Input Select Register

Reset Value: 00_H

	7	6	5	4	3	2	1	0
	0	URRISH	JTAGTDIS	JTAGTCK S	EXINT2IS	EXINT1IS	EXINT0IS	URRIS
-	r	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description		
0 JTAG T		rw	JTAG TCK Input Select0JTAG TCK Input TCK_0 is selected.1JTAG TCK Input TCK_1 is selected.		
JTAGTDIS 5 rw JT 0 1		rw	JTAG TDI Input Select0JTAG TDI Input TDI_0 is selected.1JTAG TDI Input TDI_1 is selected.		
0	7	r	Reserved Returns 0 if read; should be written with 0.		

On-Chip Debug Support

18.6 JTAG ID

This is a read-only register located inside the JTAG module, and is used to recognize the device(s) connected to the JTAG interface. Its content is shifted out when INSTRUCTION register contains the IDCODE command (opcode 04_H), and the same is also true immediately after reset.

The JTAG ID for the XC878 devices is given in Table 18-4.

Table 18-4	JTAG ID Summary
------------	-----------------

Device Type	Device Name	JTAG ID	
Flash	XC878*-13FF	1018 3083 _H	
	XC878*-16FF	1018 2083 _H	

Note: The asterisk (*) above denotes the device configuration letters from **Table 1-1**. **Table 1-2** shows the device profiles available for XC878.

On-Chip Debug Support

19 Bootstrap Loader

The XC878 includes a Bootstrap Loader (BSL) Mode that can be entered with the pin configuration during hardware reset, shown in **Table 19-1**. The main purpose of BSL Mode is to allow easy and quick programming/erasing of the Flash and XRAM via serial interface. The XC878 supports four device BSL modes:

- UART BSL
- LIN BSL
- MultiCAN BSL
- Alternate BSL

If a device is programmed as UART/MultiCAN, the entry to the respective BSL (UART or MultiCAN) is decided based on their initial header frames.

Note: UART BSL is supported only via UART module and not UART1.

Note: For BSL modes, only the default set of receive/transmit pins of UART and MultiCAN node 0 (P1.0/P1.1) can be used.

Table 19-1 Pin Configuration to Enter BSL Mode

MBC ¹⁾	TMS ¹⁾	MODE / Comment
0		BSL Mode (LIN Mode ²⁾ , UART/ MultiCAN Mode ³⁾⁴⁾ and Alternate BSL Mode ⁵⁾); on-chip OSC/PLL non-bypassed

¹⁾ Latched pin values

²⁾ If a device is programmed as LIN, LIN BSL is always used instead of UART/MultiCAN.

- ⁴⁾ In MultiCAN BSL mode, the clock source is switched to XTAL by firmware, bypassing the on-chip oscillator. This avoids any frequency invariance with the on-chip oscillator and allows other frequency clock input, thus ensuring accurate baud rate detection (especially at high bit rates).
- ⁵⁾ Alternate BSL Mode is a user defined BSL mode. The user BSL code is located in Flash memory. It is entered if the AltBSLPassword is valid. For an invalid password, LIN or UART/MultiCAN BSL will be entered based on the product variants.

Section 19.1 describes the UART and LIN BSL modes, **Section 19.2** describes the MultiCAN BSL mode and Alternate BSL mode is described in **Section 19.3**.

³⁾ UART or MultiCAN BSL is decoded by firmware based on the protocol for product variant with MultiCAN. If no MultiCAN and LIN variant, UART BSL is used.

19.1 UART and LIN BSL Modes

The UART and LIN BSL Modes have three functional parts represented by the three phases described below:

- **Phase I**: Establish a serial connection and automatically synchronize to the transfer speed (baud rate) of the serial communication partner (host).
- **Phase II**: Perform serial communication with the host. The host controls and sends a special header information which selects one of the modes, described in Table 19-2.
- **Phase III**: Response to host to indicate successful/failure transfer. See Section 19.1.1.3.

Description
Transfer a user program from the host to XRAM ¹⁾
Execute a user program in the XRAM at start address ²⁾
Transfer a user program from the host to P-Flash ¹⁾
Execute a user program in the P-Flash ²⁾
Flash Protection Mode enabling/disabling scheme ¹⁾
Transfer a user program from the host to XRAM ¹⁾³⁾
Execute a user program in the XRAM ²⁾³⁾
Get 4-byte chip information
Enter OCDS UART Mode ²⁾
Erase/Mass erase P-Flash or D-Flash Memory ¹⁾
_

Table 19-2 Serial Communication Modes of the UART and LIN BSL Modes

¹⁾ The microcontroller would return to the beginning of Phase I/II and wait for the next command from the host

²⁾ BSL Mode is exited and the serial communication is not established.

³⁾ Mode 8 and Mode 9 are supported in BSL Mode via LIN only. It is the similar to Mode 0 and Mode 1.

Basic serial communication protocol such as transfer block structure and the various response code to host for both BSL Mode via UART and LIN are described in **Section 19.1.1** while implementation details of BSL Mode via both UART and LIN protocols will be covered in **Section 19.1.2** and **Section 19.1.3** respectively.

19.1.1 Communication Protocol

Once baud rate is established, the host sends a block of information to the microcontroller to select the desired mode. All blocks follow the specified block structure as shown in **Section 19.1.1.1** for UART and **Section 19.1.1.2** for LIN. The microcontroller respond to host by sending specific response code as shown in **Section 19.1.1.3**.

19.1.1.1 UART Transfer Block Structure

A UART transfer block consists of three parts:

Block Type	Data Area	Checksum
(1 byte)	(XX bytes)	(1 byte)

• **Block Type**: the type of block, which determines how the data area is interpreted. Implemented block types are:

00_H type "HEADER"

Header Block has a fixed length of 8 bytes. Special information is contained in the data area of the Header Block, which is used to select different modes.

01_H type "DATA"

Data Block is used in Mode 0 and Mode 2 to transfer a portion of program code. The program code is in the data area of the Data Block.¹⁾

02_H type "<u>END OF TRANSMISSION</u>" (EOT)

EOT Block is the last block in data transmission in Mode 0 and Mode 2. The last program code to be transferred is in the data area of the EOT Block.¹⁾

- Data Area: Data size is 6 bytes for Header Block and cannot exceed 96 bytes for both Data and EOT Blocks.
- Checksum: the XOR checksum of the block type and data area sent by the host. BSL routine calculates the checksum of the received bytes (block type and data area) and compares it with received checksum.
- ¹⁾ The length of Data and EOT Blocks is defined as Block_Length in the Header Block.

19.1.1.2 LIN Transfer Block Structure

A LIN transfer block, 9 bytes long (fixed), consists of four parts:

NAD	Block Type	Data Area	Checksum
(1 byte)	(1 byte)	(6 bytes)	(1 byte)

 NAD: Node Address for Diagnostic, which specifies the address of the active slave node

 01_{H} to $7E_{H}$ Valid Slave Address

 80_{H} to FF_{H} Valid Slave Address

- **7F_H** Broadcast Address (For Master nodes to all Slave nodes)
- **00_H** Invalid Slave Address (Reserved for go-to-sleep-command)
- **Block Type**: The type of block, which determines how the data area is interpreted. See **Section 19.1.1.1**.

00_H "HEADER" type

01_H "DATA" type

02_H "END OF TRANSMISSION" (EOT) type

- **Data Area**: Fixed size of 6 bytes which represent the data of the block. For Header Block, one byte will indicate the Mode selected and 5 bytes for Mode data. For Data and EOT Blocks, data area consists of the program code.
- **Checksum**: The Programming Checksum or LIN Checksum contains the noninverted or inverted eight bit sum with carry¹⁾ over NAD, Block Type and Data Area.
- ¹⁾ Eight bit sum with carry equivalent to sum all values and subtract 255 every time the sum is greater or equal to 256 (which is not the same as modulo-255 or modulo-256).

Diagnostic LIN frame always uses classic checksum where checksum calculation is over the data bytes only. It is used for communication with LIN 1.3 slaves. The Classic Checksum contains the inverted eight bit sum with carry over all data bytes.

A non-LIN standard checksum, also known as Programming Checksum, is implemented to differentiate an XC878 Programming LIN frame from a normal LIN frame and to allow other slaves (non-Programming), which are on the LIN bus to ignore this Programming frame. XC878 supports both the LIN Classic Checksum and Programming Checksum where Programming Checksum contains the eight bit sum with carry over all 8 data bytes.

An illustration on the Programming Checksum and LIN Checksum calculation is provided in **Table 19-3** for data of $4A_H$, 55_H , 93_H and $E5_H$.

