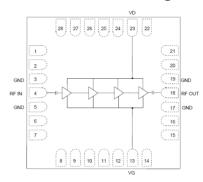


Power Amplifier Rev. V1 37.0-40.0 GHz Mimix Broadband

Features

- Linear Power Amplifier
- **Output Power Adjust**
- 25.0 dB Small Signal Gain
- +25.0 dBm P1dB Compression Point
- +35.5 dBm OIP3
- RoHS* Compliant and 260°C Reflow Compatible


Description

M/A-COM Tech's four stage 37.0-40.0 GHz SMD GaAs MMIC power amplifier has a small signal gain of 25.0 dB with a +35.5 dBm Output Third Order Intercept. This MMIC uses M/A-COM Tech's GaAs PHEMT device model technology, and is based upon electron beam lithography to ensure high repeatability and uniformity. The device comes in a RoHS compliant 7x7mm QFN Surface Mount Package offering excellent RF and thermal properties. This device is well suited for Millimeterwave Point-to-Point Radio, LMDS, SATCOM and VSAT applications.

Ordering Information

Part Number	Package		
XP1031-QK-0N00	bulk quantity		
XP1031-QK-0N0T	tape and reel		
XP1031-QK-EV1	XP1031-QK evaluation board		

Functional Block Diagram/Board Layout

Pin Configuration

Pin No.	Function	Pin No.	Function
3	Ground	18	RF Output
4	RF Input	19	Ground
5	Ground	23	Drain bias for Stage 1-4
13	Gate bias for Stage 1-4	All other pins	Not Connected
17	Ground		

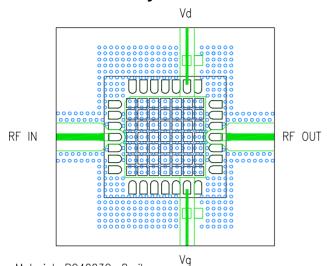
Absolute Maximum Ratings ^{1,2}

Parameter	Absolute Max.		
Supply Voltage (Vd)	+4.3V		
Supply Current (Id)	800 mA		
Gate Bias Voltage (Vg)	1.5V < Vg < 0V		
Input Power (Pin)	+10 dBm		
Abs. Max Junction/Channel Temp	MTTF Graph 1		
Max. Operating Junction/Channel Temp	175 °C		
Continuous Power Dissipation (Pdiss) at 85 °C	2.80 W		
Thermal Resistance (Tchannel=150 °C)	23 °C/W		
Operating Temperature (Ta)	-40 °C to +85 °C		
Storage Temperature (Tstg)	-65 °C to +150 °C		
Mounting Temperature	See solder reflow profile		
ESD Min Machine Model (MM)	Class A		
ESD Min Human Body Model (HBM)	Class 1A		
MSL Level	MSL3		

- Channel temperature directly affects a device's MTTF. Channel temperature should be kept as low as possible to maximize lifetime.
- For saturated performance it is recommended that the sum of (2*Vdd + abs(Vgg)) <9V
- North America Tel: 800.366.2266 Europe Tel: +353.21.244.6400
- India Tel: +91.80.43537383 Visit www.macomtech.com for additional data sheets and product information.

Power Amplifier 37.0-40.0 GHz Mimix Broadband

Electrical Specifications: 37-40 GHz (Ambient Temperature T = 25°C)

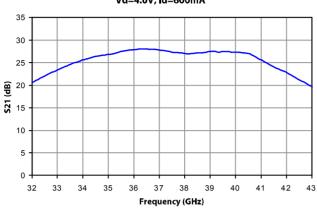

Parameter	Units	Min.	Тур.	Max.
Input Return Loss (S11)	dB	10.0	14.0	-
Output Return Loss (S22)	dB	4.0	8.0	-
Small Signal Gain (S21)	dB	23.0	25.0	-
Gain Flatness (ΔS21)	dB	-	+/-1.0	-
Reverse isolation (S12)	dB	40	50	-
Output Power for 1dB Compression Point (P1dB)	dBm	-	25.0	-
Output IMD3 with Pout (scl) = 18 dBm	dBc	28.0	35.0	-
Output IMD3 with Pout (scl) = 15 dBm	dBc	38.0	41.0	-
Drain Bias Voltage (Vd)	VDC	-	3.5	4.0
Gate Bias Voltage (Vg)	VDC	-1.0	-0.3	-0.1
Supply Current (Id1) (Vd=4.0V, Vg=-0.3V)	mA	-	600	675