Table 19-3 L	_IN Frame - Progra	mming Checksum
--------------	--------------------	----------------

Addition of data	HEX	Result	CARRY	Addition with CARRY
4A _H	4A _H	4A _H	0	4A _H
(4A _H) + 55 _H	9F _H	9F _H	0	9F _H
(9F _H) + 93 _H	0132 _H	32 _H	1	33 _H
(33 _H) + E5 _H	0118 _H	18 _H	1	19 _H

The Programming Checksum is 19_{H} . An inversion of the Programming Checksum yields the standard LIN Checksum (Classic Checksum (i.e., $E6_{H}$)).

Both Programming and LIN Checksum are supported and indicated in respective modes.

19.1.1.3 Response Code to the Host

The microcontroller would let the host know whether a block has been successfully received by sending out a response code.

Table 19-4 tabulates the possible responses from the microcontroller upon reception of a Header, Data or EOT block for each working mode.

Mode	Header Block	Data Block	EOT Block
0, 8	Acknowledge, Block Error, Checksum Error, Protection Error	Acknowledge, Block Error, Checksum Error	Acknowledge, Block Error, Checksum Error
1, 9	Acknowledge, Block Error, Checksum Error	-	-
2	Acknowledge, Block Error, Checksum Error, Protection Error	Acknowledge, Block Error, Checksum Error	Acknowledge, Block Error, Checksum Error
3	Acknowledge, Block Error, Checksum Error	-	-
6	Acknowledge, Block Error, Checksum Error, Protection Error	-	-
10	Acknowledge, Block Error, Checksum Error	-	-
15	Acknowledge, Block Error, Checksum Error	-	-
16	Acknowledge, Block Error, Checksum Error, Protection Error	-	-

 Table 19-4
 Possible Responses for Various Block Types

If a block is received correctly, an Acknowledge Code (55_H) is sent. In case of failure, it may be a wrong block type error or checksum error. Block type error is caused by two conditions; (i) The microcontroller receives a block type other than the implemented ones; (ii) The microcontroller receives the transfer blocks in wrong sequence. In both error cases, the BSL routine awaits the actual block from the host again.

When program and erase operations of Flash are restricted due to Flash Protection Mode 0 or 1 being enabled, protection error code will be sent to the host. This will indicate that Flash is protected, and hence, it cannot be programmed or erased. In this error case, the BSL routine will wait for the next header block from the host again.

Table 19-5 lists the responses with the possible reasons and/or implcations for error and suggests the possible corrective actions that the host can take upon notification of the error.

Response	Value	Description					
		Block Type	BSL Mode	Reasons / Implications	Corrective Action		
Acknow- ledge	55 _H	Header	1, 3, 9, 15	The requested operation will be performed once the response is sent.	-		
			6, 16	The requested operation			
		EOT	0, 2, 8	has been performed and is successful.			
		All others		Reception of the block is successful. Transmission of 4-byte data follows in Mode 10. Ready to receive the next block.			
Block Error	FF _H	FF _H Header		P-Flash start address is odd.	P-Flash address should be even.		
				Exceed the length of the block.	Reduce the length of the block to be within limits.		
		Data, EOT		The length of P-Flash code is odd.	Length of P-Flash code should be even.		
		All others		Either the block type is undefined or the communication structure is invalid.	Retransmit a valid block.		
Checksum Error	FE _H	All		Mismatch exists between the calculated and received Checksum.	Retransmit the block		

 Table 19-5
 Definition of Responses

Table 19-5	Definition of Responses		Responses
-		1	

Response	Value	Description				
		Block Type	BSL Mode	Reasons / Implications	Corrective Action	
Protection Error	FD _H	Header	0, 2, 8, 16	Protection against external access is enabled, i.e. FPASSWD is valid.	-	
			6	Fail to disable the protection, i.e. FPASSWD does not match user password.	-	

19.1.2 Bootstrap Loader via UART

Upon entering UART BSL, a serial connection is established and the transfer speed (baud rate) of the serial communication partner (host) is automatically synchronized in the following steps:

- STEP 1: Initialize serial interface for reception and timer for baud rate measurement
- STEP 2: Wait for test byte (80_H) from host
- STEP 3: Synchronize the baud rate to the host
- STEP 4: Send Acknowledge byte (55_H) to the host
- STEP 5: Enter Phase II

Baud rate is established once in the beginning of UART BSL. Until next hardware reset, subsequent communication between host and the microcontroller will follow this baud rate.

The serial port of the microcontroller is set to Mode 1 (8-bit UART, variable baud rate), while Timer 2 is configured to auto-reload mode (16-bit timer) for baud rate measurement. The PC host sends test byte $(80_{\rm H})$ to start the synchronization flow. The timer is started on reception of the start bit (0) and stopped on reception of the last bit of the test byte (1). Then the UART BSL routine calculates the actual baud rate, sets the PRE and BG values and activates Baud Rate Generator. When the synchronization is done, the microcontroller sends back the Acknowledge byte (55_H) to the host. The baud rate supported ranges from 4800 Baud to 38400 Baud.

If the synchronization fails, the Acknowledge code from the microcontroller cannot be received correctly by the host. In this case, on the host side, the host software may display a message to the user, e.g., requesting the user to repeat the synchronization procedure, see **Section 19.1.1.3** for Response code.

On the microcontroller side, the UART BSL routine cannot determine whether the synchronization is correct or not. It always enters Phase II after sending the acknowledge byte. Therefore, if synchronization fails, a reset of the microcontroller has to be invoked, to restart the microcontroller for a new synchronization attempt.

19.1.2.1 Communication Structure

There are two types of transfer flow of the Header Block, Data Block, EOT Block, and the Response Code, as shown in **Figure 19-1**. One is adopted by Mode 0 and Mode 2, while the other is adopted by the rest of the modes. Data and EOT Blocks are transferred only in Mode 0 and 2.

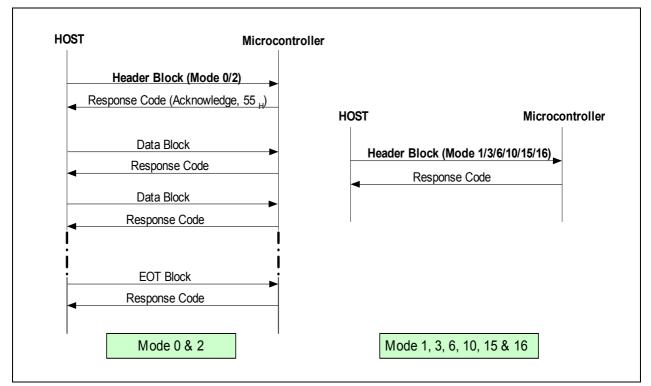


Figure 19-1 Communication Structure of the UART BSL Modes

19.1.2.2 The Selection of Modes

When UART BSL routine enters Phase II, it first awaits for an 8-byte Header Block, from the host which contains the information for the selection of the modes, as shown below.

Block Type		Cheekeum	
00 _H	Mode	Mode Data	Checksum
(Header Block)	(1 byte)	(5 bytes)	(1 byte)

Description:

- **00**_H: The block type, which marks the block as a **Header Block**
- Mode: The mode to be selected. Mode 0 6 are supported. See Table 19-2
- **Mode Data**: Five bytes of special information to activate corresponding mode.
- Checksum: The checksum of the header block. XOR of all 7 bytes.

19.1.2.3 The Activation of Modes 0 and 2

Mode 0 and Mode 2¹⁾ are used to transfer a user program from the host to the XRAM and Flash of the microcontroller respectively. The header block has the following structure:

The Header Block

			Мос	de Data		
00 _H (Header Block)	00_H/02_H (Mode 0/2)	StartAddr High (1 byte)	StartAddr Low (1 byte)	Block_ Length (1 byte)	Not Used (2 bytes)	Checksum

Mode Data Description:

Start Addr High, Low: 16-bit Start Address of the 20-bit Start Address²⁾, which determines where to copy the received program code in the XRAM/Flash³⁾

Block_Length: The whole length (block type, data area and checksum) of the following Data or EOT Blocks.⁴⁾⁵⁾

Not used: 2 bytes, these bytes are not used and will be ignored in Mode 0/2.

After the header block is successfully received, the microcontroller enters Mode 0/2, during which the program code is transmitted from the host to the microcontroller by Data Block and EOT Block, which are described below.

The Data Block

01 _H (Data Block)	Program Code	Checksum
(1 byte)	((Block_Length - 2) bytes)	(1 byte)

Description:

Program Code: The program code has a length of (**Block_Length**-2) byte, where the Block_Length is provided in the previous Header Block.

¹⁾ Contents in the XRAM could be changed when Mode 2 is activated.

²⁾ The upper 4 bits, or the bank, is dynamically assigned by the device based on the Flash device variant.

³⁾ During each programming cycle, no crossing of a wordline boundary is allowed. For P-Flash programming, the Start Address must a valid address in even number.

⁴⁾ When the Block_Length is defined in Header Block, the subsequent Data or EOT Block must be of this length. To redefine the Block_Length, it must be accompanied by a new Header Block.

⁵⁾ The Block_Length is 3 - 128 for Mode 0. The Block_Length is 3 - 34 bytes for Mode 2 if D-Flash is targeted. For P-Flash, the Block_Length is always 4 - 66 bytes.

Note: No empty Data Block is allowed.

The EOT Block

02 _H (EOT Block)	Last_Codelength	Program Code	Not Used	Checksum
(1 byte)	(1 byte)			(1 byte)

Description:

Last_Codelength: This byte indicates the length of the program code in this EOT Block.

Program Code: The last program code to be sent to the microcontroller

Not used: The length is (Block_Length-3-Last_Codelength). These bytes are not used and they can be set to any value.

19.1.2.4 The Activation of Modes 1, 3 and 15

Mode 1 is used to execute a user program in the XRAM of the microcontroller at $0'F000_H$ and $2'F000_H$ depending on the Flash variant. As for Mode 3, it used to execute a user program in the Flash of the microcontroller at $0'0000_H$. Mode 15 is used to enter OCDS UART Mode. The header block has the following structure:

The Header Block

00 _H	01 _H /03 _H /0F _H	Mode Data	Checksum
(Header Block)	(Mode 1/3/15)	Not Used (5 Bytes)	(1 byte)

Mode Data Description:

Not used: The five bytes are not used and will be ignored in Mode 1/3/15.

For Modes 1, 3 and 15, the header block is the only transfer block to be sent by the host, no further serial communication is necessary. The microcontroller will then exit the BSL Mode and jump to the XRAM address (Mode 1), jump to Flash address at 0'0000_H (Mode 3) and/or start to communicate with the OCDS UART debugger (Mode 15).

19.1.2.5 The Activation of Mode 6

Mode 6¹) is used to enable or disable Flash protection via the given user-password. The header block for this mode has the following structure:

The Header Block

00 _H	00	Mode	e Data (5 bytes)	Ohaalaan
(Header	06_H	User-Password	Not Used	Checksum
Block)	(Mode 6)	(2 byte)	(3 bytes)	

Mode Data Description:

User-Password: This byte is given by user to enable or disable Flash protection. For a description of the user-password, see **Chapter 3.3.1**. Transferring of the 16-bits user-password follows network byte order which means that the upper byte is the first to be transferred.

Not used: The four bytes are not used and will be ignored in Mode 6.

In Mode 6, the header block is the only transfer block to be sent by the host. This mode is used when user wants to (i) enable Flash protection; (ii) disable Flash protection.

When Flash is not protected yet, the microcontroller will enable the various Flash protection scheme based on the 3 MSB of the user-password. The selected Flash protection mode will be activated once the Header block is received and microcontroller identifies this user-password as the program-password for future operations.

When Flash is already protected, the microcontroller will deactivate all Flash Protection if the user-password byte matches the program-password. **Protected P-Flash Block will be erased and D-Flash block will depend on bit 12 of the user-password**. After that, the program-password is reset. For the case of Flash hardware protection as described in **Chapter 3.3.1**, it will only be deactivated at the next power-up or hardware reset.

19.1.2.6 The Activation of Mode 10

Mode 10 $(0A_H)$ is used to obtain a 4-byte data. The contents of the 4-byte data is determined by the Option byte in the header block. The header block for this mode has the following structure:

¹⁾ Contents in the XRAM could be changed when Mode 6 is activated.

The Header Block

00 _H		Mode Data (5 b		
(Header Block)	0A_H (Mode 10)	Not Used (4 bytes)	Option (1 byte)	Checksum

Mode Data Description:

Option: This byte will determine the 4 bytes data to be sent to the host. Only option 00_H is available to return the chip identification number, which is used to identify the particular device variant.

00_H - Chip Identification Number (MSB byte 1... LSB byte 4)

In Mode 10, the header block is the only transfer block to be sent by the host. The microcontroller will return an acknowledgement followed by 4 bytes of data to the host if the header block is received successfully. If an invalid option is received, the microcontroller will return 4 bytes of $00_{\rm H}$.

19.1.2.7 The Activation of Mode 16

Mode 16 (10_{H}) is used to erase a page in P-Flash or D-Flash, or mass erase all memories in P-Flash block and D-Flash block. If code protection is enabled, this mode will be unavaliable and Protection Error is returned. The selection of the type of erase is controlled through the Erase/MassErase byte in the Mode Data block.

The Header Block

00 _H (Header Block)	10_H (Mode 16)	Start Addr High (1 byte)	Start Addr Low (1 byte)	Erase/ MassErase (1 byte)	Not Used (2 bytes)	Checksum

Mode Data Description:

Start Addr High, Low: Lower 16-bit of any 20-bit Start Address¹⁾ within the targeted page or block.

Erase / Mass Erase: 0 for (Page) Erase or 1 for Mass Erase.

Not used: 2 bytes, these bytes are not used and will be ignored in Mode 16.

¹⁾ The upper 4 bits, or the bank, is dynamically assigned by the device based on the Flash device variant

19.1.3 Bootstrap Loader via LIN

Standard LIN protocol can support a maximum baud rate of 20 kHz. However, the XC878L device has an enhanced feature which supports a baud rate of up to 57.6 kHz. LIN BSL is implemented to support the baud rate of 20 kHz and below using standard LIN protocol, while Fast LIN BSL is introduced to support the baud rate of 20 kHz to 57.6 kHz via a single-wire UART using UART protocol. See Section 19.1.3.9.

LIN BSL supports Fast Programming through Mode 0, Mode 2 or Mode 8 with the selection of Fast Programming Option. Refer to **Section 19.1.3.3** for more details.

Features of LIN BSL are:

- Re-synchronization of the transfer speed (baud rate) of the communication partner upon receiving every LIN frame
- Use of Diagnostic Frame (Master Request and Slave Response)
- User-preloaded NAD stored in uppermost P-Flash Block. (Default Broadcast NAD used if value not present or valid)
- Save LIN frame into XRAM and jump to User Mode if first frame received is an invalid LIN Frame
- Programming and LIN Checksum supported
- Fast LIN BSL using BSL Mode protocol on single-wire UART (LIN)

Re-synchronization and setup of baud rate (Phase I) are always performed prior to the entry of Phase II and III. Thus different baud rates can be supported. Phase II is entered when its Master Request Header is received, otherwise Phase III is entered (Slave Response Header). The Master Request Header has a Protected ID of $3C_H$ while the Slave Response Header has a Protected ID of $7D_H$. The microcontroller responds to the host only after a Slave Response Header is received. The Command and Response LIN frames are identified as Diagnostic LIN frame which has a standard 8 data byte structure (instead of 2 or 4).

Upon entering LIN BSL, a connection is established and the transfer speed (baud rate) of the serial communication partner (host) is automatically synchronized in the following steps:

- STEP 1: Initialize interface for reception and timer for baud rate measurement
- STEP 2: Wait for an incoming LIN frame from the host
- STEP 3: Synchronize the baud rate to the host
- STEP 4: Enter Phase II (for Master Request Frame) or
- Phase III (for Slave Response Frame)

Note: Re-synchronization and setup of baud rate are always done for **every** Master Request Header or Slave Response Header LIN frame.

A Header LIN frame consists of the:

- Synch (SYN) Break (13 bit times low)
- Synch (SYN) byte (55_H)
- Protected Identifier (ID) field $(3C_H \text{ or } 7D_H)$

The Break is used to indicate the beginning of a new frame and it must be at least 13 bits of dominant value. When a negative transition is detected at pin T2EX at the beginning of Break, the Timer 2 External Start Enable bit (T2MOD.T2RHEN) is set. This will then automatically start Timer 2 at the next negative transition of pin T2EX. Finally, the End of SYN Byte Flag (FDCON.EOFSYN) is polled. When this flag is set, Timer 2 is stopped. The time taken for the transfer (8 bits) is captured in the T2 Reload/Capture register (RC2H/L). Then the LIN BSL routine calculates the actual baud rate, sets the PRE and BG values and activates the Baud Rate Generator. The baud rate detection for LIN is shown in **Figure 19-2**.