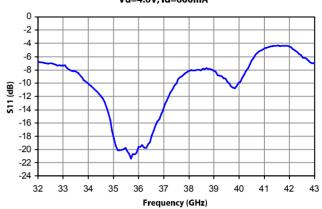
[•] India Tel: +91.80.43537383 • China Tel: +86.21.2407.1588 Visit www.macomtech.com for additional data sheets and product information.

Power Amplifier Rev. V1 37.0-40.0 GHz Mimix Broadband

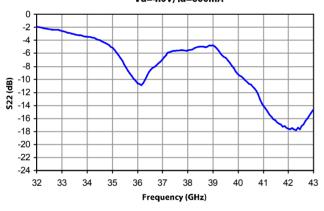
Recommended Layout

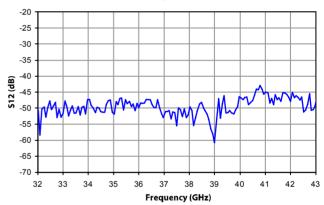
Material: RO4003C, 8mil Capacitors: 10nF/1uF

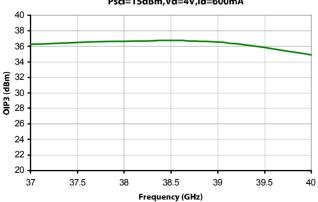

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are

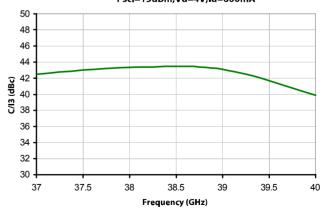

Power Amplifier Rev. V1 37.0-40.0 GHz Mimix Broadband

Typical Performance Curves


XP1031-QK-0N00: Small Signal Gain (S21) Vd=4.0V, Id=600mA


XP1031-QK-0N00: Input Return Loss (S11) Vd=4.0V, Id=600mA


XP1031-QK-0N00: Output Return Loss (S22) Vd=4.0V, Id=600mA


XP1031-QK-0N00: Reverse Isolation (S12) Vd=4.0V, Id=600mA

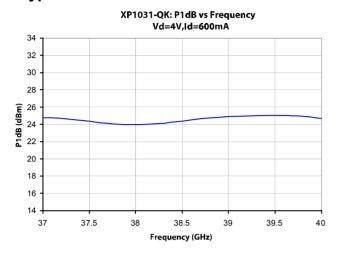
XP1031-QK-0N00: OIP3 vs Frequency Pscl=15dBm,Vd=4V,Id=600mA

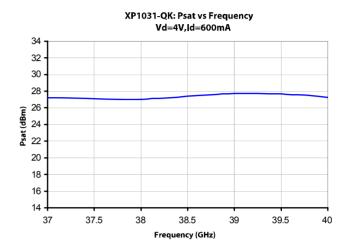
XP1031-QK-0N00: C/I3 vs Frequency Pscl=15dBm,Vd=4V,Id=600mA

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

• India Tel: +91.80.43537383 Visit www.macomtech.com for additional data sheets and product information.

• China Tel: +86.21.2407.1588

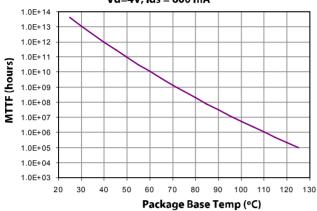

changes to the product(s) or information contained herein without notice.