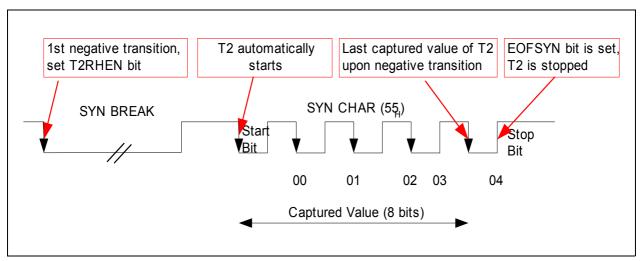


Figure 19-2 LIN Auto Baud Rate Detection for Header LIN Frame

19.1.3.1 Communication Structure

The transfer between the PC host and the microcontroller for the 3 phases is shown in **Figure 19-3** while **Figure 19-4** shows the Master Request Header, Slave Response Header, Command and Response LIN frames.

XC878CLM

Bootstrap Loader

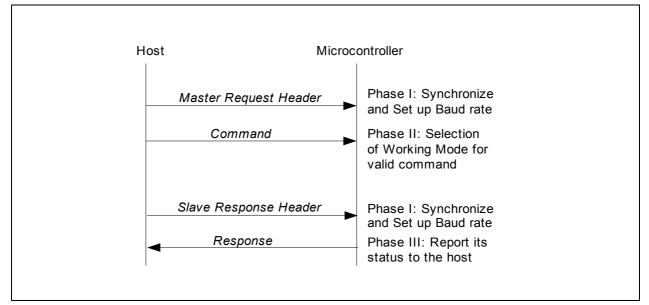


Figure 19-3 LIN BSL - Phases I, II and III

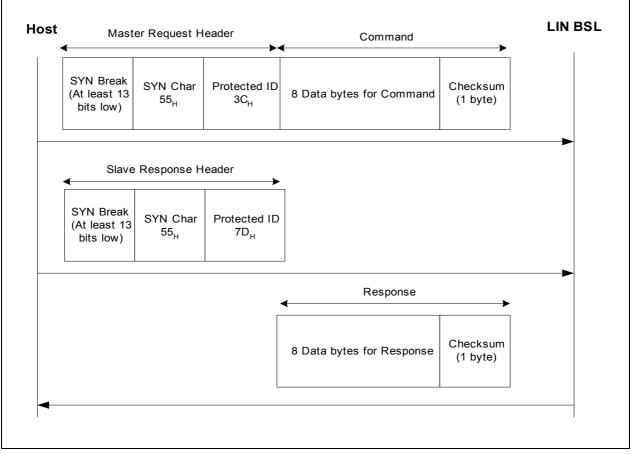


Figure 19-4 LIN BSL Frames

19.1.3.2 The Selection of Modes

When the LIN BSL routine enters Phase II, it first awaits for a 9-byte Header Block, from the host which contains the information for the selection of the modes, as shown below.

NAD	Block Type	D	ata Area	Cheekeum
NAD	00 _H	Mode Mode Data	Checksum	
(1 byte)	(Header Block)	(1 byte) (5 bytes)	(1 byte)	

Description:

- NAD: Node Address for Diagnostic
- **00_H**: The block type, which marks the block as a **Header Block**
- Mode: The mode to be selected. Mode 0, 1, 2, 3, 6, 8, 9, 10, 15 and 16 are supported. See Table 19-2.
- **Mode Data**: Five bytes of special information to activate corresponding mode.
- Checksum: The Programming Checksum or LIN Checksum of the header block.

Note: Mode 8 and Mode 9 support LIN Checksum while other modes support Programming Checksum.

19.1.3.3 The Activation of Modes 0, 2 and 8

Mode 0, as well as Mode 8, and Mode $2^{1)}$ are used to transfer a user program from the host to the XRAM and Flash of the microcontroller respectively. The header block has the following structure:

The Header Block

				Мо	de Data			
NAD (1 byte) (Header Block)	00_H/02_H/08_H (Mode 0/2/8)	StartAddr High (1 byte)	StartAddr Low (1 byte)	Data Count (1 byte)	Not Used (2 bytes)	Prog	Checksum

Mode Data Description:

Start Addr High, Low: Lower 16-bit of the 20-bit Start Address²⁾, which determines where to copy the received program code in the XRAM/Flash³⁾.

¹⁾ Contents in the XRAM could be changed when Mode 2 is activated.

²⁾ The upper 4 bits, or the bank, is dynamically assigned by the device based on the Flash device variant.

³⁾ During each programming cycle, no crossing of a wordline boundary is allowed. For P-Flash programming, the Start Address must a valid address in even number.

Data Count: The number of data blocks¹⁾ for this mode. The range is from 0 to 255.

Not used: 2 bytes, these bytes are not used and will be ignored in Mode 0/2/8.

Fast_Prog: Indication byte to enter Fast LIN BSL

- 01_H: Enter Fast LIN BSL
- Other values: Ignored. Fast LIN BSL is not entered.

Note: The **Block-Length** used in UART BSL is not implemented here, as a Diagnostic LIN frame has a standard 8 data bytes structure, followed by the checksum.

When this Command LIN frame (Header Block) is used for entering Fast LIN BSL, no other Master Request Header and Command LIN frames (for Data Block or EOT Block) should be received. Instead, the microcontroller will receive a Slave Response Header LIN frame and send a Response LIN frame to acknowledge receiving correct header block to enter Fast LIN BSL where UART BSL protocol is used. See Section 19.1.3.9.

On successfully receipt of the Header Block, the microcontroller enters Mode 0/2/8, whereby the program code is transmitted from the host to the microcontroller by Data Block and EOT Block, which are described below.

The Data Block

NAD	Data Block	Program Code	Checksum
(1 byte)	01 _H	(6 bytes)	(1 byte)

Description:

Program Code: The program code has a fixed length of 6 bytes per Data Block. *Note: No empty Data Block is allowed.*

The EOT Block

NAD	EOT Block	Last_Codelength	Program Code	Not Used	Checksum
(1 byte)	02 _H	(1 byte)			(1 byte)

Description:

Last_Codelength: This byte indicates the length of the program code in this EOT Block. **Program Code:** The last program code (valid data) to be sent to the microcontroller.

Not used: The length is (LIN_Block_Length²⁾-4-Last_Codelength). These bytes are not used and they can be set to any value.

¹⁾ Each data block is embedded in a Master Request Frame.

²⁾ LIN_Block_Length is always 9 bytes, inclusive of a NAD and a checksum.

Internally, the microcontroller will transfer the valid data (6 bytes) of the Data Block into a buffer, and count the number of data bytes received. Microcontroller will program the data once the maximum buffer size is reached. If an EOT Block is received before maximum bytes are reached, then the remaining data bytes are programmed.

19.1.3.4 The Activation of Modes 1, 3 and 9

Mode 1, as well as Mode 9, and Mode 3 are used to execute a user program in the XRAM/Flash of the microcontroller at $0'F000_H/2'F000_H$ (depending on Flash variant) and $0'0000_H$ respectively. The header block for this mode has the following structure:

The Header Block

NAD	00 _H	01 _H /03 _H /09 _H	Mode Data	Checksum
(1 byte)	(Header Block)	(Mode 1/3/9)	Not Used (5 Bytes)	(1 byte)

Mode Data Description:

Not used: The five bytes are not used and will be ignored in Mode 1/3/9.

For Modes 1, 3 and 9, the header block is the only transfer block to be sent by the host, no further serial communication is necessary. The microcontroller will exit the LIN BSL and jump to the XRAM address at $0'F000_H/2'F000_H$ (Mode 1 and Mode 9) and/or jump to Flash address at $0'0000_H$ (Mode 3).

19.1.3.5 The Activation of Mode 6

Mode 6¹) is used to enable or disable Flash protection via the given user-password. The header block for this mode has the following structure:

The Header Block

	00 ₁	00	Mode	Data (5 bytes)	Chaskaum
NAD	(Header	06_H	User-Password	Not Used	Checksum
(1 byte)	Block)	(Mode 6)	(2 bytes)	(3 bytes)	(1 byte)

Mode data description can be referred at **Section 19.1.2.5**.

¹⁾ Contents in the XRAM could be changed when Mode 6 is activated.

19.1.3.6 The Activation of Mode 10

Mode 10 $(0A_H)$ is used to get 4 bytes data determined by the Option byte in the header block. The header block for this mode has the following structure:

The Header Block

	00 ₁	0.0	Mode Data (5 by	tes)	Chaskaum
NAD	(Header	0A_H	Not Used	Option	Checksum
(1 byte)	Block)	(Mode 10)	(4 bytes)	(1 byte)	(1 byte)

Mode data description can be referred at **Section 19.1.2.6**.

19.1.3.7 The Activation of Mode 16

Mode 16 (10_{H}) is used to erase a page in P-Flash or D-Flash, or mass erase all memories in P-Flash block or D-Flash block. The selection of the type of erase is controlled through the Erase/MassErase byte in the Mode Data block.

The Header Block

				Mode Data	(5 bytes)		
NAD (1 byte)	00 _H (Header Block)	10_H (Mode 16)	Start Addr High (1 byte)	Start Addr Low (1 byte)	Erase/ MassErase (1 byte)	Not Used (2 bytes)	Checksum (1 byte)

Mode data description can be referred at **Section 19.1.2.7**.

19.1.3.8 LIN Response Protocol to the Host

The microcontroller replies with a Response Block indicating its status when the host sends a Slave Response Header LIN frame. A Response transfer block, 9 bytes long (fixed), consists of four parts:

NAD	Response	Not Used	Checksum
(1 byte)	(1 byte)	(6 bytes)	(1 byte)

- NAD: Node Address for Diagnostic, which specifies the address of the active slave node
- **Response**: Acknowledgement or Error Status indication byte. See Section 19.1.1.3
- Not Used: These 6 bytes are ignored and are set to 00_H

 Checksum: The LIN Checksum contains the eight bit sum with carry over NAD, Response and Not Used. All responses will adopt LIN Checksum regardless of modes

19.1.3.9 Fast LIN BSL

Fast LIN BSL is an enhanced feature in XC878 device, supporting higher baud rate up to 57.6 KHz. This is higher than Standard LIN, which supports only a baud rate of up to 20 kHz. This mode is especially useful during back-end programming, where faster programming time is desirable.

Fast LIN BSL is entered when the last byte of the Mode Data of Command LIN frame is $01_{\rm H}$ (header block for LIN Modes 0, 2 and 8). See Section 19.1.3.3. When Fast LIN BSL Master Request Header and Command LIN frames are received, the microcontroller will wait for the Slave Response Header LIN frame before sending back the Response LIN frame. The host will then send the header block using BSL UART protocol at the calculated high baud rate. See Figure 19-5. Microcontroller will stay at Fast LIN BSL, and the communication structure and selection of modes will be like BSL Mode via UART as shown in Section 19.1.2.1 and Section 19.1.2.2.

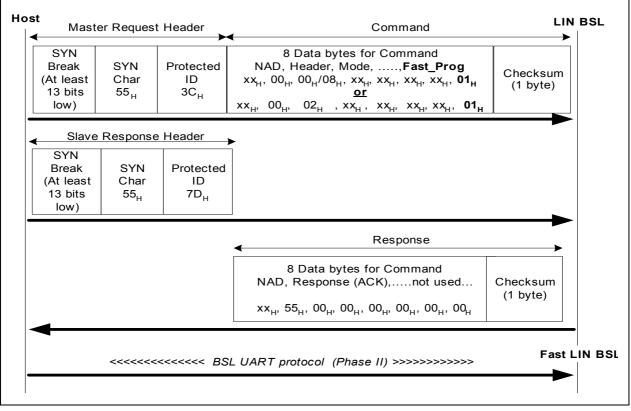


Figure 19-5 Fast LIN BSL Frames

19.1.3.10 User Defined Parameter for LIN BSL

The NAD (Node Address for Diagnostic) value, which specifies the address of the active slave node for the LIN modes, is programmed into the uppermost P-Flash block. This parameter is specified by the user.

User needs to program the NAD in the format shown in **Table 19-6**. To ensure the validity of the parameter, the inverted NAD value is required to be programmed together with the actual value. If an invalid NAD is programmed, the default NAD value is assumed.

Table 19-6 User Defined Parameters
--

Address	User Defined Value	Criteria / Range	Default
0'BFFE _H ¹⁾ 0'EFFE _H ²⁾	NAD	$01_{\rm H} - 0FF_{\rm H}$ (00 _H is reserved)	7F _H
0'BFFF _H ¹⁾ 0'EFFF _H ²⁾	NAD	-	-

¹⁾ For a Flash device that has 52 Kbytes of Flash memory.

²⁾ For a Flash device that has 64 Kbytes of Flash memory.

Note: For a variant device with LIN BSL support, it must be ensured that a valid NAD is programmed before protecting the device. Device access is not granted without having the correct NAD.

19.2 MultiCAN BSL Mode

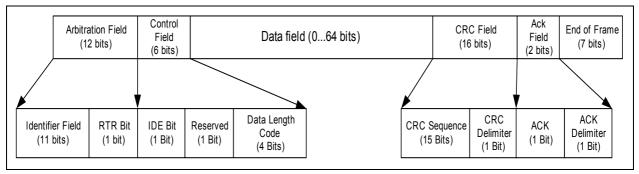
MultiCAN BSL can be entered only when Flash is not protected, else user mode is entered instead and code from memory address location $0000_{\rm H}$ will be executed. The MultiCAN BSL protocol is divided into two sections, hardware initialisation and software communication.

In the hardware initialisation section, XC878 is configured to use an external oscillator and CAN node 0 for communication. The use of external oscillator is to ensure an optimal performance on CAN applications, which requires the oscillator to have a frequency deviation of less than 1.5 %. XC878 supports four oscillator frequency values, which the user can enter at the top address of the P-Flash block. The usage for user defined parameter is described in **Section 19.2.3**.

In the software communication section, three main phases have been identified, namely the Autobaud, Acknowledgement and Data Reception phases. All three phases involves the transmission and reception of CAN Message Objects¹⁾.

The Autobaud phase is started on entry to MultiCAN BSL where the host sends a Host Command Message to the microcontroller. The microcontroller will determine the current CAN network baud rate and configure the baud rate of the CAN node accordingly to enable the communication channel. In the Acknowledgement Phase, the microcontroller sends an Acknowledge Message to the host to establish the communication channel. With the communication channel established, the Data Reception Phase can now be started. The host sends Data Message Objects to download the code into XRAM and execute the code from there. In the XC878, there are 2 Kbytes of XRAM available for program execution.

The following assumptions are introduced to keep the MultiCAN BSL implementation simple:


- Host and the XC878 are the only CAN node in the CAN network (Point to Point Connection)
- CAN Node 0 (P1.0/P1.1) on the XC878 is used for this mode
- XC878 expects to receive a standard CAN frame with message identifier of 555_H.

19.2.1 Communication protocol

Data is exchanged using Message Objects implemented with the standard CAN data frame (11 bit identifier) as shown in **Figure 19-6**. Message Objects with other message identifiers are ignored by XC878. The data field in a standard CAN message is used to implement the communication protocol.

¹⁾ CAN Message Object refers to a standard CAN data frame as defined in BOSCH CAN Specification 2.0B

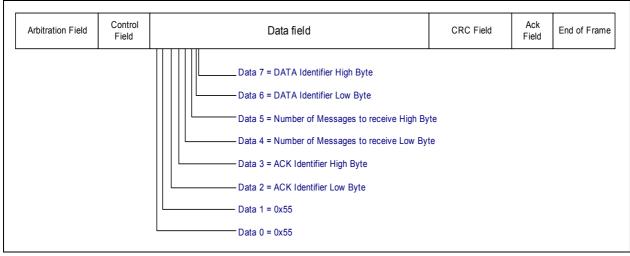
Figure 19-6 Standard CAN frame format

Communication is initiated by the host, which continuously sends a Host Command Message Object until it receives an Acknowledgement Message Object from the microcontroller.

After the baud rate is determined and the acknowledgement is received by the host, the host can activate the MultiCAN BSL operational mode by sending the Data Message Object. All messages received from this point on will have their data bytes sequentially written into the XRAM. The size of the internal XRAM is 2 kbytes which results in a maximum of 2048 8-bit instructions.

Once all messages have been received, the CAN module will be reinitialized. The bootstrap loader then terminates its sequence and transfers program execution to the user code by jumping to location $0'F000_{H}/2'F000_{H}$ (i.e. the first loaded instruction). The program that was loaded into the XRAM from the host will now be executed.

Note: The bootstrap loader assumes all message data is valid. The host should send its code/data sequentially in multiples of 8 code/data bytes. The user is limited to sending a maximum of 256 messages.


19.2.2 CAN Message Object definition

Host Command Message Object

In the Autobaud phase, the Host Command message is sent by the host and used for automatic baud rate detection. Since there are no other nodes (Point-to-Point) on the bus, the host will continually send the message. The host will transmit this message and wait for the microcontroller to acknowledge it.