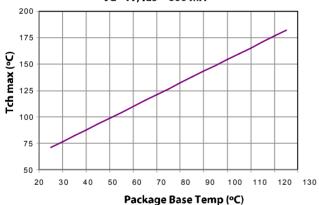

[•] North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400

Power Amplifier Rev. V1 37.0-40.0 GHz Mimix Broadband

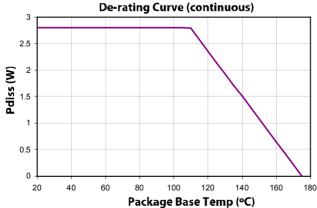
Typical Performance Curves

typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available.


Commitment to produce in volume is not guaranteed.


Power Amplifier 37.0-40.0 GHz Mimix Broadband

MTTF


XP1031-QK: MTTF hours vs. Package Base Temperature Vd=4V, Ids = 600 mA

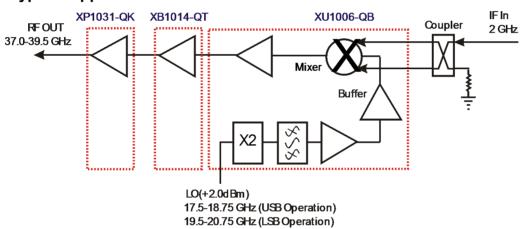
XP1031-QK: Tch(max) vs. Package Base Temperature Vd=4V, Ids = 600 mA

XP1031-QK-0N00: Operating Power

[•] India Tel: +91.80.43537383 • China Tel: +86.21.2407.1588 Visit www.macomtech.com for additional data sheets and product information.

Power Amplifier

37.0-40.0 GHz

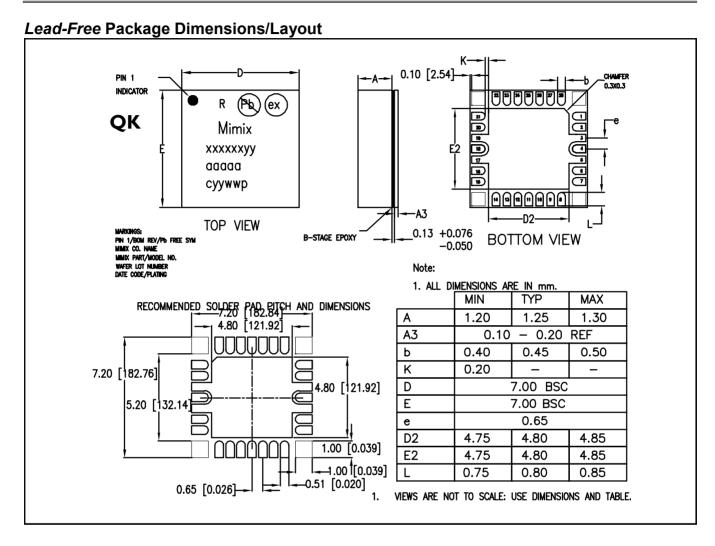

Rev. V1

Mimi× Broadband

App Note [1] Biasing - It is recommended to bias the amplifier with Vd=4.0V and Id=600mA. It is also recommended to use active biasing to keep the currents constant as the RF power and temperature vary; this gives the most reproducible results. Depending on the supply voltage available and the power dissipation constraints, the bias circuit may be a single transistor or a low power operational amplifier, with a low value resistor in series with the drain supply used to sense the current. The gate of the pHEMT is controlled to maintain correct drain current and thus drain voltage. The typical gate voltage needed to do this is -0.3V. Typically the gate is protected with Silicon diodes to limit the applied voltage. Also, make sure to sequence the applied voltage to ensure negative gate bias is available before applying the positive drain supply.

App Note [2] Bias Arrangement - Each DC pin (Vd and Vg) needs to have DC bypass capacitance (10 nF/1 uF) as close to the package as possible.

Typical Application


MMIC-based 37.0-40.0 GHz Transmitter Block Diagram

Commitment to produce in volume is not guaranteed.

India Tel: +91.80.43537383
 China Tel: +86.21.2407.1588
 Visit www.macomtech.com for additional data sheets and product information.

Power Amplifier Rev. V1 37.0-40.0 GHz Mimix Broadband

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these class 2 devices.

Commitment to produce in volume is not guaranteed.