The Host Command message data field contains 8 bytes of information for enabling the BSL mode. The first 2 data bytes, Byte 0 and 1, contain the value 0x5555. The next 2 data bytes, Bytes 2 and 3, contain the identifier for an acknowledge message that the microcontroller sends back to the host. Bytes 4 and 5, contain the 16-bit value for the number of messages to be received. The final 2 data bytes, bytes 6 and 7 contain the identifier for the data messages that the host will send to the XC878 device.

The message identifier is $555_{\rm H}$ and the data length code is set to 8.

Figure 19-7 Host Command Message Format

Acknowledgement Message Object

In the Acknowledgement phase, this message is sent by the microcontroller after successfully determining the CAN network baud rate. The message identifier used is specified by the host and determined from the Host message (Data bytes 2 and 3) received. The data length code is set to 4.

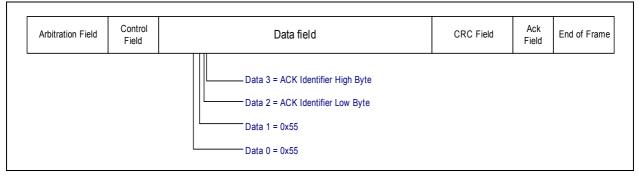


Figure 19-8 Acknowledgement Message Format

Data Message Object

In the Data Reception phase, this message is sent by the host with a host specified Data Identifier, which is defined in data bytes 6 and 7 of the Host Command message. The data field contains user code/data that is required for the BSL Mode. The data received is then loaded to the XRAM.

19.2.3 User Defined Parameter for MultiCAN BSL

The OSC value, which specifies the oscillator frequency connected to the device, is programmed into the uppermost P-Flash block. This parameter is specified by the user.

Table 19-7 shows the address, supported values and default value of the user defined parameter for unprotected flash. To ensure the validity of the parameter, the inverted values are required to be programmed together with the actual values. A check is done to verify whether the addition of the inverted value, actual value and $01_{\rm H}$, will give $00_{\rm H}$.

Address ¹⁾	Parameter	Value		
0'EFFE _H OSC		Byte indicate external oscillator frequency 00_{H} : 4 MHz 01_{H} : 5 MHz 02_{H} : 8 MHz 03_{H} : 12 MHz Others: 8 MHz (default)		
0'EFFF _H	OSC	Byte indicate external oscillator frequency FF_{H} : 4 MHz FE_{H} : 5 MHz FD_{H} : 8 MHz FC_{H} : 12 MHz Others: 8 MHz (default)		

Table 19-7 User Defined Parameter for MultiCAN BSL

¹⁾ The address shown in the table assumes a device with 64 Kbytes of Flash memory. For a device with 52 Kbytes of Flash memory, OSC and OSC adress is 0'BFFE_H and 0'BFFF_H respectively.

19.3 Alternate BSL Mode

Alternate BSL mode is a mode with user defined BSL code. The BSL code is programmed in the Flash memory with the start address specific by JumpAddrH (Jump Address High byte) and JumpAddrL (Jump Address Low Byte). It is entered via the BSL mode with a valid AltBSL password as shown in **Table 19-1**. These parameters are specified by the user in the uppermost P-Flash block.

User needs to program the AltBSLPassword, JumpAddrH and JumpAddrL in the format shown in **Table 19-8**. To ensure the validity of the parameter, the inverted AltBSLPassword value is required to be programmed together with the actual value. In addition, the LJMP opcode $(02_{\rm H})$ needs to be programmed in the address as shown in **Table 19-8**.

Address	User Defined Value	Criteria / Range	
0'BFFC _H ¹⁾ 0'EFFC _H ²⁾	AltBSLPassword	00 _H – 0FF _H	
0'BFFD _H ¹⁾ 0'EFFD _H ²⁾	AltBSLPassword	-	
0'BFFA _H ¹⁾ 0'EFFA _H ²⁾	JumpAddrH	00 _H – 0FF _H ³⁾	
0'BFFB _H ¹⁾ 0'EFFB _H ²⁾	JumpAddrL	00 _H – 0FF _H ³⁾	
0'BFF9 _H ⁴⁾ 0'EFF9 _H ⁴⁾	02 _H (LJMP Opcode)	-	

 Table 19-8
 User Defined Parameters in relation with Unprotected Flash

¹⁾ For a Flash device that has 52 Kbytes of Flash memory.

²⁾ For a Flash device that has 64 Kbytes of Flash memory.

³⁾ User need to ensure that the Flash address is valid based on the Flash variants.

⁴⁾ User needs to ensure that address 0'xFF8_H is also programmed because the start address of P-Flash needs to be even.

For the case of an invalid AltBSLPassword being programmed, the chip will then entered the LIN or UART/MultiCAN BSL mode based on the product variants.

20.1 Keyword Index

This section lists a number of keywords which refer to specific details of the XC878 in terms of its architecture, its functional units, or functions.

Α

Accumulator 2-3 Alternate functions 6-8 Input 6-8 Output 6-8 Analog input clock 17-3 Analog-to-Digital Converter 17-1 Interrupt 17-23 Channel 17-25 Event 17-24 Node pointer 17-25 Low power mode 17-7 Module clock 17-3 Register description 17-34 Register map 17-31 Arbitration round 17-9 Arbitration slot 17-9 Arithmetic 2-1 Automatic refill 17-12 Autoscan 17-16

В

B Register 2-3 Baud-rate generator 12-11 Fractional divider Fractional divider mode 12-14 Normal divider mode 12-15 Bit protection scheme 3-21 Boot options 7-7 BSL mode 7-7, 19-1 OCDS mode 7-7 User mode 7-7 Boot ROM 3-1 Boot ROM operating mode 3-46 BootStrap Loader Mode 3-49 OCDS mode 3-49 User JTAG mode 3-49 User mode 3-48 Booting scheme 7-7 Bootstrap loader 3-49, 4-9, 19-1 Fast LIN BSL 19-22 LIN BSL 19-15 Communication structure 19-16 Mode selection 19-18 MultiCAN BSL 19-24 Communication protocol 19-24 Message object 19-25 Response code 19-6 **UART BSL 19-9** Communication structure 19-10 Mode selection 19-10 Brownout reset 7-5 Buffer mechanism 4-2

С

CAN Block diagram 16-1 MultiCAN Bit timing 16-8 Block diagram 16-4 Interrupt structure 16-6 Low Power Mode 16-44 Message acceptance filtering 16-21 Message object data handling 16-27

Message object FIFO 16-34 Message object functionality 16-33 Message object interrupts 16-23 Message object lists 16-13 Node control 16-8 Node interrupts 16-11 Register map 16-46 Registers Offset addresses 16-45 MultiCAN registers LISTi 16-54 MCR 16-52 MITR 16-53 MOAMRn 16-91 MOARn 16-92 MOCTRn 16-76 MODATAHn **16-96** MODATALn 16-95 MOFCRn 16-86 MOFGPRn **16-90** MOIPRn 16-84 MOSTATn 16-79 MSIDk 16-57 **MSIMASK 16-58** MSPNDk 16-56 NBTRx 16-69 NCRx 16-59 NECNTx 16-71 NFCRx 16-72 NIPRx 16-66 NPCRx 16-68 NSRx 16-63 PANCTR 16-48 Cancel-Inject-Repeat 17-10 Capture/Compare Unit 6 15-1 Low Power Mode 15-26 Module Suspend Control 15-27 Register description 15-36 Register map 15-33 **Central Processing Unit 2-1** Chip identification number 1-18 Circular stack memory 4-2 Clock management 7-15

Clock source 7-14 Clock system 7-10 Register description 7-17 Conversion error 17-4 Conversion phase 17-5 CORDIC 11-1 Accuracy 11-9 Normalized Deviation 11-10 Calculated Data 11-1 CORDIC equations 11-1 Data Format 11-8 Data Overflow 11-8 Domains of Convergence 11-7 Features 11-2 Functional Description 11-3 Gain Factor 11-4 Initial Data 11-1 Interrupt 11-4 Look-Up Tables atan 11-12 atanh 11-12 linear 11-13 Low power mode 11-14 Normalized Result Data 11-4 **Operating Modes 11-5 Circular Function 11-5** Hyperbolic Function 11-6 Linear Function 11-5 Rotation Mode 11-5 Usage Notes 11-6 Vectoring Mode 11-5 Performance 11-11 Register description 11-16 Register map 11-15 Result Data 11-1 Correction algorithm 4-8 Count Clock 13-19 Counter 13-2, 13-14 CPU 2-1 **CPU** Registers **Extended Operation 2-5** Power Control 2-6

D

Data Flash 4-2 Data memory 3-3 Data pointer 2-3 Data reduction 17-19 Counter 17-20 Debug 18-2 Events 18-3 Debug suspend control 18-7 D-Flash 4-2 **DFLASHEN 3-11** Digital input clock 17-3 Direct Drive 7-14 Division operation 10-3 Document Acronyms 1-20 Terminology 1-20 Textual convention 1-7 **Textual conventions 1-19** Dynamic error detection 4-8

Ε

EEPROM emulation 4-2 Embedded voltage regulator 7-1 Features 7-2 Low power voltage regulator 7-2 Main voltage regulator 7-2 Threshold voltage levels 7-2 Enter BSL mode 19-1 Error Correction Code 4-8 Extended operation 2-5 External breaks 18-5 Break now 18-5 External Data Memory Accessing External Data Memory 3-4 External Data Memory Interface 3-6 External data memory 3-4 External oscillator 7-10, 7-12, 7-13

F

Fast LIN BSL 19-22 Flash 4-1

Endurance 4-3 Non-volatile 4-1 **Operating modes 4-3** Abort Operation 4-5 **Erase Operation 4-4** Mass Erase Operation 4-4 **Program Operation 4-3** Read Operation 4-3 Flash abort 8-3 Flash address mapping 4-2 Flash memory Register description 4-14 Register map 4-14 Flash memory protection 3-8 Flash Pagination 4-2 Flash program memory 3-1 Flash Timer 4-7

G

GPIO 6-1, 6-5

Η

Hall sensor mode Actual hall pattern 15-21 Block commutation 15-23 Brushless-DC 15-21, 15-22 Correct hall event 15-21 Expected Hall pattern 15-21 Hall pattern 15-21 Modulation pattern 15-21 Noise filter 15-21 Hamming code 4-8 Hardware breakpoints 18-3 Hardware reset 7-4 High-impedance 6-2

I

Idle mode 7-15, 8-2 In-Application Programming 4-10 Flash page erasing and mass erasing 4-11 Flash programming 4-10 Get chip information 4-12

Input class 17-8 Instruction decoder 2-1 Instruction timing 2-11, 2-13 CPU state 2-11 Mnemonic 2-13 Wait state 2-11 In-System Programming 4-9 Internal analog clock 17-3 Internal data memory 3-3 Internal RAM 3-1 Interrupt handling 5-14 Interrupt request flags 5-38 Interrupt response time 5-15 Interrupt source and vector 5-11 Interrupt structure 5-8 Interrupt system 5-1 Register description 5-17

J

JTAG ID 18-11

L

Limit checking 17-19 LIN 12-26–12-30 Break field 12-27 Header transmission 12-28 LIN frame 12-26 LIN protocol 12-26 Synch byte 12-27 LIN BSL 19-15

Μ

Maskable interrupt 5-1 Memory Extension 2-7 Memory Extension Effect 2-7 Memory organization 3-1 Special Function Registers 3-12 Address extension by mapping 3-12 Mapped 3-12 Standard 3-12 Address extension by paging 3-15

Local address extension 3-15 Save and restore 3-16 Memory protection 3-8 Minimum erase width 4-2 Minimum program width 4-1 Modulation 15-15 Monitor mode control 18-1 Monitor RAM 18-1 Data 18-6 Stack 18-6 Monitor ROM 18-1 MultiCAN BSL 19-24 Multi-Channel Mode 15-19 Multiplication/Division Unit 10-1 Error detection 10-4 Interrupt generation 10-4 Low power mode 10-5 Register description 10-7 Register map 10-6

Ν

Non-maskable interrupt Events 5-1 Normalize operation 10-3

0

On-Chip Debug Support 18-1 Register description 18-8 Register map 18-8 On-chip oscillator 7-10

Ρ

P0 register description 6-16 P1 register description 6-24 P3 register description 6-32 P4 register description 6-40 P5 register description 6-48 Parallel ports 6-1 Bidirectional port structure 6-3 Driver 6-2, 6-6 General port structure 6-3 General register description 6-4

Kernel registers 6-4 Direction control register 6-6 Offset addresses 6-10 Open drain control register 6-6 Normal mode 6-2 Open drain mode 6-2 Parallel request source 17-14 Password 3-10 Peripheral clock management 8-6 Permanent arbitration 17-9 Personal computer host 4-9 P-Flash 4-2 Phase-Locked Loop 7-10 Changing PLL parameters 7-12 Pin Configuration 1-6 PLL Loss-of-clock 7-11 Startup 7-11 PLL mode 7-14 Power control 2-6 Power saving modes 8-1 Power supply system 7-1 Power-down mode 7-15, 8-3 Entering power-down mode 8-5 Exiting power-down mode 8-5 Power-down wake-up reset 7-5 Power-on reset 7-2, 7-3 Prewarning period 9-2 Processor architecture 2-1 Instruction timing Machine cycle 2-11 Register description 2-3 Program control 2-1 Program counter 2-3 Program Flash 4-2 Program memory 3-3 Program status word 2-4 Pull-down device 6-7 Pull-up device 6-7 Pulse width modulation 15-1

R

Read access time 4-1 Read-out protection 3-8 Request gating 17-13 Request trigger 17-13, 17-15, 17-16, 17-27 CCU6 Event 17-27 Reset control 7-3 Module behavior 7-6 Result read view 17-21 Accumulated 17-21 Normal 17-21 RS-232 4-9

S

Sample phase 17-5 Schmitt-Trigger 6-2 Sequential request source 17-11 Serial interfaces 12-1–12-30 Shift operation 10-3 Slow-down mode 7-15, 8-2 Software breakpoints 18-5 Break before make 18-5 Source priority 17-9 Special Function Register area 3-1 Stack pointer 2-3 Synchronization phase 17-5 Synchronous serial interface 12-31 Baud rate generation 12-40 Continuous transfer operation 12-37 Data width 12-33 Error detection 12-42 Baud rate error 12-43 Phase error 12-43 Receive error 12-42 Transmit error 12-43 Full-duplex operation 12-33 Half-duplex operation 12-36 Interrupts 12-42 Low power mode 12-46 Master mode 12-31 Operating mode 12-32 Port control 12-38

Register description 12-47 Register map 12-46 Right-aligned 12-33 Slave mode 12-31

Т

Timer 0 and Timer 1 13-1 Counter 13-2 External control 13-2 Mode 0, 13-bit timer 13-4 Mode 1, 16-bit timer 13-5 Mode 2, 8-bit automatic reload timer 13-6 Mode 3, two 8-bit timers 13-7 Port control 13-8 Register description 13-10 Register map 13-9 Timer operations 13-2 Timer overflow 13-2 Timer 2 13-14-13-29 Auto-Reload mode 13-14 Up/Down Count Disabled 13-14 Up/Down Count Enabled 13-16 Capture mode 13-18 Counter 13-14 External interrupt function 13-20 Low power mode 13-21 Module suspend control 13-22 Port control 13-20 Register description 13-25 Register map 13-24 Timer operations 13-14 Timer T12 15-3 Capture mode 15-9 Center-aligned mode 15-4 Compare mode 15-6 Dead-time 15-8 Duty cycle 15-8 Edge-aligned mode 15-4 Hysteresis-like control mode 15-10 Shadow transfer 15-3 Single-shot mode 15-10 Three-phase PWM 15-1

Timer T13 15-12 Compare mode 15-13 Shadow transfer 15-12 Single-shot mode 15-13 Timer/counter Timer/counter 2 14-8-?? Block diagram 14-9 Capture function 14-19-?? Compare function 14-10-?? Compare mode 0 14-13-?? Compare mode 1 14-15-?? Compare mode interrupts 14-18 Port functions 14-8 Registers 14-21-?? Total conversion time 17-6 Trap handling 15-17 Tristate 6-7

U

UART BSL 19-9 UART/UART1 module 12-2–12-25 Baud rate generation 12-10 Interrupt requests 12-5 Mode 1, 8-bit UART 12-3 Mode 2, 9-bit UART 12-5 Mode 3, 9-bit UART 12-5 Modes 12-2 Port control 12-23 Receive-buffered 12-2 Register map 12-25 UART1 module Low power mode 12-24 User programmable password 3-10

W

Wait-for-read mode 17-17 Wait-for-Start 17-10 Watchdog timer 9-1 Input frequency 9-3 Module suspend control 9-4 Register description 9-5 Servicing 9-2 Time period 9-3

IndexKeyword Index

Watchdog timer reset 7-5 Window boundary 9-2 Write result phase 17-5

Χ

XC878 Device configuration 1-2 Device Profile 1-3 Feature summary 1-4 Functional units 1-2 XRAM 3-1

IndexKeyword Index

20.2 Register Index

This section lists the references to the Special Function Registers of the XC878.

Α

ACC 2-3 ADC_PAGE 17-32 ADCON 16-97 ADH 16-98 ADL 16-98

В

B 2-3 BCON 12-16 BG 12-18 BRH 12-52 BRL 12-52

С

CAN LISTi 16-54 CAN MCR 16-52 **CAN MITR 16-53** CAN MOAMRn 16-91 CAN MOARn 16-92 CAN MOCTRn 16-76 CAN MODATAHn 16-96 CAN MODATALn 16-95 CAN MOFCRn 16-86 CAN MOFGPRn 16-90 CAN MOIPRn 16-84 CAN MOSTATn 16-79 CAN MSIDk 16-57 CAN MSIMASK 16-58 CAN MSPNDk 16-56 **CAN NBTRx 16-69 CAN NCRx 16-59** CAN NECNTx 16-71 **CAN NFCRx 16-72** CAN NIPRx 16-66 CAN NPCRx 16-68 CAN NSRx 16-63

CAN PANCTR 16-48 CC63RH 15-54 CC63RL 15-54 CC63SRH 15-55 CC63SRL 15-55 CC6xRH 15-49 CC6xRL 15-49 CC6xSRH 15-50 CC6xSRL 15-49 CCU6 PAGE 15-34 CD CON 11-16 CD CORDxH (x = X, Y or Z) 11-20 CD CORDxL (x = X, Y or Z) 11-19 CD STATC 11-18 CHCTRx (x = 0 - 7) 17-40 **CHINCR 17-60** CHINFR 17-60 **CHINPR 17-61** CHINSR 17-61 **CMCON 7-20** CMPMODIFH 15-59 CMPMODIFL 15-58 CMPSTATH 15-57 CMPSTATL 15-56 **COCON 7-22** CONH 12-48, 12-50 CONL 12-47, 12-50 CR MISC 7-9, 7-23 CRCR1 17-50 CRMR1 17-52 CRPR1 17-51

D

DATA0 16-99 DATA1 16-99 DATA2 16-99 DATA3 16-100 DPH 2-3

DPL 2-3

Ε

EECON 4-15 EINTCON 3-6 EO 2-5 ETRCR 17-39 EVINCR 17-62 EVINFR 17-62 EVINFR 17-63 EVINSR 17-63 EXICON0 5-21 EXICON1 5-22

F

FCON 4-14 FCS 4-16 FCS1 4-18 FDCON 12-19 FDRES 12-21 FDSTEP 12-20 FEAH 4-18 FEAL 4-18 FTVAL 4-17

G

GLOBCTR 8-10, 17-34 GLOBSTR 17-36

I

IEN0 5-17, 13-13 IEN1 5-18 IENH 15-90 IENL 15-88 INPCR0 17-41 INPH 15-93 INPL 15-91 IP 5-35 IP1 5-36 IPH 5-36 IPH 5-37 IRCON0 5-27 IRCON1 5-28 IRCON2 5-29 IRCON3 5-30 IRCON4 5-31 ISH 15-81 ISL 15-80 ISRH 15-87 ISRL 15-86 ISSH 15-85 ISSL 15-84

L

LCBR 17-64

Μ

MCMCTR 15-79 MCMOUTH 15-78 MCMOUTL 15-76 MCMOUTSH 15-75 MCMOUTSL 15-74 MD4 10-9 **MDUCON 10-11 MDUSTAT 10-13** MDx (x = 0 - 5) 10-9MEX1 2-9 **MEX2 2-9 MEX3 2-9** MEXSP 2-10 MISC CON 3-11, 17-28 MMWR2 18-10 **MODCTRH 15-69** MODCTRL 15-68 **MODIEN 12-45** MODPISEL 5-23, 8-8, 12-23, 18-10 MODPISEL1 5-24, 12-23, 13-21 MODPISEL2 13-8, 13-20 MODPISEL3 12-39 MODPISEL4 5-25 MODSUSP 9-4, 13-22, 15-27 MR4 10-10 MRx (x = 0 - 5) 10-9

Ν

NMICON 5-19

NMISR 5-33

0

OSC_CON 7-17, 8-11

Ρ

P0 ALTSEL0 6-18 P0 ALTSEL1 6-18 P0 DATA 6-16 P0 DIR 6-16 P0 DS 6-19 P0 OD 6-17 P0 PUDEN 6-18 P0 PUDSEL 6-17 P1 ALTSEL0 6-26 P1 ALTSEL1 6-26 P1 DATA 6-24 P1 DIR 6-24 P1 DS 6-27 P1 OD 6-25 P1 PUDEN 6-26 P1 PUDSEL 6-25 P3 ALTSEL0 6-34 P3 ALTSEL1 6-35 P3 DATA 6-32 P3 DIR 6-32 P3 DS 6-35 P3 OD 6-33 P3 PUDEN 6-34 P3 PUDSEL 6-33 P4 ALTSEL0 6-42 P4 ALTSEL1 6-42 P4 DATA 6-40 P4 DIR 6-40 P4 DS 6-43 P4 OD 6-41 P4 PUDEN 6-42 P4 PUDSEL 6-41 P5 ALTSEL0 6-50 P5 ALTSEL1 6-50 P5 DATA 6-48 P5 DIR 6-48 P5 DS 6-51

P5 OD 6-49 P5 PUDEN 6-50 P5 PUDSEL 6-49 PASSWD 3-21 PCON 2-6, 8-8, 12-10 **PISEL0H 15-39 PISEL0L 15-38** PISEL2 15-40 PLL_CON 7-18 PLL CON1 7-19 PMCON0 7-8, 8-7, 9-8 PMCON1 8-9, 10-5, 11-14, 12-46, 13-21, 15-26, 16-44, 17-7 PMCON2 8-10, 12-24, 13-22 PORT PAGE 6-10 PRAR 17-37 **PSLR 15-73 PSW 2-4** Px ALTSELn 6-8 Px DATA 6-5 Px DIR 6-6 Px DS 6-9 Px OD 6-6 Px PUDEN 6-7 Px PUDSEL 6-7

Q

Q0R0 17-46 QBUR0 17-48 QINR0 17-49 QMR0 17-42 QSR0 17-44

R

RBL 12-53 RC2H 13-28 RC2L 13-28 RCRx (x = 0 - 3) 17-58 RESRAxH (x = 0 - 3) 17-57 RESRAxL (x = 0 - 3) 17-56 RESRxH (x = 0 - 3) 17-55 RESRxL (x = 0 - 3) 17-54

S

SBUF 12-8 SCON 5-33, 12-8 SCON1 12-9 SCU_PAGE 3-19 SP 2-3 SYSCON0 3-14, 5-10

Т

T12DTCH 15-51 T12DTCL 15-51 T12H 15-47 T12L 15-47 T12MSELH 15-45 T12MSELL 15-43 T12PRH 15-48 T12PRL 15-48 T13H 15-53 T13L 15-52 T13PRH 15-54 T13PRL 15-53 T2 PAGE 14-23 T2CCU CCEN 14-30 T2CCU CCTBSEL 14-24 T2CCU CCTCON 14-27 T2CCU CCTDTCH 14-29 T2CCU CCTDTCL 14-28 T2CCU CCTH 14-26 T2CCU CCTL 14-26 T2CCU CCTRELH 14-25 T2CCU CCTRELL 14-25 T2CCU CCxH 14-34 T2CCU CCxL 14-33 **T2CCU COCON 14-32** T2CCU COSHDW 14-30 T2CON 13-26 T2CON1 13-27 T2H 13-29 T2L 13-29 T2MOD 13-25 TBL 12-53 TCON 5-26, 5-32, 13-11

TCTR2H 15-65 TCTR2L 15-63 TCTR4H 15-67 TCTR4L 15-66 TCTROH 15-61 TCTROL 15-60 THx (x = 0 - 1) 13-10 TLx (x = 0 - 1) 13-10 TMOD 13-12 TRPCTRH 15-72 TRPCTRL 15-70

V

VFCR 17-58

W

WDTCON 9-6 WDTH 9-7 WDTL 9-7 WDTREL 9-5 WDTWINB 9-8

Χ

XADDRH 3-5

www.infineon.com

Published by Infineon Technologies AG